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Abstract

This paper presents a decentralised human-aware navigation algorithm for shared human-robot work-spaces based on the
velocity obstacles paradigm. By extending our previous work on collision avoidance, we are able to include and avoid static
and dynamic obstacles, no matter whether they are induced by other robots and humans passing through. Using various cost
maps and Monte Carlo sampling with different cost factors accounting for humans and robots, the approach allows human
workers to use the same navigation space as robots. It does not rely on any external positioning sensors and shows its feasibility

even in densely packed environments.
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1 Introduction

Current research in mobile robotics focuses more and
more on enabling robots and humans to share a common
workspace. A well known research initiative in this direction
is the Factory of the Future, which has the goal to develop
smart factories with networked tools, devices, and mobile
manipulation platforms (e.g. the KUKA youBot). It is also
known as Industry 4.0, which was coined at the Hanover Fair
in 2011 (Kagermann et al. 2011).

Nowadays, robots in manufacturing are typically not
designed to be mobile and human-safe. They are placed
inside cages and operation is interrupted as soon as a human
enters the safety zones. Current solutions for mobile robots
in manufacturing settings are restricted to predefined paths,
e.g., tracks on the floor, or restricted to movement in a grid
to ensure easy navigation. Humans are not allowed to enter
the navigation zone of the robots in order to ensure safety.
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Relying on predefined paths and grids for navigation is
too restrictive and does not allow for a flexible and gener-
ally applicable setup of a mobile multi-robot system. Ideally,
robots should be able to plan their paths through any open
space and ensure safety without any external limitations such
as restricted zones. Additionally, in an unstructured work-
space there are no traffic rules that direct the navigation.
To safely navigate in such a shared multi-robot and human
setting, the robot system has to take into account that the sur-
rounding moving ‘obstacles’ are essentially pro-active agents
and thus might aim to avoid collisions.

Although robot localisation is a requirement for multi-
robot collision avoidance, most approaches assume perfect
sensing and positioning and avoid local methods by using
global positioning via an overhead tracking camera (Alonso-
Mora et al. 2015a) - or are purely simulation based (van den
Berg et al. 2011). Nevertheless, to be able to correctly per-
form local collision avoidance in a realistic environment, a
robot needs a reliable position estimation of itself and the
other agents and humans without the help of external tools.
Additionally, multi-robot systems in a real-world environ-
ment need methods to deal with the uncertainty in their own
positions, and the positions and possible actions of the other
agents.

1.1 Contributions

In this paper, we add the following three novelties to this field:
First, we show a reliable estimation of the localisation uncer-
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tainty using the adaptive Monte Carlo localisation (AMCL),
then we combine this with a sampling-based approach to
incorporate human avoidance and lastly, by incorporating the
commonly used Dynamic Window Approach (DWA) (Fox
et al. 1997) with a global path planner, allows us to handle
complex environments with multiple dynamic, i.e. humans
and robots, and static obstacles.

In more detail, we show how the distribution of the particle
cloud when using AMCL can be used as an estimator for the
localisation uncertainty. This estimator can be used to enlarge
the robots’ footprints to ensure safe navigation within the
neighbourhood of other robots. The robots share footprint
and position information using limited local communication.
This assumes that the robots share the same reference frame,
and that the robots can communicate with each other in a
limited range. These assumptions can be accommodated in
many settings, i.e. (local) communication can be realised via
radio or WiFi, and the common reference frame is realised
by using the same map for all robots.

We introduce a sampling based approach that incorporates
human avoidance. By using the sampling based approach
together with a more complex evaluation function, more con-
trol over the behaviour of the robots is gained. For instance,
it is straight forward to discourage robots to pass closely by
humans by assigning a high cost, while closely passing by
other robots has lower costs.

Lastly, we introduce the combination of the sampling
based approach with the DWA method. The DWA approach
is commonly used as control algorithm for local control. It is
the standard method which is used on many platforms when
using ROS (Quigley et al. 2009). It uses forward simulations
of a set of velocity commands, known as trajectory rollouts.
In our experiments, we show how the sampling based method
can successfully be combined with the DWA approach to
ensure good navigation within the proximity of other robots,
static obstacles and humans.

The remainder of the paper is structured as follows. Sec-
tion 2 summarises the related work; Sect. 3 provides the
necessary background; Sect. 4 introduces the combination
of on-robot localisation with the velocity obstacle paradigm.
Section 5.2 extends the previously introduced algorithm
with human detection and a sampling based approach and
Sect. 5.3 combines the sampling based approach with the
DWA planner. Section 6 presents the empirical results of
the approaches. Section 7 concludes the paper and discusses
future work.

2 Related work

Typically, path-planning methods for navigation are divided
into global planning and local control. The global planner
searches through the configuration space to find a path from
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the current location towards the goal location. The task of
the local controller is then to steer free of collisions with any
static or dynamic obstacle, while following the global plan
to navigate towards a goal location.

2.1 Local control

Many approaches for local control make use of the “frozen
world” assumption, i.e. that the world is static in each
time-step. In Thrun et al. (2005) a number of probabilis-
tic approaches are presented for a single robot environment.
Potential fields are an approach that creates a virtual force-
field in the map. Around obstacles it is pushing the robot
away, and near the goal, it is pulling the robot towards
it. In Koren and Borenstein (1991) the limitations of this
approach are presented and described. Another approach is
the dynamic window approach as described in Fox et al.
(1997). However, all of these approaches lack the possibility
to navigate safely within a dynamic multi-robot environment.

In multi-robot collision avoidance research, there is
often a centralised controller. For instance, in Bruce and
Veloso (2006) an approach for safe multi-robot navigation
within dynamics constraints is presented. However, these
approaches are not robust, since if the centralised controller
fails, the whole system breaks. Another common approach
is motion planning, which can take dynamic obstacles into
account. The main assumption here is that the whole trajec-
tory of the dynamic obstacles is known as in Ferrara and
Rubagotti (2009).

In Althoff et al. (2012) a probabilistic threat assessment
method for reasoning about the safety of robot trajectories is
presented. Monte Carlo sampling is used to estimate colli-
sion probabilities. In this approach, the trajectories of other
dynamic obstacles are sampled. This way, a global collision
probability can be calculated. This work is closely related
to the research done in this paper; however, that approach is
probabilistic instead of the geometric representation used for
the algorithms we propose.

Recently, in Bareiss and van den Berg (2015), a gener-
alised reciprocal collision avoidance method was introduced.
This method uses control obstacles, i.e. it looks which input
controls may lead to a collision in the future. This enables
planning for any kind of robot where the motion model is
known. However, these control obstacles are non-linear mak-
ing the calculations more complex. Additionally, the work
does not consider static obstacles and the experiments rely
on an external positioning system.

2.2 Collision avoidance in shared workspaces
This work introduces a local collision avoidance approach

that deals a.o. with the problems of multiple robots sharing
the same workspace with or without humans. An overview
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of existing (global and local) approaches for human aware
navigation (Kruse et al. 2013) shows that the main focus of
current research is on the comfort, naturalness and sociabil-
ity of robots in human environments. This usually entails
only one robot acting in a group of humans, i.e. as a personal
assistant. Our approach however, is aimed at a different dis-
tribution of agents, namely many robots navigating together
with many humans in the same shared workspace.

An example of the single robot, multi-human navigation
approach is the stochastic CAO approach (Rios-Martinez
et al. 2012), which models the discomfort of humans and
uses the prediction of human movement to navigate safely
around people. Another similar approach is described in Lu
(2014). It is based on layered costmaps in the configuration
space and it also describes a user study where gaze-detection
was used to determine the intended heading of the humans
to update the costs. This layered costmaps idea is similar to
the multiple evaluation functions in our approach. However,
it is purely based on the configuration space, i.e. it assumes
all obstacles to be static. Hence, this approach also does not
cover the dynamic nature of moving obstacles as opposed
to our presented approach, which uses the velocity space to
explicitly model dynamic obstacles.

