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Abstract

Gossip protocols aim at arriving, by means of point-to-point or group communications,
at a situation in which all the agents know each other secrets. Distributed epistemic gossip
protocols use as guards formulas from a simple epistemic logic and as statements calls
between the agents. They are natural examples of knowledge based programs.

We prove here that these protocols are implementable, that their partial correctness
is decidable and that termination and two forms of fair termination of these protocols are
decidable, as well. To establish these results we show that the definition of semantics and
of truth of the underlying logic are decidable.

1. Introduction

This paper is concerned with the verification of a specific type of gossip protocols. In such
protocols each agent holds a secret initially known only to him. The secrets spread by
means of communications. During them, e.g., point-to-point or group communications, the
participating agents exchange some, possibly all, secrets they know. The aim of a gossip
protocol is to arrive at a situation in which all the agents know each other secrets.

Gossip protocols have been successful in various domains, e.g., communication net-
works (Hedetniemi, Hedetniemi, & Liestman, 1988), computation of aggregate information
(Kempe, Dobra, & Gehrke, 2003), and data replication (Ladin, Liskov, Shrira, & Ghemawat,
1992). A more recent account is given by Hromkovic, Klasing, Pelc, Ruzicka, and Unger
(2005) and Kermarrec and van Steen (2007). In these references gossip protocols are viewed
as parallel, probabilistic or distributed programs.

As a simple example assume that the set of agents is {a, b, ¢, d, e1, ..., en—_a}, where n > 4,
(if n = 4 then there are no e; agents) and assume that the agents communicate by means of
phone calls during which they exchange all secrets they know. Then take the call sequence

(a,e1),(a,ea),...,(a,en—q).

After it agent a knows all the secrets of the agents eq,...,e,_4. We follow it by the call
sequence (a,b), (c,d), (a,d), (b,c). After it agents a,b, ¢, d know all the secrets. So following
it by the above call sequence (a,e1), (a,e2),. .., (a,e,—4) we achieve the desired situation in
which all agents know all the secrets. This took 2n — 4 calls.

One of the early results established by a number of authors in the seventies, for instance
by Tijdeman (1971), is that for n > 4 agents at least 2n — 4 phone calls are needed to reach
the above final situation.



The above protocol is centralized in the sense that it consists of a globally scheduled
sequences of calls. Attamah, van Ditmarsch, Grossi, and Van der Hoek (2014b) introduced
and studied distributed epistemic gossip protocols. ‘Distributed’ means that each agent acts
autonomously, and ‘epistemic’ means that the gossip protocols refer to agents’ knowledge.
These protocols were described as formulas in an epistemic dynamic logic. Consequently
they are examples of knowledge-based programs that were introduced by Fagin, Halpern,
Moses, and Vardi (1997). These are programs that use tests for knowledge. Examples are
protocols for the sequence transmission problem, such as the alternating bit protocol, studied
by Halpern and Zuck (1992).

Apt, Grossi, and Van der Hoek (2016) built upon the work of Attamah et al. (2014b) and
studied distributed epistemic gossip protocols (from now on just: gossip protocols) for calls
of a different type than the ones considered by Attamah et al. (2014b), which in our view
are closer to the setting of distributed programming. These gossip protocols are strikingly
simple in their syntax (though not semantics): they are just parallel compositions of loops
in which the agents repeatedly perform a call assuming the corresponding epistemic formula
(a guard) evaluates to true. This considerably simplified the task of their verification. The
subject of our paper is to analyze semantics and verification of these gossip protocols. We
prove the following results.

e These gossip protocols are implementable.

More precisely, we show that the semantics of the underlying epistemic logic is de-
cidable and consequently it is decidable to determine whether a guard is true after a
sequence of calls.

e Partial correctness of these gossip protocols is decidable.

More precisely, we show that truth in the underlying epistemic logic is decidable. This
implies the claim since partial correctness of a gossip protocol can be expressed as a
specific formula in this logic.

e Termination of these gossip protocols is decidable.

e Fair termination (in two different senses) of these gossip protocols is decidable.

Moreover, we show that the concepts of fairness and justice, that differ for arbitrary
nondeterministic and distributed programs, coincide for these gossip protocols.

This implies that distributed epistemic gossip protocols are very specific programs that in
particular do not have the full power of Turing machines.

The obtained results, while sufficient for an analysis of the considered gossip protocols,
raise a number of interesting open problems concerning both the underlying logic and the
protocols and to which we return in the conclusions.

1.1 Related Work

Epistemic reasoning about gossip protocols has been recently investigated from several view-
points. The stage was set up in the already mentioned work of Attamah et al. (2014b). We
shall discuss one specific aspect of this paper, namely the type of calls, in the final section



of the paper. Attamah, van Ditmarsch, Grossi, and Van der Hoek (2014a) presented a tool
that given a high level description of an epistemic protocol in the setting of Attamah et al.
(2014b) generates the characteristics of the protocol. The calls considered there differ from
ours, so this approach is not applicable to our setting. Further, van Ditmarsch, van Eijck,
Pardo, Ramezanian, and Schwarzentruber (2017b) undertook a study of dynamic distributed
gossip protocols in which the calls allow the agents not only to share the secrets but also to
transmit the links. The purpose of that paper is to characterize such protocols in terms of
the class of graphs for which they terminate. Such protocols then differ from the ones here
considered, which are static.

Next, Herzig and Maffre (2015) and Herzig and Maffre (2017) studied gossip protocols
that aim at achieving higher-order shared knowledge, for example knowledge of level 2 which
stipulates that everybody knows that everybody knows all secrets. In particular, a protocol
is presented and proved correct that achieves in (k + 1)(n — 2) steps shared knowledge of
level k. These matters are further investigated by Cooper, Herzig, Maffre, Maris, and Regnier
(2016b), where optimal protocols for various versions of such a generalized gossip problem
are given depending on various parameters, such as type of the underlying graph or the type
of communication. Also gossip problems are studied in which some negative goals, such as
that certain agents must not know certain secrets, are supposed to be achieved.

Further, Cooper, Herzig, Maffre, Maris, and Régnier (2016a) studied gossip protocols
as an instance of multi-agent epistemic planning that is subsequently translated into the
classical planning language PDDL. In turn, van Ditmarsch, Grossi, Herzig, van der Hoek, and
Kuijer (2016) presented the gossip problems in an epistemic framework that provides several
parameters allowing us to capture such aspects as the initial knowledge of the agents, the
type of communication used, and the desired type of the protocol (for example, a symmetric
one). For some of the combinations of the parameters the minimum number of calls needed
to reach the final situation is established. The expected time of termination of several gossip
protocols on completely connected networks was studied by van Ditmarsch, Kokkinis, and
Stockmarr (2017a).

Fairness is a widely considered concept in nondeterministic and distributed computing,
see, e.g., (Francez, 1986). As shown by Apt, Francez, and Katz (1988), in distributed systems
it can be defined in a number of ways.

Finally, let us mention that several decidability results reported here were recently es-
tablished by Apt and Wojtczak (2017a) for the logic containing the common knowledge
operator. Further, Apt, Kopczynski, and Wojtczak (2017) investigated the computational
aspects of the problems here studied. Building upon the work here reported it was estab-
lished that the implementability of a distributed epistemic gossip protocol is a Ph\lp—complete

problem, while the problems of its partial correctness and termination are in coNPNY. The
computational analysis of two types of fair termination studied here was not considered.

1.2 Plan

The paper is organized as follows. In the next two sections, 2 and 3, we recall the syntax and
semantics of the considered epistemic logic, originally introduced by Apt et al. (2016). Then,
in Section 4 we recall the distributed epistemic gossip protocols studied in that paper and in



Section 5 we discuss in detail an example of such a protocol. Next, in Section 6 we introduce
an alternative, equivalent, semantics, which helps us to prove the desired decidability results.

In Section 7 we prove the decidability of the problem of checking whether a formula is
true after a given sequence of calls. This implies that the considered gossip protocols are
implementable. In Section 8 we show that the definition of truth in the considered logic is
decidable.

In the subsequent two sections, 9 and 10 we apply these results to a study of gossip
protocols. We establish there decidability of four properties of these protocols: partial cor-
rectness, termination, and fair termination in two different senses. Finally, in Section 11, we
discuss some related open problems and recall other types of communications studied by
Attamah et al. (2014b).

2. Syntax

Throughout the paper we assume a fixed finite set A of at least three agents and a fixed set
P of all secrets. We assume that each agent holds exactly one secret and that there exists
a bijection between the set of agents and the set of secrets. Further, each agent is uniquely
determined by his secret. To indicate this we denote the secret of agent a by A, the secret
of agent b by B and so on.

Our aim is to analyze what the agents know after a sequence of calls took place. So
first we introduce the calls and then consider an epistemic language allowing us to refer to
agents’ knowledge.

Each call concerns two different agents, the caller (a below) and the callee (b). Apt
et al. (2016) distinguished three modes of communication of a call:

e push-pull, written as ab or (a,b). After this call the caller and the callee learn each
others secrets,

e push, written as a>b. After this call the callee learns all the secrets held by the caller,

e pull, written as a<b. After this call the caller learns all the secrets held by the callee.

So the push-pull mode describes two-way communication, while the push and the pull
modes describe one-way communication. Calls are denoted by c, d. Abusing notation we
write a € ¢ to denote that agent a is one of the two agents involved in the call ¢ (e.g., for
c := ab we have a € c and b € c). Further, we say that a call is a b-call if agent b is involved
in it.

The mode of communication is concerned only with the agents involved in the call and
states nothing about the effect of the call on the knowledge of other agents. Here we follow
the approach of Apt et al. (2016) and stipulate that agents not involved in the call are not
aware of it. This will be addressed in Definition 1 below. Other options are discussed in the
last section.

