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Abstract

This paper presents a nuanced robustness analysis for structures when only

limited information is available. A new methodology based on fuzzy set the-

ory is proposed to cope with scarce information as a major problem in the

performance assessment of existing structures. The developed robustness

measure provides information on the relationship between structural robust-

ness and the magnitude of uncertainty in the damage of the structure. This

feature is enabled through a nuanced consideration of imprecision in the dam-

age assessment via alpha-level discretization. An entropy-based robustness

measure is formulated as a function of imprecision in the damage state. On

this basis different design solutions can be compared, in a one-swoop analy-

sis, with respect to their robustness for different magnitudes of damage. This

approach can, further, be used to assess effort for inspection versus gain in

precision of the predicted structural performance. The development is of a

general nature. Herein, it is elucidated in the context of a typical offshore en-
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gineering problem in order to demonstrate its application in practical cases.

Fixed offshore platforms with different brace configurations are compared in

view of robustness with respect to damage from corrosion.

Keywords: Robustness assessment; Imprecision; Entropy measure;

Fuzziness; Alpha-level discretization; Marine corrosion; Fuzzy modeling

1. Introduction1

A nuanced robustness assessment is developed to compare structural de-2

sign solutions regarding their performance in dependence on the magnitude3

of uncertainy in the assessed damage of the structures. To address the partic-4

ular relevance of the development to current industrial challenges, we focus5

on offshore structures under only vaguely known corrosion damage. In this6

context, robustness is a measure to assess a jacket structure’s ability to sus-7

tain damage with a limited loss of ultimate capacity and, therefore, reliability8

[1]. A ”robust” structure has inherent redundancies in terms of alternative9

load paths that allow the structure to withstand global damage caused by10

various events such as ship impact, extreme storms, explosions, etc. For less11

robust structures, however, a small damage event may significantly dimin-12

ish the platform’s global capacity resulting in a high-risk situation which13

requires immediate response such as platform de-manning, platform shut-14

down, or emergency repair. Robustness consideration in this context usually15

aims to mitigate the risk from disproportionate failure or progressive collapse16

due to damage caused by extreme loads or accidental loads. In the litera-17

ture, robustness of fixed offshore platforms is usually evaluated through the18

ultimate strength analysis of structures in both intact and damaged states,19

2



which leads to a number of deterministic performance measures using the20

concept of reserve strength and residual strength, see [2]. The prescribed21

damage scenarios are frequently associated with removal of one critical mem-22

ber or several members in the intact state, see [3]. However, there are other23

sources of damage that, in contrast to damage suddenly provoked by ac-24

cidental actions, arise gradually in time from aging of structures and may25

also involve disproportionate effects, including marine corrosion, see [4]. Be-26

sides the deterministic performance measures, the inevitable uncertainty in27

engineering practice has led to the development of probabilistic robustness28

measures based on reliability and risk analysis of structures, see [5, 6, 7]. A29

brief review of these measures is given in Section 2.30

Robustness can also be understood as a structure’s capacity to withstand31

the normal fluctuations of environmental conditions without noticeable ef-32

fects on its serviceability. In this context, robustness denotes a high degree33

of independence between the uncertainty of structural parameters and the34

associated uncertainty in structural responses. Assessments of this type of35

robustness are devoted to obtaining global statements about the degree of36

structural response variation with respect to input fluctuations at once. Com-37

monly, all uncertain parameters are described as random variables, which38

enables the application of probabilistic measures to assess structural robust-39

ness. As pertinent developments in robustness assessment in this context rely40

heavily on probabilistic models, a proper treatment of uncertainty is of vital41

importance for this point of view in understanding robustness. This includes42

the characterization of the deterioration of structural strength due to marine43

corrosion, which has adverse effects on the safety of offshore structures. The44
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corrosion effects on the reliability of offshore structures has been studied in45

[8] where the probabilistic corrosion model from [9] for mild steel immersed46

in seawater was adopted to estimate the uncertainty in the corrosion depth47

for a relatively short period.48

In engineering applications, the knowledge about the fluctuations of the49

structural parameters can be quite limited so that a clear probabilistic spec-50

ification of uncertainty can be problematic. This is associated with rare and51

imprecise data. Examples are uncertain quantities for which mere bounds or52

linguistic expressions are known. For this type of information, alternative,53

non-probabilistic and mixed models provide reasonable properties [10]. Mea-54

sures for the associated information content are available [11]. The usefulness55

and capabilities of these models and approaches, such as interval analysis,56

fuzzy set theory, evidence theory, imprecise probabilities and fuzzy random57

variables, have already been demonstrated in the solution of practical prob-58

lems in civil and mechanical engineering [12, 8, 13, 14]. For the envisaged59

development the concept of fuzziness is selected to cater for the subjective60

character of the assessment of deterioration due to imprecise marine corro-61

sion. This selection is motivated by the growing demand for quick structural62

performance assessments based on quite limited information from coarse in-63

spections without detailed measurements as quantification basis. In such64

cases, the available information does not provide a proper basis for a prob-65

abilistic modeling but can still be sufficient to derive reasonable decisions66

when it is coarsely translated into effects on structural performance.67

In this paper, we propose a nuanced robustness assessment based on fuzzy68

set theory and an assessment of fuzziness using an analog to SHANNON’s en-69
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tropy [15]. We tap on the robustness measure proposed in [16] and expand70

the concept from assessing robustness with a static number to the formula-71

tion of a robustness function depending on the magnitude of uncertainty in72

the structural conditions. This function enables the exploration of depen-73

dencies between structural robustness and the magnitude of uncertainty in74

the structural damage, which opens a new kind of insight into the structural75

problem and may facilitate a trade-off assessment for inspection effort versus76

gain in confidence for performance, safety and robustness predictions. The77

developments are elucidated by means of robustness asessment of aging off-78

shore structures under marine corrosion with reference to the data provided79

in [17]. In the sequel, robustness measures from the literature are reviewed in80

