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Abstract

Sub-band adaptive processing is an established method to design a broadband beamformer. The uniform decom-

position method (UDM) is a common approach for designing sub-band adaptive beamformer (SAB) that would

split the received signal into a number of uniform sub-bands. However, the UDM has redundancies on decomposed

sub-bands at high frequencies in the passband. In this paper, we propose a number of techniques to overcome this

issue. By proposing a novel relative bandwidth method (RBM), we obtain that the relative bandwidth of each

sub-band is the same. Using this as a basis, we present a non-uniform decomposition method (NUDM) such that

the NUDM has fewer sub-bands than the conventional UDM, leading to reduced computational complexity. We

also propose an elegant metric, adjacent bandwidth ratio (ABR), to facilitate easier comparison of non-uniformity.

We then extend NUDM method to provide a fast variant of the non-uniform decomposition SAB (FNUD-SAB).

We ensure that the sub-band frequencies and corresponding adaptive weights are available as part of the proposed

FNUD-SAB method. With undistorted response to the desired signal and effective anti-jamming capability, the

new beamformer reduces the computational complexity by reducing the number of sub-bands. Simulation results

highlight the effectiveness of the proposed methods.

Keywords: Broadband beamforming; Sub-band adaptive beamformer; Uniform decomposition method;

Non-uniform decomposition

1. Introduction

Adaptive broadband beamforming has been an important topic of research over the past few decades because of

its extensive applications in various fields, such as radar, sonar, microphone arrays, medical imaging, seismology,

astronomy and radio communications [1, 2, 3, 4]. Adaptive broadband beamforming techniques can be categorized

into two major groups, namely, space-time beamforming and sub-band beamforming [1].5

In space-time beamforming, the broadband property of the array is achieved by processing the received signal

of each antenna with appropriate temporal-domain filters, such as finite impulse response (FIR) filters [5], infinite

impulse response (IIR) filters [6, 7, 8], and Laguerre filters [9]. Because of its effectiveness and simplicity, space-

time processing is commonly used to implement broadband beamforming. However, space-time methods have a
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high computational complexity for broadband scenarios with a large number of sensors and correspondingly wider10

bandwidth, making the length of the space-time filters large [3]. To implement an adaptive broadband beamformer

with effective interference rejection capability and high angular resolution, arrays with a large number of sensors

and filter coefficients have to be employed [10]. Although algorithms have been proposed in [11, 12] to reduce the

computational complexity of space-time methods, the beamformer still has large computational burden with a

large number of sensors and the wide bandwidth. Therefore, the space-time beamforming has a high computational15

complexity, especially when the scale of the array is large and the bandwidth is wide.

The alternative to adaptive broadband beamforming is the sub-band adaptive beamforming (SAB) [1]. The

SAB uses a filter bank to split each input signal into a set of distinct frequency signal components, each covering a

fraction of the input signal bandwidth, and then used individually in beamforming. The basic idea behind SAB is

to first split the received sensor signals into uniform sub-bands and then operate an independent beamformer20

in each of them, with the sub-band beamformer being selected based on the specific applications [1]. The

SAB provides an efficient divide-and-conquer technique using a set of parallel and smaller sub-band adaptive

beamformers [13]. Since various sub-band decomposition techniques can be employed in the beamforming process

to improve performance with the wide bandwidth of the received array signal [1], the SAB has more practical

applications than the space-time beamforming. Sub-band methods to adaptive beamforming have been widely25

used in microphone and antenna arrays [1, 14, 15, 16, 17, 18, 19, 20, 21, 22].

In generally, the conventional SAB, the passband is decomposed into uniform sub-bands, and hence the name:

uniform decomposition SAB (UD-SAB). As such, each sub-band has the same absolute bandwidth and results in

redundancies on divided sub-bands at high frequencies in the passband. In this paper, we propose an approach

where each sub-band have the same relative bandwidth opposed to absolute bandwidth. In other words, the30

higher frequency sub-band will have a larger absolute bandwidth than a sub-band in the lower frequency end.

Building on the proposed relative bandwidth method (RBM), we develop a non-uniform decomposition method

(NUDM), that splits the passband into a number of non-uniform sub-bands, yet their relative bandwidths being

the same. As discussed in the latter part of this paper, this reduces the total number of sub-bands, and associated

computations, and hence the computational complexity of the overall beamforming process. We extend the35

proposed NUDM approach even further to realize an accelerated version of the NUDM, which we refer to as fast

non-uniform decomposition sub-band beamformer (FNUD-SAB). Similar to the UD-SAB, the FNUD-SAB uses

the fast Fourier transform (FFT) and the inverse FFT (IFFT) as the analysis and synthesis filters, providing quick

and effective means for transforming the signals between temporal and frequency domains. The proposed FNUD-