To discuss knowledge of the agents we consider formulas in a simple epistemic language
L defined by the following grammar:

¢u=Fap| 0[N | Kad,



where p € P and a € A. Each secret is viewed a distinct constant. In the example formulas
we shall also use the disjunction ¢ V ¢ as an abbreviation for =(—¢ A =), the implication
¢ — 1 as an abbreviation for —(¢ A —)), and the equivalence < as a shorthand for the
conjunction of two implications.

We read F,p as ‘agent a is familiar with the secret p’ and K,¢ as ‘agent a knows that
formula ¢ is true’. So Fyp is an atomic formula, while K,¢ is a compound formula. In fact,
all atomic formulas of £ are of the form Fyp.

Attamah et al. (2014b) used instead of the atomic formula Fip the knowledge formula
K.pV K,—p, which states that agent a knows the truth value of the proposition p. This
leads to a different language in which the atomic formulas are secrets that are viewed as
propositional variables. The advantage of the approach adopted by Apt et al. (2016) and
followed here is that it simplifies semantics and reasoning about it. Also, it allows one to
suppress one level of nesting of the modalities.

In what follows we shall distinguish the following sublanguages of L:

e L, its propositional part, which consists of the formulas that do not use the K,
modalities,

e L,, where a € A is a fixed agent, which consists of the formulas the only modality of
which is K, and in which all atomic formulas are of the form F,p,

e L.n, which consists of the formulas without the nested use of the K, modalities.

In our logic the formulas of the form K,¢ and K,K,¢ are equivalent, so in the last
sublanguage one can also allow the formulas of the form K,K,...K,¢. All gossip protocols
studied in the work of Apt et al. (2016) use as guards only formulas from L, that is in a
program for agent a only guards from L, N Ly, are used.

3. Semantics

We now recall semantics of the epistemic formulas introduced by Apt et al. (2016). It relies
on the concept of a gossip situation.

3.1 Gossip Situations and Their Modifications

A gossip situation is a sequence s = (Qq)qea, Where Q, C P for each agent a. Intuitively,
Q. is the set of secrets a is familiar with in the gossip situation s. The initial gossip
situation is the one in which each Q, equals {A} and is denoted by root. It reflects the fact
that initially each agent is familiar only with his own secret. We say that an agent a is an
expert in a gossip situation s if he is familiar in s with all the secrets, i.e., if Q, = P.

We will use the following concise notation for gossip situations. Sets of secrets will be
written down as lists. e.g., the set {A, B, C'} will be written as ABC'. Gossip situations will
be written down as lists of lists of secrets separated by dots. E.g., if there are three agents,
a, b and ¢, then root = A.B.C and the gossip situation ({A, B}, {A, B},{C?}) will be written
as AB.AB.C.

Each call ¢ transforms the current gossip situation s by modifying the sets of secrets
the agents involved in the call are familiar with. This modification depends on the mode of
communication. Consider a gossip situation s := (Qg)gea.



e Suppose ¢ = ab.
Then c(s) := (Q})dea, where Q) = Q) = Qa U Qp, and for ¢ & {a, b}, Q. = Q..

So the effect of a push-pull call is that the caller and the callee share the secrets they
are familiar with.

e Suppose c = abb.
Then c(s) := (Q})aca, Where Q) = Qu U Qp, Q) = Qq, and for ¢ & {a, b}, Q. = Qc;

So the effect of a push call is that the callee learns the secrets of the caller.

e Suppose c =a<b.
Then c(s) := (Q7)aca, Where Q;, = Q. U Qp, Q = Qu, and for ¢ & {a, b}, Q. = Q..

So the effect of a pull call is that the caller learns the secrets of the callee.

3.2 Call Sequences

Apt et al. (2016) studied computations of the gossip protocols, so both finite and infinite
call sequences were used. Here we focus mostly on the finite call sequences. So to be brief,
unless explicitly stated, a call sequence is assumed to be finite. For simplicity we assume
that all calls in a call sequence are of the same mode.

The empty sequence is denoted by €. We use ¢ to denote a call sequence and C to denote
the set of all finite call sequences. Given call sequences ¢ and d and a call ¢ we denote by c.c
the outcome of adding c at the end of the sequence ¢ and by c.d the outcome of appending
the sequences ¢ and d. We write ¢ =< d to denote the fact that d extends c, i.e., that for
some ¢’ we have c.c/ = d. We have thus two equivalent ways of representing call sequences,
either as (c1,ca,...,Cp) OF as €1.Ca. . ..Cp.

The result of applying a call sequence to a situation s is defined inductively as follows:

e(s) :=s, (c.c)(s) := c(c(s)).

Example 1. Let A = {a,b,c}. Consider the call sequence (ac,bc,ac). It generates the
following successive gossip situations starting from root:

A.B.C “% AC.B.AC -5 AC.ABC.ABC -*“s ABC.ABC.ABC.

Hence (ac, be, ac)(root) = (ABC.ABC.ABC).
Next, consider the call sequence (a<¢,b<c,a<c). It generates the following successive
gossip situations starting from root:

A.B.C S AC.B.C Y5 AC.BC.C *S AC.BC.C.

Hence (a<¢,b<c,a<c)(root) = (AC.BC.C).
Finally, consider the call sequence (a>b,b>c,c>a). It generates the following successive
gossip situations starting from root:

AB.C “% AAB.C 2% A AB.ABC 2% ABC.AB.ABC.
Hence (a>b,b>c,c>a)(root) = (ABC.AB.ABC). O



3.3 Gossip Models and Truth

A gossip situation is a set of possible combinations of secret distributions among the agents.
As calls progress in sequence from the initial situation, agents may be uncertain about
which call sequence took place. This uncertainty is captured by the appropriate equivalence
relations on the call sequences. Suppose first that the mode of communication is push-pull.

Definition 1. The gossip model is a tuple M := (C,{~a},cp), where each ~,C C x C is
the smallest relation satisfying the following conditions:

[Base]| € ~q €,

[Step| Suppose € ~, d.

(i) If a & c, then c.c ~4 d and ¢ ~, d.c.

(i) If there exists b € A and c¢ € {ab,ba} such that c.c(root), = d.c(root),, then
c.c ~,d.c

In (i) we formalize the assumption that the agents are not aware of the calls they do
not participate in. In turn, in (%) we capture the intuition that two call sequences are
indistinguishable for an agent if the sets of his calls in both sequences are the same and in
each sequence he observes the same set of secrets.

Note that according to our definition, for a # b, ab %, ba. This means that agents are
aware of who is calling whom and can differentiate between calls in which these roles are
reversed. Apt et al. (2016) used a slightly different definition of (ii) according to which
ab ~, ba. We consider the above definition more intuitive.

To illustrate this definition consider the following examples. Based on (i) we have ab ~,
ab, so by (i) used twice we have (ab, bc) ~, (ab, bd). But we do not have (ab, bc) ~, (ba, bd),
because ab 7, ba. We also do not have (bc, ab) ~, (bd,ab) since (be, ab)(root), = ABC #
ABD = (bd, ab)(root),. At the same time, we have by (i) used four times (bc, bd) ~ (cd, be),
so by (ii) (be, bd, ab) ~, (cd, be, ab).

Later, in Section 6, we introduce an alternative definition of the relations ~, that provides
additional insights in the above definition and in particular will allow us to prove that each
~g 1s an equivalence relation.

Suppose now that the mode of communication is push. Then Definition 1 needs to be
modified as follows. The original clause (i7) is replaced by the following clause:

(7") If there exists b € A and ¢ € {a>b,b>a} such that c.c(root), = d.c(root),, then
c.c~yd.c

Note that when b and c are different agents, then a > b ¢, a > c. The intuition is that
agent a is fully aware of the calls he performed. The calls a>b and a>c are different for him
even though he does not learn anything from any of them.

For instance, by (i) and (i) we have (a>b,b>¢) ~, (b>c¢,a>b). But we do not have
(b>a,c>b) ~q (c>b,b>a), since (b>a,c>b)(root), = AB # ABC = (¢ b, b a)(root),.

Finally, suppose that the mode of communication is pull. Then Definition 1 needs to be
modified as follows. The original clause (i7) is replaced by the following clause:



(i4") If there exists b € A and ¢ € {a<b,b<a} such that c.c(root), = d.c(root),, then
c.c~,d.c

For instance, by () and (ii”) we have (b<a,c<b) ~, (c<4b,b<a). But we do not have
(a<b,b<ac) ~q (b<c,a<b) since (a<b,b<c)(root), = AB # ABC = (b<c,a<b)(root),.

Now that we provided the definition of a model we recall the definition of truth, which
is the same for all three modes of communication.

Definition 2. Consider the gossip model M := (C, (~q)qea) and a call sequence ¢ € C. We
define the satisfaction relation |= inductively as follows (clauses for Boolean connectives are
as usual and omitted):

(M,c) = F,p iff p€ c(root),,
(M, c) | Kad iff Vd 5.t € ~qd, (M,d) = ¢,

Further we define

M iff Ve (M) = ¢
When (M, c) = ¢ we say that ¢ is true after ¢ and when M = ¢ we say that ¢ is true.

So a formula Fy,p is true after ¢ whenever secret p belongs to the set of secrets agent
a is familiar with in the situation generated by the call sequence c¢ applied to the initial
situation root. The knowledge operator is interpreted as customary in epistemic logic, using
the equivalence relations ~.

