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Abstract

Greedy algorithms are known to provide, in polynomial time, near optimal approxima-
tion guarantees for Combinatorial Auctions (CAs) with multidimensional bidders. Borodin
and Lucier (2016) however proved that truthful greedy-like mechanisms for CAs with multi-
minded bidders do not achieve good approximation guarantees.

In this work, we seek a deeper understanding of greedy mechanism design and inves-
tigate under which general assumptions, we can have efficient and truthful greedy mecha-
nisms for CAs. Towards this goal, we use the framework of priority algorithms and weak
and strong verification, where the bidders are not allowed to overbid on their winning set
or on any subset of this set, respectively. We provide a complete characterization of the
power of weak verification showing that it is sufficient and necessary for any greedy fixed
priority algorithm to become truthful with the use of money or not, depending on the
ordering of the bids. Moreover, we show that strong verification is sufficient and necessary
for the greedy algorithm of Lehmann, Lehmann, and Nisan (2006), which is 2-approximate
for submodular CAs, to become truthful with money in finite bidding domains. Our proof
is based on an interesting structural analysis of the strongly connected components of the
declaration graph.

1. Introduction

Algorithmic mechanism design (AMD) is the study of optimization problems where part of
the input data is private data of selfish agents. We are interested in a truthful mechanism;
the goals here are to incentivize the agents to truthfully report their private data to the
mechanism and to optimize the objective function of the problem under consideration. The
incentives are typically adjusted by means of payments (i.e., monetary transfers between
mechanism designer and agents). Therefore truthfulness requires the design of a suitable
pair of algorithm and payments, computing the outcome to the optimization problem and
the transfers respectively. AMD problems have numerous real-world applications which are
chiefly facilitated by the use of large-scale Internet systems in areas like, e.g., e-commerce,
online auctions and shopping systems.

Combinatorial Auctions (CAs) is a paradigmatic AMD problem. In a CA, we have a
set U of m goods and a set of n bidders. Each bidder ¢ has a private valuation function

*. This work is partially supported by EPSRC through grants EP/K01000X/1 and EP/M018113/1 and by
Greek NSRF grant Algorithmic Game Theory/ THALES. A preliminary version of this work appeared
as (Fotakis, Krysta, & Ventre, 2015).



Forakis, KrRysTa, & VENTRE

(also termed type) v; mapping subsets of goods to nonnegative numbers. Valuations are
monotone, i.e., for S O T, v;(S) > v;(T), and normalized, i.e., v;(}) = 0. The goal is
to find a partition Si,...,S, of U such that the social welfare Y ;" ; v;(.S;) is maximized.
Even the simplest versions of CAs are known to be NP-hard and even hard to approxi-
mate in polynomial time. For pointers to the vast literature on the design of approximate
polynomial-time mechanisms for various versions of CAs (and, more generally, mechanism
design) see (Nisan, Roughgarden, Tardos, & Vazirani, 2007).

We study CAs with bidders’ valuation functions represented by wvalue oracles, i.e., each
bidder ¢ submits such an oracle that given any subset of goods S C U outputs the value
v;(S). This is weaker than the other standard model, demand queries, used in the literature
to tackle the issue of exponentially (in n and m) large valuations (Blumrosen & Nisan,
2009). We aim at the design of truthful mechanisms that only use a polynomial number of
calls to such value oracles and return solutions with best possible approximation guarantees
with respect to social welfare. For CAs with single-minded bidders! a simple greedy truthful
mechanism achieves a /m-approximation (Lehmann, O’Callaghan, & Shoham, 2002), the
best possible guarantee in polynomial-time unless P = N P.

However, as soon as the valuation functions become more general than single-minded,
greedy truthful mechanisms perform much worse. Borodin and Lucier (2016) studied lim-
itations of a general class of greedy algorithms, priority algorithms, for truthful CAs with
non single-minded bidders. They proved that any such truthful priority mechanism (i.e.,
mechanism using a priority algorithm to compute its outcome) has an approximation ratio
Q(m). The results of Borodin and Lucier (2016) imply that no truthful priority mechanism
achieves a good approximation ratio.

A widely studied class of CAs with non single-minded, thus multidimensional, bid-
ders assumes submodular valuation functions, modeling economies of scale. A well known
greedy approximation algorithm for submodular CAs gives an approximation guarantee of
2 (Lehmann et al., 2006). This algorithm simply processes the goods in any fixed order and
awards them to the bidder who has maximum marginal value for each good. However, there
are no payments that make this algorithm truthful (Lehmann et al., 2006). More generally,
Borodin and Lucier (2016) considered the whole class of such greedy mechanisms (defined
by a fixed order of the goods used) for submodular CAs and proved that no mechanism in
this class is truthful!

Motivated by the dichotomy between a powerful algorithmic technique and its poor com-
patibility with bidders’ incentives, we investigate herein under which general circumstances,
we can have truthful multi-dimensional CAs that use greedy algorithms. Inspired by Krysta
and Ventre (2015), we focus on relaxations of truthfulness wherein some form of overbid-
ding can be detected and prevented. This line of research, generally dubbed mechanisms
with verification, is motivated by a number of real-life applications and has been considered
by economists in the context of CAs (see, e.g., (Celik, 2006)). We want to understand
what kind of relaxed notions of incentive-compatibility, i.e., verification, we can adopt to
happily marry greedy algorithms with good approximation guarantees and truthfulness. A
relaxation of truthfulness is necessary in general for efficient CAs with multidimensional

1. Bidder ¢ is single-minded if there exists a fixed subset S; C U and a number w; > 0 such that v;(S) = w;
for any S such that U 2 S D S;, and v;(S) = 0 otherwise.
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bidders for otherwise no approximation better than m can be achieved, as recenly proved
in (Daniely, Schapira, & Shahaf, 2015).

1.1 Our Contribution

CAs with verification are perhaps best illustrated by means of the following motivating
scenario, discussed first in (Krysta & Ventre, 2015). Consider a government (auctioneer)
auctioning business licenses for a set U of cities under its administration. A company
(bidder) wants to get a license for some subset of cities (subset of U) to sell her product
stock to the market. Consider the bidder’s profit for a subset of cities S to be equal to a
unitary publicly known product price (e.g., for some products, such as drugs, the government
could fix a social price) times the number of product items available in the stocks that the
company possesses in the cities comprising S. In this scenario, the bidder is strategic on
her stock availability. As noted, e.g., in (Celik, 2006), a simple inspection on the stock
consistency implies that bidders cannot overbid their profits: the concealment of existing
items in stock is costless but disclosure of unavailable ones is prohibitively costly. Our
assumption is a kind of verification a posteriori where the inspection is carried out only for
the solution actually implemented; therefore, each bidder cannot overstate her valuation for
the set she gets allocated, if any. It is important to notice that bidders can misreport sets
and valuations for unassigned sets in an unrestricted way. In what follows we will call this
model a weak verification model.

Priority algorithms comprise a widely accepted general model of greedy-like algorithms
in combinatorial optimization (Borodin, Nielsen, & Rackoff, 2003). In the context of CAs
and for our purposes, we consider greedy priority algorithms that sequentially process ele-
mentary bids, namely triples consisting of the identity 7 of a bidder, a subset S of goods,
and bidder i’s value v;(S) for S.