SAB reduces the computational complexity by effectively reducing the number of sub-bands, which are needed40

to calculate the adaptive weight vectors. However, the NUDM ensures that the FNUD-SAB yields undistorted

response to signal of interest (SOI) and restrained responses to interference signals. To facilitate easier comparison

of these beamforming methods, we propose a simple yet elegant metric, known as adjacent bandwidth ratio (ABR),

to quantify and compare different methods. As such, we make the following key contributions in this paper:

1. We propose a relative bandwidth method (RBM) that decouples the relationship between the relative45

bandwidth of a sub-band and its center frequency;
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2. We present a novel, non-uniform decomposition method (NUDM) based on RBM. The proposed method

reduces the number of sub-bands, and thereby reduced the overall computational complexity of the sub-band

processing;

3. We built and provide an implementation of a fast version of the NUD-SAB (FNUD-SAB). This FNUD-SAB50

has fewer sub-bands than the uniform decomposition sub-band adaptive beamformer (UD-SAB); and

4. We propose a novel adaptive implementation of the FNUD-SAB to overcome the numerical instability

arising out of the fact that non-uniform discrete Fourier transform being ill-conditioned for a large number

of elements.

The rest of this paper is organized as follows: In Section 2, we discuss the relative bandwidth method (RBM)55

in detail, which is then followed by Section 3, where we propose the NUDM in detail. In Section 4, the structure

of the FNUD-SAB and its adaptive implementation are given. In Section 5, we present the results of our detailed

simulation studies and we highlight the effectiveness of the proposed method. We also analyze the computational

complexity of the proposed algorithm against the baseline version. We finally conclude the paper in Section 6.

Throughout this paper, we use a number of abbreviations which are listed in Table 1 below.60

Table 1: The abbreviations in this paper

SAB Sub-band adaptive beamformer RBM Relative bandwidth method

UDM Uniform decomposition method NUDM Non-uniform decomposition method

UD-SAB Uniform decomposition SAB FNUD-SAB Fast non-uniform decomposition SAB

FIR Finite impulse response IIR Infinite impulse response

FFT Fast Fourier transform IFFT Inverse FFT

SOI Signal of interest ULA Uniform linear array

DFT Discrete Fourier transform DOA Direction of arrival

NDFT Non-uniform discrete Fourier transform NIDFT Non-uniform inverse discrete Fourier transform

ABR Adjacent bandwidth ratio SIR Signal-to-interference ratio

INR Interference-to-noise ratio SINR Signal-to-interference-to-noise ratio

2. Relative Bandwidth Method

In this section, the RBM, which proves that the relative bandwidth of each sub-band is the same in the SAB,

is proposed. The RBM is important in analyzing the properties of the NUDM and FNUD-SAB. A uniform linear

array (ULA) with M antennas is assumed for the SAB, and all of the sensors are omnidirectional with the same

response. In the following, d is the distance between two elements of the ULA as shown in Fig. 1. In order to

avoid the grating lobes, d is equal to half the wavelength of the maximum frequency. Assume that the signals

impinge upon the array from the far field. The received signal is decomposed into K sub-bands, and fk is the
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Figure 1: Uniform linear array with a sensor spacing of d, where the signal impinges from the direction θ.

centre frequency of the k-th sub-band. Also, c is the speed of light in free space, θ is the direction of arrival (DOA),

and θ0 is the direction of SOI. The core idea of the sub-band beamforming is that the broadband processing is

split into narrowband processing, and each sub-band beamforming should meet the narrowband beamforming.

Therefore, the normalization gain of the k-th sub-band is given by [23]

Gk(f, θ) =
1
M2

∣∣∣∣ M∑
m=1

ej2π(m−1) d
c

(f sin θ−fk sin θ0)

∣∣∣∣2
= 1

M2

∣∣∣1−ej2πM d
c (f sin θ−fk sin θ0)

1−ej2π
d
c (f sin θ−fk sin θ0)

∣∣∣2
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∣∣∣∣ ejπM d
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[
e−jπM

d
c (f sin θ−fk sin θ0)−ejπM

d
c (f sin θ−fk sin θ0)

]
ejπ

d
c (f sin θ−fk sin θ0)

[
e−jπ

d
c (f sin θ−fk sin θ0)−ejπ

d
c (f sin θ−fk sin θ0)

]
∣∣∣∣2

= 1
M2

∣∣∣ejπ(M−1) d
c

(f sin θ−fk sin θ0)
∣∣∣2∣∣∣ sin[πM d

c
(f sin θ−fk sin θ0)]

sin[π d
c

(f sin θ−fk sin θ0)]

∣∣∣2
=
∣∣∣ sin[πM d

c
(f sin θ−fk sin θ0)]

M sin[π d
c

(f sin θ−fk sin θ0)]

∣∣∣2
(1)

where f denotes the frequency, which is received and processed by the k-th sub-band. With

fk sin θ0 = f sin θ (2)

Gk(f, θ) attains the maximum value. It is assumed that ∆fk and ∆θ are the offsets in the frequency and DOA,

respectively. That is, f = fk + ∆fk and θ = θ0 + ∆θ. Then,

fk sin θ0 = (fk + ∆fk) sin(θ0 + ∆θ)