4. Gossip Protocols

Apt et al. (2016), as a follow up on the work of Attamah et al. (2014b), studied distributed
epistemic gossip protocols. Their goal is to reach a gossip situation in which each agent is
an expert. In other words, their goal is to transform a gossip situation in which the formula
Naen FaA N Nopenazp 7FaB is true into one in which the formula A\, ,cp FoB is true. Let
us recall their definition.

By a component program, in short a program, for an agent a we mean a statement
of the form

#1721 ¥5 — ¢l

where m > 0 and each v; — ¢; is such that ¢; € £, and a is the caller in the call c;.

Given a formula ¥ € £, and a call ¢, we call the construct ¢ — ¢ a rule and refer in
this context to ¢ as a guard. Intuitively, * denotes a repeated execution of the rules, one at
a time, where each time non-deterministically a rule is selected whose guard is true. Finally,
by a distributed epistemic gossip protocol, in short a gossip protocol, we mean a
parallel composition of component programs, one for each agent.

This syntax loosely follows the syntax of the language CSP (Communicating Sequential
Processes) of Hoare (1978) that extends the guarded command language of Dijkstra (1975)
by disjoint parallel composition and commands for synchronous communication. CSP was
realized in the distributed programming language OCCAM (see INMOS in INMOS Limited,
1984).



Gossip protocols here considered can be seen special cases of knowledge-based programs
introduced by Fagin et al. (1997). This means that one could instantiate their definition of
global states, runs and actions in our setup. However, the framework we consider here is
very simple (for example assignments are not allowed and only two agents are involved in
each action), so a much simpler, direct, definition of computations can be given.

Assume now a gossip protocol P that is a parallel composition of the component programs
([T ¢f — cf], one for each agent a € A.

The computation tree of P is a directed tree defined inductively as follows. Its nodes
are call sequences and its root is the empty call sequence €. Further, if ¢ is a node and for
some rule ¢f — ¢ we have (M, c) = ¢, then c.c] is a node that is a direct descendant of
c. Intuitively, the arc from ¢ to c.c} records the effect of the execution of the rule ¢} — c}
performed after the call sequence ¢ took place.

By a computation of a gossip protocol we mean a maximal rooted path in its com-
putation tree. This tree is finitely branching, so by Konig’s Lemma (Konig, 1927) if it has
arbitrary long paths, then it also has infinite paths.

We say that the gossip protocol P is partially correct if for all leafs ¢ of the computation
tree of P

(M,e) = A\ EB, (1)

a,beA

i.e., if each agent is an expert in the gossip situation c(root).
Note that a rooted finite path y in the computation tree of P is a finite computation iff
its leaf ¢ cannot be extended by any call, so iff

M E A A v

acA j=1

We call the formula A, 5 /\T:a1 —7 the exit condition of the gossip protocol P. So P is
partially correct iff the implication

/\ /\ —F — /\ F,B (2)

a€cA j=1 a,beA

is true after every call sequence corresponding to a node of the computation tree for P. In
particular if this implication is true, then P is partially correct.

We say furthermore that P terminates if all its computations are finite. We also consider
two variants of termination. To define them we need a subsidiary notion. We call a rule
enabled after a call sequence c if its guard is true after c. Given a gossip protocol we say
that an agent is enabled after a call sequence c if one of the rules in its program is enabled.

We now stipulate that each finite computation is rule-fair and agent-fair. An infinite
computation is rule-fair (resp. agent-fair) if all rules (resp. agents) that are enabled after
infinitely many prefixes (in short, infinitely often) are selected infinitely often. We say that a
gossip protocol P rule-fairly terminates (resp. agent-fairly terminates) if all its rule-
fair (resp. agent-fair computations) are finite. Agent-fairness was introduced by Apt et al.
(2016), where it was simply called fairness.



5. Example: a Protocol Over Undirected Graphs

To illustrate the power of gossip protocols consider the following example taken from the
work of Apt et al. (2017). Suppose that the agents are nodes of an undirected connected
graph (V, E) and that the calls can take place only between pairs of agents connected by an
edge. Let N, denote the set of neighbours of node a.

Consider a gossip protocol P with the following program for agent a:

*[[Jben,, cepFaC A =Ko F,C — ab).

Informally, agent a calls a neighbour b if a is familiar with some secret (here C') and he does
not know whether b is familiar with it.

Despite its simplicity this protocol can exhibit a complex behaviour. Consider for instance
the binary tree depicted in Figure 1 connecting agents a,b,c,d, e, f, g

N\
/\ /\

Figure 1: A connection graph

The following two example call sequences can be generated for it by the considered
protocol:

e (ab,ac,bd,ba,ac,be,bd, ba,ac, cf,ca,cq,cf,ca,ab, bd, be),
e (bd,be,ba,ac,cf,cg,cf,ca,ab,bd,be).
To prove partial correctness of this protocol consider its exit condition

A N\ (FC = EFC).
(a,b)eE C€EP

For all agents a and b and secrets C, the formula K, F,C — F,C is true, so the exit condition
implies
N\ N\ F.C—FO).

(a,b)eE CeP

Consider now an agent a and the secret B of agent b. Let i1, .. ., i;, be a path that connects
b with a. So iy = b and ip, = a. The above formula implies that for g € {1,...,h—1} we have
Acep(Fi,C — F;,,,C). By combining these h — 1 formulas we get Ao cp(FyC — F,C). But
Fy B is true, so we conclude F, B. Consequently /\a,beA F,B, as desired.

To prove termination it suffices to note that after each call ab the size of the set {(a, b, C) |

- K, F,C} decreases.

10



6. An Alternative Equivalence Relation

From now on we focus on the push-pull mode. We provide now an alternative equivalence
relation between the call sequences that is easier to work with. Also, it provides another
insight into the definition of the ~, relations. First we introduce the following notion.

Definition 3. Fiz an agent a. Its view of a call sequence c, written as cq, 1S a sequence
of gossip situations connected by the successive calls in ¢ in which agent a is involved. It is
defined by induction as follows.

[Base/
€q ‘= root,
[Step]
C .
c, —s ifa€c
(€.0)q = .
C, otherwise
where for d € A
{c.c(root)d ifdec
Sq ‘=

s, otherwise

where s’ is the last gossip situation in c,.

Intuitively, a view of agent a of a call sequence c is the information he acquires by means
of the calls in ¢ he is involved in. It consists of a sequence of gossip situations connected
by the calls in which a is involved. After each such call, say ab, agent a updates the set of
gossips he and b are currently familiar with.

Example 2. Let us return to Example 1. So A = {a, b, ¢} and we consider the call sequence
(ac,bc,ac). We noticed there that it generates the following successive gossip situations
starting from root:

A.B.C “% AC.B.AC % AC.ABC.ABC -*“s ABC.ABC.ABC.

We now compare it with the view of agent a of the call sequence (ac, be, ac), which is
A.B.C *% AC.B.AC % ABC.B.ABC.

Thus, in the final gossip situation of this view, agent b is familiar with neither the secret
A nor C. However, the final gossip situation of a view does not reflect agents’ knowledge. In
fact, as we shall explain in Example 4, according to the semantics, after the above sequence
of calls, agent a knows that agent b is familiar both with A and C. O

We now introduce for each agent a an equivalence relation =, between the call sequences,
defined as follows:
c=,diff ¢, =d,.

So according to this definition two call sequences are equivalent for agent a if his views of
them are the same. The following result explains our interest in the views of call sequences.

Theorem 3 (Equivalence). For each agent a the relations ~, and =, coincide.

11



So two call sequences are ~, equivalent iff their views by agent a coincide.
Proof. Fix an agent a. We prove by induction on the sum of the lengths |c| + |d| that
c~,diff c =, d.

[Base| |c| + |d| = 0.
Then ¢ = d = ¢, so the equivalence holds.

[Step] |c| + |d| > 0.
(=) Suppose ¢ ~, d. On the account of the minimality of the ~, relation only the following
three cases can arise.

Case 1. For some sequence ¢’ and call ¢, we have a € ¢, ¢ = c’.c and ¢’ ~, d.
By the definition we have then ¢, = c,. By the induction hypothesis ¢’ =, d, i.e.,
c, =d,. Hence ¢, =d,, ie., c =, d.

Case 2. For some sequence d’ and a call ¢, we have a € ¢, d = d’.c and ¢ ~, d'.
Analogous to Case 1.

Case 3. For some sequences ¢’ and d’ and a call ¢, we have a € ¢, c =c’.c,d=d'.c, ¢/ ~, d’
and c(root), = d(root),.
Let s be the last gossip situation in €], and s] the last gossip situation in d,. By the
definition of a view we have
Co=¢, s

and

!/ C /
d, =d, — s,

where for d € A

. c(root)y ifdec
¢ (s1)d otherwise

and
, _ Jd(root)y ifdec
(s))a otherwise

By the induction hypothesis ¢’ =, d', i.e., ¢/, = d, and consequently s; = s|. Moreover,
by assumption c(root), = d(root),, i.e., s, = s,. Further, the last calls in ¢ and d are the
same, say ¢ = ab, so s, =S, and s, =s,,, and hence s, = s;.

This shows that s = s’. Consequently ¢, = dg, i.e., c =, d.
(<) Suppose € =, d. Three cases arise.

Case 1. The last call in ¢ does not involve agent a.

For some sequence ¢’ and call ¢, we have ¢ = c’.c. By the definition of =, we have
€, = d,. Further, by definition ¢, = ¢/, so ¢’ =, d. By the induction hypothesis ¢’ ~, d, so
by the definition of ~, we have ¢ ~, d.

