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Abstract

This paper concerns the probabilistic modeling of uncertainties in structural dynamics.
For real complex structures, the accurate modeling and identification of uncertainties
is challenging due to the large number of involved uncertain parameters. In this con-
text, the nonparametric probabilistic approach which consists in modeling globally the
uncertainties by replacing the mass, stiffness and damping reduced matrices by ran-
dom matrices is attractive since it yields a stochastic modeling for which the level of
uncertainties is controlled by a small number of dispersion parameters. In its classical
version, these random matrices are assumed to be independent. This assumption is
valid (and proven) in absence of information concerning the dependence structure of
these random matrices. In some situation, such as the presence of geometry uncer-
tainties, this assumption is not valid any more and may yield an overestimation of the
output levels of fluctuation. In this context, the present paper presents an extension of
the classical nonparametric probabilistic to take into account a dependence between the
random mass and stiffness matrices. This new modeling is illustrated on a beam struc-
ture for which the diameter presents spatial random fluctuations along the longitudinal
direction.

Keywords: random matrix theory, nonparametric probabilistic approach, structural
dynamics, mass/stiffness correlation

1. Introduction

For so long time engineers have performed structural analyses using deterministic
mathematical models. In especial for many structures the increase of the safety margin
was usually employed in the design to support the uncertainties of the physical con-
struction or the variations of the loading or material resistance. In the last years, the
development of stochastic models has enhanced the reliability of the dynamic analyses
of these structures.
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Regardless the chosen strategy uncertainties shall be always considered in structural
analyses. There are several methods for including the uncertainties into computational
models. Considering probabilistic methods, the classical parametric approach takes into
account the uncertainties in the parameters of the computational model [1, 2, 3]. This
method consists in replacing the uncertain parameters by random variables and then
propagate the uncertainty using devoted methods such as the Monte Carlo simulation
method. This approach is quite simple to implement and use if there are uncertainty
sources with known probability distributions. In cases of real complex structures, this
approach becomes inadequate because the sources of uncertainties are not completely
known, or they are known but modeled with a large number of hyperparameters that
need to be identified.

The nonparametric probabilistic approach [4, 5] is an alternative to overcome the
limitations of the parametric one. In this approach, the uncertainties happen at the
operator level by modeling the reduced-order generalized mass, stiffness and damp-
ing matrices of a structural system as random matrices. There is a small number of
dispersion parameters that control the constructed stochastic model and have their
experimental identification feasible in an industrial context [6, 7, 8, 9, 10, 11]. Fur-
thermore, it is not necessary to know the probability density functions of the model
input data. An explicit generator for independent realizations of the random matrices
is directly available [4], making its use very practical in the context of a Monte Carlo
simulation [12]. The randomness applied directly to the reduced-order generalized ma-
trices allows the solution of the dynamical equations for a chosen amount of vibration
modes, which results in a significant reduction of the required computational cost when
compared to parametric models.

In its classical form, the nonparametric probabilistic approach assumes that the
random mass, stiffness and damping matrices are independent. This assumption com-
pletely make sense in case of uncertainties related to the material properties for in-
stance. In absence of information about the dependence of these random matrices, this
assumption is correct considering the Information Theory [4]. This assumption yields
a conservative stochastic model that will encompass a possible dependence if exists.

In a situation of a structure whose distributed mass has significant influence in its
dynamic behaviour, it is clear that uncertainties in chosen geometry parameters pro-
mote correlated mass and stiffness uncertainties and consequently, dependent ones. For
instance, in most industries (automotive vehicles, aircraft ...), manufacturing tolerances
yield uncertainties in the geometry of the structure that will affect the mass and stiffness
matrix in a dependent way. In this case, not taking into account the existing depen-
dence structure may overestimate the level of fluctuations of the quantities of interest
and in the case of an inverse identification of the dispersion parameters, those later may
be underestimated to compensate the non identifiability of the stochastic model.

The objective of this paper is to extend the classical nonparametric probabilistic
approach to take into account a correlation/dependency between the mass and stiffness
random matrices. To achieve this objective, a global correlation parameter is introduced
in addition to the mass and stiffness dispersion parameters. The generator of indepen-
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dent realizations of these pair of random matrices is then constructed. For the proposed
construction only one additional parameter is introduced keeping the advantage of the
nonparametric probabilistic approach and the classical nonparametric probabilistic ap-
proach can be a special case of this new model when setting the correlation parameter
to zero.