Similarly, the work in Linder et al. (2016) has the focus
on a single robot acting in a multi-human environment. The
focus is on tracking and predicting humans and classifying
multiple humans into groups. This research is complemen-
tary to the work in this paper as it allows the robots to detect
and track humans, which is necessary for collision avoidance.

In Alonso-Mora et al. (2015a), a collision avoidance
algorithm for multiple unmanned aerial vehicles (UAVs) is
introduced. In that research, a centralised and decentralised
convex optimisation approach are explained and the system
is integrated with two UAVs flying in close proximity of a
human. However, they rely on external positioning in order
localise the UAVs and the processing is performed off-board
on an external machine.

Other approaches for multi-robot collision avoidance use
auctions (Calliess et al. 2012) at a rather high communica-
tion overhead, or stigmergy (Theraulaz and Bonabeau 1999;
Lemmens and Tuyls 2012; von der Osten et al. 2014), which
relies on pheromones that are hard to apply in a real world
setting. Additionally, these approaches do not implement
robot-human avoidance.

3 Background

This article describes a decentralised multi-robot collision
avoidance system based on the velocity obstacle paradigm as
introduced in Fiorini and Shiller (1998) and per-agent locali-
sation. This is in contrast to many other algorithms that utilise

centralised planning or assume perfect knowledge about the
other robots’ positions, shapes and speeds.

We will present the construction of the various types of
the velocity obstacles that have evolved over time to take
reciprocity into account. Afterwards, three examples of how
to select a new collision free velocity are explained and
how dynamic and movement constraints for different type
of robots can be taken into account.

3.1 Velocity obstacles (VO)

The Velocity Obstacle (VO) was introduced as an approach
to deal with dynamic obstacles. The VO is a geometric rep-
resentation of all velocities that will eventually result in
a collision given that the dynamic obstacle maintains the
observed velocity. To cover speed changes of the dynamic
obstacles, it is necessary that the controller runs multiple
times per second. This results in a piece-wise linear approx-
imation of the problem.

Once we have calculated the area for each velocity obsta-
cle in the velocity space, we have areas leading to collisions
and collision free velocities. If the preferred velocity is lead-
ing to a collision, we want to find a velocity that is close to
the preferred velocity but still collision free. There are several
approaches to calculate this new velocity.

The subsequent definition of the VO assumes planar
motions, though the concept extends to 3D motions in a
straight forward manner as shown in Alonso-Mora et al.
(2015b).

Let us assume a workspace configuration with two robots
on a collision course as shown in Fig. 1a. If the position and
speed of the moving object (robot Rp) is known to R4, we
can mark a region in the robot’s velocity space which leads
to a collision under current velocities and is thus unsafe.
This region resembles a cone with the apex at Rp’s velocity
vp, and two rays that are tangential to the convex hull of
the Minkowski sum of the footprints of the two robots. The
Minkowski sum for two sets of points A and B is defined as:

Map=1{a+blacA be B} (1

For the remainder of this paper, we define the & operator to
denote the convex hull of the Minkowski sum such that A@ B
results in the points on the convex hull of the Minkowski sum
of A and B.

The direction of the left and right ray is then defined as:

Olerr =  max _ atan2((prei + Pi)l “ Prel> (Prel + Di) * Prel)
Pi€Fa®FB

(2)

Qright = min _ atan2((prei + Pi)J' * Prets (Prel + Pi) * Pret)
Pi€EFADFB

(3
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]

(b) VO

(a) Workspace configuration

Fig.1 Creating the different velocity obstacles out of a workspace con-
figuration. a A workspace configuration with two robots R4 and Rp. b
Translating the situation into the velocity space and the resulting veloc-
ity obstacle (VO) for R,4. ¢ Translating the VO by % results in the
reciprocal velocity obstacle (RVO), i.e. each robot has to take care of
half of the collision avoidance. d Translating the apex of the RVO to the

where p, is the relative position of the two robots and F4 &
Fp is the convex hull of the Minkowski sum of the footprints
of the two robots. The aran2 expression computes the signed
angle between two vectors. The resulting angles 6,54 and
Orighs are left and right of p,;. If the robots are disc-shaped,
the rays are the tangents to the disc with the radius r4 + rp
at centre p,; as shown in Fig. 1b. The angle can then be
calculated as:

rA+rB) @

Olefr = —Origny = arcsin (
|prel|

In our example in Fig. 1b, it can be seen that robot R4’s
current velocity vector v points into the VO, thus we know
that R4 and Rp are on collision course. As a result, the robot
should adapt its velocity in order to avoid collision.

Each agent computes a VO for each of the other agents, in
our example Rp also calculates the VO induced by Ry4. If all
agents at any given time-step adapt their velocities such that
they are outside of all VOs, the trajectories are guaranteed to
be collision free.

However, oscillations can still occur when the robots are
on collision course. All robots select a new velocity outside of
all VOs independently, hence, at the next time-step, the old
velocities pointing towards the goal will become available
again. Thus, all robots select their old velocities, which will
be on collision course again for the next calculation, where
each robot selects again a collision free velocity outside of
all VOs.

To overcome these oscillations, the reciprocal velocity
obstacle (RVO) was introduced in van den Berg et al. (2008).
The surrounding moving obstacles are in fact pro-active
agents, and thus aim to avoid collisions too. Assuming that
each robot takes care of half of the collision avoidance, the
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(¢) RVO (d) HRVO

intersection of the closest leg of the RVO to R4’s current velocity, and
the leg of the VO that corresponds to the leg that is furthest away from
R 4’s current velocity. This encourages passing the robot on a preferred
side, i.e. in this example passing on the left. The resulting cone is the
hybrid velocity obstacle (HRVO)

apex of the VO can be translated to W as shownin Fig. 1c.
This leads to the property that if every robot chooses the
velocity outside of the RVO closest to the current velocity,
the robots will avoid to the same side. However, in some
situations the robots will not avoid to the same side, since
the selected velocity should make progress towards its goal
location as well, and therefore, the closed velocity, which is
collision free, is on the wrong side of the RVO.

To counter these situations, the hybrid reciprocal veloc-
ity obstacle (HRVO) was introduced in Snape et al. (2009,
2011). Figure 1d shows the construction of an HRVO. To
encourage the selection of a velocity towards the preferred
side, e.g. left in this example, the opposite leg of the RVO
is substituted with the corresponding leg of the VO. The
new apex is the intersection of the line of the one leg
from RVO and the line of the other leg from the VO. This
reduces the chance of selecting a velocity on the wrong side
of the velocity obstacle and thus the chance of a recipro-
cal dance, while not over-constraining the velocity space.
The robot might still try to pass on the wrong side, e.g.
another robot induces a HRVO that blocks the whole side,
but then soon all other robots will adapt to the new side
too.

Another problem occurs when the workspace is cluttered
with many robots and these robots to not move or to only
move slowly. As shown Fig. 1b, the VOs are translated by the
velocity of the other agents. Thus, in these cases, the apexes of
the VOs are close to the origin in velocity space. Additionally,
if static obstacles such as walls are included, any velocity
will lead to a collision eventually, thus rendering the robots
immobile. This problem can be solved using truncation.

The idea of truncating a VO can best be explained by
imagining a static obstacle. Driving with any velocity in the
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(a) Truncated VO (VOT) (b) Approximated VOT

Fig. 2 Truncation. a Truncation of a VO of a static obstacle at 7 = 2.
b Approximating the truncation by a line for easier calculation

Fig. 3 The tracking error (¢) is defined as the difference between the
position that a holonomic robot would be in after driving with v, for

1 (P,?m”") and the position of the differential drive robot at #; (P,’lﬁ'ff )

direction of the obstacle will eventually lead to collision,
but not directly. Hence, we can define an area in the veloc-
ity space, for which the selected velocities are safe for at
least t time-steps. The truncation has then the shape of the
Minkowski sum of the two footprints shrunk by the factor 7.
If the footprints are discs, the shrunken disc that still fits in the
truncated cone has a radius of %4 JT“’B ,see Fig. 2a. VO* denotes
a truncated velocity obstacle. The truncation can be closely
approximated by a line perpendicular to the relative position
and tangential to the shrunken disk as shown in Fig. 2b. This
enables easier calculations, since then each VO is defined by
one line segments and two rays.