Case 2. The last call in d does not involve agent a.
Analogous to Case 1.
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Case 8. The last calls in ¢ and in d involve the agent a. Since the views of c and d are the
same, these last calls coincide and equal some call c. For some sequences ¢ and d’ we have
c=c.candd=dc.
By the definition of =, we have ¢, = d,. This implies c(root), = d(root), and ¢, = d,
i.e., ¢’ =, d’. By the induction hypothesis ¢’ ~, d’, so by the definition of ~, we have ¢ ~, d.
This concludes the proof. O

This alternative definition of the equivalence relation between the call sequences makes it
simpler to determine various properties of our semantics. In the examples and proofs below
we use the =, relation instead of ~, and repeatedly appeal to the Equivalence Theorem 3.

Given a call sequence ¢, we denote by c* a call sequence consisting of zero or more
repetitions of ¢, and by ¢™ a call sequence consisting of one or more repetitions of c. Given
two call sequences ¢ and d, we denote by (c | d) a call sequence that is either equal c or d.
Finally, for a call ab, we write ab as a shorthand for (ab | ba).

We say that a call sequence c is of the form (ab)*.ac.(bc)™ if ¢ is equal to (ab)™.ac.(bc)"
for some m > 0 and n > 0. An analogous terminology is used for other call sequences.

Example 4. Suppose that A = {a,b,c} and that (ac, bc, ac) =, d. Recall from Example 2
that the view of agent a of the sequence (ac, be, ac) is

A.B.C 2% AC.B.AC %5 ABC.B.ABC.

By the Equivalence Theorem 3 this is also the view of agent a of the call sequence d. So
there are precisely two calls ac in d. Hence d is of the form (bc)*.ac.(bc)*.ac.(be)*. But the
second gossip situation of the view is AC.B.AC, so d is actually of the form ac.(bc)*.ac.(be)*.
Further, the third gossip situation of the view is ABC.B.ABC, so we conclude that d is in
fact of the form ac.(bc)".ac.(bc)*.

This implies that (M, d) = F, A. It follows that (M, (ac, be, ac)) = Ko FpA. We conclude
that it is possible that an agent, here a, knows that another agent, here b, is familiar with his
(so a’s) secret even though no communication took place between them. The same argument
shows that (M, (ac,be, ac)) | K, F,C, as claimed in Example 2. O

Corollary 5.

(i) Each ~ is an equivalence relation.

(it) For all c,d € C and agents a, if c ~4 d, then c(root), = d(root),.
Proof. (i) By the Equivalence Theorem 3.

(71) By the Equivalence Theorem 3 it suffices to show that ¢, = d, implies that c(root), =
d(root),.

Let c and d be the last calls in ¢ and d, respectively, that involve agent a, i.e., such that
a € c and a € d. This means that for some ¢/, ¢/, d’, d” we have ¢ = ¢’.c.c” and d = d'.d.d”,
and neither ¢”” nor d” contains an a-call.

By the assumption and the definition of a view we have (¢.c), = ¢, = d, = (d’.d), and
consequently, again the definition of a view, ¢’.c(root), = d’.d(root),. Further, c(root), =
c’.c.c’(root), = c’.c(root), and d(root), = d’.d.d”(root), = d’.d(root),, which yields the
claim. O
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Note that the implication in (4i) cannot be reversed, as (ab, ab)(root), = (ab)(root), but
(ab, ab) 74 ab.

Next we show that an immediate repetition of a call has no effect on the truth of the
formulas. More precisely, the following holds.

Theorem 6 (Stuttering). Suppose that ¢ := c;j.c.co andd := cy.c.c.co. Then for all formulas

¢ €L, (M) o iff (Md)|=¢.

Proof. We proceed by induction of the structure of ¢. For the formulas of the form Fyp it
suffices to note that c(root) = d(root). The only induction step of interest is for the formulas
of the form K,¢. Suppose first that a ¢ c. Then ¢ =, d, so (M, c) | K¢ iff (M,d) E K,¢.

Assume now that a € c. Suppose that (M, c) | K,¢. Take d’ such that d =, d’. Then
d’ is of the form d}.c.c.d}. Let ¢’ := d/.c.d}. By the induction hypothesis (M,d') | ¢ iff
(M, ) & ¢. Further, d =, d’ implies that ¢ =, ¢’. So (M, ) = ¢. Hence (M, d’) | ¢ and
consequently (M, d) = K,¢.

The proof in the other direction is analogous. O

The above result cannot be extended to a repetition of the call sequences. Indeed, we have
(M, (ab,bc)) E —F,C, and (M, (ab,be,ab,bc)) = F,C. On the other hand a monotonicity
result holds for positive formulas.

Theorem 7 (Monotonicity). Suppose that ¢ € L is a formula that does not contain the —
symbol. Then
c = d and (M, c) = ¢ implies (M, d) = ¢.

Proof. We proceed by induction on the structure of ¢. The only case of interest is when ¢
is of the form K,1. Suppose that ¢ < d and (M,c) | ¢. Take some call sequence d’ such
that d =, d’. Then for some call sequences d; and d} such that dy.d] = d’ we have ¢ =, d;.

We have by the assumption (M, d;) = v, so by the induction hypothesis (M, d’) = 1.
As d’ was arbitrarily chosen we conclude that (M, d) & ¢. O

Before we deal with the decidability matters consider the formula K, F,C for pairwise
different agents a, b, c. The following example reveals that it can be true in some subtle ways.

Example 8.
(7) First, note that a can learn that agent b is familiar with the secret C' through a direct
communication with b.
Indeed, we have (M, (bc,ab)) = Kq,F,C. Namely, the view of agent a of the sequence
(be, ab) is
A.B.C “% ABC.ABC.C.

So if (be, a@ =, d, then by the reasoning analogous to the one given in Example 4 d is of
the form (bc)*.ab.(be)*, which implies that (M, d) | F,C.

(74) Further, it is also possible that a learns that b is familiar with the secret C' through a
direct communication with c.
Indeed, we have (M, (bc, ac)) = Ko F,C. To see this note that the view of agent a of the
sequence (be, ac) is
A.B.C *% ABC.B.ABC.
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So if (be, ag) =, d, then by the reasoning analogous to the one given in Example 4, d is of
the form (bc)*.ac.(be)*, which implies that (M, d) | F,C.

(7i7) Also, it is possible that a learns that b is familiar with the secret C' without ever
communicating with b or c.

Namely, we have (M, (cd, ad, bd, ad)) = K,F,C. To see this note first that the view of
agent a of the sequence (cd, ad, bd, ad) is

A.B.C.D - ACD.B.C.ACD % ABCD.B.C.ABCD.

Suppose now that (cd, ad, bd, ad) =, d. Then both calls ad take place in d. Assume first that
a call bc does not take place in d before the first call ad. Then by the reasoning analogous
to the one given in Example 4 d is of the form (cd)*.ad.d’.(bd | be.d'.cd).d’.ad.d’, where
d = (bc | bd | cd)* is a call sequence with no a-calls. Intuitively, a call cd has to take place
before the first call ad, so that agent a observes that agent d is only familiar with the secret
C (apart of his own secret D). A call bd or a call bc and then a call cd has to take place
before the second call ad, so that agent a observers that agent d is familiar with all the
secrets after its second call. Note that this form of d implies that (M, d) = F,C.

If a call be takes place in d, in particular before the call ad, then (M,d) = FyC holds
directly.

(iv) In (ii7) agent a learned that b is familiar with ¢ by communicating with agent d twice.
But it is also possible that a learns that b is familiar with the secret C' without communicating
with any agent twice.

To see this note that (M, (cd,ad,be,ac)) = K F,C. To see this note that the view of
agent a of the sequence (cd, ad, be, ac) is

A.B.C.D 4 ACD.B.C.ACD s ABCD.B.ABCD.ACD.

Suppose now that (cd, ad, be, ac) =, d and assume that a call bc does not take place in d
before the call ad. By the reasoning analogous to the one given in Example 4 d is of the form
(cd)T.ad.d’.(be | bd.d'.cd).d’.ad.d’; where d' = (bc | bd | cd)*. Intuitively, between the calls
ad and ac a call be or a call bd followed by cd has to take place so that agent a observes that
after the call ac agent c is familiar with all the secrets. This implies that (M, d) = F,C.

If a call be takes place in d before the first call ad, the reasoning is similar and omitted.
O

We conclude by noting that the Monotonicity Theorem 7 does not hold when we extend
the call sequences to the left. Indeed, as observed in Example 8(ii), (M, (be, ac)) E K F,C.
However, (M, (cd,be,ac)) = ~K,F,C, since (M, (bd, cd,ac)) = —F,C and (cd, be,ac) =,
(bd, cd, ac).

7. Decidability of Semantics

In this section we show that the definition of semantics given in Definition 2 is decidable for
the formulas from the language L.

Consider a call sequence c. If for some prefix c¢;.c of ¢ we have ¢i(root) = c;.c(root),
then we say that the call c is redundant in c. First note the following observation.
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Lemma 9 (Semantic Stuttering). Suppose that ¢ := cj.c.ca and d := c;j.ca, where ¢ is
redundant in c. Then

(i) c(root) = d(root),
(ii) for all formulas ¢ € Ly, (M, c) = ¢ iff (M,d) = ¢.

Proof.
(i) By the redundancy of ¢ we have c;(root) = c;.c(root), so cj.c.ca(root) = cj.ca(root).

(ii) We proceed by induction on the structure of ¢. The only case of interest is when ¢ is of
the form Fyp. By (i) (M, c) = Fyp iff p € c(root), iff p € d(root), iff (M, d) = Fyp. O

The following example shows that Lemma 9 does not extend to arbitrary formulas of L.
Example 10. In the call sequence (ab, ac, be, ab) the second call ab is redundant since
(ab, ac, be, ab)(root) = (ab, ac, be)(root) = ABC.ABC.ABC.