A priority algorithm fixes an order on all possible elementary bids, without looking at
them, and processes them in this order deciding whether the subsequent elementary bid is
accepted or not (Borodin & Lucier, 2016). Greediness implies that the current elementary
bid is accepted if the requested set does not conflict with any previously allocated sets. For a
fized priority algorithm, the order of the elementary bids is determined before the algorithm
starts processing the bids and does not depend on any elementary bids accepted by the algo-
rithm throughout its execution. An algorithm that processes all the bids received from the
bidders from the largest to the smaller is an example of a fixed priority algorithm; variants
of this approach (where, e.g., the ordering also considers the size of the corresponding set)
are studied in (Lehmann et al., 2002; Krysta & Ventre, 2015); Algorithm 1 is a further
example of a fixed priority algorithm. For adaptive priority algorithms, instead, the order
of the elementary bids depends on the elementary bids already accepted and may change
throughout the execution of the algorithm. An example of such an approach is Algorithm
2. In our model, fixed priority algorithms can accept at most one elementary bid from the
same bidder. The reason is that for nonadditive valuation functions (e.g., for submodular
or subadditive valuations), accepting an elementary bid from some bidder ¢ may cause the
bids of ¢ on other subsets of goods to change. Such changes should affect the actual order
in which the algorithm considers the elementary bids, which is not compatible with the



Forakis, KrRysTa, & VENTRE

idea of a fixed priority algorithm. Adaptive priority algorithms may accept any number of
elementary bids from the same bidder.

Extending and generalizing previous results in (Krysta & Ventre, 2015; Fotakis, Krysta,
& Ventre, 2014), we first prove that weak verification, namely verification that does not
allow the bidders to overbid on their winning sets, is both sufficient and necessary for
any greedy fixed priority algorithm to be truthful without money (i.e., even in absence of
payments), if the elementary bids are processed in nonincreasing order of their values, or
with money, if the order of the elementary bids is determined by, possibly bidder dependent,
increasing functions of their values. We highlight that these results are not specific to only
CAs but actually apply to any AMD problem II and greedy fixed priority algorithm for
IT that uses triples as elementary bids (S being an output component pertinent to IT), see
Section 3. We remark that such general characterization-type results in AMD are scarce in
the literature.

We also look further at the algorithmic characterization of truthful mechanisms with
money that use a greedy fixed priority algorithm. In detail, under some assumptions on the
ordering functions used to rank the elementary bids, we give an explicit formula for suitable
payments that these mechanisms can use. Interestingly, the ordering functions play a role
in both the approximation quality of the algorithm and the amount of money used to en-
force truthfulness. We then study whether money can be traded off with approximation; in
particular, we ask the following question: can we obtain better approximate truthful CAs
by investing more in terms of payments? We suggest that the answer to this question is
negative by showing that, rather surprisingly, money and (an upper bound to the) approx-
imation guarantee go in the same direction (i.e., higher payments can only lead to worse
approximations for CAs) already for single-minded bidders. We also provide an instance
where the approximation increases with the payments. To the best of our knowledge, this is
one of the first attempts in the literature to relate approximation and frugality of truthful
mechanisms. Another recent result in this vein is given in (Serafino, Vidali, & Ventre, 2017)
and pertains to mechanisms with monitoring (Kovacs, Meyer, & Ventre, 2015), a paradigm
closely related to verification.

All the results on the power and the limitations of fixed priority algorithms assume that
the algorithm can accept at most one elementary bid from the same bidder. On the other
hand, adaptive priority algorithms can change the bid order, again without looking at the
actual bids, after they process each elementary bid (Borodin & Lucier, 2016). Moreover,
they can accept any number of elementary bids from the same bidder. To deal with the
additional power of adaptive priority algorithms (cf. Borodin & Lucier, 2016), we introduce
the concept of strong verification, where the bidders are not allowed to overbid on any subset
of their winning set. (We stress that the very same motivation scenario used above for weak
verification justifies also this stronger model.) We first characterize all the mechanisms that
are truthful without money and with strong verification. We observe that such mechanisms
exhibit highly non-monotone behavior, thus suggesting that designing such mechanisms with
good approximation guarantee is difficult. This motivates our study of strong verification
with money.

As our main technical result, we show that the 2-approximate (adaptive priority) greedy
algorithm of Lehmann et al. (2006) admits payments leading to a truthful mechanism in
finite bidding domains if and only if strong verification is used. We prove the existence of
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payments that make this algorithm truthful by using the well known cycle-monotonicity
technique (Rochet, 1987; Vohra, 2011), which basically requires to study the cycles of the
so-called declaration graph. For a fixed agent, this graph contains a node for each possible
declaration in the agent’s domain; edge from declaration a to declaration b exists when
(strong) verification allows to misreport a as b. The weight of such an edge measures
the loss that the agent would make by reporting b when her true type is a. We unveil a
surprising structural property of the declaration graph associated to this algorithm. It is
well known that if the valuation domain is finite, a mechanism is truthful with money if and
only if the corresponding declaration graph does not contain any negative-weight cycle (see,
e.g., Rochet, 1987; Vohra, 2011). Here, by carefully exploiting the greedy selection rule
and strong verification, we prove that all cycles of the declaration graph consist of cliques
of nodes linked by O-weight edges. Thus, by contracting the nodes of all such cliques, we
obtain an acyclic declaration graph. Then, we can define payments for any given declaration
(node of this graph) by computing essentially the shortest paths from this node to all the
sinks. We also show that strong verification is necessary for the existence of the payments,
even if it is allowed to execute all possible orders of goods.

We finally turn our attention to the complexity of computing the payments that are
guaranteed to exist by our proof. The only general approach known to date to prove
that computing payments is not harder than essentially executing the algorithm (once),
is the technique of Babaioff, Kleinberg, and Slivkins (2013, 2015). We show, however,
that this approach does not lead to the required payments in our case, indicating that the
payment computation has to carefully take into account the structure of the declaration
graph. The problem of computing payments can be equivalently formulated as computing
a feasible solution to an appropriate linear program (of exponential size) defined on the
declaration graph. It is easy to observe that shortest paths are only one of the feasible
solutions to this linear program (the minimal one), but any feasible solution can be used
as a payment function. In fact, we are not interested in an entire feasible solution, but
just on its component that corresponds to (and reveals the payment for) some given node
of the declaration graph. We further prove that if the domain is represented succinctly,
the problem of computing the payment corresponding to a shortest path solution to this
linear program is NP-hard. The proof shows that computing such payments requires (and
reveals) crucial information about a succinctly represented declaration graph of exponential
size. This is true even for CAs with n = 2 submodular bidders and m = 2 goods.

We complement this result by showing that we can always find efficiently (non-shortest
path) payments in our declaration graph in the restricted case with m = 2 goods and
any number of bidders. We use the structure of the declaration graph to prove that the
associated outcome graph (i.e., the declaration graph with all the nodes leading to the same
outcomes contracted to a single node) does not have any negative-weight cycle. We are able
to actually close the picture completely, by proving that there are instances with n = 2 and
m = 3 for which the outcome graph has a negative weight cycle, meaning that for such
instances the payment-per-outcome approach fails.
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1.2 Significance of Results and Related Work

Our work is among the very first studies which dig deeper into the mostly unexplored
structure of the declaration graphs associated to interesting mechanisms. We are aware of
only very few such similar studies, e.g., (Lavi & Swamy, 2009; Krysta & Ventre, 2015).