In this paper, Section 2 presents the nominal model and its related equation of mo-
tion. Then Section 3 presents the new extended nonparametric probabilistic approach.
Finally, in Section 3, the proposed approach is illustrated and validated through a nu-
merical application consisting of a beam structure with geometry spatial fluctuations.

2. Nominal model

The computational model is constructed using the finite element method in the
frequency domain. The structure is analyzed on the frequency range of 0 ≤ ω ≤ ωmax

and the vector y(ω) is the n×1 vector of frequency-dependent displacement amplitudes,
where n is the number of degrees of freedom. The equation of motion for the nominal
model is

(−ω2
M + iωD + K)y(ω) eiωt = F(ω) eiωt (1)

where M , D and K are the n× n mass, damping and stiffness matrices, and F(ω) is the
n× 1 vector of time-independent force amplitudes.

The reduced nominal model is obtained by projecting the nominal model on the
subspace spanned by them first mode shapes. Considering the subscript k = 1, 2, . . . , m
we write the generalized eigenvalue problem as follows

Kφk = λkM φk (2)

The m eigenvalues are indexed as 0 < λ1 ≤ . . . ≤ λm and associated with the cor-
responding mode shapes φ1,φ2, . . . ,φm. Here, only deformation modes are considered
for the structure.

We introduce the approximation y(m)(ω) of y(ω) written as

y(m)(ω) = Φ q(ω) (3)

where q(ω) is the vector of the m generalized coordinates and Φ is the n ×m modal
matrix for the mass-normalized mode shapes.

The reduced nominal model is written as

(−ω2M+ iωD +K) q(ω) = F(ω) , (4)

In Eq. 4, M = ΦT
M Φ = Im, D = ΦT

D Φ and K = ΦT
KΦ = diag(λ1, λ2, . . . , λm

)
are them×m matrices of generalized mass, damping and stiffness, and F(ω) = ΦT

F(ω)
is the m× 1 vector of generalized forces.
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3. Stochastic model

It is now assumed that the nominal computational model presented in Section 2
has some sources of uncertainties related to its parameters such as geometry or mate-
rial properties. As explained in the introduction, all the sources of uncertainties are
modeled globally using a nonparametric probabilistic approach for uncertainties. In
this section, an extended version of the classical nonparametric probabilistic approach
of uncertainties is presented allowing the correlation between the random mass and
stiffness matrices to be taken into account.

3.1. Nonparametric probabilistic approach of uncertainties.

The nonparametric probabilistic approach of uncertainties consists in modeling the
uncertainties directly and globally at the reduced-order level by replacing the mass and
the stiffness matrices of the nominal computational by random matrices [4]. The proba-
bility distribution for each of these matrices is constructed using the Maximum Entropy
Principle [13] yielding a probabilistic model controlled by two dispersion parameters.
In the classical nonparametric probabilistic approach, the obtained mass and stiffness
random matrices are shown to be independent. If necessary this procedure can be also
applied to the damping matrix. The damping random matrix would be constructed
as independent too and a third dispersion parameter would control of the probabilistic
model. In the following subsections, at first, we describe the classical nonparametric
probabilistic approach for mass and stiffness matrices and then, we present an extended
approach introducing a correlation, and consequently the dependence, between the mass
and stiffness random matrices.

3.1.1. Classical nonparametric approach of uncertainties: independent mass and stiff-
ness random matrices

In the classical nonparametric approach, the matrices of generalized mass and stiff-
ness are replaced by independent random matrices.

The Cholesky factorization of the generalized mass and stiffness matrices are M =
LT

M LM and K = LT
K LK , respectively. If the subscript i denotes M and K, we can

write Ai for representing the random matrices M and K in the form

Ai = LT
i GiLi (5)

whereGi is the normalized random matrix whose probability distribution is constructed
using the Maximum Entropy principle with the constraints: (a) it must be positive
definite almost surely; (b) it has a mean value which is equal to the identity matrix;
and (c) it must verify the inequality |E{log[det(Gi)]}| < +∞, which means that the
stochastic response of the stochastic computational dynamic model is a second-order
random stochastic process.
The random mass and stiffness matrices are then independent and the probability
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distribution is defined by the probability density function pGi
(Gi) as

pGi
(Gi) = 1l

M
+
m(R)(Gi)× Ci ×

[
det(Gi)]

m+1
2

[(δ
i
)−2

−1] × e−
m+1

2
(δ
i
)−2 tr[Gi] , (6)

where the positive constant Ci is given by

Ci=(2π)−
m(m−1)