= fk sin θ0 cos ∆θ+fk cos θ0 sin ∆θ+∆fk sin θ0 cos ∆θ+∆fk cos θ0 sin ∆θ
(3)

Since ∆fk and ∆θ are assumed to be small, cos ∆θ ≈ 1, sin ∆θ ≈ ∆θ and ∆θ∆fk ≈ 0. Than, (3) can be

rewritten as

fk sin θ0 = fk sin θ0+∆θfk cos θ0+∆fk sin θ0 (4)

Also, (4) can be rewritten as

∆θ = −∆fk sin θ0

fk cos θ0
= −∆fk

fk
tan θ0 (rad) (5)
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Note that (5) indicates that, if the k-th sub-band beamformer uses the signal f = fk + ∆fk for beamforming,

the beam pattern has the look direction error ∆θ, which is negatively correlated with ∆fk. If f > fk, indicating

that ∆fk is positive-real, the actual look direction is smaller than the direction of SOI. Conversely, if f < fk,

indicating that ∆fk is negative-real, the actual look direction is larger than the direction of SOI.65

The mainlobe width increases with increasing SOI [23]. To ensure satisfactory performance of the phased

array, the range of scanning angles are ±60◦ [23]. When θ0 = 60◦, (5) can be rewritten as

∆θ = −
√

3∆fk
fk

(rad) (6)

The peak frequency deviation of the k-th sub-band is assumed to be ∆fk. Then, the bandwidth of the k-th

sub-band is obtained as Bk = 2 |∆fk|. Based on (6), the relative bandwidth ∆Bk of the k-th sub-band is obtained

as

∆B = ∆Bk =
Bk
fk

=
2∆θ√

3
(7)

Note that (7) indicates that the relative bandwidth of each sub-band is the same and is only a function of the

look direction error ∆θ, i.e., it has no relationship to the centre frequency. The pointing error should be in the

range of the half-power beamwidth (3dB beamwidth) [23]. An approach to obtain the half of 3dB beamwidth θ0.5

is discussed below.

Based on (1), when the frequency of the received signal is f̂ , the half-power gain can be obtained as∣∣∣∣∣ sin[πM df̂
c (sin θ̂ − sin θ0)]

M sin[π df̂c (sin θ̂ − sin θ0)]

∣∣∣∣∣
2

= 0.5 (8)

where θ̂ is the DOA and has the half-power gain. For simplicity, assume that θ̂ > θ0. Since θ̂ is close to θ0,

sin θ̂ − sin θ0 ≈ 0 and sin[π df̂c (sin θ̂ − sin θ0)] ≈ π df̂c (sin θ̂ − sin θ0). Thus, (8) can be rewritten as

sin[πM df̂
c (sin θ̂ − sin θ0)]

πM df̂
c (sin θ̂ − sin θ0)

=
1√
2

(9)

The left-hand side of (9) is the sinc function. Thus,

πM
df̂

c
(sin θ̂ − sin θ0) = 1.39 (10)

(10) can rewrite as

2 sin[
(θ̂ − θ0)

2
] cos[

(θ̂ + θ0)

2
] =

1.39c

πMdf̂
(11)

Since θ̂ ≈ θ0, cos[ (θ̂+θ0)
2 ] ≈ cos θ0 and sin[ (θ̂−θ0)

2 ] ≈ (θ̂−θ0)
2 , and the half of 3dB beamwidth of f̂ is θ0.5(f̂) =

θ̂ − θ0, the left-hand side of (11) can be obtained as

2 sin[
(θ̂ − θ0)

2
] cos[

(θ̂ + θ0)

2
] ≈ θ0.5(f̂) cos θ0 (12)

From (11) and (12), the half of 3dB beamwidth θ0.5(f̂) is obtained as

θ0.5(f̂) =
1.39c

πMdf̂ cos θ0

(rad) (13)
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As given by (13), with the decrease in |θ0| and the increase in frequency f̂ , the half of 3dB beamwidth increases

gradually. To ensure accurate beam pointing, the minimun half of 3dB beamwidth of the passband frequency

should be regarded as the half of 3dB beamwidth of the beamformer. In that case, θ0 = 0◦ and f̂ is equal to the

maximum frequency of the passband fmax. Therefore, the half of 3dB beamwidth θ0.5 is obtained as

θ0.5 =
1.39c

πMdfmax
(rad) (14)

As discussed after (7), acceptable pointing error is in the range of half-power beamwidth. Therefore, ∆θ = θ0.5,

and rewrite (7) as

∆B =
2.78c√

3πMdfmax

(15)

With d = c
2fmax

, (15) can be rewritten as

∆B =
5.56√
3πM

(16)

3. Non-uniform Decomposition Method70

To guarantee an acceptable look direction error, each sub-band should conform to the RBM in (16). The

UDM is commonly used to decompose the passband for the SAB. The sub-band with the lowest centre frequency

has the lowest absolute bandwidth. Therefore, in the UDM, the lowest absolute bandwidth of sub-bands should

be used to decompose the passband uniformly, as shown in Fig. 2(a).