To put our results in a broader mechanism design context, it is in place to compare
them with the celebrated VCG mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973).
Although we do not know if payments for our greedy mechanism for submodular CAs can
be computed in time independent of the size of the domain, our results have significant
implications. If one wants to use an auction mechanism in practice, the mechanism to
choose would arguably be greedy, for its simplicity over VCG, which requires an optimal
solution to a computationally difficult problem (VCG does not need verification though).
The crucial point is that in practice CAs define in fact the setting in which we are able
to compute our payments efficiently. Think about submodular CAs where each bidder
can declare valuation functions from a set of size polynomial in n and m. In this case,
the declaration graph associated to the greedy mechanism has polynomial size and thus
payments are computable in time polynomial in n and m, i.e, in the combinatorial size of
the allocation problem. For instance, valuations are numbers from {0, 1,2,..., M}, where
M is a constant and, moreover, each bidder submits explicit bids only on subsets of goods
of constant size. Interestingly, for another such practically relevant setting of CAs with
constant-size submodular valuations, Dobzinski and Vondrék (2013) prove that the social
welfare maximization problem is not only NP-hard but also NP-hard to approximate within
any factor better than 1.225. Thus, we cannot run VCG in this setting in polynomial time.
But since the declaration graph of the greedy algorithm has size polynomial in n and m,
we can compute the payments in polynomial time, see Theorem 9.

CAs with submodular bidders were widely studied both from an algorithmic perspective
and in an AMD framework, see, e.g., (Mirrokni, Schapira, & Vondrak, 2008; Khot, Lipton,
Markakis, & Mehta, 2005; Vondrdk, 2008; Lehmann et al., 2006; Dobzinski, Nisan, &
Schapira, 2005; Dobzinski, 2011; Dobzinski & Vondrak, 2012, 2013). As an optimization
problem (without strategic consideration), CAs with submodular bidders given by value
oracles are NP-hard to solve optimally and NP-hard to approximate with factors better than
e/(e—1) (Khot et al., 2005); such factors cannot be obtained using only polynomially many
value oracles (Mirrokni et al., 2008). On the other hand, there are the following polynomial
time algorithms: a deterministic greedy 2-approximation (Lehmann et al., 2006) and a
randomized e/(e — 1)-approximation algorithm (Vondrék, 2008). Now, considering truthful
mechanisms for this problem with payments, very strong non-constant lower bounds on the
approximation ratios are known. Dobzinski (2011) proved that every universally truthful
randomized mechanism for CAs with submodular valuations with an approximation ratio of
m!/27¢ for some € > 0, must use exponentially many value oracles. There is a deterministic
polynomial time truthful mechanism with an approximation ratio of /m, see (Dobzinski
et al., 2005), which is best possible due to this hardness result. Moreover, Dobzinski and
Vondrak (2012) show that no deterministic polynomial time truthful mechanism provides an
m!/2~=_approximation for a constant € > 0 to this problem, even with succinctly represented
submodular valuations, unless NP = RP. Similarly, a strong non-constant lower bound is
proved even for randomized polynomial time truthful in expectation mechanisms for CAs
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with succinctly represented submodular valuations (Dobzinski & Vondrék, 2012).2 In light
of such strong hardness results, our 2-approximate truthful mechanism is a valuable result
(also considering its applicability to practical auction domains).

The concept of ex-post verification (i.e., verification that depends on the output com-
puted) in AMD dates back to the seminal work of Nisan and Ronen (2001); subsequently, it
has been extensively studied in machine scheduling settings (see Penna & Ventre, 2014 and
references therein) and introduced to CAs in (Krysta & Ventre, 2015). This work shows
how to obtain (essentially) best possible approximation guarantees for CAs with multi-
minded bidders, by means of polynomial-time truthful mechanisms using verification and
money. We consider their model, dubbed here weak verification, and in Section 3 generalize
(some of) their results to characterize verification for truthful greedy CAs. The feasibility of
trading verification with money in mechanism design for CAs has been studied in (Fotakis
et al., 2014); specifically, the paper shows how weak verification can be leveraged to design
truthful CAs that do not charge bidders. We here complement their results by showing in
Section 3 that no other verification notion can be used for incentive-compatibility without
money as long as greedy algorithms are concerned.

A very recent related work is (Wilkens, Cavallo, & Niazadeh, 2017), in which the authors
consider value-maximizing bidders. These bidders disregard the payments and only care
to maximize their valuation for the computed outcome, as long as their quasi-linear utility
is non-negative. On a technical level, their model is pretty similar to mechanisms with
verification and without money built upon greedy algorithms. In fact, some of our results
and techniques in Section 3 can be reinterpreted to explain some of the results therein.

2. Model and Preliminaries

CAs and Verification Paradigms. For definition of CAs and basic notation, we refer to
Section 1. Assuming that the values v;(S) are private knowledge of the bidders accessed by
value oracles, we seek to design an allocation algorithm A and a payment function P. The
auction (also called mechanism) (A, P) for a given input of bids from the bidders, outputs
an assignment and charges the bidder ¢ a payment P;. Allocations and payments should
be defined so that no bidder has an incentive to misreport her preferences and in order to
maximize the social welfare. More formally, we let b; be a valuation function of agent i, i.e.,
b : 2Y — RT. We call b; a declaration of bidder i. We let v; be the type of agent ¢ and D;
denote the set of all the possible declarations of agent 7; we call D; the declaration domain
of bidder i. Let b_; be the declarations of all the agents but ¢. For any b_; and declaration
b; € D;, we let A;(b;,b_;) be the set in 2Y that A on input b = (b;, b_;) allocates to bidder
i. If no set is allocated to i then we naturally set A;(b;,b_;) = 0. We say that (A, P) is a
truthful mechanism (or simply that A is a truthful algorithm) if for any i, b; € D; and b_;:

vi(Ai(vi, b)) — Pi(vi,b—;) > v;(Ai(b)) — Pi(b). (1)

In the (weak) verification model (Krysta & Ventre, 2015; Fotakis et al., 2014) each
bidder can only declare lower valuations for the set she is awarded. More formally, bidder

2. A valuation function is called succinctly represented if it can be encoded in a bit string of length poly-
nomial in the problem size.
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1 whose type is v; can declare a type b; if and only if:
bi(Ai(bi,; b—i)) < vi(Ai(bi, b)) (2)

whenever A;(b;, b_;) # 0.

The stronger variant of verification we consider here allows each bidder to underbid
on the set awarded and its subsets (other declarations are unrestricted). Formally, in the
strong verification model, bidder i can declare a type b; if and only if :

bi(T) < vi(T) VT C Ai(b;,b_;), (3)

whenever A;(b;, b_;) # 0.

When (2) or (3) is not satisfied, the bidder is caught lying by the relevant verification
step and the mechanism punishes her in order to make this behavior very undesirable (i.e.,
for simplicity we can assume that in such a case the bidder will have to pay a fine of infinite
value). This way (1) is satisfied directly when the verification does catch lies —i.e., when (2)
(respectively, (3)) does not hold for the weak (respectively, strong) verification — as in such
a case a lying bidder would have an infinitely bad utility because of the punishment/fine.
Thus in this model, truthfulness with weak (strong, respectively) verification of a mechanism
is fully captured by (1) holding only for any i, b_; and b; € D; such that (2) (respectively,
(3)) is fulfilled.

When P;j(b) = 0 for all bidders i and bid vectors b, we say that the mechanism is
without money. All the concepts above can be adapted to the setting without money so
that when, for example, (1) is true for null payments we talk about truthful mechanisms
without money.

In CAs with submodular bidders, we have that D; is comprised of submodular valuations,

i.e., for all i, b; € D; and S, T C U, b;(S) +b;(T) > b;(SUT) +b;(SNT).
A Graph Theoretic Approach to Truthfulness. The technique we use to study truthful
mechanisms with verification is the so-called cycle monotonicity. Consider an algorithm A.
We set up a weighted graph for each bidder ¢ depending on A, i’s domain D;, verification
paradigm, and the declarations b_;. Non-existence of negative-weight cycles (respectively,
edges) in this graph guarantees the truthfulness with money (respectively, without money)
of A.