Section 2. Section 3 is devoted to the development of the proposed nuanced81

robustness assessment. The usefulness of the proposed method is demon-82

strated in Section 4 by way of investigations of fixed offshore platforms with83

different brace configurations.84

2. Review of Robustness Measures85

2.1. Deterministic performance measures86

Robustness is a measure to assess a platform’s ability to sustain damage87

caused by extreme loads or accidental loads without disproportionate failure88

with respect to the causes of the damage itself. According to this under-89

standing of structural robustness, deterministic performance measures are90

developed through comparing the structural performance in both intact and91

damaged states based on ultimate strength analysis. For the investigated92

frame structures, the ultimate strength depends on the nonlinear response93
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of components of the frame and the nonlinear structural interaction between94

components through plastic deformation and load redistribution. The frames95

with different bracing configurations have different overall structural perfor-96

mance, usually described as “brittle” or “ductile” behavior. The concept97

of reserve strength and residual strength can be used to evaluate structural98

robustness associated with the ultimate conditions. The following three de-99

terministic performance measures have been tested for a range of structural100

frames in [2].101

Reserve strength can reflect the ability of an intact structure to sustain102

loads in excess of the design value. The Reserve Strength Ratio (RSR) is103

defined as104

RSR =
ultimate resistance of intact structure

design environmental load
. (1)

Similarly, the Damage Strength Ratio (DSR) is defined to measure the ability105

of a damaged structure to sustain loads in excess of the design value,106

DSR =
ultimate resistance of damaged structure

design environmental load
. (2)

The residual strength reflects the ability of having alternative load paths to107

carry loads shed from damaged members (i.e. redundancy). The Residual108

Resistance Factor (RRF) is defined as109

RRF =
ultimate resistance of damaged structure

ultimate resistance of intact structure
. (3)

In addition, because the value of the residual strength corresponds to a par-110

ticular displacement and different values may be achieved if the load is in-111

creased further, the following non-dimensional measure Rtwice can be utilized112

when comparing structures with different brace configurations,113

Rtwice =
environmental load at twice the ultimate deflection

environmental load at ultimate deflection
. (4)
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As previously pointed out that damage could also arise gradually in time114

from aging of structures, a general approach is presented in [18] to formulate115

a measure of time-variant structural robustness of concrete structures sub-116

jected to diffusive attacks from environmental aggressive agents based on the117

ultimate strength analysis. The amount of local damage is firstly obtained at118

the member level by means of a dimensionless damage index 0 ≤ δ ≤ 1 (for119

uniform corrosion c and original material thickness d, δ = c
d
) associated with120

the progressive deterioration of the material properties for steel bars δs(x, t)121

and concrete δc(x, t) at the spatial point x and time instant t. Then a global122

measure of damage ∆(t) at the cross-sectional level is evaluated by means of123

a weighted average of the local damage over the volume of the materials, as124

follows:125

∆(t) = [1− ω(t)]∆c(t) + ω(t)∆s(t) (5)
126

∆c(t) =

∫
Ac

wc(x, t)δc(x, t)dx∫
Ac

wc(x, t)dx
(6)

127

∆s(t) =

∑
mwsm(x, t)δsm(x, t)Asm∑

m wsm(x, t)Asm

(7)

where ω(t), wc(x, t), wsm(x, t) are weight functions (see [18]), Ac is the area of128

the concrete, and the Asm is the area of the mth steel bar. This cross-section129

formulation is finally extended at the structural level by an integration over130

all members of the system. By comparing the system performance in the131

intact state and in a damaged state, the time-variant measure of structural132

performance ρ(t) is derived as,133

ρ(t) =
λc(t)

λc(0)
(8)
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where the limit load multiplier λc(t) corresponds to the ultimate capacity134

in a damaged state, and its initial value λc(0) indicates the ultimate capac-135

ity in the intact state. Then, the structural robustness can be evaluated136

based on the relationship between ρ(t) and the global damage ∆(t). In this137

approach damage can be defined in any way and gradually. The lambda re-138

flects (quantifies) the degree of damage in the load carrying capacity through139

the structural analysis indirectly.140

2.2. Probabilistic robustness measures141

In order to take account of the unavoidable uncertainties in the environ-142

mental loading and structural resistance, probabilistic robustness measures143

have been developed based on either reliability analysis or risk assessment.144

Based on system reliability analysis, the probabilistic measure of redun-145

dancy Rβ is proposed in [5]146

Rβ =
βintact

βintact − βdamaged

, (9)

where βdamaged is the reliability index of the damaged structural system and147

βintact is the reliability index of the intact system. Similarly, a probabilistic148

measure called “damage factor” of a system was proposed in [7] as149

Rd =
Pf,intact

Pf,damaged

(10)

to assess its capacity to withstand damage without undesirable response.150

Pf,damaged and Pf,intact are the failure probabilities corresponding to damage151

and no damage in the system, respectively.152

A framework of robustness assessment based on decision analysis theory153

has been proposed in [19], where the robustness is evaluated by computing154
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both direct risk (RDir), which is associated with the direct consequences155

(CDir) of potential damages (D) to the system when an exposure (EXBD)156

occurs, and indirect risk (RInd), which corresponds to indirect consequences157

(CInd) associated with subsequent system failure (F). A quantitative measure158

of robustness is then defined as,159

IRob =
RDir

RDir +RInd

, with (11)