As can be observed in (16), the relative bandwidth of a sub-band has no relationship with its center frequency.75

In the same relative bandwidth, the higher frequency sub-bands have correspondingly larger absolute bandwidths.

If the NUDM satisfying the RBM in (16) is used to decompose the passband, the new decomposition method has

fewer sub-bands than the UDM, especially in the large passband case. In this section, a new method, NUDM,

is proposed to reduce the number of sub-bands. With fewer sub-bands, the computational complexity of the

frequency sub-band adaptive approach is correspondingly reduced.80

Assume that the passband is decomposed into K non-uniform sub-bands, and that the maximum and minimum

frequencies of the k-th sub-band are f̄k and f̄k−1, respectively. Thus, the K + 1 boundary frequencies of the sub-

bands are f̄k, k = 0, 1, ...,K, where f̄0 and f̄K are the minimum and maximum frequencies of the passband,

respectively. The centre frequency of the k-th sub-band is

fk =
f̄k + f̄k−1

2
(17)

The relative bandwidth of the k-th sub-band is(
f̄k − f̄k−1

)(
f̄k+f̄k−1

2

) = ∆B (18)

Then, (18) is rewritten as

f̄k =

(
2 + ∆B

2−∆B

)
f̄k−1 (19)
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where k = 1, 2, ...,K. Assume q =
(

2+∆B
2−∆B

)
. Since ∆B > 0, q > 1. (19) can be rewritten as f̄k = qf̄k−1,

k = 1, 2, ...,K, which indicates that the boundaries of the sub-bands follow a geometric series. Assume that fmin

is the lowest frequency of the passband and f̄0 = fmin. Then, the highest frequency of the k-th sub-band, f̄k, is

f̄k = qkfmin (k = 1, 2, ...,K) (20)

From (17) and (20), the center frequency of the k-th sub-band fk is

fk =
(q + 1)fmin

2
qk−1 = f1q

k−1 (21)

where k = 1, 2, ...,K. As indicated in (21), when the relative bandwidths of the sub-bands are the same, the

centre frequencies of those sub-bands also follow a geometric series.

(b)

(a)

...

f  1 f 2 ...

f1 f2 f3 f4

...

f   0 f   1 f   2

...

f   3 f   4

Figure 2: Schematic diagram of (a) uniform and (b) non-uniform sub-band decomposition methods.

In order to make the look direction error in the range of half-power beamwidth, the decomposition of the

sub-band should satisfy the RBM. As indicated by (16), the relative bandwidth of a sub-band has no relationship

with its center frequency, and relative bandwidths of all sub-bands have the same value. The minimum absolute85

bandwidth is the first sub-band of the passband and should be satisfied in both the UDM and NUDM. In the

conventional UDM, the minimum absolute bandwidth is used to decompose the passband. Since the absolute

bandwidths of the sub-bands increase with the increase in the centre frequency, the NUDM can decompose

passband with fewer sub-bands as shown in the schematic diagram in Fig. 2. Form (16) and (20), the number of

the non-uniform sub-band using NUDM can be obtained as

⌈
log

fmax
fmin
q

⌉
, where d•e is the ceiling operator which90

rounds up the given argument to the next integer. With the increase of the number of antennas, the relative

bandwidth ∆B in (16) and the common ratio q in (19) will decrease in value. Therefore, when the passband width

is the same, the beamformer with large number of antennas will entail additional sub-bands. In addition to this,

if the passband width is increased while keeping the number of antennas a constant, the number of sub-bands

will increase.95

In this paper, a single-number metric, adjacent bandwidth ratio (ABR), is proposed for a simpler and more

immediate comparison. In simple terms, since the UDM splits the passband into the uniform sub-bands, the ABR

of the UDM is simply a unit value. In the case of NUDM, the bandwidths of the k-th and (k − 1)-th sub-band

7



are

Bk = f̄k − f̄k−1 = qkfmin − qk−1fmin = qk−1fmin(q − 1)

Bk−1 = f̄k−1 − f̄k−2 = qk−1fmin − qk−2fmin = qk−2fmin(q − 1)
(22)

Thus, the ABR of the NUDM is equal to Bk
Bk−1

= q. When the passband bandwidth is the same, a method,

whose ABR q is much larger than one, has the lowest number of sub-bands. In other words, the method with the

largest value of q has the lowest computational complexity.

4. Fast Non-uniform Decomposition Sub-band Adaptive Beamformer

As shown in (21), the non-uniform discrete Fourier transform (NDFT), whose sample frequencies match the100

NUDM, can be used to decompose the received signal for the SAB. However, the NDFT is expressed in a matrix

form using a Vandermonde matrix [24], and for large values of K, the Vandermonde matrix is ill-conditioned

(except when the NDFT reduces to the conventional Discrete Fourier transform, i.e., DFT). Thus, a direct

inverse computation is not desirable [24].
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Figure 3: Fast non-uniform decomposition sub-band adaptive beamformer.