More formally, fix algorithm A, bidder ¢ and declarations b_;. Let V denote the veri-
fication paradigm at hand; if a type a can declare to be of type b obeying V', we say that
a =y b (e.g., a —»y b if and only if (2) is true whenever V is weak verification). The
declaration graph associated to algorithm A has a node for each possible declaration in the
domain D;. For the verification V', we add an edge between a and b in D; whenever a —y b.
For example, in the case of strong verification, from (3), edge (a,b) belongs to the graph if
and only if a(T') > b(T) for all T C A;(b,b_;).® The weight of the edge (a,b) is defined as
a(A;(a,b_;)) —a(A4;(b,b_;)) and thus encodes the loss that a bidder whose type is a incurs
into by declaring b. Here a(.5), for a subset of goods S, simply denotes the valuation of S for

3. Formally, for strong verification, an edge (a,b) belongs to the graph if a(T") > b(T'), VT C A;(b,b_;),
only whenever A;(b,b_;) # 0 as this set (and its subsets) would be needed to verify. However, because
of the monotonicity and normalization of valuations, a(A;(b,b—_;)) > b(A;(b,b_;)) holds also whenever
Ai(b,b_;) = 0, since a(0) = b(D) = 0.
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an agent of type a. The following known result relates the edges/cycles of the declaration
graph to the existence of payments leading to truthful auctions.

Proposition 1. If each D; is finite and each declaration graph associated to algorithm A
does not have negative-weight cycles with verification V' then there exists a payment function
P such that (A, P) is a truthful mechanism with verification V. Similarly, if each (possibly
infinite) graph does not have a negative-weight edge with verification V', then A is a truthful
mechanism without money and with verification V.

The proposition above is adapted from (Rochet, 1987; Vohra, 2011) to the verification
setting V' as in (Ventre, 2014). Note that Proposition 1 requires the technical hypothesis of
finite domains for mechanisms with money: this is because the payments P are defined as
lengths of certain shortest paths on the declaration graph; shortest paths are well-defined
only on finite graphs. This seems to be a limitation of the cycle-monotonicity technique for
the design of mechanisms with verification in general (Ventre, 2014).

A variant of the cycle-monotonicity technique described above, defines payments as a
function of the outcome and the declarations of the others, using the following tool.

Definition 1 (Ventre, 2014). For an algorithm A, verification paradigm V', every i and
b_; € D_;, the outcome graph has a node for each possible outcome output of A. For
every pair of outcomes, XY, X # Y, add an edge (X,Y) if there exist a,b € D; such
that A(a,b_;) = X, A(b,b_;) =Y and a —y b. The weight of edge (X,Y) (if any) is
infaeRgf({a(X) —a(Y)}, where Ry, = {a € Rx|3b € Ry s.t. a —v b} with Rz = {a €
D;|A(a,b_;) = Z} for any outcome Z.

A theorem similar in spirit to Proposition 1 holds and then the absence of negative-
weight cycles in the outcome graph is a necessary and sufficient condition for the existence
of payments-per-outcome implementing algorithm A. Contrarily to classical mechanism
design, in the context of verification, the outcome graph (and the payments-per-outcome
implementation) is with loss of generality as shown in (Ventre, 2014).4

Greedy Priority Algorithms. To define greedy priority algorithms, we are going to
consider a general setting. Here, we let O denote the set of possible output components
(e.g., subsets of the universe for CAs); as from above, for a € D; and S € O, we let a(5)
denote the valuation of an agent of type a for the output component S (i.e., how much
the bidder likes the output component). We are now ready to briefly introduce the class of
priority algorithms, following (Borodin et al., 2003). The input of a priority algorithm is a
finite subset I of the class Z of all permissible input atomic items. We consider (elementary)
bids as input atomic items. Namely Z consists of all possible triples (i, S, b;(S)), where i
is the bidder, S is an output component (e.g., subset of U for CAs) of the problem at
hand, and b;(S) is i’s valuation for S. For simplicity, we denote such an elementary bid as
bi(S), or b(S), if 7 is clear from the context. The output of a priority algorithm consists of
an irrevocable decision for each elementary bid processed. A (possibly adaptive) priority
algorithm A receives as input a finite set of elementary bids I and proceeds in rounds,
processing a single bid in each round. While there are unprocessed bids in I, A selects a
total order 7 on Z without looking at the set of unprocessed bids. It is important that

4. Theorem 8 below reinforces this observation for stronger notions of verification.
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T can be any total order on Z, and that for adaptive priority algorithms, the order may
be different in each round. If the order is fixed before starting processing the bids, then
the algorithm is called fixed priority. In each round, A receives the first (according to T)
unprocessed bid z € I and irrevocably accepts or rejects it. Then, x (and all bids preceding
x in T) are removed from I, and A proceeds to the next round. Greedy priority algorithms
accept the current bid b;(5) if granting S to bidder ¢ is feasible for the problem at hand
(e.g., S is disjoint to the previously allocated subsets of U).

E.g., the family of greedy algorithms presented in (Lehmann et al., 2002; Krysta &
Ventre, 2015) belong to the class of greedy fixed priority algorithms. In these algorithms,
elementary bids are sorted according to some criterion, which is non-decreasing in bid b;(S)
and non-increasing in the cardinality of the set of goods S. Typical examples of such criteria
are the bid b;(S), the average bid per good b;(S)/|S| and b;(S)/+/|S]. Then, the algorithm
considers the elementary bids in instance I in this order, accepts the next elementary bid
(7,0;(5),S) (i-e., irrevocably allocates the set of goods S to bidder i), removes from I all
other bids from bidder ¢ and all bids for sets S’ with nonempty intersection with S, and
proceeds with the next available bid. A typical example of a greedy adaptive priority
algorithm is Algorithm 2 (see the discussion in Section 4.2).

Throughout this work, we assume that a fixed priority algorithm can accept at most
one elementary bid from the same bidder. We note that for nonadditive valuation functions
(e.g., for submodular or subadditive valuations), accepting a bid (7, S, b;(S)) may lead to
updated bids (i,5,b;(S”)) from bidder 7 on other subsets S’ of goods. This, in turn, may
change the order in which the priority algorithm considers the remaining elementary bids.
Since any change in the order of elementary bids is not compatible with the idea of fixed
priority algorithms, the assumption that a fixed priority algorithm can accept at most one
bid from each bidder is essentially without loss of generality. On the other hand, adaptive
priority algorithms may accept any number of elementary bids from the same bidder.

3. Weak Verification and Greedy Fixed Priority Algorithms

We want to understand what kind of verification we can use with greedy fixed priority
algorithms to implement them truthfully (with or without money). It turns out that the
concept of weak verification (2) is sufficient and necessary for that. The role of money in
truthfulness is strictly linked with the ordering of the bids used by the algorithm.

To establish these results, we are going to consider a general mechanism design setting.
Note that, as done above for D; when defining greedy priority algorithms, we can import
all the notation defined above for CAs. Thus, for example, A4;(b) denotes the output
component that bidder i gets allocated by the algorithm A on input bid vector b. We call
A;(b) the winning component of bidder 1.