160

RDir =

∫
x

∫
y

CDirfD|EXBD
(y|x)fEXBD

(x)dydx (12)

RInd =

∫
x

∫
y

CIndP (F |D = y)fD|EXBD
(y|x)fEXBD

(x)dydx (13)

where fZ(z) is the probability density function of a random variable Z.161

2.3. Entropy-based robustness measures162

For uncertainty specified with the aid of fuzzy sets, as investigated in163

this study, an entropy-based robustness measure R(·) as proposed in [16] is164

useful. This is based on an analog to SHANNON’s entropy. This analog to165

SHANNON’s entropy provides features, which make uncertainties calculated166

for random variables and fuzzy variables somewhat related to one another.167

In classical probability theory, SHANNON’s entropy is a measure of the168

amount of uncertainty and the associated information, see [11]. Information169

comprises the elements x selected from a declared character set representing170

the fundamental set X. The SHANNON’s entropy H can be expressed by171

a probability distribution function P (x) on a finite set using a functional of172

the form173

H = −
∑
x∈X

P (x) log2 P (x) . (14)
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And for the case of an infinite set,174

H = −
+∞∫
−∞

f(x) · log2 f(x)dx (15)

applies. In fuzzy set theory, for assessing the fuzziness of the fuzzy set Ã on175

X, the functional values of the membership function µ(x) of Ã are applied176

as measure values of the elements. An entropy measure of fuzziness H(Ã)177

analog to Shannon’s entropy is introduced in [15] as178

H(Ã) = −k ·
+∞∫
−∞

[µ(x) · ln(µ(x)) + (1− µ(x)) · ln(1− µ(x))]dx . (16)

The coefficient k is introduced when transforming the dyadic logarithm in179

the Shannon’s entropy in Eq. (15) into the natural logarithm in Eq. (16).180

That is, log2(µ(x)) = k · ln(µ(x)) and k = 1
ln(2)

. Since entropies appear as181

ratios in our approach, k is cancelled out and does not have any influence.182

The entropy in Eq. (16) has the following properties:183

• H(Ã) = 0 if µ(x) = 0 or µ(x) = 1.0 for all x;184

• H(Ã) reaches maximum if µ(x) = 0.5 for all x;185

• If Ãi is any sharpened version of Ãj (that is, if µAj
(x) ≤ 0.5, then186

µAi
(x) ≤ µAj

(x), and if µAj
(x) ≥ 0.5, then µAi

(x) ≥ µAj
(x)), then187

H(Ãi) ≤ H(Ãj);188

• The symmetry property holds, i.e. H(Ã) = H(Ãc) where Ãc is the189

complement of Ã and defined as Ãc = {(x, µAc(x))|x ∈ X;µAc(x) =190

1− µA(x)}.191
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For example, H(z̃j) of the fuzzy sets z̃j shown in Fig. 3(b) are H(z̃1) =192

0.72, H(z̃2) = 0.60, H(z̃3) = 0.60, H(z̃4) = 0.30 and H(z̃5) = 0.30. These193

examples represent common shapes of membership functions in practical ap-194

plications. Generally, this entropy measure evaluates the “steepness” of the195

membership function µ(x), which indicates H = 0 for a crisp set and H is196

maximum if µ(x) = 0.5. In information theory the elements with µA(x) = 0.5197

represent the most interesting range of a fuzzy set Ã because µ(x) = 0.5 char-198

acterizes the highest uncertainty in the decision to consider the associated199

element x either as belonging to Ã or as not belonging to Ã.200

The derivation of Eq. (16) from a probabilistic basis in information the-201

ory ensures reasonable compliance with probabilistic uncertainty measures.202

Let X be a random variable with normal distribution, and its uncertainty203

be measured in terms of the standard deviation σX . If the cumulative distri-204

bution function (CDF) FX(x) is substituted in Eq. (16) for the membership205

function µ(x), then a change of the standard deviation σX is associated with206

a proportional change of the entropy H. For example, let Xi ∼ (µX , σ
2
Xi
)207

and Xj ∼ (µX , σ
2
Xj
) be two normal random variables with σXj

= 2σXi
. If208

Ãi and Ãj are two fuzzy sets with their membership functions having values209

as the CDF of Xi and Xj, i.e., µAi
(x) = FXi

(x) and µAj
(x) = FXj

(x), then210

H(Ãj) = 2H(Ãi).211

According to [16], the robustness of a structural system R(·) can be de-212

fined as the ratio between the entropy of input parameters x̃ and the entropy213

of associated structural responses z̃ when the uncertainty of structural pa-214

rameters is quantified as fuzziness,215

R(x̃, z̃) =
H(x̃)

H(z̃)
. (17)
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And the following properties hold,216

• R(·) ≥ 0 ∀H(x̃), H(z̃) > 0 ;217

• H(z̃2) ≤ H(z̃1) ⇒ R2(·) ≥ R1(·) | H(x̃1) = H(x̃2) ;218

• H(x̃) → 0 ⇒ R(·) → 0 | H(z̃) > 0 ;219

• H(z̃) → 0 ⇒ R(·) → ∞ | H(x̃) > 0 .220

This robustness measure results in a global statement about the degree of221

variations in system output with respect to fluctuations in system input at222

once. The second property indicates that the smaller the uncertainty of the223

fuzzy outputs is obtained in relation to the uncertainty of the fuzzy inputs,224

the bigger the robustness of the structures is assessed. In practice, this225

means that moderate changes applied to structural parameters, for example226

as changes of design parameters or through quite common deviations from227

plans and moderate errors, affect the structural response (i.e. the structural228

performance) only marginally. Further, in the case that result uncertainty229

occurs even for crisp input, which represents instabilities, the robustness is230

