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Abstract. Suppose that f is a transcendental entire function. In 2014, Rippon and
Stallard showed that the union of the escaping set with infinity is always connected.
In this paper we consider the related question of whether the union with infinity of
the bounded orbit set, or the bungee set, can also be connected. We give sufficient
conditions for these sets to be connected, and an example a transcendental entire
function for which all three sets are simultaneously connected. This function lies, in
fact, in the Speiser class.

It is known that for many transcendental entire functions the escaping set has a
topological structure known as a spider’s web. We use our results to give a large class
of functions in the Eremenko-Lyubich class for which the escaping set is not a spider’s
web. Finally we give a novel topological criterion for certain sets to be a spider’s web.

1. Introduction

Let f be an entire function. When studying complex dynamics it is usual to partition
the complex plane into two sets; the Julia set J(f), which contains those points in a
neighbourhood of which the iterates of f are chaotic, and its complement the Fatou set
F (f) = C \J(f). The Fatou set is open, and its connected components are called Fatou
components. For more information on complex dynamics, including precise definitions
and properties of these sets, we refer to [Ber93].

Recently, several authors have worked with an alternative partition. This divides the
plane into three sets determined by the nature of the orbits of points; the orbit of a
point z ∈ C is the sequence (fn(z))n≥0 of its iterates under f . We define these sets as
follows. Firstly, the escaping set is given by

I(f) := {z ∈ C : fn(z)→∞ as n→∞}.
The escaping set for a general transcendental entire function f was first studied by
Eremenko [Ere89]. He showed that I(f)∩J(f) 6= ∅, and that all components of I(f) are
unbounded. He also conjectured that the same is true of all components of I(f). This
conjecture, which is still open, has since been the focus of much research in complex
dynamics.

Secondly, the bounded orbit set is defined by

BO(f) := {z ∈ C : there exists K > 0 such that |fn(z)| < K, for n ≥ 0}.
When f is a polynomial, BO(f) is known as the filled Julia set, and has been much
studied. The set BO(f) for a transcendental entire function f was studied in, for
example, [Ber12, BKZ09, CF96, Osb13, Rem09] and [Sta94].
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Finally, the bungee set is defined simply as BU(f) := C\ (I(f)∪BO(f)). It is easy to
see that if P is a polynomial, then there is a punctured neighbourhood of infinity that
lies in I(P ), and so BU(P ) is empty. However, if f is transcendental, then BU(f) is
non-empty. In fact, see [OS16, Theorem 5.1], the Hausdorff dimension of BU(f)∩ J(f)
is greater than zero. The properties of BU(f) were studied in [Laz17] and in [OS16].

From here onwards we assume that f is transcendental. It is now known that the set

Î(f) := I(f)∪{∞} is a connected subset of the Riemann sphere; see [RS11, Theorem 4.1].
Moreover, see [ORS17, Theorem 1.1], the same property holds for I(f)∪BU(f)∪{∞}.
Our principle interest in this paper is to ask if there are conditions that ensure that one
or both of the sets

B̂O(f) := BO(f) ∪ {∞} and B̂U(f) := BU(f) ∪ {∞}
can also be connected. In fact we have the following result.

Theorem 1.1. There is a transcendental entire function f such that each of the sets

Î(f), B̂O(f) and B̂U(f) is connected.

Remark. The function f in Theorem 1.1 has only two singular values (points at which
it is not possible to define some inverse branch). It follows that f is in the Speiser class
S, which consists of those transcendental entire functions for which the set of singular
values is finite.

Since Î(f) is always connected, in order to prove Theorem 1.1 we give sufficient condi-

tions for B̂O(f) or B̂U(f) to be connected. We then show that there is a transcendental
entire function with the necessary properties. The first result is as follows.

Theorem 1.2. Suppose that f is a transcendental entire function. If f has an unbounded

Fatou component in BO(f) (resp. BU(f)), then B̂O(f) (resp. B̂U(f)) is connected.

Remark. The usefulness of the second part of this theorem is limited by the fact that
there are relatively few examples of transcendental entire functions with Fatou com-
ponents in BU(f). Examples of a transcendental entire function with such a Fatou
component were given in [Bis15] and [EL87]. The only examples of Fatou components
in BU(f) which are also known to be unbounded were given in [Laz17] and [OS16].