The proofs in this section (and the proofs of Theorems 4 and 5 in the next section)
are build upon cycle monotonicity in the declaration graph, and share the same underlying
structure. By the verification notion considered, the existence of an edge in the declaration
graph gives an extra algorithmic property that coupled with greediness leads to the desired
results.

Remark 1. Theorems 1 and 2 below hold for any AMD problem 11 and greedy priority
algorithm for 11 that can be cast in our framework (i.e., input items are elementary bids).

10



THE POWER OF VERIFICATION FOR GREEDY MECHANISM DESIGN

Recall that a greedy priority algorithm treats each input item as if it was the last one in the
sequence and then optimizes the objective function of the algorithm on each item (Borodin
et al., 2003).

3.1 Mechanisms without Money

Our first result concerns truthfulness without money. In this context, we use the term
algorithm and mechanism interchangeably.

Theorem 1. A greedy fized priority algorithm processing the bids in non-increasing order
of their value (and with a fized bid-independent tie-breaking rule) is truthful with verification
and without money if and only if the verification prevents overbidding on the (non-empty)
winning component.

Proof. Fix ¢ and b_; and consider the declaration graph associated to the greedy priority
algorithm A with a verification paradigm V. By Proposition 1, A is truthful without money
if and only if the graph has no negative-weight edges. We prove that if V' is weak verification
(2), then there is no negative-weight edge, and conversely, if V' is not weak verification (2),
then there exist instances with a negative edge.

For the first claim, let (a,b) be an edge of the graph. By hypothesis, this edge exists
if and only if a(Y) > b(Y), Y = A;(b,b_;). The edge weight is a(A4;(a,b_;)) — a(Y).
Consider the case in which the edge is negative, i.e., a(4;(a,b_;)) < a(Y) (thus yielding
Y # Ai(a,b_;)). In such a case, due to the ordering of the bids, a(Y") is considered by A
before a(A4;(a,b_;)). But since A is greedy and since Y was not allocated to ¢, there must
exist bids b;(2), for j # i, and some other output components Z, conflicting with Y, such
that b;(Z) > a(Y'). Let b7(Z) be the highest of these bids. But then, since Y = A;(b, b_;),
we have b(Y') > b7(Z) > a(Y), with at least one of the inequalities being strict (by the fixed
tie-breaking rule). Thus, a contradiction.

For the second claim, since V' is not (2), some bidder i is allowed to overbid on some
winning component Y. We can, therefore, build an instance in which bidder ¢ by declaring
a does not win Y, with a(4;(a,b_;)) < a(Y), while, she wins Y by declaring b. The
construction amounts to define b_; in a way similar to the above (i.e., bid b7(Z) in between
b(Y) and a(Y')). But then (a,b) would have negative weight. O

3.2 Mechanisms with Money

Let fi : D; x O — Rx( ° be a function that maps input declarations from the domain of
agent ¢ and an output component to a non-negative real number. Assume that for fixed
outcome, f; is strictly increasing in the valuation, i.e., for any S € O, a,b € D;, a(S) > b(S)
if and only if f;(a,S) > fi(b, S).

Consider now the greedy fixed priority algorithm that uses these functions f; to rank
the bid b; of bidder ¢ for the various components S € O. Examples of algorithms belonging
to this family are the ones presented in (Lehmann et al., 2002) for single-parameter bidders

and (Krysta & Ventre, 2015) for multi-parameter agents, where f;(a,S) = f/(% Both

5. We remark that Theorem 2 works also when f; has co-domain R; the non-negativity assumption is only
needed for the results in Section 3.2.1.
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these algorithms (essentially) return the best possible approximation guarantees for CAs,
even in a non-strategic computational sense. Such a generalization of greedy algorithms,
however, can add negative-weight edges (cf. Krysta & Ventre, 2015, Example 2) but no
negative-weight cycle, as shown next. Below, we say that a greedy (fixed priority) algorithm
A is truthful with money (and verification) if there exist payments P such that (A, P) is a
truthful mechanism (with verification).

Theorem 2. A greedy fixed priority algorithm that orders elementary bids using functions
fi as above (and breaks ties in a fized manner independent on the bids) is truthful with
verification and with money if and only if the verification prevents bidder i from overbidding
on the (non-empty) winning component.

Proof. For the “if” direction, fix ¢ and b_; and consider the declaration graph associated
to the greedy priority algorithm A. (Accordingly, b_; is dropped from the notation herein
to increase readability.) We show that the cycles of this graph have non-negative weights.

Consider a generic cycle C :=a' = a! — ... = aF — oFt1 =40,
g Yy

Claim 1. If for some j € {0,...,k}, we have A;(a’) = 0 then the cycle weights 0.

Proof. Assume that for some a = o/ in C, A;(a) = 0, meaning that the winning compo-
nent of bidder i declaring a is empty. The claim is that for b = a/*1, A;(b) = (), thus
implying, by reiterating the argument, that all the cycle has weight 0. Assume by sake of
contradiction that A;(b) # () and note that since A;(a) = () then, for all non-empty output
components X, there must exist bidder jx # 4 such that Yx = A;, (bj,,b—_;,) conflicts
with X and f;, (bjy,Yx) > fi(a, X). But then since A;(b) # 0 and as the edge (a,b) be-
longs to the graph, we have by the definition of verification, that a(A4;(b)) > b(A;(b)) and
then fi(b, 4;(b)) < fi(a, A;(b)). However, since Z = A;(b) is the winning component of i
when declaring b it must be that f;(b,2) > f;,(b;,, Aj,(bj,,b_j,)) > fi(a,Z). Therefore,
fi(b, Ai(b)) = fi(a, A;(b)) which in turns yields, by the bid-independent fixed tie-breaking
rule, that A;(a) = A;(b) # 0, a contradiction. O

We can then focus on the case in which A;(a’) # () for all j € {0, ..., k}. By the existence
of edge (a/,a’*!) we obtain a’(A;(a/T1)) > a/t1(A;(a/*1)) and then, by monotonicity of
fi7

fild, Ai(@”)) = fi(a* Ag(a?HY)). (4)

We now prove that, for 0 < j < k, we have
fild, Ai(?)) = fila?, Ai(a?™)). ()

Assume by contradiction that this is not the case; by the definition of priority algorithms,
this means that it is not feasible to allocate A;(a’T!) to bidder i when she bids ¢’ meaning
that there must exist some other bidder k # i whose output component Ay(a’) conflicts
with A;(a’*!) and is considered before in the ordering of the algorithm. On the other hand,
it is feasible to allocate A;(a’*!) to bidder i when she bids a/*!, meaning that A;(a’*!)
must be considered before (i.e., have a higher priority than) Az (a’) when bidder i bids a/*1.
We can then conclude that fi(a’, A;(a?™1)) < fi(a’™1, A;(a/*1)), a contradiction with (4).

12
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Unfolding the two inequalities above for the cycle, we get
fild?, Ai(a*h) = fi(@*, Ai(@”T)),

which implies that a’(A;(a’*1)) = a/T1(A;(a?11)). Then the weight of the cycle C is
k . . . . k . . . .
Y (Ai()) = dd (Ai(a™)) = ) dd (Ai(d?) — /T (Ai(a¥ ) = 0.
j=1 j=1

This concludes the “if” part of the proof by Proposition 1.

For the “only if” part, let us assume by contradiction that a fixed priority algorithm
from the statement is truthful, yet the verification allows some bidder ¢ to overbid on some
non-empty winning component X. We will prove that there exist f;’s for which such an
algorithm cannot be truthful. Specifically, we are going to focus on fi(a, X) = fi(a(X)),
i.e., f; depends only on a(X) rather than the whole tuple (a(S))sco and X € O, and f;
that is unbounded from above.