Applying the same method as creating a HRVO and RVO
from a VO, we can create a truncated HRVO and truncated
RVO (HRVOT and RVO?, respectively) from VO® by trans-
lating the apex accordingly.

3.2 Incorporating kinematic and dynamic
constraints

As previously mentioned, the VO paradigm assumes that the
robots are able to instantaneously accelerate to any velocity
in the two dimensional velocity space. This implies that the
velocity obstacle approach requires a fully actuated holo-
nomic platform able to accelerate into any direction from
any state. However, differential drive robots with only two
motorised wheels are much more common due to their lower
cost. Additionally, all robots can only accelerate and decel-
erate within certain dynamic constraints. In this section, we
will show how to incorporate these dynamic and kinematic
constraints into the VO framework.

For a holonomic robot, when the acceleration limits and
motion model of are known, the region of admissible veloci-
ties can be calculated and approximated by a convex polygon.
This region defines the set of velocities that is currently
achievable. In other words, we limit the allowed velocity
space by calculating the maximal and minimally achievable
velocities in both x and y direction, and only allow velocities
inside this region.

A method to handle non-holonomic robot kinematics has
been introduced in Alonso-Mora et al. (2010). The approach
to handle dynamic and kinematic constraints can be applied
to any VO-based approach. The underlying idea is that any
robot can track a holonomic speed vector with a certain track-
ing error ¢. This error depends on the direction and length
of the holonomic velocity, i.e. a differential drive robot can
drive an arc and then along a straight line which is parallel
to a holonomic vector in that direction as shown in Fig. 3.
The time needed to get parallel to the holonomic trajectory is
defined as #;. The tracking error (¢) is then defined as the dif-
ference between the position that a holonomic robot would
be in after driving with a holonomic velocity (vomp;) for t,
shown as (P,‘]’m”i), and the position of the differential drive

robot at that time (Pflhﬂ ).

A set of allowed holonomic velocities is calculated based
on the current speed and a maximum tracking error ¢. To
allow smooth and collision free navigation, the virtual robot
footprints have to be increased by the tracking error, ¢, since
the robots only track the desired holonomic velocity with the
defined error.

Using this approach, we can approximate the region of
possible holomonic velocities using a polygon, and only
allow the robots to choose a velocity within that region. In
the next section, we will introduce three possible methods to
select a new collision-free velocity.

@ Springer
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(a) ClearPath

Fig.4 a ClearPath enumerates intersection points for all pairs of VOs
(solid dots). In addition, the preferred velocity v4 is projected on the
closest leg of each VO (open dots). The point closest to the preferred
velocity (dashed line) and outside of all VOs is selected as new velocity
(solid line). The next best points are shown for reference. b ORCA cre-
ates a convex representation of the safe velocity space and uses linear

3.3 Selection of the best velocity

When all velocity obstacles are calculated, the union of these
velocity obstacles depicts the set of velocities that will even-
tually lead to a collision. Vice versa, the complementary
region is the region that holds all safe velocities, i.e. veloc-
ities that are collision free. If we are using truncation, the
region is collision free for at least the defined t time-steps.
Additionally, we limit the velocity space according to the
dynamic and kinematic constraints, as explained in the pre-
vious section.

The new velocity has to be selected Within the remaining
region. In order to do this efficiently, there are several ways to
calculate the new velocity. Usually, we are following a global
plan, which gives us a general direction in which we want
to move. This is our preferred velocity v”"¢ . Recently, some
algorithms were introduced that aim to solve this problem
efficiently, namely the ClearPath algorithm (Guy et al. 2009)
and ORCA (van den Berg et al. 2011). ClearPath follows the
general idea that the collision free velocity that is closest to
the preferred velocity is: (a) on the intersection of two line
segments of any two velocity obstacle, or (b) the projection
of the preferred velocity onto the closest leg of each veloc-
ity obstacle. All points that are within another obstacle are
discarded, and from the remaining set the one closest to the
preferred velocity is selected. Figure 4a shows the graphical
interpretation of the algorithm.

With ORCA, the VOs are translated into half-planes which
constrain the velocity space into a convex space. The opti-
mal velocity is then in this space and linear programming is
used to find the optimal solution for the current situation. An
example is shown in Fig. 4b.
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(b) ORCA

(¢) Monte Carlo Sampling

programming to find the closest point to the preferred velocity. ¢ We can
also use Monte Carlo sampling to select the best velocity. The distance
for each sample to the preferred velocity (dashed line) is evaluated. If
the sample falls within any VO, it is discarded. Yellow shows a high
rating and blue is a low rating (Color figure online)

Another method is to generate possible sample velocities
based on the motion model of the robots and test whether
these velocities are collision free and how well they are
suited. Each sample gets a score according to one or multiple
cost functions, i.e. distance to current and preferred velocities
and whether it is inside a velocity obstacle or not as shown in
Fig. 4c. The velocity samples should be limited to the veloc-
ities that are achievable in the next timestep. If the velocity is
not holonomic, the samples can be translated to approximate
holonomic velocities as presented in the previous Sect. 3.2.
We rollout a trajectory using the current velocity sample and
then use the position to calculate the approximate holonomic
velocity and the corresponding tracking error.

3.4 Adaptive Monte-Carlo localisation

The localisation method employed in our work is based on
sampling and importance based resampling of particles in
which each particle represents a possible pose and orientation
of the robot. More specifically, we use the adaptive Monte-
Carlo Localisation method, which dynamically adapts the
number of particles (Fox 2003).

Monte-Carlo Localisation (also known as a particle filter),
is a widely applied localisation method in the field of mobile
robotics. It can be generalised in an initialisation phase and
two iteratively repeated subsequent phases, the prediction
and the update phase.

In the initialisation phase, a particle filter generates a num-
ber of samples N which are uniformly distributed over the
whole map of possible positions. In the 2.5D case, every par-
ticle (s', w') has a x- and y-value and arotation s' = (%, §, §)
and a weight (w).
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(a) End of corridor  (b) Long corridor (¢) Open space

Fig. 5 Typical particle filter situations. a A well localised robot at the
end of a corridor resulting in a particle cloud with small variance. b
In an open ended corridor, the sensor only provides valid readings to
the sides resulting in an particle cloud elongated in the direction of the
corridor. ¢ In an open space, no sensor readings result in a particle cloud
driven purely by the motion model

The first iterative step is the prediction phase in which the
particles of the previous population are moved based on the
motion model of the robot, i.e. the odometry. Afterwards,
in the update phase, the particles are weighted according to
the likelihood of the robot’s measurement for each particle.
Given this weighted set of particles the new population is
resampled in such a way that the new samples are selected
according to the weighted distribution of particles in the old
population. We refer to Fox (2003) for further details.

In our work, AMCL is not used for global localisation,
but rather initialised with a location guess that is within the
vicinity of the true position. This enables us to use AMCL
for an accurate position tracking without having multiple
possible clusters in ambiguous cases. However, a common
problem occurs if the environment looks very similar along
the trajectory of the robot, e.g. a long corridor; or a big open
space with only very few valid sensor readings. In these
cases, particles are mainly updated and resampled accord-
ing to the motion model leading to the situations shown in
Fig. 5.

3.5 Navigation using the dynamic window approach
and a global plan

When a robot is able to successfully localise itself in an
environment, (as, for instance, when using ACML with a
pre-recorded map as explained in the previous section) to be
autonomous, the robot has to be able navigate to a given goal
location.