The second result requires the notion of a finite logarithmic asymptotic value, which
we define as follows. We use the notation

B(a, r) := {z ∈ C : |z − a| < r}, for a ∈ C and r > 0.

Definition 1. Suppose that f is a transcendental entire function. A value α ∈ C is
a finite logarithmic asymptotic value of f if there exist r > 0 and a component U of
f−1(B(α, r)), such that the restriction f : U → B(α, r) \ {α} is a universal covering.

Our sufficient condition for the connectedness of B̂U(f) is as follows.

Theorem 1.3. Suppose that f is a transcendental entire function. If f has a finite

logarithmic asymptotic value α ∈ J(f), then B̂U(f) is connected.

Remark. In [OS16] the authors asked if there is a transcendental entire function f such
that BU(f) is connected. Although this question is still open, these results give at least
a partial answer to this question.
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Recent study of I(f) has shown that this set often has a topological structure known
as a spider’s web. The following definition of a spider’s web was first given in [RS12].

Definition 2. A connected set E ⊂ C is a spider’s web if there exists a sequence of
bounded simply connected domains, (Gn)n∈N, such that

∂Gn ⊂ E, Gn ⊂ Gn+1, for n ∈ N, and
⋃
n∈N

Gn = C.

Clearly if I(f) is a spider’s web, then neither B̂O(f) nor B̂U(f) can be connected. In

fact, in some sense, the converse is also true; if B̂O(f) ∪ B̂U(f) is disconnected, then
I(f) is a spider’s web. See Corollary 4.2 below.

There are now many examples of transcendental entire functions f such that I(f) is
a spider’s web; see, for example, [Evd16], [RS12] and [Six11]. However, none of these
examples are in the much studied Eremenko-Lyubich class B; this class consists of those
transcendental entire functions for which the set of singular values is bounded. The
techniques used to prove our earlier results can be used to show that there is a large
subclass of class B for which the escaping set is not a spider’s web.

Theorem 1.4. Suppose that f ∈ B is a transcendental entire function. If f has a finite
logarithmic asymptotic value, then I(f) is not a spider’s web.

In fact we conjecture the following.

Conjecture. If f ∈ B is a transcendental entire function, then I(f) is not a spider’s
web.

Our final result is the following, which gives a simple topological characterisation of
an I(f) spider’s web, and also an A(f) spider’s web, for a transcendental entire function
f . Here A(f) is the so-called fast escaping set, which was introduced in [BH99], and can
be defined, see [RS12], by;
(1.1)

A(f) := {z ∈ C : there exists ` ∈ N such that |fn+`(z)| ≥Mn(R, f), for n ∈ N}.

Here the maximum modulus function is defined by M(r, f) := max|z|=r |f(z)|, for r ≥ 0.
We write Mn(r, f) to denote repeated iteration of M(r, f) with respect to the variable
r. In (1.1), we assume that R > 0 is sufficiently large that Mn(R, f) → ∞ as n → ∞.
Finally, we say that a set E ⊂ C separates a point z ∈ C from infinity if there is a
bounded open set U such that z ∈ U and ∂U ⊂ E.

Theorem 1.5. Suppose that f is a transcendental entire function. Then I(f) (resp.
A(f)) is a spider’s web if and only if it separates some point of J(f) from infinity. If f
has no multiply connected Fatou components, then J(f) is a spider’s web if and only if
it separates some point of J(f) from infinity.

Remark. It is known that if f is a transcendental entire function, then I(f) contains
an unbounded component; see [RS12, Theorem 1.1]. This implies that neither BO(f)
nor BU(f) can be a spider’s web.
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Structure of the paper. The structure of this paper is as follows. First, in Section 2
we gather some preliminary results. Next, in Section 3 we prove Theorem 1.2 and
Theorem 1.3, and then use these results to prove Theorem 1.1. Finally, in Section 4 we
prove Theorem 1.4 and Theorem 1.5.

2. Preliminary results

We use the following, which is known as the “blowing-up” property of the Julia set;
see, for example, [Ber93, Lemma 2.2]. Here an exceptional point is a point with finite
backward orbit; there is at most one such point.