Consider the instance where X is the most preferred component of ¢ and assume that
X is the only component maximizing 4’s utility; call a; the corresponding type. Define b_;
in such a way that X is not allocated to i when she is truthtelling. Since A is greedy, there
exist bidders j # ¢, such that f;(b;(Y)) > fi(a;(X)), Y = A;j(bj,b_;) and Y conflicting with
X. Let j be such a bidder with the highest f;(b;(Y")). We are going to show a 2-cycle of
negative weight thus showing that there are no payments for the algorithm (cf. Proposition
1). Consider the bid b defined as a; except that

(i) b(X) > a;(X) in such a way that f;(b(X)) > f;(b;(Y)); and
(ii) b(AZ‘(CLi, b_z)> > b(X) — G,(X) + ai(Ai(ai, b_z))

Since f; is strictly increasing and unbounded from above such a b exists. Note that by
(i) and (ii), X is allocated to i in this case (in particular, since a;(4;(a;,b—_;)) — a;(X) <
0 then b(A;(a;,b_;)) < b(X)). Moreover, since by contradiction the verification allows
this lie, then the declaration graph has the edge (a;,b). But the edge (b,a;) belongs to
the graph as well as there is no overbidding on winning component (i.e., by (i) and (ii)
b(Ai(a,b_;)) —a;(Ai(a,b_;)) > b(X) + a(X) > 0). The cycle a; — b — a; has then weight
b(X) — b(Ai(ai, b)) + ai(Ai(a;, b_;)) —a(X) < 0 by (ii). O

3.2.1 ExpriciT PAYMENT FUNCTIONS

Let V be the verification that prevents bidder i from overbidding on the (non-empty)
winning component. We now explore the possibility to define explicit payment functions,
mainly based upon (5), leading to truthfulness with verification V.

The first observation is that truthful CAs using greedy algorithms as those considered
in Theorem 2 might need to pay agents rather than charging them (Krysta & Ventre,
2015) for otherwise bidders would be better off by not participating to the auction (i.e., the
auction would not satisfy voluntary participation). Therefore, to simplify the notation and
be consistent with our model above, in this section we define p;(b) = —P;(b) for all agents
i and bid vectors b; this way the utility of agent ¢ becomes p;(b;, b_;) + v;(S), S denoting
the set that the auction allocates to i in input b.

13
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The second observation is that by the arguments in the proof of Theorem 2 we know
that for t —y b, it must be either the case that A;(t,b_;) = A;(b,b_;) = 0 or A;(t,b_;) # 0.
This immediately implies that when the mechanism satisfies voluntary participation we can
achieve truthfulness by simply setting p;(b,b_;) = 0 whenever A;(b,b_;) = 0. The only
remaining case is then the case A;(t,b_;) # 0 and A;(b,b_;) # (. Our objective is to
define payment functions p;(¢t,b_;) and p;(b, b_;) such that when agent can misreport ¢ as
b according to V, the following holds true for some constant ¢ > 0:6

pi(t,b_) +t(Ai(t,b_y)) > cfi(t, Ai(t,b_;)) (6)
> cfi(t, Ai(b,b_;))
> pi(b,b—;) +t(Ai(b,b_;)). (7)

By applying the same reasoning to all pairs of declarations, by (6) and (7) we get the
following system of inequalities: for all b in the domain with A;(b,b_;) # 0:

inf {Cfi(t, Ai(b, b_z)) — t(Ai(b, b_l))} > pi(b, b_i)
t%vb
pi(b,b_;) > cfi(b, Ai(b,b_;)) — b(A;i(b,b_;)).
The system admits solutions if and only if for all ¢ —y b, the following holds
Cfl (t, Al(b, b_l)) - t(Al(b, b_Z)) Z sz(b, Az(b, b_l)) - b(Al (b, b_l)) (8)
When A;(b,b_;) # 0, define
pi(b, b_i) B Cfi(b, Ai(b, b_z)) — b(AZ(b, b_z))

In general, there is no guarantee on the sign of these payments.

Theorem 3. Let A be a greedy fized priority algorithm that orders elementary bids using
strictly increasing functions f; of their value (and breaks ties in a fized manner independent
on the bids). If (8) holds then the mechanism (A, p) is truthful with verification V' and runs
in polynomial-time if A does.

Proof. Fix ¢ and b_;; to simplify the exposition we drop ¢ and b_; from the notation in the
sequel of the proof. Let ¢ be ¢’s true type and take any b # ¢ in the domain of player ¢ such
that the agent can misreport ¢ as b according to V.

Let us first consider the case in which A;(¢t) = 0. As noted in the proof of Theorem 2,
it then must be the case that A;(b) = 0 for otherwise (¢,b) would not belong to the graph.
In this case truthfulness follows from having the utility from truthtelling equal 0 which is
also the utility from declaring b since the payment is 0 for both declarations.

Next, consider the case in which A4;(t) # 0 and A;(b) = 0. Since ¢(#) = 0 then the utility
of agent ¢ from declaring b is 0. The utility that agent ¢ experiences from being truthful is

t(Ai(t) +pi(t) = t(Ai(t) + cfi(t, Ai(t)) — t(Ai(?))

6. The constant ¢ might be needed to make the system feasible; for some f;, e.g., fi(a,S) = a(5)

= 42 this is
in fact needed (Krysta & Ventre, 2015).
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and therefore we have that the mechanism is truthful (and satisfies voluntary participation).
Finally, consider the case in which A;(t) # 0 and A;(b) # 0. The utility of agent i when
declaring b is then

t(Ai(b)) + pi(b) = t(Ai(b)) + cfi(b, Ai(b)) — b(Ai (b))
S Cfi(t, Al(b))
<cfi(t, Ai(t)) = t(Ai(t)) + pi(?),

where the first inequality follows from (8) and the second by (5). O

3.2.2 TRADE-OFF BETWEEN FRUGALITY AND APPROXIMATION

Theorems 2 and 3 characterize a family of truthful mechanisms in terms of both algorithms
and payments. The question we want to address here is to what extent we can trade the
amount of money paid to the agents (also known as frugality) with the approximation
guarantee of the truthful mechanism.
Let us define a couple of useful notions. Assume that for f; there exists a constant c
such that
cfi(b, A;i(b,b_;)) > b(A4;(b,b_;))

for all 7,t —y b. We call such functions f; c-positive. Notice, that for the payments of
Theorem 3 we have p;(b,b_;) > 0 for c-positive function f;. The steepness of function f;
is simply maxy g¢ /. ib((lg’)s). Observe that if f; is c-positive then its steepness is at least 1/c.
From the definition of payments in Theorem 3 it follows that if the charged payments are
higher then functions f; can only be steeper. A very natural question now is the following;:
if our mechanism charges more, which may lead to steeper functions f;, does this improve
its approximation guarantee? We will show that the answer to this question is negative
even in a very simple setting of CAs with single-minded bidders. We will first prove an
interesting connection between steepness of functions f; and therefore the payments and a
bound on the approximation guarantee of the mechanism. This shows that if the payments,
i.e., steepness, decrease, then this bound on the approximation ratio also decreases, see
Proposition 2. Then we will use this proposition and its proof to show in Proposition 3 that
indeed it is possible that the payments increase and at the same time, the approximation
increases, that is, gets strictly worse.