We have (M, (ab, ac, be, ab)) = K FyC', because if (ab, ac, be, ab) =, d then by the reason-
ing analogous to the one given in Example 4, d is of the form ab.ac.(bc)™.ab.(bc)*. However,
(M, (ab, ac,bc)) = - K, FC since (ab, ac, bc) =, (ab, ac). O

Now, consider an agent a and a call sequence c. Starting from ¢ we repeatedly remove
from the current call sequence a redundant call that does not involve agent a. We call each
outcome of such an iteration an a-reduction of c.

Corollary 11. Let d be an a-reduction of c. Then
(i) ¢ = d,
(7i) c(root) = d(root),
(1it) for all formulas ¢ € Ly, (M,c) = ¢ iff (M, d) = ¢.

Proof.
(7) It suffices to note that a removal of a redundant call that does not involve agent a does
not affect his view of the call sequence.

(74) and (iii) By the repeated use of the Semantic Stuttering Lemma 9. O

Given an agent a we now say that a call sequence c is a-redundant free if no call c
from ¢ such that a & c is redundant in it. Clearly each a-reduction is a-redundant free.
We now prove the following crucial lemma.

Lemma 12. For each agent a and a call sequence c the set of a-redundant free call sequences
d such that ¢ =, d is finite and can be effectively constructed.
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Proof. Consider an a-redundant free call sequence d such that ¢ =, d. Then d has the same
number, say k, of a-calls as c.

Suppose d = dy.ds..... d., where m is the length of d. Associate with d the sequence
of gossip situations d°(root), d*(root), ..., d™(root), where d° = ¢, and d° = d;.ds. ... d; for
i =1,...,m. This sequence monotonically grows, where we interpret the inclusion relation
componentwise. Moreover, for all calls d; such that a ¢ d; the corresponding inclusion is
strict. Consequently, m, the length of d, is bounded by k + |A|?, the sum of the number of
a-calls in ¢ and of the total number of secrets in the gossip situation in which each agent is
an expert.

But for each m there are only finitely many call sequences of length at most m. This
concludes the proof. O

We can now state and prove the desired result.

Theorem 13 (Decidability of Semantics). For each call sequence c it is decidable whether
for a formula ¢ € Ly, (M, c) = ¢ holds.

Proof. We use the definition of semantics as an algorithm and prove this by induction over
the structure of the formulas. The only interesting case are formulas of the form K v, where
1 € Ly,. Thanks to the Equivalence Theorem 3 and Corollary 11 we can rewrite the clause
for K, as:

(M,c) = Ky iff Vd s.t. € ~, d and d is a-redundant free, (M,d) = 1,

and according to Lemma 12 this definition refers to an explicitly constructed finite set of
call sequences d, so the problem is decidable. O

We now apply this result to gossip protocols. We say that a gossip protocol is tmple-
mentable if an effective procedure exists that allows one to determine whether a guard is
true after a sequence of calls generated by the protocol. We have the following result.

Corollary 14. FEach gossip protocol that uses as guards the formulas from L, is imple-
mentable.

Proof. By the Decidability of Semantics 13. O

8. Decidability of Truth

Next, we show that truth definition for the formulas of the language L,,, is decidable. The
key notion in our approach is the following.

Definition 4. An epistemic view is a function EV(-) defined on the set of call sequences
such that for each call sequence ¢, EV(c) is in turn a function with the domain AU{A} that
assigns to each agent a € A a set of gossip situations and to the set of agents A a single
gossip situation. It is defined by

e putting for each agent a € A, EV(c)(a) = {d(root) | ¢ ~, d}, and setting

e EV(c)(A) = c(root).
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So EV(c)(a) is the set of all gossip situations consistent with agent a’s observations made
throughout ¢ and EV(c)(A) is the actual gossip situation after c takes place. Note that if
¢ ~¢ d then EV(c)(a) = EV(d)(a).

Example 15. Consider a model with three agents A = {a,b,c} and let us look at all
epistemic views along the call sequence (ab, ac, ab, ac).

e)(A) = {A.B.C},

€)(a) ={A.B.C,A.BC.BC},
€)(b

€)(c

ab)(A) = {AB.AB.C},

V(ab)(a) = {AB.AB.C,AB.ABC.ABCY},
)(
)

) = {A.B.C, AC.B.AC},
) = {A.B.C, AB.AB.C},

EV(

EV(

EV(

EV(

v

EV(ab)(b) = {AB.AB.C, ABC.AB.ABCY,
EV(ab)(c) = {A.B.C,AB.AB.C},
EV(ab,ac)(A) = {ABC.AB.ABC'Y},
EV(ab,ac)(a) = {ABC.AB.ABC, ABC.ABC.ABCY},
EV(ab,ac)(b) = {AB.AB.C, ABC.AB.ABC'},
EV(ab, ac)(c
EV(
EV(
EV(
EV(
EV(
EV(
EV(
EV(

ab,ac)(c) = {ABC.AB.ABC, ABC.ABC.ABCY},
ab, ac,ab)(A) = {ABC.ABC.ABC'},

ab, ac,ab)(a) = {ABC.ABC.ABCY,

ab, ac,ab)(b) = {ABC.ABC.ABCY},

ab, ac,ab)(c) = {ABC.AB.ABC, ABC.ABC.ABC'},
ab, ac, ab,ac)(A) = {ABC.ABC.ABC'Y,

ab,ac,ab, ac
ab, ac,ab, ac
ab, ac, ab, ac

)
)(a) = {ABC.ABC.ABC},
)(b) = {ABC.ABC.ABCY,
)(¢) = {ABC.AB.ABC, ABC.ABC.ABCY.

C

The last equality holds since by the Equivalence Theorem 3, (ab, ac, ab, ac) ~. d holds
iff d is of the form (ab)™.ac.(ab)*.ac.(ab)*. In particular (ab,ac,ab,ac) ~. (ba,ac,ac). We
leave the checking of the other equalities to the reader. O

Consider now the set EV(c)(a) for some call sequence ¢ and agent a. Even though it is
defined using infinitely many call sequences, it is finite because the set of gossip situations
is finite. In what follows we need a stronger observation.

Lemma 16. For each call sequence ¢ and agent a the set EV(c)(a) is finite and can be
effectively constructed.

Proof. Fix an agent a. By Corollary 11 and Equivalence Theorem 3 to construct the set
EV(c)(a) it suffices to consider a-redundant free call sequences d and by Lemma 12 there
are only finitely many such call sequences d for which d ~, c. O

Our interest in epistemic views stems from the following result.

Lemma 17. Suppose that EV(c) = EV(d). Then for all formulas ¢ € Ly, (M,c) = ¢ iff
(M, d) = ¢.
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So to determine whether two call sequences satisfy the same formulas of L,,, it suffices
to compare their epistemic views which are finite objects.

Proof. A simple proof by induction shows that for a formula ¢ € £, and arbitrary call
sequences ¢ and d’,

c/(root) = d’(root) implies that (M, c’) v iff (M, d’) = 9. (3)

Since EV(c)(A) = c(root) and EV(d)(A) = d(root), this settles the case for ¢ = F,p.
Now consider ¢ = K,1 where ¢ € £,,. Recall that

(M,c) E Ko iff Ve ~q ¢, (M,c) 1.
Due to (3) the last condition can be rewritten as
Vc” for which 3¢’ such that ¢’ ~, ¢ and ¢”(root) = c(root), (M,c") E 1.
Finally, due to the definition of EV(c)(a) this can be simplified to
Vc” such that ¢”(root) € EV(c)(a), (M,c") E 1.

Since EV(c)(a) = EV(d)(a), this settles the case for ¢ = K,1. The remaining cases of
negation and conjunction follow directly by the induction. O

Next, we provide an inductive definition of EV(c.c)(a) the importance of which will
become clear in a moment.

Lemma 18. For any call sequence c, call c, and agent a such that a € c
EV(c.c)(a) = {c(s) | s € EV(c)(a) and c(s)q, = c(c(root)),}.

Proof. Intuitively the condition c(s), = c(c(root)), states that s is consistent with the
observation agent a gets after call ¢ is made in the gossip situation c(root).

(C) Take s’ € EV(c.c)(a). By the definition of EV(c.c)(a) there exists a call sequence d.c
such that d.c ~, c.c and s’ = d.c(root). So s’ = ¢(s), where s = d(root). We also have d ~, c,
so d(root) € EV(c)(a). Moreover, c(d(root)), = c(c(root)),, because d.c ~, c.c.

(D) Take s’ € {c(s) | s € EV(c)(a) and c(s), = c(c(root)),}. So for some gossip situation s
we have ' = ¢(s), s € EV(c)(a) and c(s), = c(c(root)),. The second fact implies that there
exists a call sequence d such that d ~, ¢ and s = d(root). Now, this and the third fact
imply that d.c ~, c.c. So d.c(root) € EV(c.c)(a). Consequently also s’ € EV(c.c)(a), since
s’ = ¢(s) = d.c(root). O

This brings us to the following important conclusion that the function EV(c.c) can be
computed using EV(c) and c only, i.e., without referring to c. Denote the set of epistemic
views by EV and recall that C denotes the set of calls.

Corollary 19. There exists a function f : EV x C — EV such that for any call sequence ¢
and call ¢
EV(c.c) = f(EV(c),c).
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Proof. By the definition of ~, we have EV(c.c)(a) = EV(c)(a) if a & c. Also EV(c.c)(A) =
c(EV(c)(A)). This in conjunction with the above lemma implies the claim. O

A crucial role in the subsequent considerations will be played by the following notion.
Consider a call sequence c. If for some prefix cj.co of ¢, where co is non-empty, we have
EV(c1) = EV(ci.c2), then we say that the call subsequence cy is epistemically redun-
dant in c and that c is epistemically redundant. We say that c is epistemically non-
redundant if it is not epistemically redundant.