4

(
m+ 1

2δ2
i

)m(m+1)
2

(δ
i
)−2{

Πm
j=1Γ

(m+ 1

2δ2
i

+
1−j

2

)}−1

, (7)

and the gamma function defined for z > 0 is Γ(z) =
∫ +∞

0
tz−1 e−t dt.

The dispersion parameter δi in Equations 6 and 7 controls the global statistical
fluctuations of the matrix Gi and is evaluated as

δi =

√
E{‖Gi − Im‖2F}

E{‖Im‖2F}
=

√
E{‖Gi − Im‖2F}

m
(8)

where ‖.‖F is the Frobenius norm.
The dispersion parameter must be real valued and chosen in the interval 0 < δi <√
(m+ 1)/(m+ 5) to guarantee the constraint (c) of the Maximum Entropy principle.
The independent realizations of the random mass and stiffness matrices can be easily

performed within the Monte Carlo numerical simulation. To do this, the normalized
random matrix is constructed as Gi = LT

i Li, in which Li is an upper triangular random
matrix with values in Mm(R) such that:
(1) random variables [Li]jj′ for j ≤ j′ are independent,
(2) for j < j′, real-valued random variables [Li]jj′ can be written as [Li]jj′ = σmUjj′

in which σm = δ
i
/
√
m+ 1 and where Ujj′ is a real-valued Gaussian random variable

with zero mean and variance equal to 1,
(3) for j = j′, positive-valued random variables [Li]jj can be written as [Li]jj =

σm

√
2Vj in which Vj is a positive-valued gamma random variable whose probability

density function pVj
(v) with respect to dv is written as

pVj
(v) = 1lR+ (v)

1

Γ(m+1
2

(δ
i
)−2 + 1−j

2
)
v

m+1
2

(δ
i
)−2

−
1+j

2 e−v (9)

3.1.2. Extended nonparametric approach of uncertainties: dependent mass and stiffness
random matrices

In the former nonparametric approach, there is no information concerning the corre-
lation between the normalized mass and stiffness random matrices. In this section, we
propose to add a correlation, and then a dependence between both. With this in mind
the global correlation between these normalized random matrices can be measured as

η =
E{tr [(GM − Im)

T (GK − Im)]}√
E{‖GM − Im ‖2F}E{‖GK − Im‖2F}

=
E{tr [(GM − Im)

T (GK − Im)]}
mδM δK

(10)
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where η is the measured global correlation, δM and δK are the dispersion parameters
for the normalized mass and stiffness random matrices, constructed as GM = LT

MLM

and GK = LT
KLK , respectively.

It would be also possible to construct the joint probability distribution of the nor-
malized random matrices directly by taking into account the measured correlation as
described by Eq. 10 and using the Maximum Entropy principle. Although this strategy
yields the joint probability distribution, it would be difficult to construct the explicit
generator of independent realizations such as the one obtained in the classical non-
parametric probabilistic approach. Instead, we propose a correlation coefficient which
previously introduces a correlation between entries of the upper triangular random
matrices LM and LK using the Nataf transform [14] of correlated Gaussian random
matrices. This kind of procedure was previously employed by Soize [15] to compute
the tensor-valued random fields for the anisotropic elastic material with spatial fluctu-
ations. A posteriori we verify if the measured global correlation between the matrices
GM and GK is close to the introduced correlation between entries.

Let LG
1 and LG

2 be two upper triangular random matrices for which all the non-zero
entries are independent and normalized Gaussian random variables. The correlation
coefficient is defined as 0 ≤ γ ≤ 1, and different from the one introduced in Eq. 10.
The matrices LG

M and LG
K are constructed as follows

LG
M = LG

1

LG
K = γ LG

1 +
√

1− γ2 LG
2 (11)

By setting γ = 0, the matrices LG
M and LG

K become uncorrelated, and consequently
independent. On the contrary, setting γ = 1, both matrices become equal. Recalling
the subscript i as denoting M and K, the upper random matrix Li is now constructed
as a transformation of the random matrices LG

i such that

(1) for j < j′ , [Li]jj′ = σm[L
G
i ]jj′ in which σm = δ

i
/
√
m+ 1 ;

(2) for j = j′, [Li]jj = σm

√
2F−1

Vj
{Φ([LG

i ]jj)} .

where the function u 7→ Φ(u) is the cumulative distribution function of the normalized
Gaussian random variable and the function v 7→ F−1

Vj
(v) is the reciprocal function of the

cumulative distribution of the random variable Vj with probability distribution given
by Eq. 9.