zero. Robustness is not defined for the case that both the input uncertainty231

and the result uncertainty are zero. For further detailed explanations we232

refer to [16].233

3. Nuanced Robustness Analysis234

While deterministic performance measures and probabilistic robustness235

measures assess a structure under given conditions and uncertainties, the236
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entropy-based robustness measure considered in Section 2.3 provides a po-237

tential to develop a nuanced robustness assessment in form of a robustness238

function depending on the magnitude of uncertainty in the structural con-239

ditions. Hence, a trade-off assessment for inspection effort versus gain in240

confidence for performance, safety and robustness predictions can be devel-241

oped. We develop this nuanced robustness assessment based on the general242

idea of an entropy-based robustness measure.243

3.1. Practical considerations244

3.1.1. Applicability of entropy measure245

One (first) problem that has been addressed by Section 2.3 is associated246

with the applicability of the entropy measure when considering the difference247

between an interval variable and a singleton. Mathematically, they have the248

same entropy values (i.e., H = 0), but it is counterintuitive as the interval249

possesses clearly a larger imprecision.250

A similar (second) problem arises, as shown in Fig. 1, when the fuzzy251

output z̃1 associated with the fuzzy input x̃ for system (1) and the fuzzy252

output z̃2 associated with the same fuzzy input x̃ for system (2), have similar253

entropy values but quite different width of the system output at various254

membership levels with respect to same degrees of imprecision in the fuzzy255

input, i.e. w(z1,αk
) > w(z2,αk

). For example, mapping of the same fuzzy256

input x̃ in Fig. 3(a) through two systems (functions f2(x) and f3(x)) gives257

two fuzzy outputs z̃2 and z̃3 in Fig. 3(b), with H(z̃2) = H(z̃3) = 0.60 but258

w(z3,αk=0.5) = 0.94 > 0.29 = w(z2,αk=0.5).259

A third problem of the enropy measure, and hence of the robustness260

measure, concerns its dependence on scale and transformations. Since it is261
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not invariant in this sense, an interpretation on the ratio scale is critical.262

3.1.2. Suggested assumptions and extensions263

The first problem is circumvented in this study; we assume that typical264

shapes of membership functions, such as triangular or quadratic, are adopted265

for the fuzzy inputs (as usually used in practical cases) and that the asso-266

ciated fuzzy outputs are obtained as fuzzy sets as well and not as precise267

numbers. A polygonal approximation of the shape of the fuzzy outputs us-268

ing only a few membership levels is sufficient in most cases. If the analysis269

indicates strong nonlinearities in the membership functions, a more detailed270

alpha-discretizitation may be useful. Associated with this assumption, an-271

other restriction is made; the fuzzy variables x̃ considered herein possess one272

element x ∈ x̃ with µ(x) = 1.273

Next, the second problem raised above is considered. Robustness assess-274

ment based on the robustness measure in Eq. (17) leads to the same results275

for system (1) and system (2), H(z̃1) ≈ H(z̃2), i.e. to the conclusion that276

system (1) is as robust as system (2). However, this conclusion is only lim-277

ited to a global view at the robustness of the two systems without reflection278

of the degree of independence between the imprecision of fuzzy inputs and279

the associated imprecision of fuzzy outputs at different membership levels.280

To implement this relationship between the α-level sets, the assessment from281

[16] is modified by utilizing alpha-level discretization as proposed in Section282

3.2. This enables a consideration of a trade-off between additional informa-283

tion and an associated reduction of imprecision in the predicted structural284

response or reliability. Additional information and reduction of input impre-285

cision can be understood as limitation of the analysis to the set of values286
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{x ∈ X|µ(x) ≥ αk} for the fuzzy input x̃ and the associated set of values287

{z|µj(z) ≥ αk} for the fuzzy output z̃j in the assessment of robustness. Sub-288

sequently, the two systems may not exhibit similar robustness corresponding289

to the reduced imprecision in the fuzzy inputs.290

The third problem concerning lack of invariance is circumvented by us-291

ing this robustness measure on an ordinal scale rather than on a ratio scale.292

Although the meaning of the ratio value obtained for the robustness of an293

individual structure is not meaningful, it provides a useful basis for the com-294

parison with a second structure, evaluated for the same problem with the295

same input and looking the same responses, in terms of robustness. Relat-296

ing the robustness measures of two structures to one another in this manner297

translates the assessment to an ordinal scale, which is sufficient to decide298

which structure is more robust than the other one - without assessing nu-299

merically how big the difference in robustness is. Still, this difference in300

robustness between the structures related to the absolute robustness of one301

of the structures provides at least a rough sense about the magnitude of this302

difference. One can then see whether this difference is significant or not.303

Although this is a reasonable basis for deriving decisions in many practical304

cases, further research is needed to address this issue more rigorously.305

3.2. Proposed approach306

3.2.1. General description307

The inconsistency explained in Section 3.1, see Fig. 1, can be resolved308

by computing the entropy-based robustness R(αk) at various membership309

levels with respect to the degrees of imprecision in the fuzzy inputs and the310

associated imprecision of the fuzzy outputs.311
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Figure 1: Illustration of problems with the existing robustness measure R
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Given a fuzzy set Ã, at each alpha level αk ∈ (0, 1], the crisp set Aαk
312

Aαk
= {x ∈ X|µA(x) ≥ αk} (18)

is called α-level set. Given another fuzzy set B̃, the intersection D̃ of the313

fuzzy sets Ã and B̃ on X is obtained from314

D̃ = Ã ∩ B̃ = {(x, µD(x))|x ∈ X;µD(x) = min[µA(x), µB(x)]}. (19)