Equivalently, a call sequence cj.co.. ... i, is epistemically redundant if the set

has less than k elements and is epistemically non-redundant if it has k£ elements. In other
words, in an epistemically non-redundant call sequence the successive epistemic views along
the sequence are all different.

Example 20. Let us return to Example 15. We defined there the EV(-) functions for five
call sequences €, ab, (ab,ac), (ab,ac,ab), and (ab, ac, ab, ac). Note that

EV(e) # EV(ab) # EV(ab, ac) # EV(ab, ac,ab) = EV(ab, ac, ab, ac).

This shows that the second call ac in the call sequence (ab,ac,ab,ac) is epistemically
redundant and no other call is epistemically redundant in this call sequence. Also, the
call sequences €, ab, (ab,ac) and (ab,ac,ab) are all epistemically non-redundant, while
(ab, ac, ab, ac) is epistemically redundant. O

The notions of a redundant call and of an epistemically redundant call differ. Indeed, we
noted in Example 10 that in the call sequence (ab, ac, be, ab) the second call ab is redundant.
Further, we also noted there that (M, (ab, ac,bc,ab)) = K,F,C and (M, (ab,ac,be)) =
- K,F,C. So by Lemma 17 the second call ab is not epistemically redundant in the call
sequence (ab, ac, be, ab).

We now show a counterpart of the Semantic Stuttering Lemma 9 for epistemic views.

Lemma 21 (Epistemic Stuttering). Suppose that ¢ := cj.ca.c3 and d := cj.c3, where ¢y is
epistemically redundant in c. Then EV(c) = EV(d).

Proof. Let €3 = c1.ca..... c. First note that thanks to Corollary 19 we have EV(c;.ca.c1)
= EV(c;.c1), since EV(c;.ca.c1) = f(EV(ci.c2),c1) = f(EV(c1),c1) = EV(cy.c1) due to the

epistemic redundancy of ¢y in c. Repeating this argument for all i € {1,...,k} we get that
EV(Cl.CQ.Cl.CQ ..... Ci) = EV(Cl.Cl.CQ ..... Ci)-
In particular EV(c) = EV(d). O

Corollary 22. For every call sequence c there exists an epistemically non-redundant call

sequence d such that for all formulas ¢ € Ly, (M, c) = ¢ iff (M,d) = ¢.
Proof. By the repeated use of the Epistemic Stuttering Lemma 21 and Lemma 17. O
Next, we prove the following crucial lemma.

Lemma 23. The set of epistemically non-redundant call sequences is finite.
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Proof. Recall that each epistemic view is a function from A U {A} to the set of functions
from A to 2IPl (this is an overestimation because for elements of A this set has only one

clement). There are k = 20AHFD 2" quch functions, so any call sequence longer than  has
an epistemically redundant call subsequence. But there are only finitely many call sequences
of length at most k. This concludes the proof. O

This brings us to the announced result.

Theorem 24 (Decidability of Truth). For every gossip model and formula ¢ € Ly, it is
decidable whether M |= ¢ holds.

Proof. Recall that M = ¢ iff Vc (M,c) = ¢. Thanks to Corollary 22 we can rewrite the
latter as
Ve s.t. ¢ is epistemically non-redundant, (M, c) = ¢.

But according to Lemma 23 there are only finitely many epistemically non-redundant call
sequences and by Lemma 16 their set can be explicitly constructed. O

As an easy consequence we obtain the following result.

Corollary 25. [t is decidable to determine whether a given gossip situation can be an
outcome of a call sequence.

Proof. Let ¢(s) be the following formula of L, that encodes the gossip situation s:

(s) = /\( A EBA A ﬂFaB).

a€A BeQ. BZQq
Then Je(c(root) =s) iff (M, c) = ¢(s)) iff =7(M = —(s)). O

(Apt et al., 2017) established that this problem is in fact NP-complete.

9. Decidability of Partial Correctness and Termination

We now explain how to apply the results of the previous section to show decidability of two
crucial properties of a gossip protocol: partial correctness and termination.

We begin by establishing monotonicity of gossip situations and epistemic views with
respect to the call sequence extensions. Intuitively, we claim that as the call sequence gets
longer each agent acquires more information. This can be seen as a counterpart of the
Monotonicity Theorem 7. First we need to define suitable partial orderings <g and <gy
over gossip situations and epistemic views, respectively.

Definition 5. For any two gossip situations s,s' we write s <¢g s’ if for all a € A we have
se C sl

Note 26. For all call sequences ¢ and d such that ¢ < d we have c(root) <g d(root).

Proof. For any gossip situation s and call ¢ we have by definition s <g c(s). By induction
this implies that for any call sequence ¢’ we have s <g c’(s). Now ¢ < d implies that d = c.c/
for some c’. Therefore, c(root) <¢ c/(c(root)) = d(root). O
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Definition 6. For any two epistemic views V,V' € EV we write V <gy V' if for all a € A
there exists X C V(a) and an surjective (onto) function g : X — V'(a) such that for all
s € X we have s <g g(s).

Lemma 27. <gy is a partial order.

Proof.
(Reflexivity) For any epistemic view V', we have V' <gy V, because for each a € A we can
pick V(a) as X and the identity function on V(a) as g.

(Transitivity) Suppose V, V' V" are three epistemic views such that V <gy V' and V' <gy
V”. Then, from the definition of <gy, for any a € A there exist X C V(a), Y C V'(a),
and surjective functions g : X — V'(a) and h : Y — V"(a). Let Z ={s € X | g(s) € Y}.
Note that g|z : Z — Y, ie., the restriction of g to Z, is surjective. The composition
glzoh:Z — V"(a) is also surjective and for any gossip situation s € Z the following holds

s <6 glz(s) <c h(glz(s)) = (g]z o h)(s)-

(Antisymmetry) Suppose V, V' are two epistemic views such that V <gy V' and V/ <gy V.
Then, from the definition of <gy, for any a € A there exist X C V(a), Y C V'(a), and
surjective functions g : X — V/(a) and h : Y — V(a). Let Z = {s € X | g(s) € Y}. Note
that g|z : Z — Y, i.e., the restriction of g to Z, is surjective. Moreover, g|zoh : Z — V(a) is
also surjective, and because Z C V (a) is finite, Z = V(a), g|z = g, and goh is a permutation
on V(a). Similarly we can show that Y = V’(a). Since (g o h) is a permutation on a finite
set, there exists k such that (g o h)¥ is the identity function on V(a). Note that for any
s € V(a), we have s <g (g o h)(s), because s <g g(s) <g h(g(s)). Now consider the sequence
s <g (goh)(s) <g (goh)*(s) <g ... <g (goh)k(s) = s. In fact, all of the elements in this
sequence have to be the same, because < is a partial order. In particular, this shows that
(g o h)(s) = s. Therefore, g o h is the identity function on V' (a). Now, for any s € V(a) we
have that s <g g(s) <g h(g(s)) = (go h)(s) =s, so g is the identity function as well. This
shows that V(a) = V'(a) for all a € A. O

The next lemma formalizes the intuition that epistemic information grows along a call
sequence.

Lemma 28. For all two call sequences such that ¢ < d we have EV(c) <py EV(d).

Proof. Let d = c.c/. Take a € A. By a repeated application of Lemma 18 we get that
EV(c.c)(a) = {c/(s) | s € EV(c)(a) and V" < ¢’ c”(s), = " (c(root)),}. It suffices then to
pick X = {s € EV(c)(a) | V" <’ c"(s), = c"(c(root)),} and set g(s) = c/(s) for all s € X.
It is easy to check that such g : X — EV(d) is surjective, so EV(c) <gy EV(d). O

Recall that a call sequence c is epistemically redundant if a prefix ¢;.co of it exists such
that EV(c1) = EV(cj.c3). Using the above lemma we can now draw a stronger conclusion.

Lemma 29. Suppose that c is epistemically redundant. Then a prefix ¢y.c of it exists such
that ¢ is epistemically non-redundant and EV(c;.c) = EV(cy).

Proof. Let €;.c3 be the shortest prefix of ¢ such that EV(c;) = EV(c;.c2). Then c; is epistem-
ically non-redundant. Let co = cy..... ¢;. By Lemma 28 we have EV(c;) <g EV(c;1.c1) <g
EV(ci.ci.c0) <g ... <g EV(ci.ci.co..... ¢;) = EV(ci.c2) = EV(cy). Since <g is a partial
order, EV(c;.c;) = EV(c;) holds. O
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Finally, the following lemma allows us to modify computations using the notion of epis-
temic redundancy. For convenience we identify here and below a computation with the
sequence of calls it generates.

Lemma 30. Suppose that € = cj.Ca.... is a (possibly infinite) computation of a gossip
protocol P such that a call ¢; is epistemically redundant in the prefiz cq.. ... ¢;. Then € with
the call c; removed is also a computation of P.

Proof. By definition for every k > ¢ the call ¢; is epistemically redundant in cj..... Ck, SO
by Lemma 17 for every k > ¢ we have EV(c;..... cr) =EV(c..... Cio1-Citle---- k). Thus by
the Epistemic Stuttering Lemma 21 for all formulas ¢ € Ly,

(M,cq..... ck) E o iff (M,cy..... Ci1.Citl----- k) E 0.
This implies the claim. O
We can now establish the desired results.

Theorem 31 (Decidability of Partial Correctness). Partial correctness of gossip protocols
that use as guards the formulas from Ly, is decidable.