A commonly used approach for this navigation is the
Dynamic Window Approach (DWA) (Fox et al. 1997)
together with a global path planning algorithm. This global
path planning algorithm is usually a Dijkstra or A* (Hart et al.
1968) type of search based on the known grid map which
is, for instance, created using gmapping or HectorSLAM
as described in the previous section. Detected obstacles
are marked in this map when they are seen by one of the
robot’s sensors. In order to create an environment for fast
and efficient search, the obstacles that are marked in the map
are inflated by the robot’s circumscribed radius. This sim-
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Fig.6 DWA generates various sample control inputs and uses forward
simulations in the configuration space to detect if the given combination
of control inputs leads to a collision. In this example, the lower two
trajectories lead to a collision and will be excluded

plifies the problem since the robot can now be seen as a
point.

After the global path is found, a local control algorithm
(such as the previously mentioned DWA) has the task to
follow this path towards the goal while staying clear of obsta-
cles. DWA creates samples in the control space of the robot.
More specifically, it creates samples in every possible veloc-
ity dimension that the robot is actuated in. For example, a
differential drive robot can be actuated in linear velocities
in x-direction (forward and backward) and angular veloc-
ities, and, a holonomic robot, can additionally be actuated
in linear velocities in y-direction (left and right side-ways).
These samples are created based on the current velocity and
the dynamic constraints of the robots from which the name
dynamic window is derived.

When the velocity samples have been created, the robot
uses a forward simulation to predict the effect of the given
velocity in the configuration space. In other words, the
robot simulates the trajectory, if the given velocity would
be commanded. Afterwards, this trajectory is scored based
on various cost functions. For instance, the robots footprint is
imposed on each point in the simulated trajectory and if the
robot is in collision at any point, the trajectory is excluded.
Other cost functions are, for instance, the distance to the goal
location and the distance to the given path. Figure 6 shows
a graphical interpretation of the approach for a differential
drive robot.

4 Convex outline collision avoidance with
localisation uncertainty (COCALU)

In our previous work, Collision avoidance under localisation

uncertainty (CALU) (Hennes et al. 2012) we successfully
combined the velocity obstacle approach with on-board
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(a) Configuration space (b) Velocity space

Fig. 7 The corridor problem: approximating the localisation uncer-
tainty (and the footprint) with circumscribed circles vastly overestimates
the true sizes, such that the robots do not fit next to each other. Thus,
the HRVO together with the VO of the walls invalidates all forward
movements

localisation. CALU provides a solution that is situated
in-between centralised motion planning and communication-
free individual navigation. While actions are computed
independently for each robot, information about position
and velocity is shared using local inter-robot communica-
tion. This keeps the communication overhead limited while
avoiding problems like robot—robot detection. CALU uses
non-holonomic optimal reciprocal collision avoidance (NH-
ORCA) (Alonso-Mora et al. 2010) to compute collision
free velocities for disc-shaped robots with kinematic con-
straints. Uncertainty in localisation is addressed by inflating
the robots’ circumscribed radii according to the particle dis-
tribution of adaptive monte carlo localisation (AMCL) (Fox
2003).

While CALU effectively alleviates the need for global
positioning by using decentralised localisation, some prob-
lems remain. Suboptimal behaviour is encountered when (a)
the footprint of the robot is not efficiently approximated by
a disk; and (b) the pose belief distribution of AMCL is not
circular but elongated along one axis (typically observed in
long corridors). In both situations, the resulting VOs largely
overestimate the unsafe velocity regions. Hence, this con-
servative approximation might lead to a suboptimal (or no)
solution at all.

As an extension, we introduced convex outline colli-
sion avoidance under localisation uncertainty (COCALU)
to address these shortcomings (Claes et al. 2012). COCALU
uses the same approach based on decentralised computation,
on-board localisation and local communication to share rel-
evant shape, position and velocity data between robots. This
datais used to build the velocity obstacle representation using
HRVOs for convex footprints in combination with a close and
error-bounded convex approximation of the localisation den-
sity distribution. Instead of NH-ORCA, ClearPath (Guy et al.
2009) is employed to efficiently compute new collision-free
velocities in the closed-loop controller.
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(a) Convex hull peeling (b) Minkowski sum

Fig.8 a Three iterations of convex hull peeling. b Minkowski sum of
the resulting convex polygon and a circular footprint

The key difference between CALU and COCALU is to
use the shape of the particle cloud instead of using a circum-
scribed circle. The corridor example, as presented in Fig. 7,
shows the shortcomings of the previous approach. In this
approach, we approximate the shape of the particle filter by
a convex hull. However, using the convex hull of all particles
can results in large overestimations, since outliers in the par-
ticles’ positions inflate the resulting convex hull immensely.
As a solution to this problem, we use convex hull peeling,
which is also known as onion peeling (Chazelle 1985), in
combination with an error bound ¢.

4.1 Convex hull peeling with an error bound

The idea behind the onion peeling is to create layers of con-
vex hulls. This can be intuitively explained by removing the
points on the outer convex hull, and to calculate a new con-
vex hull of the remaining points. This process can be repeated
iteratively until the remaining points are less than two. Fig-
ure 8a shows three iterations of the method on an example
point cloud.

COCALU finds the convex hull layer in which the proba-
bility of the robot being located in is greater than 1 — . To
derive this bound, we revisit the particle filter described in
Sect. 3.4.

Letx; = (x, y, 0) be the state of the system. The posterior
filtered density distribution p(xx|zi.x) can be approximated
as:

N
POz ~ Y wj 8 (xi —s}) 5)

i=1

where § (+) is the Dirac delta measure. We recall that a particle
state at time k is captured by s} = (i,i, i, é}c) In the limit
(N — o0), Eq. (5) approaches the real posterior density
distribution. We can define the mean = = (i, iy, j1g) of
the distribution accordingly:
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o=y wi & (6)
i

My = Z wlic )A’llc )
i

o = atan2 (Z w,i sin (é,i) , Z w,i cos (é,é)) (8)
i i

The mean gives the current position estimate of the robot. The
probability of the robot actually residing within a certain area
A at time k is:

Mmemum=ﬂf@mww ©)
We can rewrite (9) using (5) as follows:

Pk € Alzi) ~ Y wp 8 (Xk - Si)

Vi:s;;eA

(10)

From (10) we see that for any given ¢ € [0, 1) there is an A
such that:

pxx € Alzgx) > 1—¢ (11)
Given sufficient samples, the localisation uncertainty is thus
bounded and we can guarantee that the robot is located within
area A with probability 1 — &. Thus, the weights of excluded
samples sum up to at most ¢.

In order to find this specific convex hull enclosing area
A, we propose an iterative process as described in the first
part in Algorithm 1. As long as the sum of the weights
of the removed samples does not exceed the error bound,
we create the convex hull of all (remaining) particle sam-
ples. Afterwards, we sum up all the weights of the particles
located on the convex hull and add this weight to the pre-
viously computed sum. If the total sum does not exceed the
error bound, all the particles that define the current convex
hull will be removed from the particle set and the process is
repeated.

‘When the convex hull is found, we calculate the Minkowski
sum of the robot’s footprint and the convex hull. The convex
hull of the Minkowski sum is then used as new footprint of
the robot as shown in Fig. 8b.

4.2 Complexity

The first part of COCALU (see Algorithm 1) computes the
convex hull according to the bound €. One iteration of the
convex hull can be computed in O(nlogh) (Chan 1996),
where n is the number of particles and 4 is the number of
points on the hull (our experiments show 4 < 50 for 200 <

Algorithm 0: COCALU

Input : (F, p, v): Robot footprint, position and velocity;
(s', w') € P =S x W: AMCL weighted particle set;
(Fj, pj.vj) € A: List of neighboring Agents; &: error
bound; v”"¢/: preferred Velocity; t: truncation timesteps
Output: v": New collision free velocity

bound < 0;
while bound < ¢ do
Create convex hull C of S;
bound < bound + ) ;..o Wi
| P <P\, w)ePls' eC);
M~ FDC;
foreach (Fj, pj,vj) =A; € Ado
My, < FjdM;
Construct VOAj from MA/ atpj — p;
Construct HRVOy, from VOy, with v; and v;
Construct HRVO;/, from HRVO A; with 7;

Use ClearPath to calculate new velocity v"¢" from v”"¢ and all
HRVO, ;

(a) Configuration space (b) Velocity space

Fig.9 Using COCALU solves the corridor problem. Since the robots’
footprints and localisation uncertainty are approximated with less over-
estimation, the robots can pass along the corridor without a problem

n < 5000 particles). The worst case (bound reached in the
last iteration) results in complete convex hull peeling which
can be achieved in O(n log n) (Chazelle 1985).