Since the fuzzy set theory, which permits the gradual assessment of the mem-315

bership of elements in relation to a set, is a generalization of the classical set316

theory, the α-level set Aαk
can be viewed as a special fuzzy set. Thus, a new317

fuzzy set can be defined as the intersection of fuzzy set Ã and its α-level set318

Aαk
, denoted as Ãαk

,319

Ãαk
= Ã ∩ Aαk

, (20)

as illustrated in Fig. 2. This concept is then applied to the fuzzy input x̃320

and fuzzy output z̃ of the structural problem. The entropy-based robustness321

R(·) in Eq. (17) is calculated for each Ãαk
as the ratio between the entropy322

of x̃αk
= x̃∩ xαk

of the fuzzy input x̃ and the entropy of z̃αk
= z̃ ∩ zαk

of the323

fuzzy output z̃,324

R(αk) =
H(x̃αk

)

H(z̃αk
)
. (21)

The robustness R(·) in [16] is obtained as a special case of Eq. (21) for325

αk = 0 + ε when ε → 0. The robustness R(αk) is not defined at αk = 1326

because H(x̃αk=1) and H(z̃αk=1) are normally both equal to zero.327

3.2.2. Illustrative example328

The features of the modified robustness measure in Eq. (21) are demon-329

strated in the following illustrative example by means of analytical functions330

17



x

µ(x)

1.0

0.0

αk

x

µ(x)

1.0

0.0

αk
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Figure 2: Intersection of the fuzzy set Ã with the α-level set Aαk
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specifically selected for this purpose. Consider the mapping of fuzzy input331

x̃ in Fig. 3(a) into the fundamental set Z with the aid of the following five332

mapping models fj(x):333

f1(x) = x ,

f2(x) = x0.5 ,

f3(x) = x4 ,

f4(x) = 0.5x4 + 0.5 ,

f5(x) = 0.5x0.5 + 0.5 .

The membership functions for the fuzzy outputs z̃j can be obtained ana-334

lytically,335

µ1(z) = z, z ∈ [0, 1]

µ2(z) = z2, z ∈ [0, 1]

µ3(z) = z0.25, z ∈ [0, 1]

µ4(z) = (2z − 1)0.25, z ∈ [0.5, 1]

µ5(z) = (2z − 1)2, z ∈ [0.5, 1]

where µj(z) = 0 for other values. The results are shown in Fig. 3(b).336

The functions fi(x) have been chosen to illustrate the effects discussed337

below, which possess particular practical relevance and address the problem338

in Fig. 1. Specifically, f2(x) and f3(x) are selected to show that the associ-339

ated fuzzy outputs z̃2 and z̃3 have similar entropy values but different shapes.340

The same applies to the selection of f4(x) and f5(x), but with a smaller un-341

certainty in the associated results z̃4 and z̃5 to work out discussion on this342

effect, as well. One could use further functions, as well, for this study.343
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Figure 3: Mapping x̃ → z̃j : 3a fuzzy input x̃ and 3b fuzzy outputs z̃j

associated with the mapping model zj = fj(x)
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The entropy values associated with αk of x̃ and z̃j, normalized by H(x̃),344

are shown in Fig. 4. It clearly indicates a reduction of imprecision in the345

fuzzy input x̃ as αk increases (i.e., collection of additional information) and346

the corresponding reduction of imprecision in the fuzzy outputs z̃j. In an en-347

gineering context, it means that collection of additional information to reduce348

input imprecision has a trade-off in a reduction in imprecision of computa-349

tional results, i.e., in predictions regarding structural behavior and reliability.350

However, for different mapping models, the reduction of imprecision in the351

outputs exhibits very different characteristics. For example, the imprecision352

in z̃2,αk
and z̃5,αk

decreases much faster than the imprecision in z̃3,αk
and z̃4,αk

353

for smaller values of αk. It indicates that just a small reduction of imprecision354

in x̃ (i.e., low effort spent on collecting additional information) can result in a355

significant reduction in imprecision of z̃2 and z̃5. Thus, the mapping models356

f2 and f5 have more desirable properties than f3 and f4. They represent357

economical engineering design in the sense that only little effort in collecting358

input information has a significant trade-off in a substantial quality improve-359

ment of predictions regarding structural performance and reliability. This360

feature is reflected in the robustness measure in Eq. (21), which provides a361

quantitative assessment of the properties of the systems.362

The entropy-based robustness R(αk) is shown in Fig. 5 as a function of363

αk. Several interesting conclusions can be drawn from the results:364

• R(x̃, z̃2) = 1.22 ≈ R(x̃, z̃3) = 1.20 > R(x̃, z̃1) = 1.00 at αk = 0 + ε365

when ε → 0. This observation produces the robustness assessment in366

[16] as a special case. That is, if only the values of R(·) with respect367

to αk = 0 + ε when ε → 0 are considered to make a decision, it would368
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be concluded that the mapping models f2(x) and f3(x) have a similar369