In this approach, the normalized random matrices GM and GK are now depen-
dent and the parameters δ

M
, δ

K
and γ control the probabilistic model of uncertainties.

Finally, the mass and stiffness random matrices are constructed as

M = LT
MGMLM

K = LT
KGKLK (12)

This extended nonparametric approach represents a generalization of the classical
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nonparametric approach. By selecting γ = 0 we have independent random matrices
which correspond to the most conservative case and yields the most variability to the
outputs. With the dependency of the random matrices the output variability decreases
which may be interesting for several industrial applications.

The three parameters δ
M
, δ

K
and γ can be identified using experimental data or

random data resulting from the use of a fully parametric model of uncertainties, as
demonstrated in Section 4. The correlation parameter η that measures the correlation
between the two random matrices and the correlation coefficient γ used as input pa-
rameter for the construction of the random matrices are slightly different. In order to
demonstrate how this difference is negligible, Table 1 shows estimated values, consid-
ering the Monte Carlo simulation with 10 000 realizations. The correlation parameter
η is evaluated for different values of the correlation coefficient γ, considering different
sizes of the matrix and for δm = δk = 0.2.

n = 2 n = 10 n = 40

γ = 0.1 0.1008 0.1011 0.0990

γ = 0.5 0.4971 0.4957 0.4967

γ = 0.9 0.9014 0.9004 0.8989

Table 1: Estimated value of η.

It can be seen in this table a very good correspondence between γ and η, which
validated the herein before construction.

3.2. Random modal data

Mode shapes of the nonparametric model may present substantial differences in
comparison with the nominal elastic modes calculated in section 2. In order to evaluate
this comparison, we project the nonparametric model on the subspace spanned by them
first random mode shapes. Considering k = 1, 2, . . . , m we write the random eigenvalue
problem as follows

Kψk = ΛkMψk (13)

The random eigenfrequencies are calculated as Ωk =
√
Λk. Similarly to the nominal

model, the eigenvalues are indexed as 0 < Λ1 ≤ Λ2 ≤ . . . ≤ Λm and associated with
the corresponding random eigenvectors ψ1,ψ2, . . . ,ψm. These random eigenvectors
are mass-normalised and indexed to compose the m×m matrix of the mass-normalised
random elastic modes Φ̃ = [φ̃1, φ̃2, . . . , φ̃m].

The random matrices constructed with the extended nonparametric approach are
diagonalized as follows

M̃ = Φ̃TMΦ̃

K̃ = Φ̃TKΦ̃ (14)
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The diagonalized mass and stiffness random matrices are almost surely evaluated
as M̃ = Im and K̃ = diag(Λ1,Λ2, . . . ,Λm).

3.3. Random FRFs

For all ω in the range 0 ≤ ω ≤ ωmax , the random response Y(ω) of the stochastic
reduced-order computational model, is written as

Y(ω) = Φ̃Q(ω) (15)

in which the random vector Q(ω) of the random generalized coordinates, is the solution
of the following random reduced-order matrix equation

(−ω2M̃+ iωD̃+ K̃)Q(ω) = F̃(ω) (16)

in which D̃ = Φ̃T
DΦ̃ = ΨTDΨ with Ψ = [ψ1,ψ2, . . . ,ψm] and where F̃(ω) =

Φ̃T
f(ω) = ΨT F(ω).

4. Application

A clamped-supported beam is investigated in the present study as depicted in Fig. 1.
The beam made of isotropic material has two different circular sections named as Beam
1 and Beam 2. The dimensions and properties of the beam are described in Table 2.

Figure 1: Clamped-supported beam.