The convex hull of the Minkowski sum of two convex
polygons (operator @) can be computed in O(/ + k), where /
and k are the number of vertices (edges). If the input vertices
lists are in order, the edges are sorted by the angle to the x-axis
and simply merging the lists results in the convex hull.

ClearPath runs in O(N (N + M)), where N is the number
of neighboring robots and M the number of total intersection
segments (Guy et al. 2009).

Using convex hull peeling for approximating localisation
uncertainty and convex footprints solves the corridor prob-
lem. Comparing Figs. 7 and 9 shows the differences when
using CALU and COCALU. In the latter figure, it can be
seen that the robots can easily pass each other even without
adapting their path.

@ Springer
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5 Towards human-safe pro-active collision
avoidance

While the previous algorithms, CALU and COCALU, pro-
vide guaranteed safety and even optimality for the individual
agents, there are still some limitations that remain. Specif-
ically, the algorithms calculate the velocity that is closest
to the preferred velocity and still safe. This implies that the
robots always pass each other within only marginal distances.
While this approach is feasible in simulation, in real world
applications it is not always possible to exactly control the
velocity of the robots. With only marginal distances between
the robots that pass each other, there is an increased risk
that the smallest error in control will lead to a collision. An
additional limitation is that all agents, either human or robot,
are treated in the same way, while it would be desirable to
preserve more distance from humans than from other robots.

Furthermore, if a robot knows that another robot is running
the same algorithm (e.g. by using communication), it can
drive closer to that robot since it can assume that the other
robot will partly take avoiding actions as well. While when
driving towards other robots and, particularly in the presence
of humans, more distance is recommended.

To tackle these problems, we introduce a pro-active local
collision avoidance system for multi-robot systems in a
shared workspace that aims to overcome the stated limi-
tations. The robots use the velocity obstacle paradigm to
choose their velocities in the input space; however, instead
of choosing only the closest velocity to the preferred veloc-
ity, more cost features are introduced in order to evaluate
which one is the best velocity to choose. This allows us
to apply different weights or importance factors for pass-
ing humans, other robots, and static obstacles. Furthermore,
we introduce a smart sampling technique that limits the need
to sample throughout the whole velocity space. The resulting
algorithm is decentralised with low computational complex-
ity, such that the calculations can be performed online in real
time, even on lower-end onboard computers.

As explained previously, some problems and limitations
remain when using COCALU. In the previous approach, we
have focused on the robot—robot collision avoidance, i.e. the
robots head with a straight path to the goal, and only needed
to deviate to avoid other robots. Thus, static obstacles have
been ignored.

Additionally, VO-based methods tend to end up in dead-
lock situations. This means that they come to a situation in
which the optimal velocity is zero since it is the only velocity
not leading to a collision. This is especially problematic with
many static obstacles since the environment does not change.
Thus as soon as the robot is in a situation in which the best
velocity is zero it will stay this way forever.

Unfortunately, optimality can be defined in many ways.
In the case of COCALU, optimality means driving as close
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as possible to the desired speed without collisions. In many
cases this implies that robots using this algorithm pass each
other close to zero distances, i.e. there is no margin for error.
In real life, where control of the robot is not instantaneous
and perfectly accurate, it is likely this will lead to collisions.
While COCALU implicitly provides safety by enlarging the
robots’ footprints by the localisation uncertainty, this is not an
optimal solution. This is evident when the localisation accu-
racy is high, the point cloud converges to the actual robots
position and the safety region decreases. Therefore, we need
to explicitly take this into account.

Another limitation of the approach is that it is perceived
as uncomfortable or unsafe by humans when the robots pass
unnecessarily close by. An intrusion of ones personal space is
usually not appreciated, especially when it concerns a robot.

In the following subsection, we present additions and
extensions to the previous COCALU approach in order to
tackle the problems outlined above.

5.1 Static obstacles with VO-based methods

In order to avoid static obstacles in VO-based methods, they
can be integrated as if they are static agents. Figure 10a shows
the construction of a VO for a round robot with radius 74 and
an obstacle line-segment defined by two points O; and O;.
The construction follows the same rules as already presented
in Sect. 3. Additionally, if we detect a complete outline of the
obstacles, we can use the Minkowski sum of the robots foot-
print with the detected outline and compute the VO according
to Egs. (2) and (3).

Since static obstacles, by definition, do not move, we have
to truncate the VO by 1 since otherwise the apex of the VO
is at the origin of the velocity space, and the robot is ren-
dered immobile as soon as it is surrounded by obstacles as
for instance in a room. The walls would induce a VO in any
direction since all velocities will lead to a collision eventually.

Likewise, We cannot translate the VO, e.g. to create a
RVO or HRVO, since these types of VO are based on the

(@) VO,ps:t for a robot Ra

(b) voy,

obst

Fig. 10 a Constructing a VO out of a robots’ footprint and an obstacle
line-segment. b Truncating the VO by
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assumption that the other robot takes part in the collision
avoidance, which is not the case for static obstacles.

Finally, as explained above, VO-based methods tend to
end up in dead-lock situations. This can be overcome by
adding a global planning method on top of the local VO-
based controller. The global planner computes a path to the
goal and feeds waypoints to the controller. The direction of
these waypoints than determines the preferred velocity for
the VO-based algorithm. As soon as the controller does not
find a valid non-zero velocity, the global planner is called
again in order to recompute a new path.

5.2 COCALU with Monte Carlo sampling

Our proposed algorithm has the same assumptions as
COCALU. The robots have to be able to sense velocity and
shape of other robots and humans. The detection of other
robots and humans is a whole research field in itself. For
instance, the Social situation-aware perception and action
for cognitive robots (SPENCER) project! is a European
Union funded initiative of six universities with the goal to
enable robots to work in human environments. Implement-
ing this detection based on sensors is out of scope of this
thesis, thus, we rely on communication between the robots.
More specifically, the robots use the same global reference
frame and constantly broadcast their positions via WiFi. For
the human detection, we rely on the code that was made avail-
able for ROS in the SPENCER project (Linder et al. 2016).

There are multiple ways to ensure that the robots are
passing each other with more distance between them. One
straightforward idea is to virtually increase the size of the
robots’ footprints. This results in larger velocity obstacles
and consequently the robots will have more distance between
one another. However, this also drastically reduces the safe
velocity space as shown in Fig. 11. This approach marks
more regions in the velocity unsafe and therefore reduces
the options to choose from. It can lead to problems in dense
situations when many other robots are present and the entire
velocity space is marked unsafe though it still would be pos-
sible to manoeuvre without collisions.

To overcome this problem, we use a Monte Carlo sampling
based approach with multiple cost functions. This means that
the chosen velocities get evaluated not only by their dis-
tances from the preferred goal velocity but by multiple other
evaluation functions. Figure 12 shows the result of different
evaluation functions in the example setting. The distances
of the sampled velocity against the preferred velocity but
also against the current velocity are shown. Likewise, it is
shown how the closest distance to any velocity obstacle can
be modelled as negative cost. The resulting distance can be
limited, i.e. that points which are further away than a set dis-

1 http://www.spencer.eu/.