robustness and are both more robust than mapping model f1(x).370

• Fig. 5 shows significant differences of the values R(·) corresponding371

to different values of αk. As αk is increased, R(x̃, z̃3) keeps decreas-372

ing while R(x̃, z̃2) keeps increasing. This indicates that the mapping373

models will exhibit different properties with respect to robustness when374

considering an increase of membership values αk > 0, i.e., a reduction375

of imprecision in the fuzzy input. The imprecision in the uncertain376

inputs can be reduced when more information is made available. This377

facilitates a trade-off analysis between collection of additional informa-378

tion and decision for a specific design variant. For example, at αk = 0.4,379

R(x̃, z̃2) = 1.57 > R(x̃, z̃1) = 1.00 > R(x̃, z̃3) = 0.79. Thus, it would380

be concluded that mapping model f2(x) is the most robust system381

when input imprecision can be reduced to a degree corresponding to382

membership level 0.4. Furthermore, when considering all the values of383

αk ∈ (0, 1], the mapping model f2(x) is more robust in overall than384

f3(x) although they have similar robustness values at αk = 0 + ε. The385

same situation appears when comparing the mapping models f4(x) and386

f5(x). Obviously, the mapping model f5(x) is a better choice.387

• The mapping model f4(x) is more robust than f2(x) when αk ≤ 0.4,388

especially, R(x̃, z̃4) = 2.41 ≈ 2R(x̃, z̃2) = 2.44 at αk = 0 + ε. How-389

ever, the values of R(·) associated with αk ≥ 0.4 lead to the opposite390

conclusion that the mapping model f2(x) is more robust than f4(x).391

Again, the trade-off between collection of additional information and392
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decision for a variant or improvement of the robustness assessment can393

be considered. If the collection of additional information is easy to394

facilitate, f2(x) would be the preferred model; otherwise f4(x). And395

the other may round, if f2(x) is selected, collection of additional infor-396

mation would be very useful and paid off; whilst for f4(x) collection of397

additional information does not lead to a benefit.398

Hence, it is of vital importance to compute the structural robustness399

at various membership levels αk. Robustness is not only a property400

of the structure, it is also dependent on the magnitude of impreci-401

sion/uncertainty in the input. It is a relative measure. Reduction of402

input imprecision can so lead to both increase and decrease in robust-403

ness depending on whether sensitivities are associated with the value404

ranges cut away in the reduction of imprecision or not. This consid-405

eration can substantially support design decisions in the context of406

availability of information and inspection cost.407

It is noted that the membership functions of the result can be found in408

a closed form in the case of the simple illustrative example. In a practical409

structural analysis it is normally not possible to determine result membership410

functions in a closed form. However, they can be found in general via a411

numerical fuzzy analysis. A variety of intrusive and non-intrusive numerical412

approaches are available to perform this analysis, see [20, 21, 22, 23, 24].413
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4. Application to Offshore Structures414

4.1. Structural models415

Based on the environmental conditions and the information about the416

reference jackets provided in [3], two 2D frames are designed using software417

USFOS with some simplifications as well as some changes to the dimensions418

of members. USFOS (an acronym for Ultimate Strength for Frame Offshore419

Structure) is a numerical tool for nonlinear pushover analysis which helps to420

compute the reserve strength and residual strength of the frame structures421

before and after damage. The topologies for the X-bracing and K-bracing422

jacket structures are shown in Fig. 6. All structures are two-bay frames423

in water depth of 37m. The environmental design loads are applied at the424

top two elevations of the frames with the values of 1334.5 kN and 667.2 kN,425

respectively. The diameter D and thickness t of all tubular members are426

listed in Table 1.427

An assumption of fixed boundary conditions is made and all the tubular428

joints are assumed to be rigid. The structures are modelled with beam ele-429

ments and material non-linearities are modelled by plastic hinges at element430

mid-span and element ends. Element formulation of this program also allows431

the considerations of large displacement effects and the coupling of lateral432

deflection and axial strain. This supports a realistic representation of the433

element behavior including column buckling. Nonlinear ultimate strength434

analysis can be carried out to determine the reserve and residual strength435

representing the degree of redundancy of the jacket structure. In the analy-436

sis, the load is applied incrementally until the ultimate resistance is reached437

and the load increment is automatically reversed when global instability is438
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Figure 6: Structural models of the fixed offshore platforms (unit of length:

m)
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Table 1: Member sizes of the X-frame and K-frame

member X- frame K- frame

no. D(m) t(m) D(m) t(m)

2 0.32385 0.00953 - -

3 0.3556 0.00953 0.508 0.0127

4 0.4572 0.0127 - -

5 0.4572 0.0127 0.559 0.0127

6 0.4572 0.0127 - -

7 0.4572 0.0127 0.559 0.0127

8 0.4572 0.0127 0.508 0.01588

9 0.4572 0.0127 0.508 0.01588

10 0.4572 0.0127 0.559 0.01715

11 0.4572 0.0127 0.559 0.01715

13 1.1684 0.0254 1.1684 0.0254

14 1.1684 0.03175 1.1684 0.03175

15 1.1684 0.03175 1.1684 0.03175

17 1.1684 0.0254 1.1684 0.0254

18 1.1684 0.03175 1.1684 0.03175

19 1.1684 0.03175 1.1684 0.03175
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detected. The size of the increments may be varied along the deformation439

path, i.e. large steps in the linear range, and smaller steps with increasingly440

nonlinear behavior.441

4.2. Damage modeling under imprecise marine corrosion442

In this practical example, the fixed offshore platforms are assumed to be443

subjected to gradual deterioration caused by uniform corrosion. In order to444

investigate the corrosion effects with a longer period, the immersion corrosion445

data collected until 1994 provided in [17] are taken to specify the corrosion446

depth. With this approach we follow the general practise to consider only447

uniform corrosion when analyzing structural strength or structural capacity,448

see [25]. However, the proposed nuanced robustness analysis is not limited to449

this corrosion model. It can also be applied in association with non-uniform450

corrosion models. One may consider that corrosion tends to concentrate in451

the heat affected zone of the welds, and that stress-concentrations exists at452

the same spots. Hence, the damage maybe defined as an accumulation of453

those local damages in the connections.454

Herein, we focus on uniform corrosion and define a fuzzy corrosion depth455

c̃(t) associated with the exposure time t coarsely derived from the data in456

conjunction with a subjective assessment of deterioration, as shown in Fig. 7.457