Suppose that each bidder i = 1,2,...,n is single-minded, that is, there exists a set of
goods S; C U that bidder ¢ demands and a number w; > 0 such that: v;(S) = w; for any
S C U with S; €S, and v;(S) = 0 otherwise. Assume also for simplicity that the demanded
sets have sizes at most a positive integer d, that is, d = max{|S1|, ..., |Sx|}.

We will use a primal-dual analysis from (Krysta & Ventre, 2015). Observe first that
Algorithm 1 (Krysta & Ventre, 2015) is a greedy fixed priority algorithm that orders el-
ementary bids using strictly increasing c-positive functions f;, where each f;(b, S) = f}—%
and ¢ = vd. Our proof will closely follow the proof of Lemma 10 from (Krysta & Ventre,
2015) (in fact the proof of Claim 1 from (Krysta & Ventre, 2015)). We will prove that
any greedy fixed priority algorithm A that orders elementary bids using functions f; has an
approximation ratio of at most d - ¢ - 7, where 7 is an upper bound on the steepness of all
functions f;. Let us denote by S = {S1,...,5,} C 2V the family of the demanded sets. For
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Algorithm 1: The greedy fixed priority algorithm for single-minded CAs.

1 Let by, b9,...,b, be the bids and Sy, ..., S, be the sets ordered by non-increasing
fi-values, i.e., f1(b1,S1) > fa(ba,S2) > -+ > fn(bp, Syn). In case of ties between
different bidders consider first the bid of the lexicographically bigger bidder.

2 P+ 0, B+ 0.

3 Fori=1,...,ndo

a4 IfigBAS;NS=0forall Se€P then (a) P+« PU{S;}, (b) B+ BU/{i}.

5 Return P.

a given set S; € S we will denote by b; = b;(.S;) the bid of bidder i for that set. For the
purpose of our analysis, we formally describe algorithm A in Algorithm 1. Let us assume

for simplicity that the indices of sets in S = {S1,...,S,} coincide with the order of the sets
in algorithm A, that is, fi(b1,51) = fa(b2,S2) = -+ = fu(bn, Sn).

Proposition 2. Consider the social welfare mazimization problem in single-minded CAs
with bundles of size at most d. Let A be a greedy fixed priority algorithm for this problem
that orders elementary bids using strictly increasing c-positive functions f; of their value
(and breaks ties in a fived manner that is independent on the bids). Assume that T is the
largest value of the steepness of all the functions f;, i =1,...,n. Then algorithm A has an
approrimation ratio of at most d-c- 7.

Before we proceed with the proof, let us observe that if the bidders’ payments decrease,
the steepness, as well as the (upper bound on the) approximation may only decrease.

Our proof will employ the classical dual-fitting approach, see, e.g., Chapter 13 in the
book by Vazirani (2001). Chapter 13 uses the dual-fitting approach to analyse an ap-
proximation ratio of the greedy algorithm for a minimization vertex cover problem. This
approach uses linear programming (LP) relaxation of the primal problem together with its
dual linear programming problem. In our case the primal problem is a maximization prob-
lem and thus its dual is a minimization problem. The linear programming (LP) relaxation
of our primal problem is as follows:

max o b
st Dguse8,ee5, T <1 Veel (9)
z; >0 vS; € S.

The corresponding dual linear program is then the following:

min ZeGU Ye
s.t. Ze€S¢ Ye > b; vS; €8 (10)

Ye > 0 Ve € U.
The high level outline of the dual-fitting approach is a follows. As the greedy algorithm
proceeds and gradually builds an integral primal solution z, we appropriately define a

corresponding fractional dual solution y which however might be infeasible for the dual
LP. To make it feasible, we will appropriately scale it to d - c¢- 7 -y (see the proof below),
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which is the dual-fitting ingredient of the approach. Because the scaled dual solution is
feasible for the dual LP, by weak LP duality its dual objective value provides an upper
bound on the value of any feasible primal solution. This fact is used to prove a bound on
the approximation ratio.

Proof of Proposition 2. Suppose that Algorithm 1 has terminated and output solution P,
that is, we define the folowing integral primal solution: z; = 1 if S; € P and x; = 0
otherwise. Let SATp = UgepS. Notice that for each set S € S that was not chosen in the
final solution P, there is an element e € SATp NS which was the witness of that event
during the execution of the algorithm.

For each set S € S\ P we keep in SATp one (arbitrary) witness for S. We discard the
remaining elements from SATp.

A fractional dual solution y to be used in the analysis is defined during the execution
of Algorithm 1. In line 2 of Algorithm 1 we set g, := 0 for all e € U. We also add the
following in line 4(a): y. := é—i', for all e € S;. Whenever for some e € U, the value of y.
has not been defined, it assumes value zero. It is now an easy observation that the dual
solution provides a lower bound on the cost of the output solution, that is,

D ye< > b (11)

ecU S;eP

We now turn our attention to showing that the scaled dual solution d - c- 7 -y is feasible
for the dual linear program, that is, constraints (10) are fulfilled for all sets S € S. Towards
this goal, we have to show that, for each set S; € S,

d-C'T'ZyeZbi. (12)

ees;

Suppose first that S, € S\ P. The reason that set S, has not been included in the
solution P is that there must be an element e € SATp such that e € S,. In that case
adding set S, to solution P would violate constraint (9). Let S; € P be the set in the
solution that contains element e. Recall that e € S, N S}, thus

E bj bj
ye/>ye:77'7.f.b,7sl)>
e'eSy |Sj’ |Sj]fj(bj75j) J(] Jj
=~ Jr(brSy) 22— b = > ’
‘Sj|fj(bj’5’j) f( S) |SJ|M c d-c-1

b]
where the second inequality follows by the greedy selection rule, and the third inequality
uses the c-positive property.

Notice that claim (12) follows immediately from the definition of y if set S, € P was
chosen by the algorithm. In this case we have the stronger inequality:

> ye > b

e€S,

This proves (12).
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We have shown that the dual solution d - ¢ - 7 -y is feasible for the dual linear program,
which by weak LP duality implies that d-c-7-_ . ¥e is an upper bound on the value of
the optimal integral solution to our problem. We have also shown in (11), that } . e <
>_s,ep bi- Therefore, we obtain that

optﬁd-c-T-Zyegd-c-T~ Zbi’
ecU S;€P

which proves the proposition. ]

Inspired by the above proposition and its proof we will now show that indeed there exists
an instance of CA where if the payments to the bidders are higher, the approximation ratio
of the greedy mechanism gets provably worse. Recall here that functions f; are called c-
positive if there exists a constant ¢ > 0 such that cf;(b, A;(b,b_;)) > b(A4;(b,b_;)) for all
i,t =y b.

Proposition 3. There exists an instance of the social welfare maximization problem in CA
with three single-minded bidders N = {1,2,3} and with 2 goods, and two collections of c-
positive functions fil, 1-2, 1 € N, such that a greedy fixed priority algorithm for this problem
that orders elementary bids using functions fi on this instance outputs an optimal solution
with payments zero, and when using fl-2 on this instance, it only outputs a \/2-approzimate

solution with strictly positive payments.

Proof. The instance of CA has two goods U = {1,2} and the three bidders are: S; = {1},
v =1—¢ S = {2}, va = ¢, S3 = {1,2}, v3 = V2, where € > 0 is a very small constant.
Now we define the functions f: fi(v) = v, fi(v) = v, f3(v) = v/V?2, f2(v) = §-v, f2(v) = v,
f2(v) = v/+/2, where § is some constant such that § > 1/(1 — ¢). Observe that in the two
collections of functions only the function fi for the first bidder has changed to fZ, otherwise
fl=f?fori=23.