Fig. 11 Increasing the footprint of the other robots is one way to create
more safety. However, this reduces the available safe velocities to choose
from and could lead to potential problems in dense configurations where
the whole velocity space becomes unavailable

(¢) Costmap distyo with (d) Costmap distyo with
same weights different weights

Fig. 12 Different cost functions for evaluating a velocity. Parts in yel-
low depict lower, i.e. better costs, and parts in blue show higher costs.
The distances to the preferred velocity (a) and current velocity (b) are
shown as cost, where further away yields higher cost. ¢ and d show the
distances to the VOs as costmaps, where points closer to the VOs yield
higher cost (Color figure online)

tance do not get scored higher. This can effectively control the
behaviour of the robot. Similarly, if we assume that a velocity
obstacle is induced by a human, this can be weighted differ-
ently than the distances from the other velocity obstacles. The
effect is shown in Fig. 12c, d where the right most velocity
obstacle is weighted with double the cost than the other two
velocity obstacles. Using this approach, we can model the
personal space of a human by setting the cost for intrusion
very high up to a certain distance. For personal space, a dis-
tance of 50 cm is usually regarded as applicable (Kruse et al.
2013).
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Fig. 13 Selecting the optimal velocity based on different combinations
of the costmaps and sampling throughout the full velocity space. a All
VOs are weighted equally. b The VO on the right has additional weight
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(a) v°Pt with same VO (b) v°P! with different VO
weights and smart sampling weights and smart sampling

Fig. 14 Applying smart sampling only around the best vé’ﬁt points as

calculated by ClearPath. a All VOs are weighted equally. b The VO on
the right has additional weight

In order to select the optimal velocity, we sample inside the
velocity space and translate the velocity to non-holonomic
motions afterwards. A velocity sample that points inside a
VO is disregarded since it is unsafe. Figure 13 shows the
costmaps and the resulting optimal velocity. As can be seen
in Fig. 13a, the resulting velocity is close to the originally
calculated optimal velocity when using ClearPath. However,
when the VOs are weighted differently, the optimal velocity
is in a different region of the velocity space as shown in
Fig. 13b.

We can combine the ClearPath algorithm with the above
idea to incorporate a smarter sampling algorithm. The ranked
velocities calculated by ClearPath are used as a seed (see
Fig. 4a: points marked as v°P'i), such that samples are only
created in the vicinity of these velocities. Figure 14 shows
the idea of this algorithm. The trade-off of this approach
is that it might miss the global optimum in favor of being
computationally faster.

Lastly, we can also adapt the truncation factor to improve
the safety against other uncontrolled robots and humans. A
higher truncation time results in safer velocities since, as
stated in Sect. 3, it determines the time the chosen velocity
is guaranteed to be collision-free in the current configuration
of the system.
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5.3 COCALU with DWA

In the previous section, we have shown on how to use Monte
Carlo simulations to generate the samples for the velocity of
the robots. As another solution, we can generate the samples
according to the motion model of the robots and translate
the velocities based on the motion model to an approximated
holonomic speed. This idea of so-called trajectory rollouts
is applied in the well know DWA-planner (Fox et al. 1997)
which is commonly used in ROS. The controller generates
velocities according to the dynamic motion constraints of
the robots and predicts the position-based motion model of
robots. Each trajectory is evaluated according to various cost
functions as presented in Sect. 3.5. While these cost func-
tion are in configuration space and not in velocity space,
the similarities to our COCALU with Monte Carlo sampling
approach allows us to easily combine the two planners. We
can use DWA to generate the velocity samples and trajecto-
ries and evaluate the configuration space based critics as the
normal DWA-planner would use and then evaluate the tra-
jectory based on our COCALU with Monte Carlo sampling
cost functions. Since the trajectory is already available, the
translation to velocity space is straight forward by comput-
ing the differences of the starting point and end points and
dividing by the simulation time.

A major advantage is that, since the DWA-planner is
already commonly used, the COCALU cost functions can
easily be added to any robot that is using the DWA-planner.

As previously mentioned, a common problem with VO-
based approaches is that the velocity space is too restricted
when also including static obstacles, even when truncating
the VO. Furthermore, as static obstacles are immobile, it is
preferable to deal with them in the configuration space. When
using a trajectory rollouts approach as with DWA, we can
check collisions with static obstacles by imposing our foot-
print on the resulting trajectory. If the footprint collides with
any static obstacle, the trajectory is invalidated and discarded
for this iteration.

Thus we can combine the DWA cost functions in the
configuration space for dealing with features that are well
represented in that space (e.g. collisions with static obstacles,
progress towards the goal), with the COCALU cost functions,
which are well suited to avoid dynamic obstacles. As a result,
we have a navigation approach that is highly flexibly and can
be used in various environments.

5.4 Pro-active collision avoidance

An advantage when using any velocity obstacle based
approach is that we can easily have pro-active collision avoid-
ance, even when the robots are standing still. When not
moving, the robots’ preferred velocity is zero, which can be
evaluated using the same approach as while driving. Thus,
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when remaining at the same position would result in a col-
lision, the robots using this approach will pro-actively take
actions and avoid the incoming robot or human. This is of
course only necessary when the incoming robot is not already
taking care of the avoidance itself. In the latter case, the robots
that are standing still will detect that their preferred velocity,
i.e. zero, does not lead to collision again, thus they remain
in-place.

5.5 Complexity analysis of the approach

The complexity of this approach is the time needed to gen-
erate and evaluate all samples S. For the evaluation, the dis-
tances to any approximated truncated VO, and the distances
to the preferred and current velocity have to be calculated.
These are all geometric operations with linear complexity.
Thus the evaluation of the samples runs in O(S x N)), where
N is the number of neighboring robots. The generation of the
samples when sampling in the velocity space is only depend-
ing on the number of samples and the random generator used.
When we use the motion model to generate our samples, we
can pre-compute the motions and use these motion primi-
tives in a lookup, so the sample generation is O(S). If we
use the dynamic window approach, we need to recompute
the samples according to the current state of the robot. This
depends on the resolution of the trajectory-rollouts. As pre-
viously stated, ClearPath runs in O(N (N 4+ M)), where M is
the number of total intersection segments (Guy et al. 2009).

6 Experiments and results

The presented algorithms are implemented in the framework
of the open source Robot Operating System (ROS) (Quigley
et al. 2009). The code for the implementation in ROS can be
found on GitHub.> As described above we rely on commu-
nication between the robots to broadcast their positions in a
common reference frame. The robots are controlled at 10 Hz,
and at each timestep the robots evaluate the current position
and independently choose their preferred velocity.

As baselines, we use the original COCALU approach
and also the commonly used DWA method. These base-
lines are compared with the newly proposed COCALU with
Monte Carlo Sampling using the smart sampling as explained
in Sect. 5.2 referred to as COCALU*“™P!ing  and with the
approach that combines COCALU and DWA as explained in
Subsection 5.3, to which we refer to as COCALU“,

We evaluate several performance measures: (a) number of
collisions and deadlocks, (b) time to complete a single run,
(c) distance travelled and (d) jerk cost. The jerk cost measures
the smoothness of a path. More specifically, the jerk is the

2 https://github.com/daenny/collvoid.

change in acceleration over time. It is defined as:

1 [..

Jerkjy, = 5/ X (t) dt (12)
1 [..

Jerkgpg = 5/ 0 (1) dt (13)

where x is the forward displacement of the robot, i.e. the
linear speed is X and 6 the robot’s heading, i.e. 6 is the angular
speed. A deadlock is defined in this case when the goals are
not reached within 60 s and there is no collision present.

For all algorithms we use truncation of the velocity obsta-
cles induced by other robots with t = 10, while for VOs
induced by static obstacles we used T = 1. As static obstacles
do not move, the truncation factor can be much decreased.
The localisation uncertainty is set to € = 0.3, thus we include
70% of the particles in our footprint enlargement. This was
selected by comparing the increase in footprint size against
the average localisation error, such that the enlargement was
enough to cover the mean localisation error.

All costmaps are included for the sampling approaches
and are weighed equally. In the cases where there is a veloc-
ity obstacle induced by an uncontrolled robot or a human,
the minimum distance to these velocity obstacles is weighed
double.