Using this as a motivation, in this section, a new SAB using UNDM is proposed as shown in Fig. 3. The105

analysis and synthesis filters use the classical structures, i.e., the FFT and IFFT. The analysis filters split each

input signal into a set of frequency sub-bands, and each sub-band covers a fraction of the input signal bandwidth.

Sub-band beamforming provides an efficient divide-and-conquer strategy using a set of parallel and smaller sub-

band algorithms.

In many cases, the sub-band processing is performed together with decimation, which reduces the dimension-110

ality of the data in the sub-band algorithm [13]. As highlighted before, the key focus of this paper is to reduce

the number of sub-bands. With the UNDM proposed in Section 3, the flow of the frequency selection module,

shown in Fig. 3, is provided in Algorithm 1. The passband is decomposed into N sub-bands uniformly by the

8



analysis filters, i.e., FFT. The centre frequency of each uniform sub-band is f̃n, (n = 1, 2, ..., N), and the required

non-uniform centre frequencies are fk, (k = 1, 2, ...,K). As discussed at the end of Section 3, the NUDM can115

decompose the passband with fewer sub-bands than the uniform sub-band decomposition method, i.e., K < N .

Algorithm 1 NUDM Frequency Selection Module

1: Initialize: f1 = f̃1, f ′2 = qf1 and k = 2

2: Obtain fk: 
fk = arg

f̃n

min
∣∣∣f ′k − f̃n∣∣∣

s.t f̃n < f ′k

(23)

3: k = k + 1 and f ′k = qfk−1. If f ′k > fmax, end loop; Else, jump to Step 2.

In Algorithm 1, the geometric sequence shown as (21) is used to find the frequency f ′k. In Step 2, f̃n, which

has the minimum distance with the f ′k and is smaller than f ′k, is chosen as the using of fk satisfying RBM in (21).

Otherwise, if f̃n > f ′k and fk = f̃n, one may obtain that fk > qfk−1, which dose not satisfy (21). Using NUDM,

the Algorithm 1 has fewer sub-bands than the UDM. Thus, the Algorithm 1 has lower computational burden120

than the UDM. Moreover, the non-uniform frequencies can be obtained offline and the frequency selection modules

only need to save the frequency, which should be used to calculate the adaptive weights. Since the frequency

selection modules can be offline (not real-time), the proposed Algorithm 1 does not increase computational

complexity in real-time and simplifies implementation.

As illustrated in Fig. 3, the signal is decomposed into N uniform sub-bands via FFT. The frequency selection125

module reduces the number of sub-bands to K based on Algorithm 1. Using the frequency-domain constrained

adaptive algorithm, the adaptive weights of those K sub-bands can be obtained. Sub-band algorithms are conven-

tionally derived with the sub-band index as the center frequency, i.e., by treating each sub-band as independent

from the others [13]. As illustrated in Fig. 3, the adaptive weight analysis modules yield the adaptive weights for

N sub-bands. The frequency constrained adaptive algorithm of K selected sub-bands and the way to obtain the130

adaptive weights for the N sub-bands are discussed now.

Using the FFT and frequency selection module, the k-th sub-band input signal of the m-th sensor is denoted

as Xk,m, and they are arranged as a vector as

Xk = [Xk,1, Xk,2, ..., Xk,M ]T (24)

where the superscript [•]T denotes the matrix transpose, and k = 1, 2, ...,K. The frequency-domain constraint ck

and adaptive weights of k-th sub-band wk are arranged as vectors as

ck = [e−j2πfkτ1(θ0), e−j2πfkτ2(θ0), ..., e−j2πfkτM (θ0)]T (25)

and

wk = [wk,1, wk,2, ..., wk,M ]T (26)

In (25), τm = [(m− 1)d sin θ0]/c. The adaptive beamforming weights of the k-th sub-band can be obtained

9



using the standard frequency-domain linearly constrained minimum variance (LCMV) algorithm [1, 25] as

 min
wk

wH
k Rkwk

s.t. cHk wk = fk

(27)

In (27), Rk = E{XkX
H
k } is the sub-band data correlation matrix and fk is the distortionless response for the

desired signal in the k-th sub-band. The optimum weight vector of the k-th sub-band wk,opt is solved from (27)

using the Lagrange multiplier method and is expressed as

wk,opt = R−1
k ck

[
cHk R−1

k ck
]−1

fk (28)

In real-time scenarios, the adaptive weights can be obtained iteratively [1, 5, 25] as wk(i+ 1) = P[wk(i)− µzH(i)Xk(i)] + g

wk(0) = g
(29)

where µ is the step size parameter, z(i) = wH
k (i)Xk(i), P = I− ck(cHk ck)−1cHk and g = ck(cHk ck)−1fk.

