Evolutionary conserved neural signature of early life stress affects animal social competence



Nyman, Cecilia, Fischer, Stefan ORCID: 0000-0001-8811-7518, Aubin-Horth, Nadia and Taborsky, Barbara
(2018) Evolutionary conserved neural signature of early life stress affects animal social competence. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 285 (1871). 20172344-.

[img] Text
Nyman_etal2018_author accepted version.pdf - Author Accepted Manuscript

Download (615kB)

Abstract

In vertebrates, the early social environment can persistently influence behaviour and social competence later in life. However, the molecular mechanisms underlying variation in animal social competence are largely unknown. In rats, high-quality maternal care causes an upregulation of hippocampal glucocorticoid receptors (<i>gr</i>) and reduces offspring stress responsiveness. This identifies <i>gr</i> regulation as a candidate mechanism for maintaining variation in animal social competence. We tested this hypothesis in a highly social cichlid fish, <i>Neolamprologus pulcher</i>, reared with or without caring parents. We find that the molecular pathway translating early social experience into later-life alterations of the stress axis is homologous across vertebrates: fish reared with parents expressed the glucocorticoid receptor <i>gr1</i> more in the telencephalon. Furthermore, expression levels of the transcription factor <i>egr-1</i> (early growth response 1) were associated with <i>gr1</i> expression in the telencephalon and hypothalamus. When blocking glucocorticoid receptors (GR) with an antagonist, mifepristone (RU486), parent-reared individuals showed more socially appropriate, submissive behaviour when intruding on a larger conspecific's territory. Remarkably, mifepristone-treated fish were less attacked by territory owners and had a higher likelihood of territory takeover. Our results indicate that early social-environment effects on stress axis programming are mediated by an evolutionary conserved molecular pathway, which is causally involved in environmentally induced variation of animal social competence.

Item Type: Article
Uncontrolled Keywords: early environment, mifepristone, cooperative breeding, stress axis, glucocorticoid receptor, cichlids
Depositing User: Symplectic Admin
Date Deposited: 30 Apr 2018 08:04
Last Modified: 13 Feb 2024 09:26
DOI: 10.1098/rspb.2017.2344
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3020709