6.1 Simulation runs

We have evaluated our approach in simulation using Stage
(Gerkey and Mataric 2003; Vaughan 2008) and in real-
world settings. Simulation allows us to investigate the system
performance using many repetitions and various extreme set-
tings, i.e. a very dense settings with a lot of robots.

The robots are all controlled independently and running
localisation with a simulated LIDAR that is updated at 10 Hz,
and has a 180° field of view. Only the positions are shared
via the ROS message passing system.

For the original COCALU and the COCALU*®"P'ng
approach we used the simulated LIDAR to detect the out-
lines of static obstacles, using the approach as described in
Sect. 5.1. The COCALU%"* approach uses the configuration
space costmaps to check the distances to the static obstacles
during the trajectory rollouts. Also the distance to the path
and the goals are scored.

A common scenario to evaluate movement in dense envi-
ronments is to place a number of robots on a circle (equally
spaced). The goals are located on the antipodal positions, i.e.
each robot’s shortest path is through the centre of the circle
(see van den Berg et al. 2011; Alonso-Mora et al. 2010). We
use a circle with a radius of 1.7 m in simulation. The goal
is assumed to be reached when the robots centre is within a
0.15 m radius of the true goal. We evaluate this scenario from
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Fig. 15 A sample configuration of the simulation environment for the
antipodal circle setting with eight robots

2 up to 10 robots. A sample configuration of the simulation
environment is shown in Fig. 15.

For another less symmetric scenario, we confined the
robots in a 5 by 5 m square room and placed them using
a uniform random distribution. Additionally, static obstacles
with a square size of 0.4 by 0.4 m were placed in the same
environment. The generated positions were constrained such
that each robot was at least 0.9 m apart, to ensure that it is
not in collision with another robot or a static obstacle.

The goals for the robots were also randomly generated,
with the condition that they have to be at least 2 m away from
the current position. We call this the random with obstacles
setting. This setting is evaluated with 6 static obstacles and
from 2 up to 10 robots, and with 10 static obstacles from 2
up to 6 robots.

All experiments in simulation are run on a single machine
with a quad-core 3.4 GHz Intel i7 processor and 16 GB of
memory. Each setting is repeated 50 times and the results are
averaged. Runs in which collisions occurred or which had
deadlocks are excluded from the averages. We calculate 90%
confidence intervals using the student t-distribution. The sim-
ulations are run in real time since the message passing is an
essential component of the described approach. As the ROS
message passing uses real time serialisation and deserialisa-
tion, increasing the simulation speed would lead to inaccurate
results.

The amount of collisions and deadlock are summarised in
Table 1.

In the antipodal circle experiment (Table la), using
COCALU only in two runs with ten robots a collision
occurred, and for COCALUS*"P!ing ¢ collision occurred at
all. With COCALU%" the amount of collision runs increases
from three with five robots up to fourteen with 10 robots. The
pure DWA method, does not have any way to avoid the incom-
ing robots. As the shortest path is through the centre of the
circle for every robot, the robots collide in every run.

The collisions that occur with the other approaches can
have multiple reasons. As said before, the localisation uncer-
tainty epsilon was set to 0.3, which means that there is
a chance that collisions between the robots happen, when
AMCL is unable to track the robots’ positions sufficiently
accurate. Additionally, the limited update rate of 10 Hz and
the low fidelity of the simulator, which only approximates
the kinematics of the robots, might lead to inaccurate tra-
jectories and therefore collisions. Especially for COCALU
and COCALU*®"Pling | collisions happened with the static

Table 1 Collisions (first

number) and deadlocks (second 2 3

4 5 6 7 8 9 10

number) for the different

. (a) Antipodal circle
settings

DWA 50/0 50/0 50/0 50/0 50/0 50/0 50/0 50/0 50/0
C 0/0 0/0 0/0 0/2 0/0 072 0/4 0/3 2/2
¢sampling 0/1 0/4 0/2 077 0/4 0/0 0/2 077 0/14
Cdwa 0/0 0/0 0/0 3/0 4/0 10/0 13/0 1171 14/1
(b) Random with 6 obstacles
DWA 9/0 14/0 25/1 28/0 37/0 46/1 49/0 50/0 50/0
C 0/1 2/2 2/7 4/6 3/4 3/10 7/10 4/15 12/16
¢sampling 0/0 0/7 0/5 2/6 1/9 2/10 517 1/13 4/15
Cdwa 0/0 2/0 2/1 0/1 3/2 8/3 52 5/4 17/5
2 3 4 5 6
(c) Random with 10 obstacles
DWA 3/1 13/3 3072 37/3 46/2
C 1/6 2/6 2/9 5/14 4/26
Csampling 1/5 2/9 477 7/19 5/15
Cdwa 2/2 3/1 11/1 6/6 7/6

For visual purposes, COCALU is abbreviated with C
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Fig.16 Evaluation of 50 runs in simulation of the antipodal circle (left),
random with 6 obstacles (center) and random with 10 obstacles (right).
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and the whiskers show the standard deviation
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obstacles, since using the LIDAR for the detection based
on the outlines and then using the VO approach can lead
to inaccurate footprints due to noise in the measurements.
COCALU™¢ has the advantage of dealing with the static
obstacles in configuration space, which leads to a more accu-
rate representation and less collisions with static obstacles.
However, for COCALU¢ the collisions usually occurred
with other robots. If not configured correctly, the costs for
the distance to the paths and goal can have too much weight
such that the robot acts mostly according to those and does not
take actions to avoid the collisions according to the COCALU
cost functions. At some point the robot is in a inevitable col-
lision state, i.e. it cannot prevent collision due its kinematic
constraints and the other robots are too close.

With COCALUS"P!"8 the amount of runs that exceeded
the 60 s time limit increases with more and more robots. This
is usually due to having a dead-lock situation. More specifi-
cally, this means that some robots already have reached their
goals, while the others are trapped behind these robots and
are not able to reach their goals anymore. With the sam-
pling based method, this can happen due to the different
cost-functions that incentivise safe paths, which is to stay
away from the other robots.

For the random setting, the results are more mixed. The
original DWA method was able to complete a couple of runs.
Especially with few, i.e. two or three, robots, there is a chance
that the paths of the robots do not even cross. On the other
hand, we can see that if the number of robots is increased, and
the environment becomes more complex, DWA is not able to
deal with it at all, leading to failing almost every single run
due to collisions.

When comparing the COCALU based methods, the orig-
inal COCALU method performs worst for most of the
scenarios. With 10 obstacles, COCALU"@ yields the best
performance, while with 6 obstacles the differences are less
pronounced. This is probably due to the better handling of
the obstacles when using the configuration space instead of
translating the outlines of the static obstacles into VOs.

The results for the other metrics are summarised in Fig. 16.
The results for DWA are excluded since the amount of runs
with collisions was too high to build sensible statistics. For
the antipodal circle experiment (left column), we can see
that the COCALU® approach performs comparable to the
COCALU*P!ing and COCALU approaches in terms of time
and distances travelled. This holds for up to six robots. After-
wards, the performance deteriorates. The COCALU sampling
approach uses more time and travels farther than the original
COCALU approach. This is to be expected since the robots
deviate from the fastest path in order to improve safety and
the costmaps are designed to give incentives to not choose
the velocities which leave no margin for error.

When looking at the linear and angular jerk, it can be seen
that COCALU and COCALU*®"P!"8 yse significantly more
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Fig. 17 Pro-active collision avoidance. The uncontrolled robot (blue
trace) neglects the presence of the other robots and drives straight
towards a crowd of other robots. a The robot shown with pink traces is
the first to start avoiding to ensure safety. b The robots with green and
yellow traces have to move out of the way, while the pink (¢) returns to
its original place. d Due to localisation errors, the yellow traced robot
has to readjust its position to return to its original place (Color figure
online)

angular jerk, while COCALU%"* uses a lot more linear jerk.
This is due to the differences in the sampling methods for the
velocities. COCALU uses ClearPath for selecting the best
velocity and COCALU*®"!i"g yses smart sampling around
the ClearPath points to find the best velocity. These are based
on the (holonomic) velocity space and then translated into lin-
ear and angular commands. Thus when the ClearPath point
switched, this leads to a large change in the angular velocity,
while COCALU%"* uses trajectory rollouts which are sam-
pled based on the kinematic model of the robot, leading to
less changes in direction, but more in linear acceleration and
deceleration.