Using (28) or the iteration algorithm in (29), the adaptive weight vectors of the K non-uniform sub-bands135

can be obtained, and they can be used to obtain the K output data on non-uniform frequencies. Then, to obtain

the temporal-domain signal, the data of non-uniform frequencies is processed by the non-uniform inverse discrete

Fourier transform (NIDFT), which requires the direct inverse computation of the Vandermonde matrix with large

order K. However, as discussed in [24], the Vandermonde matrix is usually ill-conditioned for large order K,

and a direct inverse computation is not reliable. Therefore, those data of K non-uniform frequencies cannot140

be processed by a direct inverse computation, and thus the time-domain output of the beamformer cannot be

obtained. In addition, the computational complexities of matrix inversion and matrix multiplication are high

computational burden in practice.

In this section, a new method is presented to recover the residual adaptive vectors. As illustrated in Fig.

3, the optimum weight vectors are input to the adaptive weight analysis module to recover the adaptive weight145

vectors of all N sub-bands. In Algorithm 2, the method to recover adaptive weight vectors is given.

Algorithm 2 Adaptive weight analysis module

1: Initialize: n = 1;

2: If
|f̃n−fk|
fk

≤ ∆B, k = 1, 2, ...,K, calculate adaptive weight vector of the frequency f̃n as

wn = wk (30)

or

wn = wk
◦w̃n,k (31)

where

w̃n,k = [e−j2π(fk−f̃)τ1(θ0), e−j2π(fk−f̃)τ2(θ0), ..., e−j2π(fk−f̃)τM (θ0)]T (32)

3: n = n+ 1. If n > N , end loop; Else, jump to the step 2.
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In Step 2 of Algorithm 2, two methods are given to refactor the all N adaptive weight vectors. In (30), if
|f̃n−fk|
fk

≤ ∆B, it means that the frequency f̃n(n = 1, 2, ..., N) is in the k-th sub-band, whose centre frequency

is fk. In the NUDM, if the adaptive weight vector of f̃n, wn, is equal to wk, which can cause look direction

errors. Since the frequency f̃n and fk meet the RBM, the look direction error is less than the minimum half of150

3dB beamwidth of the passband frequency, which implies that look direction error is acceptable. Moreover, the

proposed approach adds no extra computational complexity.

In the second method, (31), ◦ is the Hadamard product, and w̃n,k is the correction factor, which is used

to compensate for the effect of misalignment between f̃n and fk. In most cases, f̃n 6= fk. If wn is equal to

wk, as discussed above, there will be a small look direction error on frequency f̃n. Thus, the correction factor,155

w̃n,k, is used to reduce the look direction error caused by the misalignment between f̃n and fk. However, the

correction factor may make the nulls of the interference malformed and affect the anti-interference capability. In

addition, compared with (30), the calculations in (31) are more computationally intensive in refactoring all N

adaptive weight vectors. The simulations of the FNUD-SAB with (30) and (31) will be given in Section 5, and

the performance of two approaches in broadband beamforming will be shown and discussed.160

Since the proposed FNUD-SAB using the NUDM has fewer sub-bands, the proposed beamformer has lower

computational complexity than the conventional UD-SAB. Moreover, Algorithm 1 can be implemented offline,

and the frequency selection modules only need to save the frequency, which is used to calculate the adaptive

weights. Since Algorithm 1 and Algorithm 2 with (30) have no extra calculation in real-time, FNUD-SAB

with (30) does not add any extra computational complexity. In addition, as discussed in[23], the acceptable165

pointing error should be in the range of the half-power beamwidth (3dB beamwidth), the proposed FNUD-SAB

uses Algorithm 1 and Algorithm 2 with (30) to make sure that the pointing error is less than the lowest

half-power beamwidth of the passband in each sub-band as proved in (13) and (14). Therefore, the proposed

adaptive broadband beamformer yields satisfactory performance as the conventional SAB with less computational

complexity.170

5. Simulation Results

In presenting several simulation studies to demonstrate the benefits of the proposed approach, we use the

conventional UD-SAB as the baseline for comparison. Our simulation scenario comprises the following setup:

Number of ULA antennas M : 50; One broadband SOI comes from θ0 direction −5◦, and one broadband inter-

ference signal is from 35◦; The lowest frequencies of the two signals are 300 MHz; The frequency bands of the175

two signals are 1.25 GHz; The signal-to-interference ratio (SIR) and interference-to-noise ratio (INR) are assumed

as −40 dB and 40 dB, respectively; The adaptive iterative algorithm introduced in (29) is used to obtain the

adaptive weights; and the step size parameter µ is 1× 10−8.