Proof. Fix a gossip protocol P. We construct in a top down fashion the subtree T of the
computation tree for P so that all nodes in are 7 correspond to epistemically non-redundant
call sequences. To this end consider an epistemically non-redundant node ¢ and suppose that
for some rule ¢ — cf we have (M, ) |= 7. Then we add the call sequence c.c{ as a direct
descendant of c only if it is epistemically non-redundant.

Consider now a leaf ¢ of the computation tree for P. By a repeated use of Lemma 30
we can transform c into a leaf d of the computation tree for P that is epistemically non-
redundant, and thus is also a leaf of T, and moreover is such that EV(c) = EV(d). By Lemma
17 the condition (1) is true after c iff it is true after d.

By the above two observations P is partially correct iff the condition (1) is true after
every call sequence corresponding to a leaf of 7. But by Lemma 23 7 is finite and by Lemma
16 it can be effectively constructed. So the desired conclusion follows by the Decidability of
Semantics Theorem 13. O

Below by ¢ mean the infinite call sequence consisting of the infinite repetition of the
call c.

Theorem 32 (Decidability of Termination). Given a gossip protocol that uses as guards the
formulas from L, it is decidable to determine whether it always terminates.

Proof. We first prove that a gossip protocol may fail to terminate iff it can generate a call
sequence c.c such that c is epistemically non-redundant and EV(c.c) = EV(c).

(=) Let € be an infinite sequence of calls generated by the protocol. There are only finitely
many epistemic views, so some prefix ¢ of € is epistemically redundant. The claim now
follows by Lemma 29.

(<) Suppose that the protocol generates a sequence of calls c.c such that c is epistemically
non-redundant and EV(c.c) = EV(c).
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Let ¢ be the guard associated with the call c, i.e., ¢ — c is a rule used in the considered
protocol. By assumption (M, c) | ¢, so by Lemma 17 (M, c.c) & ¢. Hence by the repeated
use of the Stuttering Theorem 6, for all i > 1, (M,c.c’) = ¢. Consequently, c.c* is an
infinite sequence of calls that can be generated by the protocol.

The above equivalence shows that determining whether the protocol always terminates is
equivalent to checking that it cannot generate a call sequence c.c such that c is epistemically
non-redundant and EV(c.c) = EV(c).

But given a call sequence, by the Decidability of Semantics Theorem 13, it is decidable
to determine whether it can be generated by the protocol and by Lemma 16 it is decidable
to determine whether a call sequence is epistemically non-redundant. Further, by Lemma
23 there are only finitely many epistemically non-redundant call sequences, so the claim
follows. O

10. Decidability of Fair Termination

In this section we modify the approach of the previous section and show that both forms
of fair termination introduced in Section 4 are decidable. First, let us clarify various forms
of termination. We say that a gossip protocol can terminate if some computation of it is
finite. Obviously the following implications hold for every gossip protocol P:

P terminates — P agent-fairly terminates — P rule-fairly terminates — P can terminate.

We now illustrate by means of examples that none of these implications can be reversed,
even for partially correct gossip protocols. The first example exhibits a partially correct
gossip protocol that may not terminate but does agent-fairly terminate.

Example 33. Let A = {0,...,k — 1}, where k& > 3. Define i &1 = (i + 1) mod k and
i©1=(i—1)mod k.
Consider a gossip protocol with the following program for each agent i € A:

AeP

Informally, the agents form a directed ring. Agent ¢ calls his successor in the ring, agent
1@ 1, if ¢ is not an expert.

This gossip protocol is partially correct since its exit condition states that each agent is
an expert. However, it does not terminate. Indeed, the call (0,1) can be infinitely repeated.

On the other hand this gossip protocol agent-fairly terminates. Suppose otherwise. Con-
sider an infinite agent-fair computation £&. We say that an agent i becomes an expert in £ if
for some element ¢ of £ we have (M, c) = A ,cp FiA.

We first show that some agent becomes an expert in €. Indeed, otherwise by agent-
fairness each agent infinitely often calls in £ his successor. So for every agent i a sequence
of calls (1 1,i ®2),(i®2,iD3),...,(1©1,i), possibly interspersed with other calls, exists
in £. After the last call agent ¢ becomes an expert in £, which is a contradiction.

Suppose now that some agent ¢ becomes an expert in £. Then also agent ¢ © 1 becomes
an expert in £. Indeed, otherwise by agent-fairness agent ¢ © 1 infinitely often calls agent ¢
and eventually, by the Monotonicity Theorem 7, he does become an expert in &.
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We conclude that every agent becomes an expert in . Again by the Monotonicity The-
orem 7 the exit condition of the protocol is true after some element of €. This contradicts
the fact that £ is infinite. O

In the above gossip protocol each agent has just one rule, so agent-fairness and rule-
fairness coincide. The next example shows that rule-fair termination and agent-fair termi-
nation may differ for partially correct protocols.

Example 34. Consider a gossip protocol with the following program for each agent a € A:

Hlea~ /\ FuC = ab).
CceP

Intuitively, agent a can call any other agent as long as a is not an expert. This protocol is
partially correct, since the implication (2) is clearly true. However, it does not agent-fairly
terminate when there are more than 3 agents.

Indeed, suppose that |[A| > 4. Partition A into two groups, each consisting of at least
two agents, say {a1,...,ax} and {b1,...,by}, where k,m > 1. Then

(al,GQ), (GQ, a3)7 DY) (ak7 a1)7 (bb b2)7 (b27 b3)7 ceey (bma b1)7 (al,GQ), R

is a sequence of calls in an infinite agent-fair computation of this protocol. Indeed, in this
sequence all agents are infinitely often selected. Further, each agent learns only the secrets
of the agents in its own group. So prior to each call in the above sequence no agent is an
expert and consequently this sequence corresponds to a legal computation.

On the other hand, this protocol rule-fairly terminates. Indeed, consider an infinite com-
putation x. Some agent, say a, is then infinitely selected in x, so it never becomes an expert
and hence by the form of the protocol all the rules of a are always enabled. In x agent a
never becomes familiar with the secret of some agent, say b. So the rule = A\qcp F,C — ab
is never selected in y. Thus y is not rule-fair. O

Finally, we exhibit a partially correct gossip protocol that can terminate but does not
rule-fairly terminate.

Example 35. This example presents a common situation in networking where each local
network has a designed gateway node, which is the only one able to communicate outside of
the network (e.g., using a different network communication protocol). Here, we are going to
assume just two such local networks of agents A; = {ag,a1,...,a;} and Ay = {bg,...,bn},
where k,m > 1. So we have A = AjUA3, and ag, by are two special ‘gateway’ agents. Consider
the gossip protocol with the following program for each agent a € A;, where 7 € {1,2}:

*[loca,~ [\ FaC — ab]
CeP

Intuitively, this states that agents can only directly call anyone within their own group A;
as long they are not experts. Agent ap has the following additional rule: —F,, By — aobo
and agent by has the following additional rule: —Fy, Ay — bpag. Intuitively, these two rules
state that agents ag and by can communicate with each other if they do not know each other
secrets.

This protocol is obviously partially correct, because the implication (2) is clearly true.
Further, it can terminate, as the following call sequence shows:
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1. each agent in A calls ay,
2. each agent in Ay calls by,
3. agent ag calls agent b,

4. each agent in A; calls ag,
5. each agent in Ay calls bg.

The precise order of calls within each step does not matter. Notice that in step 3 all secrets
from the Aj network are passed to the Ay network and vice versa. Then in the last two steps
all these secrets are propagated to every agent.

Finally, it is easily to see that this protocol may not rule-fairly terminate. Indeed, let the
first call be between the agents ag and by. Note that from that point on no communication
between the networks A; and As can take place. Therefore no agent will ever become an
expert (for example, no agent in Ay will ever learn the secret B;) and agents will continue
to call each other within their own network, even if one ensures that the computation is
rule-fair. O

To establish decidability of both forms of fair termination we shall rely on the results
established in the previous section. We start with the rule-fair termination.

Theorem 36 (Decidability of Rule-Fair Termination). Given a gossip protocol that uses as
guards the formulas from Ly, it is decidable to determine whether it rule-fairly terminates.

Proof. We first show that a gossip protocol does not rule-fairly terminate iff it can generate
an epistemically non-redundant call sequence ¢ such that for every call ¢, which is part of
an enabled rule after the call sequence ¢, we have that EV(c.c) = EV(c).

(=) Consider an infinite rule-fair computation d = d;.ds. ... of the considered gossip pro-
tocol. By Lemma 28 the sequence EV(dy), EV(dy.ds),..., is weakly increasing w.r.t. the
partial order <gy. As there are only finitely many epistemic views, at some point this se-
quence stabilizes, i.e., for some [ we have EV(d..... d;) = EV(d;..... didigq.. ... dyy;) for all
i > 0. Pick the smallest such [ and let d = d;..... d;.

By Lemma 30 we can repeatedly remove the epistemically redundant calls from d without
destroying the property that it is a prefix of an infinite computation. The resulting call
sequence C = Cj..... ¢y, is epistemically non-redundant and the resulting infinite computation
C = c1.Ca. ... of the protocol is rule-fair. Further, by the above choice of [ and the Epistemic
Stuttering Lemma 21 EV(c) = EV(c.cpy1. .. .. Cii) for all 4 > 0.

Take a rule ¢ — c that is enabled after c, i.e., such that (M, c) = . By Lemma 17 and
the choice of ¢, this rule is enabled after each call sequence c.ciyg..... Ck+i, Where ¢ > 0,
that is, it is enabled infinitely often. By the rule-fairness of € this rule ¢» — c is infinitely
often selected in it. So for some ¢ > 1 we have c = cgy,.