Lemma 2.1. Suppose that f is a transcendental entire function, and V is an open set
that meets J(f). If K is a compact set that does not contain an exceptional point, then
there exists n0 ∈ N such that fn(V ) ⊃ K, for n ≥ n0.

We also require a result on wandering domains. If f is a transcendental entire function,
and U is a Fatou component of f , then we say that U is preperiodic if there exist n,m ∈ N
with n 6= m and fn(U) = fm(U). If this is not the case, then we say that U is wandering.
We use the following [OS16, Theorem 1.5] which, roughly speaking, says that most points
on the boundary of a wandering domain have the same behaviour under iteration as the
domain itself. Here, for a transcendental entire function f , the ω-limit set ω(z, f) of a

point z ∈ C is the set of accumulation points of its orbit in Ĉ. For a wandering domain
U of f , it follows by normality that ω(z1, f) = ω(z2, f) for z1, z2 ∈ U , so in this case we
can write ω(U, f) without ambiguity.

Lemma 2.2. Suppose that f is a transcendental entire function and that U is a wan-
dering domain of f . Then the set {z ∈ ∂U : ω(z, f) 6= ω(U, f)} has harmonic measure
zero relative to U .

We need the following, which is [Six15, Lemma 3.1].

Lemma 2.3. Suppose that (En)n∈N is a sequence of compact sets and (mn)n∈N is a
sequence of integers. Suppose also that f is a transcendental entire function such that
En+1 ⊂ fmn(En), for n ∈ N. Set pn =

∑n
k=1mk, for n ∈ N. Then there exists ζ ∈ E1

such that

(2.1) fpn(ζ) ∈ En+1, for n ∈ N.

If, in addition, En∩J(f) 6= ∅, for n ∈ N, then there exists ζ ∈ E1∩J(f) such that (2.1)
holds.

To prove Theorem 1.3 we require the following, which seems to be new.

Lemma 2.4. Let f be a transcendental entire function with a finite logarithmic asymp-
totic value α ∈ C. Let r > 0 be sufficiently small that f is a universal covering from a
component T of f−1(B(α, r)) to B(α, r) \ {α}. Then there exist R > 0, and a compo-

nent V of T ∩ B(0, R) such that the following holds. Suppose that γ ⊂ C \ B(0, R) is a
continuum such that V lies in a bounded component of T \ γ. Then the complementary
component of f(γ ∩ T ) containing α lies in B(α, r).
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Proof. Let r and T be as in the statement of the lemma. Now, ∂T is an unbounded
Jordan curve containing infinitely many preimages of ∂B(α, r), each of which is bounded.
Hence we can choose R > 0 sufficiently large that there is a component V of T ∩B(0, R),
such that f(V ) contains an annulus of the form A := {z ∈ C : r − δ < |z − α| < r}, for
some δ ∈ (0, r).

Now, suppose that γ ⊂ C \ B(0, R) is a continuum such that V lies in a bounded
component of T \ γ. Let S be the component of C \ f(γ ∩ T ) that contains α. We need
to show that S ⊂ B(α, r). Suppose, therefore, that this is not the case. Then S contains
both α and a point ζ ∈ A. Since S is a domain, we can let Γ be a curve in S that
joins α and ζ. Without loss of generality (replacing ζ with some other point of Γ ∩A if
necessary), we can assume that Γ ⊂ B(α, r).

Let ζ ′ ∈ V be a preimage of ζ, and let Γ′ be the component of f−1(Γ) that contains
ζ ′. Then Γ′ ⊂ T joins a point in V to a point in an unbounded component of T \ γ,
which is a contradiction. �

3. Results on Î(f), B̂O(f), and B̂U(f)

Theorem 1.2 is a consequence of the following lemma.

Lemma 3.1. Suppose that f is a transcendental entire function with an unbounded
Fatou component in BO(f) (resp. BU(f)). Suppose that U is a bounded domain that
meets BO(f) (resp. BU(f)). Then ∂U also meets BO(f) (resp. BU(f)).

Proof. We prove only the case of BO(f). The case of BU(f) is very similar, and is
omitted.

Suppose first that U ⊂ F (f). If U is not itself a Fatou component, then the result
follows by normality. Hence we can assume that U is a Fatou component of f .

If U is preperiodic, then it is easy to see that ∂U ⊂ BO(f). Hence we can assume
that U is wandering. The conclusion of the lemma then follows by Lemma 2.2.