As the number of ULA antennas M is obtained, the relative bandwidth ∆B and the common ratio q can

be obtained. Then, as the lowest frequency of the passband is given out, the boundary frequency f̄1 of the 1st180

sub-band can be obtained by (20). Then, the 1st bandwidth can be obtained. As said in Section 3 and shown

in the Fig. 2, the minimum absolute bandwidth, i.e., the 1st bandwidth, is used to split the passband in the
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conventional UDM. Through the calculation, the UD-SAB needs 202 sub-bands. However, the FNUD-SAB needs

only 103 sub-bands through Algorithm 1. In the Section 3, the number of non-uniform sub-band, which using

NUDM with NDFT, is given out as

⌈
log

fmax
fmin
q

⌉
= 81<103. Strictly, although the Algorithm 1 is NUDM-based,185

it is still based on the uniform DFT. It is worth noticing that the FNUD-SAB using Algorithm 1 needs larger

number of the sub-bands than the NUDM with NDFT. However, the NDFT is ill-conditioned for a large number

of elements [24]. And hence, the Algorithm 1 is an effective way for broadband beamforming with less number

of sub-bands than the UDM.

(a) (b)

(c) (d)

(e) (f)

Figure 4: Beam patterns and their vertical views of (a) and (b) conventional UD-SAB; (c) and (d) FNUD-SAB with (30); (e) and

(f) FNUD-SAB with (31).

Fig. 4 shows the beam patterns and their vertical views from the conventional and proposed approaches.190

The accuracy of the DOA is 0.1◦. Comparing Fig. 4(c) and 4(e) with 4(a), one can see that the proposed

algorithms yield satisfactory beam pattern shapes. From Fig. 4(b), 4(d) and 4(f), one can see that the proposed

beamformers, FNUD-SAB with (30) and (31), produce undistorted response to the SOI and effectively restrain

the nulls to the interference as well as the conventional UD-SAB. As discussed in Section 3, the minimum absolute

12



bandwidth is the first sub-band of the passband and should be satisfied in the UDM and NUDM to ensure the look195

direction error in the range of the half-power beamwidth. In passband, the conventional UD-SAB using UDM

needs 202 sub-bands, whose received data are used to calculate the adaptive weights. However, the proposed

FNUD-SAB using Algorithm 1 needs only 103 sub-bands in the passband. Therefore, from the beam patterns,

one can see that the proposed FNUD-SAB yields satisfactory performance in beam patterns with almost 50% of

the computational complexity of the conventional UD-SAB. For a large-scale ULA, e.g., M = 50, the proposed200

FNUD-SAB significantly reduces the computational burden, and hence should lead to substantial performance

gains.
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Figure 5: Frequency response of conventional UD-SABs and proposed beamformers to the SOI and interference direction (cross-

sections of Fig. 4), where the SOI and interference direction are from −5◦ and 35◦, respectively.

In Fig. 5, the magnitude of the frequency responses of the algorithms at the desired and interference directions

are illustrated. The figure illustrates that the proposed FNUD-SAB with (30) or (31) has a flat response for the

desired direction and deep nulls for the interference direction similar to the conventional UD-SAB. Response of the205

proposed algorithm to the SOI is flat and equal to 0 dB, which means that the proposed method has a satisfactory

look direction response. The nulls of the proposed method with (30) to the interference is almost the same as the

conventional method. However, the null of the proposed method with (31) to the interference is not as deep as

the other two methods. This phenomenon is caused by the corrected factor w̃n,k in (31). The corrected factor

revises the look direction errors; however, it also affects the performance in terms of anti-interference. Therefore,210

the corrected factor does not always make the response to the SOI better obviously, on the contrary, it makes the

performance on anti-interference more terrible than the proposed method without the corrected factor.

Fig. 6 illustrates the evolution of the output signal-to-interference-plus-noise ratio (SINR) for the conventional

and the proposed methods obtained by averaging over 100 Monte Carlo analyses. The convergence rate of the

proposed method with (30), which has 103 sub-bands in the passband, is the same as the convergence rate of215

the conventional method with 202 sub-bands in the passband. The output SINR of the proposed method with

(30) is only 0.83 dB less than that of the conventional method using 202 sub-bands. However, the computational
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Figure 6: Evolution of output SINR for the conventional UD-SABs and proposed beamformers with 100 Monte Carlo analyses.

complexity of the proposed method is nearly 50% of the conventional method using 202 sub-bands without any

other extra computation. If the conventional method uses 103 sub-bands in the pssband, it will have the same

complexity as the proposed method; however, the output SINR of conventional method will be 2.61 dB less220

than that of the proposed method with (30), and 3.44 dB less than that of the conventional method using 202

sub-bands. Compared with conventional UD-SAB (103 sub-bands), the proposed FNUD-SAB with (30) has the

same computational complexity in circulating the adaptive weight vectors, but it has the better performance on

output SINR. Since the FNUD-SAB with (30) (proposed method) has the longer equivalent tapped delay-line

length than the conventional UD-SAB, the proposed method with (30) yields better output SINR with the same225

computational complexity compared with the conventional method (103 sub-bands).