Beam 1 Beam 2

length [m] 0.12 0.18
diameter [m] 7.5× 10−3 5× 10−3

Young Modulus [GPa] 70
Poisson’s coefficient 0.29
mass density [kg/m3] 2 800

Table 2: Beam characteristics.
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The stiffness and mass matrices have been obtained using Euler-Bernoulli theory.
Each beam is discretized with 100 elements. The reduced model is then constructed
using m = 8 elastic modes ranging from 227 Hz to 8 632 Hz. The damping generalized
matrix is constructed as diagonal considering the value of 2% for the damping ratio.
In Fig. 2, the nominal solution is depicted for a frequency range of [0, 4 000] Hz. A
unit frequency dependent force is applied laterally to the beam at a distance 0.104 m
from the left end. The magnitude of the velocity is plotted for the observed degree of
freedom located at 0.098 m from the left end.
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Figure 2: Response of the nominal model.

4.1. Construction of the reference response using a parametric stochastic model

In this application, the diameter of the beam section is assumed to be a random
field that has different values along the beam length. Thus it is a uniform random
variable with support [7.3 7.7]× 10−3 m for Beam 1 and [4.8 5.2]× 10−3 m for Beam 2.
The correlation along the beam length is introduced through a Nataf transform of the
stationary Gaussian random field with the correlation length of 0.01 m. Figure 3 shows
two realizations of the random beam diameters.

The parametric reduced stochastic model is constructed by projecting the random
dynamical equations of the beam on the basis constituted by the 8 elastic modes of
the nominal model studied in the previous section. Therefore the reduced mass and
stiffness matrices, K̂ and M̂, are full and random. Then the random modal data of
the parametric random beam can be obtained by resolving the eigenvalue problem as
follows

K̂ψ
par
k = Λpar

k M̂ψ
par
k (17)

The random eigenfrequencies are calculated as Ωpar
k =

√
Λpar

k and indexed as 0 <
Ωpar

1 ≤ Ωpar
2 ≤ . . . ≤ Ωpar

m . These eigenfrequencies are associated with the corresponding

mass-normalised random elastic modes Φ̃par = [φ̃par
1 , φ̃par

2 , . . . , φ̃par
m ].

The statistics, estimated using the Monte Carlo Method with 1000 realizations,
of the 8 first eigenfrequencies are reported in Table 3. The coefficient of variation is
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Figure 3: Two realizations of the random beam diameters.

the ratio standard deviation/mean value. The random velocity response is plotted as
magnitude in Fig. 4.

Mode 1 2 3 4 5 6 7 8

Mean value (Hz) 226.2 627.4 1386 2258 3460 5053 6588 8623

Coef. Var. (×10−3) 7.9 7.8 5.6 5.6 6.2 5.3 5.4 5.6

Table 3: Parametric model - statistics for the 8 first eigenfrequencies.

Let E{M̂} = L̂T
M L̂M and E{K̂} = L̂T

KL̂K be the Cholesky factorization for the
mean mass and stiffness matrices, respectively, considering the parametric random
beam. For this case, the normalized random mass and stiffness matrices are defined by

ĜM = L̂T−1

M M̂ L̂
−1

M and ĜK = L̂T−1

K K̂ L̂
−1

K
(18)

In this case, the dispersion parameters and the correlation parameter for the para-
metric model are defined by

δparM =

√
E{‖ĜM − Im‖2F}

m
and δparK =

√
E{‖ĜK − Im‖2F}

m
(19)

ηpar =
trE{(ĜM − Im)

T (ĜK − Im)}
mδparM δparK

(20)

The estimated values for this parameters are δparM = 0.026, δparK = 0.049 and ηpar =
0.86. It can then be concluded that for the parametric random beam with random field
diameter the correlation between the mass and stiffness matrix is very large. These
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Figure 4: Random response for the parametric random beam. On the left: Mean response and
confidence region at 95 %. On the right: Coefficient of variation (ratio standard deviation/mean
value).

reference estimated values for δparM , δparK and ηpar will now be used as the values δM , δK
and γ of the nonparametric correlated stochastic model.

4.2. Nonparametric correlated stochastic model

In this section, the nonparametric correlated stochastic model presented in Section
3 is analyzed using the values of the parameters identified for the parametric stochastic
model, i.e, δM = δparM = 0.026, δK = δparK = 0.049 and γ = ηpar = 0.86. The statistics of
the 8 first eigenfrequencies are reported in Table 4.