The membership values µ(c) express the degree of subjective plausibility that458

particular values of c(t) actually occur. That is, the membership values reflect459

a subjective assessment and the specification of the values are characterized460

by highly subjective factors. In this example, c̃(t = 16) is considered and461

subjectively constructed according to the data points plotted in Fig. 7. A462

rational approach is to weigh the mean value 0.68 mm with a membership463
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of µ(0.68) = 1.0. The 5% and 95% bounds [0.32, 1.40] mm at t = 16 provide464

a reasonable interval for the support of the fuzzy set c̃(t = 16). However,465

it is observed that there are some outliers at t = 15, which are considered466

to be possible values but with lower degree of possibility, i.e., µ(c) ≤ 0.1 for467

c ≥ 1.40 mm. Since the membership function is only a subjective assessment,468

complicated descriptions are often not necessary for practical purpose. It is469

appropriate to choose linear functional formulations for µ(c), as shown in470

Fig. 8.471

0.0
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0.72

1.08

1.44

0 4 8 12 16

mean

D0

t0

c(t)
corrosion
loss (mm)

t(years)

Figure 7: Immersion corrosion data for mild-steel coupons pooled from all

available sources until 1994 subjected to an approximate temperature cor-

rection in [17] with 5 and 95 percentile bands

The concept of structural damage modeling from [4] is utilized herein to472

specify the amount of damage at the member level for a circular cross-section.473
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Figure 8: Fuzzy corrosion depth c̃ at t = 16 years according to the immersion

corrosion data in Fig. 7

For the hollow steel tubes which are typically used in building offshore plat-474

forms, the damage at cross-sectional level can be represented by a ratio of475

the corroded area Ac and the original area A0,476

β =
Ac

A0

=
D0

(D0 − t0)t0
c− 1

(D0 − t0)t0
c2 (22)

where D0 and t0 are the diameter and wall-thickness, respectively, before477

deterioration. Finally, the formulation at the cross-sectional level is extended478

to obtain the total damage at the structural level by integration over all479

structural members, which is calculated as βtotal,480

βtotal =

∑
βiAiLi∑
AiLi

=
∑

ωiβi (23)

where ωi = AiLi/
∑

AiLi, and Ai is the cross-sectional area of a structural481

member with length Li before deterioration.482

As the corrosion depth is modeled as fuzzy variable c̃(t = 16) as shown in483

Fig. 8, the total damage due to the marine corrosion is also a fuzzy variable484
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and represented by β̃total =
∑

ωiβ̃i. Based on Eq. (22), β̃i can be calculated.485

It can be observed from the plot of β = β(c) in Fig. 9 that there exists486

monotonic relationship between β and c when 0 ≤ c ≤ t0. Hence, the fuzzy487

result β̃ can be easily obtained by computing the alpha-level sets [βαkl, βαkr]488

for αk ∈ (0, 1], that is,489

βαkl =
D0

(D0 − t0)t0
cαkl −

1

(D0 − t0)t0
(cαkl)

2 (24)

βαkr =
D0

(D0 − t0)t0
cαkr −

1

(D0 − t0)t0
(cαkr)

2 (25)

where [cαkl, cαkr] is the alpha-level set at αk ∈ (0, 1] of the fuzzy corrosion490

depth c̃. Based on Eq. (24) and Eq. (25), together with the linear function491

β̃total =
∑

ωiβ̃i, the total damage represented by β̃total can be obtained for492

the K-braced and X-braced frames, as shown in Fig. 10.

1.0

0.0
t0 D0/2 c

β(c)

Figure 9: Plot of the damage represented by β(c) for a hollow cross-section

with diameter D0 and thickness t0. Note: 0 ≤ c ≤ t0

493
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Figure 10: Total damage represented by β̃total for the K-braced and X-braced

frames

4.3. Robustness assessment of fixed offshore platforms494

The specified fuzzy variable c̃(t = 16) for the corrosion depth is processed495

through the fuzzy structural analysis according to [26], which requires a re-496

peated calculation of the fuzzy result values for varying corrosion depth. In497

this example, the non-dimensional measures based on ultimate strength anal-498

ysis, RRF in Eq. (3) and Rtwice in Eq. (4), are selected as fuzzy result values499

for each platform, respectively. For this purpose, the fuzzy structural analy-500

sis is coupled to the USFOS software and the fuzzy result values, R̃RF and501

R̃twice, are found by means of an optimization in the kernel of fuzzy structural502

analysis. The overall procedure includes two successive steps. First, a fuzzy503

structural analysis is performed with USFOS as a deterministic mapping504

model, as illustrated in Fig. 11. This deterministic mapping model provides505

the nonlinear ultimate strength analysis. And the fuzzy structural analysis506
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delivers the fuzzy outputs to the second step. In the second step the entropy507

is calculated for different alpha-levels with the intersection of membership508

functions of both fuzzy inputs and outputs. Numerical sensitivities in the509

fuzzy structural analysis and in USFOS with respect to the fuzzy outputs can510

be minimized by appropriate selection of the algorithm parameters so that511

the corrosion effects can be well captured in the fuzzy outputs. The intersec-512