We can assume, therefore, that U meets J(f). Let V be the unbounded Fatou compo-
nent in BO(f). It follows by Lemma 2.1 that there exists n ∈ N such that fn(U)∩V 6= ∅.
Since V is unbounded, we can deduce that fn(∂U) ∩ V 6= ∅, and the result follows. �

Proof of Theorem 1.2. As in the case of Lemma 3.1 we prove only the case of BO(f).
The case of BU(f), which is very similar, is omitted.

Suppose that, with the hypotheses of the theorem, B̂O(f) was not connected. Then

there would be disjoint open sets H1, H2 ⊂ Ĉ such that

B̂O(f) ⊂ H1 ∪H2 and ∂Hi ∩BO(f) = ∅, for i ∈ {1, 2}.
Without loss of generality we can assume that H1 is bounded and meets BO(f). It
follows by Lemma 3.1 that ∂H1 meets BO(f), which is a contradiction, completing the
proof. �

Theorem 1.3 is a consequence of the following, which clearly is analogous to Lemma 3.1.

Lemma 3.2. Suppose that f is a transcendental entire function, and that f has a finite
logarithmic asymptotic value in J(f). Suppose that U is a bounded domain that meets
BU(f). Then ∂U also meets BU(f).
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Proof. Suppose first that U ⊂ F (f). If U is not itself a Fatou component, then the
result follows by normality. Hence we can assume that U is a Fatou component of f . It
is known [OS16, Theorem 1.1] that U must be wandering. The result then follows by
Lemma 2.2.

We can assume, therefore, that U meets J(f). Let α ∈ J(f) be a finite logarithmic
asymptotic value of f . Let r, R > 0, let T be a component of f−1(B(α, r)), and let V be
the component of T ∩ B(0, R), such that the properties stated in Lemma 2.4 all hold.
Let (Rn)n∈N be a sequence of real numbers larger than R that tend to infinity. Let W
be a bounded open disc containing any exceptional point of f . We can assume that
W ⊂ B(0, Rn), for n ∈ N.

We now construct a point in ∂U ∩ BU(f). Set U1 := U . By Lemma 2.1, there exists

n1 ∈ N such that B(0, R1) \W ⊂ fn1(U1). Hence there is a continuum E1 ⊂ ∂U1 such
that V lies in a bounded component of T \ fn1(E1).

Now consider f(fn1(E1) ∩ T ). It follows by an application of Lemma 2.4 that the
complement of f(fn1(E1) ∩ T ) has a simply connected component containing α, and
lying in B(α, r). Call this component U2. Note that ∂U2 ⊂ fn1+1(E1).

Since U2 meets J(f) – recall that α ∈ J(f) – we can iterate the above construction.
We obtain a sequence of integers (nk)k∈N and a sequence of continua (Ek)k∈N such that
(3.1)

Ek+1 ⊂ fnk+1(Ek), f
nk(Ek) ⊂ C \B(0, Rk), and fnk+1(Ek) ⊂ B(α, r), for k ∈ N.

It follows by Lemma 2.3 that there is a point ζ ∈ E1 and a sequence of integers
(pk)k∈N such that fpk(ζ) ∈ Ek+1, for k ∈ N. It follows from (3.1) that ζ ∈ ∂U ∩BU(f),
as required. �

Finally in this section, we use these results to prove Theorem 1.1.

Proof of Theorem 1.1. We construct a transcendental entire function f with a finite
logarithmic asymptotic value in J(f), and a second finite logarithmic asymptotic value
lying in F (f)∩BO(f). It is easy to deduce from the second fact that f has an unbounded
Fatou component in BO(f). The result then follows by Theorem 1.2 and Theorem 1.3.

Consider the family of functions

fα,β(z) :=
2α√
π

∫ z

0

e−w
2

dw + β = α erf(z) + β, for α, β ∈ C, α 6= 0.

Here erf(z) denotes the error function; see [AS72, p.297].
Clearly fα,β has no critical values. It can be seen that fα,β has two finite logarithmic

asymptotic values, obtained as z tends to infinity along the real axis in the positive and
negative directions. It is a calculation to show that these asymptotic values are equal to
±α + β.