For visual inspection, some sample trajectories for 7 up to
10robots and 6 obstacles are shown in Figure 22. Generally, it
can be observed that COCALU®" has smoother trajectories,
which reflects the less usage of angular jerk. With the other
two approaches, the robots manoeuvre more. Additionally,
in the setting with 10 robots, it can be seen that the robot with
red traces, starting in the lower right corner, with COCALU
has a collision with a static obstacle, while with the other two
approaches, the robot reaches its goal.

6.1.1 Pro-active collision avoidance

To show how the pro-active collision avoidance works,
Fig. 17 shows the trajectories of one “uncontrolled” robot
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Fig. 18 A run in the real world setting. a Pictures of the actual run. b Trajectories of the robots. The initial and target positions are marked in
dashed circles. The robot with purple traces (starting top right) has to readjust his path twice. The red robot waits until the green robot has passed
(Color figure online)
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Fig. 19 Testing with a human with the antipodal circle experiment in the real world. A single robot switches place with a human. It detects the
human and avoids him by adjusting its path. a Pictures of the actual run, b trajectories of the of the robot and the human. The human trajectory is
approximated

passing through a crowd of robots. “Uncontrolled” in this  back to its original position. The final positions and complete
experiment means that the robot disregards the existence of  trajectories can be seen in Fig. 17d.

the other agents and just drives straight without taking any

avoiding measures. Thus, the five robots in the centre have 6.2 Real world experiments

to pro-actively move out of the way in order to ensure safety.

The robot with the blue trace is approaching, while the pink ~ We evaluated the performance in a real-word setting using
and green traced robots start moving out of the way (Fig. 17a).  up to four differential drive Turtlebot 2’s.3 In addition to the
As soon as the uncontrolled robot has passed, pink returns  usual sensors, they are equipped with a Hokuyo URG laser-
to its position (Fig. 17b). The same happens with the green  range finder to enable better localisation in larger spaces. All
robot (Fig. 17¢). The robot with the yellow traces just moves computation is performed on-board on an Intel i3 380 UM
a little bit to clear the way, however due to localisation uncer- 1.3 GHz dual core CPU notebook. Communication between
tainty, the position changes such that it becomes necessary

for the robot to make a more elaborate manoeuvre to reach 3 For more information see: http://turtlebot.com.
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(a) (b)

© (d

Fig.20 Collision avoidance with three robots and a human. The human walks through the crowd of robots three times while the robots avoid him
while driving to their target positions. a and ¢ Pictures of the actual run. b and d Trajectories of the robots and the human. The human trajectory is

approximated

the robots is realised via a 2.4 GHz WiFi link using a UDP
connection and the LCM library (Huang et al. 2010). For
human detection we use the SPENCER project code (Lin-
der et al. 2016). It uses the laser range-finder to detect and
match human legs and tracks the resulting people. We ran
the random setting with four obstacles, and the antipodal cir-
cle experiment which included one human. The trajectories
of the robots are recorded using the positions determined by
AMCL and the human trajectories that are shown are approx-
imated. The obstacles are shown at their estimated positions.
The robots were running the COCALU%"* algorithm for nav-
igation.

6.2.1 Random with obstacles
A sample trajectory of the random with obstacles setting is
shown in Fig. 18. The left column (Fig. 18a) shows the photos

of the run, while the right column shows the trajectory plots
over time (Fig. 18b). It is tested with four Turtlebots and four
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obstacles. The light blue robot, starting on the bottom has a
direct path to the goal. It blocks the green robot, which also
reacts on the purple robot that is heading towards it. The pur-
ple robot re-plans and deviates from its original path, while
the red robot waits until the green robot has passed. After-
wards the purple robot has to change its path again due to the
previously unseen obstacle. Finally, all robots have reached
their goals.

Some more sample trajectories of this setting are shown in
Fig. 21. From visual inspection, it can be seen that the robots
drive smoothly for most of the trajectories, while for sample
trajectory shown in Fig. 21d, it shows the difficulties that
COCALU®? has in very dense configurations. The robot
with the green traces, starting left, has to wait first for the
robot with the red traces to move away. In the mean time,
the other two robots (with purple and light blue traces) start
moving towards their goal positions forcing the green robot
to adjust its path multiple times to avoid them. Eventually, the
robots are at their goal positions and the green robot can pass.
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6.2.2 Antipodal circle

We tested our approach as well with a human switching place
with a robot and passing through a crowd of robots. Pictures
of the runs are shown in Figs. 19 and 20. In our first exper-
iment (Fig. 19), we tested a robot exchanging the positions
with a human. The pictures of the run are shown in the left
column (Fig. 19a) and the trajectories are shown in the right
column (Fig. 19b). The trajectory of the human is approxi-
mated. The human does not take care of avoiding the robot,
he walks at a reasonable pace towards the robot. The robot
detects the human and realises that it is on collision course.
Thus, the robot avoids him by adjusting its path accordingly.

In a second experiment, we tested the antipodal circle
experiment with one human and three robots. The human
passes through the crowd of robots three times back and
forth, while the robots have to reach the antipodal position
(see Fig. 20). The pictures of the run are shown in Fig. 20a, ¢
and the trajectories are shown in Fig. 20b, d.

The robots that are not on a head-on collision course with
the human, marked with red and green traces, start detecting
the human and slow down. The robot that has to exchange
the place with the human (blue traces) backs away in order
to avoid the collision. This results in the robot with red traces
having to back away further, while the robot with green traces
now has a free path towards his goal. After the human has
passed for the first time, the robot with red traces has a free
path to its goal position, while the robot with blue traces has
avoided the human by driving towards the to right corner.
Afterwards, the human returns to his starting point, thus the
robot with blue traces has a free path towards its goal. At
the third pass, the robot with blue traces has to avoid the
human once more. A video showing the results can be found
at: http://wordpress.csc.liv.ac.uk/smartlab/collvoid/.

7 Conclusions and future work

This paper introduces a navigation approach that can deal
with non-mapped static obstacles and dynamic obstacles
such as humans and other robots. We substantially extend
our previous contributions, in which we introduced how the
particle cloud of AMCL can be used as an estimator for
the robots’ localisation uncertainty. The robots’ footprint can
then be enlarged accordingly to ensure safety in multi-robot
situations.

Our new approach introduces the use of a global planner to
overcome deadlock situations and improve the performance
in the presence of static obstacles.

Additionally, we have presented how we can use Monte
Carlo sampling to select the velocities in the velocity space
according to some cost functions. This allows us to easily
incorporate humans in the system and tune the cost func-

tions, such that the robots keep more distance from humans
than from other robots in order to not intrude the humans’
personal spaces.

Lastly, we have shown that this sampling based method
can be readily added to the well known and commonly used
DWA planner in the ROS framework. This allows us to use
the configuration space for avoiding static obstacles and inte-
grating the VO-based avoidance in the velocity space for
dynamic obstacles.

The presented methods have been extensively evaluated
in simulation and in real world settings, illustrating the fea-
sibility of the proposed approach.

In future work, we will work on removing the communica-
tion assumption. For instance, in Tuyls et al. (2016) we have
implemented robot-robot detection based on AR markers
such that the robots do not need to broadcast their positions.
Additionally, using control obstacles as described in Bareiss
and van den Berg (2015) instead of the velocity obstacles
could further improve the performance as well.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix

See the Figs. 21 and 22.
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Fig. 21 Several trajectories in the real world setting. The initial and
target positions are marked with dashed circles
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