Fig. 6 also illustrates that the proposed method with (31) has the worst output SINR. As discussed earlier,

the correction factor revises the look direction errors, however, it also affects the anti-interference performance.

Therefore, the correction factor does not always make the response to the SOI better, on the contrary, it makes the

performance on anti-interference more terrible than the proposed method without the corrected factor. In addition,230

the proposed method with (31) adds extra computational complexity to refactor the adaptive weights. For the

proposed method with (30), the extra computational complexity is not necessary. Therefore, the proposed FNUD-

SAB with (30) has lower computational complexity but better broadband beamforming performance compared

with the FNUD-SAB with (31), thus the proposed method with (30) is appropriate for the real-time applications.

We evaluated these algorithms (MATLAB-based) on a system with a 2.7 GHz i7-6820HQ processor with235

32GB memory. Since the scale of the antenna is constant, the data scale of each sub-band is the same, leading

to same computational time for each sub-band. In our study, we found that the computational time for a single

sub-band, with 100 Monte Carlo runs, is approximately 35 seconds or 350ms for single sub-band per run. Using

this as a metric, for a conventional UD-SAB with 202 sub-bands, this would require approximately 350ms ×202 =

71 seconds. In contrast, for the proposed FNUD-SAB approach, this would require only 350ms ×103 = 36 seconds.240

Furthermore, if the sub-bands are run concurrently (using multiple threads), assuming negligible thread overheads,
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this would require only 350ms. However, the proposed FNUD-SAB has the lower computational complexity with

a satisfactory performance on the output SINR.
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Figure 7: Number of sub-bands in the passband for different (a) bandwidth. (b) minimum frequency of passband. Sparse rate for

different (c) bandwidth. (d) minimum frequency of passband.

Fig. 7 shows the number of sub-bands in the conventional UDM and the proposed NUDM in Algorithm

1 with different bandwidth and minimum frequency of the passband. In Fig. 7(a) and 7(c), the numbers of245

sub-band and sparsity rates are plotted over different bandwidth but with the same minimum frequency of the

passband at 0.3 GHz. The sparsity rate is defined as the number of sub-bands in the proposed NUDM divided by

the number of sub-bands in the conventional UDM. When the bandwidth is larger than 1.25 GHz, the number

of sub-bands in the conventional UDM is much larger than that of the proposed NUDM, and the sparsity rate is

less than 50%. That is, with the increase in the bandwidth, the proposed NUDM has much less computational250

complexity than the conventional UDM. In Fig. 7(b) and 7(d), the numbers of sub-bands and sparsity rates are

plotted over different minimum frequency of the passband but with the same bandwidth at 1.5 GHz. When the

minimum frequency is less than 0.35 GHz, the number of sub-bands of the conventional UDM is much larger than

that of the proposed NUDM, and the sparsity rate is less than 50%. That is, with the decrease in the minimum

frequency, the proposed NUDM has much less computational complexity than the conventional UDM. From Fig.255

7, one can see that the proposed NUDM has much less computational complexity than the conventional UDM.

When the minimum frequency is low and the bandwidth is wide, the advantage of the proposed method is more

pronounced.

When comparing the ABR values, as highlighted before, for UDM, the ABR is equal to 1. For the case of

NUDM, the ABR is equal to q =
(

2+∆B
2−∆B

)
=

(
2+ 5.56√

3πM

2− 5.56√
3πM

)
= 1.02065. When the passband bandwidth is the same,260

15



the method, whose ABR is much larger than 1, has the lowest number of sub-bands, i.e., the lowest computational

complexity.

As previously stated, the FNUD-SAB using the NUDM is still based on the uniform DFT. Find a feasi-

ble technology to directly split the passband into the non-uniform sub-bands and transform the non-uniform

frequency-domain signal back to the time-domain signal without distortion are the further research works.265

6. Conclusions

In this paper, we presented a computationally efficient, non-uniform decomposition-based approach to beam-

forming. To render the proposed non-uniform domain decomposition method, we proposed a relative beamwidth

method. We proved that the relative bandwidth of a sub-band is invariant to the center frequency of the sub-bands

and in fact a constant. Consequently, we proved that when performing the non-uniform domain decomposition,270

the center frequencies of sub-bands follow a geometric progression, whose ratio value is greater than one. As

such, for a given passband, the proposed non-uniform decomposition method results in fewer sub-bands than

the number of sub-bands resulting from the conventional uniform domain decomposition method. We then pre-

sented a FNUD-SAB and its adaptive variant based on the NUDM. We showed that the new beamformer has

lower computational complexity than the conventional UD-SAB and its broadband beamforming performance275

is comparable to that of the UD-SAB. Moreover, the non-uniform frequencies can be obtained offline, and the

frequency selection modules need to save only the frequencies that are used to calculate the adaptive weights.

Using practically-driven simulations, we demonstrated the effectiveness of the proposed approach both in terms

of computational complexity, and in terms of runtime performance.
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