We choose values for α and β so that α+ β ∈ J(fα,β) and −α+ β lies in a parabolic
basin of fα,β. First we let c be a complex solution to erf(z) = 1. In particular, we set
c = −1.3548101281 . . .+ 1.9914668428 . . . i; see [DLMF, Table 7.13.2]. We then let

α =
ec

2√
π

2
and β = c− α.
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Figure 1. Two views of the Julia set (black) of fα,β. The asymptotic
values ±α+ β are denoted by black circles; in particular α+ β is the top
right circle, and is a parabolic fixed point.

It follows that

fα,β(α + β) = fα,β(c) = α + β, and f ′(α + β) =
2α√
π
e−c

2

= 1.

Hence α+ β is a parabolic fixed point and so lies in the Julia set of fα,β. It can be seen
from Figure 1 that −α+β lies in the parabolic basin of this point. This is exactly what
we require. �
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Remarks.

(1) It follows by [RRRS11, Theorem 1.2] that every component of I(fα,β) is un-
bounded and path-connected; in the terminology of [Ben17], fα,β is criniferous.
It can be seen also that this function is postsingularly bounded. We refer to
[Ben17] for a definition, and further information on functions with this property.

(2) From the computer pictures, it appears that F (fα,β) is connected, although we
have not been able to prove this. If this were indeed the case, then it would

follow at once that BO(f) and B̂O(f) are connected.
(3) Clearly, another approach to the proof of Theorem 1.1 would be to find a tran-

scendental entire function f with an unbounded Fatou component in BO(f) and
an unbounded Fatou component in BU(f); the result would follow by Theo-
rem 1.2. While this seems possible, it is also likely to be more complicated than
the example given here, because of the difficulty of constructing transcendental
entire functions with an unbounded Fatou component in BU(f).

4. Results on spiders’ webs

Recall that if f ∈ B, then I(f) ⊂ J(f); see [EL92, Theorem 1]. It follows that
Theorem 1.4 is an immediate consequence of the following.

Theorem 4.1. Suppose that f is a transcendental entire function with a finite loga-
rithmic asymptotic value α /∈ F (f) ∩ I(f). Then I(f) separates no finite point from
infinity.

Proof. Suppose first that α ∈ J(f). It follows that B̂U(f) is connected, by Theorem 1.3.
Hence I(f) is not a spider’s web. On the other hand, if α ∈ F (f), then either α ∈ BO(f)
or α ∈ BU(f). In these cases the result follows by Theorem 1.2. �

Next we prove Theorem 1.5.

Proof of Theorem 1.5. One direction is immediate; it is easy to see from the definition
that a set separates every point of C from infinity if it is a spider’s web.

In the other direction, we consider first the case for I(f). Suppose that I(f) separates
a point of J(f) from infinity. In other words, there is a bounded open set U that meets
J(f) and the boundary of which lies in I(f). Let W be a disc containing any exceptional
point of f . Suppose that R > 0 is sufficiently large that W ⊂ B(0, R). By Lemma 2.1

there exists n = n(R) ∈ N such that B(0, R) \ W ⊂ fn(U). Since I(f) is forward
invariant, it follows that for all sufficiently large R > 0, there is a bounded simply
connected domain G such that B(0, R) ⊂ G and ∂G ⊂ I(f).

The fact [RS12, Theorem 1.1] that I(f) contains an unbounded component implies
that I(f) contains a spider’s web. The remark [RS12, p.807] then implies that I(f) is a
spider’s web.

The case for A(f) is almost identical to that of I(f), and is omitted. If f has no
multiply connected Fatou components, then it follows from [Kis98, Theorem 1] that all
components of J(f) are unbounded. The result for J(f) then follows in much the same
way as that of I(f). �

The following, which was promised in the introduction, is now quite straightforward.
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Corollary 4.2. Suppose that f is a transcendental entire function. Then I(f) is a

spider’s web if and only if B̂O(f) ∪ B̂U(f) is disconnected.

Proof. One direction is immediate, and so we assume that B̂O(f) ∪ B̂U(f) is discon-
nected. Then there is a bounded open set U such that U meets BO(f) ∪ BU(f) and
∂U ⊂ I(f). Arguing as in the proof of Lemma 3.1, we can deduce that U ∩ J(f) 6= ∅.
The result now follows by Theorem 1.5. �
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