Mode 1 2 3 4 5 6 7 8

Mean value (Hz) 226.3 628.3 1387 2260 3463 5059 6596 8632

Coef. Var. (×10−3) 7.1 7.1 7.1 7.3 7.0 7.0 7.0 7.0

Table 4: Nonparametric correlated model - statistics for the 8 first eigenfrequencies.

The probability distribution of the 4 first eigenfrequencies are shown in Fig 6.
Compared to the values obtained for the parametric stochastic model (see Table 3),
the mean values are in good agreement and the coefficients of variation are in quite
good agreement. It should be noted that the level of fluctuation using the nonpara-
metric approach is defined globally through the two dispersion parameters. Therefore
it cannot be fitted frequencies by frequencies. The random velocity response and its
comparison with the one obtained using the parametric stochastic model are plotted as
magnitude in Figures 6 and 7. The levels of fluctuation of the response is comparable
to the ones obtained for the parametric stochastic model.
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Figure 5: Correlated nonparametric model - Probability distribution of the 4 first eigenfrequencies.
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Figure 6: Random response for the correlated nonparametric stochastic model. On the left: Mean
response and confidence region at 95 %. On the right: Coefficient of variation (ratio standard devia-
tion/mean value).
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Figure 7: Random response: Comparison between the correlated nonparametric stochastic model and
the parametric stochastic model (confidence region at 95 %, the plots are almost superimposed).

4.3. Nonparametric uncorrelated stochastic model (classical approach)

The results of the previous section are now compared with the ones obtained us-
ing the classical non parametric correlated stochastic model. Therefore, we now have
δM = δparM = 0.026, δK = δparK = 0.049 and γ = 0. The statistics of the 8 first eigen-
frequencies are reported in Table 5. The probability distribution of the 4 first eigen-

Mode 1 2 3 4 5 6 7 8

Mean value (Hz) 226.5 627.7 1387 2261 3463 5056 6597 8643

Coef. Var. (×10−3) 13.3 13.3 13.6 13.6 13.5 12.9 13.0 12.4

Table 5: Nonparametric uncorrelated model - statistics for the 8 first eigenfrequencies.

frequencies are shown in Fig 6. Compared to the values obtained for the parametric
stochastic model (see Table 3), the mean values are in good agreement. Concerning the
coefficients of variation, the values are overestimated. The random velocity response
and its comparison with the one obtained using the parametric stochastic model are
plotted as magnitude in Figures 9 and 10. As expected, the levels of fluctuation of
the response are larger than the ones obtained for the parametric stochastic model. To
obtain an output level of fluctuation comparable to the parametric case, the disper-
sion parameters δM , δK could be changed to lower values but these new values would
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Figure 8: Uncorrelated nonparametric model - Probability distribution of the 4 first eigenfrequencies.
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Figure 9: Random response for the nonparametric uncorrelated stochastic model. On the left: Mean
response and confidence region at 95 %. On the right: Coefficient of variation (ratio standard devia-
tion/mean value).
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Figure 10: Random response: Comparison between the uncorrelated nonparametric stochastic model
and the parametric stochastic model (confidence region at 95 %).

not correspond to the correct values of dispersion for the random mass and stiffness
matrices. It can then be concluded (through this example which is representative of
many industrial applications, this is not a general proof) that, if exists, the correlation
of between the mass and the stiffness random generalized matrices have to be taken
into account in order to not overestimate the level of fluctuation of the quantities of
interest.

5. Conclusion

In this paper, an extended nonparametric probabilistic approach of uncertainties
has been presented. A global correlation between the mass and the stiffness generalized
random matrices has been introduced. The advantages of the classical nonparametric
probabilistic approach are kept: (1) the probabilistic model is controlled by a small
number of parameters, only one correlation coefficient has been introduced in addition
to the mass and stiffness dispersion parameters, (2) an explicit generator of independent
realizations has been constructed, (3) the probabilistic model is constructed at the
reduced-order level. The classical nonparametric probabilistic approach of uncertainties
is a particular case (γ = 0) of this extended new probabilistic model. This new model
has been validated through a numerical application. The results clearly show that for
this example, as soon as a correlation between the mass and the stiffness exists, it
has to be taken into account by setting the correlation coefficient at the good value.
Otherwise, the output variability is overestimated.
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