By the choice of k the call sequence cx1q..... Ck+i—1 is epistemically redundant in the
call sequence cj..... Ck-+i, S0 by the above equality and the Epistemic Stuttering Lemma 21:
EV(Cl ..... Ck) = EV(C1 ..... Cr.Clt1-+--- Ck+z) = EV(Cl ..... Ck Ck—i—z),
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i.e., EV(c.c) = EV(c) as required.

(<) Suppose that the protocol generates a sequence of calls ¢ such that c is epistemically
non-redundant and EV(c.c) = EV(c) for every call ¢ which is part of a enabled rule after the
call sequence c takes place.

Let R = {¢1 — c1,¢2 — C2,...,0r — cx} be the set of all enabled rules after the
call sequence c¢. We claim that c.(cj.co..... cr)® is a rule-fair infinite computation of this
protocol.

First, due to Epistemic Stuttering Lemma 21 for every 1 < j < k and 0 < ¢ we have
EV(c.(ci.co..... cr)lcr.ca. .. .. c;) = EV(c). This and Lemma 17 imply that all rules in R are
enabled after any call sequence of the form c.(c;.co. .. .. cr)b.ci.Con .. .. c; forany j € {1,...,k}
and ¢ > 0. This shows that c.(cj.ca..... ck)® is an infinite computation of this protocol.
Also, we know that no other rule can be enabled after c.(cj.co.. ... Ck)i.C1.C2 ..... cj, because
otherwise such a rule would already be enabled after ¢ and so would belong to R. This shows
that c.(cj.co..... ck)¥ is a rule-fair infinite computation of this protocol, because every rule
enabled infinitely many times is executed infinitely many times.

Now, due to Lemma 23 there are only finitely many epistemically non-redundant call
sequences to try as candidates for c. For each such call sequence, by the Decidability of
Semantics Theorem 13 it is decidable to determine whether it can be generated by the
protocol.

For each such call sequence ¢ we then check which rules, ¢» — ¢, are enabled after c. For
each such a call ¢ we subsequently compute EV(c) and EV(c.c) using Lemma 16 and check
whether they are all equal. By the above equivalence the considered gossip protocol does not
rule-fairly terminate iff for some such call sequence c all just mentioned equalities hold. [J

Finally, we show that agent-fair termination is decidable, as well.

Theorem 37 (Decidability of Agent-Fair Termination). Given a gossip protocol that uses as
guards the formulas from Ly, it is decidable to determine whether it rule-fairly terminates.

Proof. First we show that a gossip protocol does not agent-fairly terminate iff it can generate
an epistemically non-redundant call sequence ¢ such that each agent a enabled after ¢ has an
enabled rule ¢» — ¢ such that EV(c.c) = EV(c) holds. The reasoning is completely analogous
to the one presented in the proof of the previous theorem, so we omit the details.

The rest of the proof is a small modification of the reasoning used in the above proof.
As before there are only finitely many epistemically non-redundant call sequences ¢ and
for each such call sequence it is decidable to determine whether it can be generated by the
protocol.

For each such call sequence ¢ we then check which agents are enabled after c. For each
such agent we then check whether it has a rule ¥ — c that is enabled after ¢ and such that
EV(c) = EV(c.c), where, again, this test is decidable by Lemma 16. By the initial equivalence
the considered gossip protocol does not agent-fairly terminate iff for some such call sequence
c it is possible to choose the rules in such a way that all the equalities hold. O

Lehmann, Pnueli, and Stavi (1981) considered in the context of nondeterministic pro-
grams a notion related to fairness, called justice (or weak fairness). It can be readily intro-
duced in the context of gossip protocols. An infinite computation is rule-just (resp. agent-
just) if all rules (resp. agents) that from a certain moment on are always enabled (in short,
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eventually always enabled) are selected infinitely often. In the context of the nondetermin-
istic programs the notions of infinite just and fair computations differ. However, this is not
the case for the gossip protocols.

Indeed, it is straightforward to see that an infinite rule-fair computation is also rule-just.
To show the converse consider an infinite rule-just computation © = cj.ce.... of a gossip
protocol.

As in the proof of Theorem 36, on the account of Lemma 28 and the fact that there are
only finitely many epistemic views, for some [ we have EV(cy...¢)=EV(ci...ci.ci41 .- Crui)
for all ¢ > 0.

Suppose now that a rule, say ¢ — c, is infinitely often enabled. By Lemma 17 for all
1>0

(M,Cl ..... Cl) ): 7,/) iff (./\/l, Clee.nn Cl-Cl41-- -+ Cl+i) |: ¢,
so ¥ — c is eventually always enabled. Since € is rule-just, this rule is selected infinitely
often.

An analogous argument shows that infinite agent-just and agent-fair computations co-
incide. Consequently the notions of just computations do not lead to new notions of termi-
nation of gossip protocols.

11. Conclusions

In this paper we studied decidability questions concerning distributed epistemic gossip pro-
tocols considered by Apt et al. (2016). First we established that these protocols are imple-
mentable. We proved it by showing a more general statement, namely that the semantics of
the introduced epistemic language L,,, is decidable. We also established that truth of the
formulas of L., is decidable. We then used the developed apparatus to show that partial
correctness of these gossip protocols is decidable, as well. Finally, we showed that the prob-
lems of determining termination and fair termination (in two different senses) of a gossip
protocol are decidable, as well.

The above decidability results deal only with formulas without nested modalities. An
interesting open question is whether they can be extended to formulas that admit nested
modalities. The main stumbling block in generalizing our proofs is that, as Example 10
shows, the crucial Semantic Stuttering Lemma 9 cannot be extended to arbitrary formulas
of L.

These considerations lead to another interesting open problem. Gossip protocols studied
by Apt et al. (2016) are parametric in the sense that they are formulated in such a way
that they do not depend on the underlying graph (for instance a ring). The same is true in
the case of the protocol discussed in Section 5. The results we proved here allow us only to
consider each specific gossip protocol (for example for a ring formed by 15 agents or for a
specific graph with 36 nodes) separately. What is needed is a decision procedure that would
allow us to consider all instances of a protocol (for example for all rings or for all graphs)
simultaneously. We conjecture that this decision problem is undecidable both for partial
correctness and for termination.

Finally, it would be interesting to find a sound and complete axiomatization both of the
logic £ and of its extension that would allow one to carry out the correctness proofs of the
gossip protocols axiomatically, in the style of Hoare’s logic (1969).
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In the above exposition starting from Section 6 we focused on the push-pull mode of
communication. A completely analogous presentation can be given for the push and pull
modes. In particular, all decidability results obtained in this paper also hold for the calls in
the push mode or the pull mode. The approach is the same. It calls for a modification of
the notions of a view and an epistemic view for, respectively, the push and the pull mode
and for an appropriate modification of the proofs of the obtained results. The details are
straightforward and omitted.

The semantics we introduced in Section 3 stipulates through the definition of c(s) that
a call ab is not noted by any agent ¢ ¢ {a,b}. The same is the case for the calls a>b and
a <b. Attamah et al. (2014b) studied different type of calls, namely

e ab—, which stipulates that every agent ¢ ¢ {a, b} noted that a called b,

e ab’, which stipulates that every agent ¢ ¢ {a,b} noted that some call took place,
though not between whom,

e ab’ which stipulates that every agent ¢ ¢ {a,b} noted that possibly some call took
place, though not between whom.

Each of these types of calls entails a notion of the equivalence relation on the call se-
quences that differs from the ones considered here for the calls ab, a>b and a <b. It would
be interesting to check whether our decidability results hold for the above types of calls, as
well. As a starting point for such considerations 7 (7) recently provided a uniform semantics
for these and other types of calls, including the ones considered in this paper.

Another issue interesting to study is a natural generalization of the considered setup to
conference calls. These are calls that involve two or more agents who exchange all the
secrets.

As the overview of related work shows, there is no single setup for a study of gossip
protocols. Kermarrec and van Steen (2007) identified three crucial aspects of gossip protocols:
peer selection, data exchange and data processing. We studied here a specific instance of these
three aspects. The peer selection is statically determined by the underlying graph topology,
while data exchange is modelled by the introduced three modes of communication: push-
pull, push and pull, each considered separately, with a simultaneous communication between
more than one pair of agents disallowed. In turn, data processing is realized by exchanging,
respectively passing, all available information. This selection, combined with the use of
epistemic guards, led to a simple yet expressive framework in which partial correctness,
termination and fair termination of the resulting gossip protocols are all decidable.

A different selection of the above three aspects changes the framework in a fundamental
way. It would be interesting to see for which other realizations of the framework of Kermarrec
and van Steen (2007) similar decidability results can be obtained.

The semantics considered here can be modified to tailor it to different initial assump-
tions. For example, in some cases correctness of a gossip protocol may depend on the initial
knowledge of the underlying network of the agents (for example that it is a directed ring).

One can take this into account by assuming that each agent not only knows its own
program, but also the structure of the underlying network. In other words, each agent
knows which calls are syntactically correct. This leads, (see Apt et al., 2016, 2017), to a
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modified definition of the gossip model in which instead of C one uses the set Cp of valid
call sequences in a gossip protocol P.

Another natural approach would be to assume that each agent knows only his own
network connections. This would lead to a different setup in which each agent ¢ considers
as valid a different set of call sequences C; that he would use to evaluate formulas of the
form K;¢. A final possibility, suggested as a future work by 7 (?), would be to construct a
semantics that takes into account that all agents know the gossip protocol they execute. It
would be interesting to check which results remain valid for each of these three alternatives.

As a final interesting research topic we would like to mention the synthesis of distributed
epistemic gossip protocols from epistemic specifications. For a related work on a synthesis
of knowledge-based programs see, e.g., the work of van der Meyden and Wilke (2005).
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