tion of member functions, in the second step, is based on the mathematical513

operation of fuzzy sets and no additional effects will be introduced during514

this operation. Effects from entropy calculation by numerical integration of515

Eq. (16) are insignificant. Thus, the corrosion effects can be well reflected516

in the main results, which provide a sound basis to the application of the517

proposed approach.518

R̃RF reflects the imprecision of the ultimate capacity of the damaged519

platforms under corrosion at different membership levels, see Fig. 12. The520

entropy values associated with αk of β̃total,αk
and R̃RFαk

, normalized by521

H(β̃total), are shown in Fig. 13. It shows that the imprecision in R̃RFαk
522

of the K frame decreases much faster than the imprecision in R̃RFαk
of the523

X frame, especially for larger values of αk. Thus, the K frame has advanta-524

geous properties over the X frame in view of the effects of imprecise marine525

corrosion on the ultimate capacity.526

Based on the proposed approach for robustness assessment in Eq. (20)527

and Eq. (21), the entropy-based robustness R(αk) at each alpha-level is528

calculated as the ratio between the entropy of β̃total,αk
= β̃total ∩ βtotal,αk

of529

the fuzzy input β̃total and the entropy of R̃RFαk
= R̃RF ∩ RRFαk

of the530

fuzzy output R̃RF. The result is shown in Fig. 14, which indicates that531
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Figure 11: Fuzzy structural analysis with the nonlinear ultimate strength

analysis as the deterministic mapping model
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the K-frame and the X-frame have a similar robust behavior with respect532

to imprecise corrosion effects when αk ≤ 0.3. However, the K-frame shows533

a greater robustness than the X-frame when αk > 0.3. This result suggests534

that the robustness assessment for the K-frame can be significantly improved535

by collecting additional information about the corrosion, i.e. by reduction536

of input imprecision. However, collection of additional information regard-537

ing long time marine corrosion may be very difficult in offshore engineering538

practice. For the K-frame additional effort pays off, whereas for the X-frame,539

no clear benefit can be observed. This conclusion illustrates the potential of540

the proposed robustness measure for cost reduction and optimal resource541

allocation in inspection scheduling.542

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0

K Frame

X Frame

R(αk)

αk

Figure 14: Robustness R(β̃total, R̃RF) associated with each frame with alpha-

level (αk) discretization

This observation that the K-frame shows a similar robust behavior as the543

X-frame when αk ≤ 0.3 and a greater robustness when αk > 0.3 is quite dif-544

ferent from the statement that the X-frame is more robust than the K-frame545
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using the deterministic performance measures in [1, 2]. Furthermore, it is also546

known that the X-frame shows ductile behavior while the K-frame shows brit-547

tle behavior. However, these two statements are not conflicting with the new548

results as they refer to different aspects. While the deterministic investigation549

refers to ductility, the robustness assessment considered herein refers to the550

corrosion effects on the ultimate strength of the structure. A consideration of551

the residual load carrying capacity leads to an agreement in the conclusions.552

This can be observed in Fig. 15 by comparing the nominal distances of R̃twice553

from the value 1.0, dX(R̃twice) and dK(R̃twice). In this result, R̃twice reflects the554

imprecision of the residual strength of the damaged platforms under corro-555

sion corresponding to twice the ultimate deflection at different membership556

levels. A smaller value of the distance indicates a smaller drop in the post557

ultimate strength, i.e., more ductility. This effect can be included in the558

robustness measures as constraint distance as proposed in [16]. Although559

the X-frame shows a better ductile behavior than the K-frame, as observed560

in Fig. 15, both frames show a similar robustness in view of the imprecise561

damage due to corrosion and the associated imprecision in Rtwice, see Fig.562

16. Further, it is indicated in Fig. 16 that R(β̃total, R̃twice) keeps decreasing563

as αk is increased. This indicates that the residual resistance R̃twice is insen-564

sitive with respect to extreme values of the corrosion depth and rather shows565

sensitivities when the corrosion depth varies around the mean.566

It is noted that the entropy results mainly reflect the sensitivities of the567

selected non-dimensional measures RRF and Rtwice with respect to the un-568

certainty in corrosion depth. The interpretation of the results is focused on569

the trade-off between the effort for collection of additional information re-570
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garding the corrosion damage and the gain for the robustness assessment of571

the structures. However, the fuzzy outputs R̃RF and R̃twice are related to the572

frame behaviors, which becomes particularly clear in Fig. 15. The results573

show both the imprecision of the residual strength under corrosion damage574

and the property of structural redundancy.575

The derived statements regarding to the effects of marine corrosion on576

the robustness of the two platforms designed in this numerical example may577

not be generalized to other gradual effects on the robustness or an alternative578

design. But the proposed approach provides a general basis for the robust-579

ness assessment of any newly designed or existing platforms with respect to580

imprecise effects of deterioration.581

In summary, the different effects discussed and observed in Fig. 14∼16 are582

not conflicting with each other but are complementary to formulate diverse583

views at the robustness of the X-frame and the K-frame. The influence of584

the framing configuration on the robustness of the fixed offshore platforms585

can be understood in a comprehensive way based on the proposed approach.586

5. Conclusions587

An improved methodology for nuanced robustness assessment of struc-588

tures was proposed and demonstrated for aging offshore structures subjected589

to uncertain damage due to imprecise marine corrosion. Fuzzy variables590

were utilized to cater for the subjective character of the assessment of the591

corrosion effect. Structural robustness was evaluated at various membership592

levels to reflect various degrees of imprecision in the damage. It was shown593

that diverse views at the structural robustness can be formulated to provide594
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more comprehensive understanding of the influence of the structural layout595

on the robustness. Engineering decisions for the design and re-analysis of596

structuras can so be generated on a broader basis. In the assessment of ex-597

isting structures, an improved optimal resource allocation for inspection can598

be obtained. The proposed approach provides a general basis for the assess-599

ment of structural robustness under the consideration of fuzzy uncertainty600

in the structural parameters. It can also be applied to robust design. For601

a practical application one needs to implement a fuzzy structural analysis,602

as well, which can be numerically demanding for large structures. Further603

development on this side would benefit applications. Also, further develop-604

ment is needed to address the invariance issue of the entropy measure for605

fuzzy sets.606
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