Because fi(vs) = v2/V2 > fi(v1) = 1 —€ > fi(va) = ¢, if we run the greedy fixed
priority algorithm on this instance with functions f}, the solution output has only set Ss
and its social welfare is v3 = v/2 and it is optimal in this instance. Thus the approximation
ratio of the algorithm is 1 and observe that the payment of bidder 3 is ¢ f?} (v3) — w3 =0,
because we can just take ¢ = v/2 (payments of the other two bidders are zero anyway).

On the other hand, because f2(v1) = §-v1 > 1 = f2(v3) > f2(va) = ¢, if we run the
greedy fixed priority algorithm on this instance with functions f?2, the solution output has
sets 51,52 and its social welfare is v1 +vo = 1, but the optimal solution is as before S3 and
has social welfare v/2. Thus the approximation ratio of the algorithm is only /2.

Now, to see what the payment is in this case we need to find the constant c as the largest
ratio v;/f?(v;) for i = 1,2 (payment of bidder 3 is zero), see the definition of c-positive.
We have that v1/f2(v1) = 5(11__66) =1/6 < 1 and v/ f3(v2) = € = 1, which gives ¢ = 1
(because 1/§ < 1). Therefore, the payments are: p; = cfZ(vi) —v1 = cd(1 —€) — (1 — ),
and py = cf2(ve) — vy = ce — e = 0. Observe that the payment p; of bidder 1 is strictly
positive becuase § > 1/(1 —¢) > 1. O
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4. Strong Verification

For adaptive priority algorithms, things can be more complex at least in the multidimen-
sional case. Since bidders control more than one bid, they could lie on one of their bids to
change the ordering of the adaptive priority algorithm and get an advantage. Therefore, it
is not enough in general to prevent lies on the winning component, but a more stringent
notion ought to be used. Next, we show that this is indeed the case for an adaptive priority
algorithm for CAs with submodular bidders given in (Lehmann et al., 2006). The con-
cept of verification used to implement this algorithm turns out to be the strong verification
introduced above.

4.1 Truthfulness without Money

We begin by characterizing the algorithms that are truthful without money in the setting
of strong verification. Interestingly, the characterizing property is algorithmic only.

Definition 2. An algorithm A is strongly monotone if the following holds for any i, any
b_;, any a € D;: if Ai(a,b_;) = S then for all b € D; such that b(T) > a(T) VT C S it
holds b(A;(b,b_;)) > b(S).

Theorem 4. An algorithm A is truthful without money and with strong verification for
bidders given by value oracles if and only if A is strongly monotone.

Proof. Fix i, b_; and consider the declaration graph associated to algorithm A. Take any
edge of the graph (b,a) and let S denote A;(a,b_;). By definition, the edge exists if and
only if (T") > a(T) for all T C S.

Now if the algorithm is strongly monotone, we also have that b(A;(b,b_;)) > b(S)
and then the weight of the edge (b,a), that is, b(A4;(b,b_;)) — b(S), is non-negative. Vice
versa, assume that the weight of (b,a) is non-negative: this means that whenever b(7T) >
a(T) VT C S then it must be b(A4;(b,b_;)) > b(S) and therefore A is strongly monotone.
The theorem follows from Proposition 1. O

This characterization relates to those in (Fotakis et al., 2014) for moneyless mechanisms
with weak verification. However, while in the latter case mechanisms are monotone, e.g., as
in (Mu’Alem & Nisan, 2008; Lehmann et al., 2002) (i.e., “better” sets must correspond to
higher valuations), in our case the resulting mechanisms can be highly non-monotone. For
example, it can be the case that the set S; C Sy is won for a known double-minded bidder”
with valuation (v1,v2) but not won for b; = (v1 + €,v3 — €), i.e., there is a discontinuity
in bids winning S;. This makes the class of these mechanisms hard to design and then
the hope to find one with good approximation guarantee appears slim. Therefore, we add
money to our mechanisms in order to make the task of obtaining constant approximations
possible.

7. This terminology indicates a bidder who is only interested in two subsets of the universe; the two sets
(denoted above as S1 and S3) are known to the mechanism and the bidders declare only their two
valuations to the mechanism.
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Algorithm 2: Greedy algorithm

1 Set Sl,...,Sn:@

2 For each good e € U do

3 Let j be the bidder with highest v;(S; U {e}) —v;(S;)
4

5

Sj = Sj U {6}
Return S = (51, 5%,...,5)

4.2 Strong Verification with Money

We focus on the greedy algorithm introduced in (Lehmann et al., 2006) (cf. Algorithm 2).
We assume that the selection of the bidder with maximum marginal valuation in line 3
uses a fixed bid-independent tie-breaking rule. Algorithm 2 is a greedy adaptive priority
algorithm. In particular, given the allocation Si,...,S, of goods considered so far and
the current good, it orders first the elementary bids v;(S; U {e}) in nonincreasing order
of their marginal valuations v;(S; U {e}) — v;(S;) and next all other bids in an arbitrary
order (note that Borodin & Lucier, 2016, Section 4 use a slightly different way of describing
Algorithm 2 as a priority algorithm using goods as input atomic items). Since Algorithm 2
is an adaptive priority algorithm, it can accept any number of bids from the same bidder
(i.e., it can allocate many different items to the same bidder).

Theorem 5. There exists a payment function which paired with Algorithm 2 gives rise to a
truthful mechanism with strong verification for CAs with submodular bidders, bidding from
finite domains, given by value oracles.

Proof. By Proposition 1, Algorithm 2 (denoted as A in the rest of the proof) is part of a
truthful mechanism as long as no declaration graph associated to it has negative weight
cycles. We will prove that this is indeed the case.

Fix i and b_; and consider the declaration graph associated to A. Consider a generic
cycle C :=a® — a' — ... = a¥ = a¥*1 = a¥ of this graph. By existence of edges, for all
7 =0,...,k, we have:

a’(T) > o™ T) VT C A;(a?,b_y). (13)

This yields that for all j =0,...,k
ad(U) =™ (U) YU € N Ai(a), by). (14)

Now let r be the first good of U in the order considered by the algorithm in line 2 that is
in UleAi(al, b_;) but not in ﬂleAi(al, b_;); let A, be the set assigned to bidder i up to
the point in which r is considered. Without loss of generality, let r € A;(a',b_;). Since
r € Ai(a',b_;), then in (a!,b_;) bidder i has the maximum marginal valuation for 7.
But then by (13) and (14), we have a®(A4, U {r}) > a'(4, U {r}) and a°(4,) = a'(A4,),
respectively. This yields a(4, U {r}) — a®(4,) > a*(4A, U {r}) — a'(A,), which, in turn,
implies that bidder i has maximum marginal for 7 also in bid vector (a°,b_;). We then
have that r € A;(a’,b_;) as well. By reiterating the argument, we have that r € 4;(a’,b_;)
for I = 0,...,k and then A;(a’,b_;) = A;(a’T1,b_;) Vj = 0,...,k. All edges in C have
thus weight 0. O
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The theorem above guarantees the existence of payments that enforce truthfulness when
the bidding domains are finite. We are left with the question of how to efficiently compute
payments. The first immediate observation is that whenever the size of the graph is poly-
nomial in the number of players and goods, then we can simply compute shortest paths as
Rochet’s (1987) theorem suggests.

Corollary 1. There exists a 2-approximate truthful mechanism with strong verification
for CAs with submodular bidders given by value oracles bidding from finite domains. The
allocation is computable in time polynomial in n+m. If bidders’ domains are of polynomial
size in m +n, then payments can also be computed efficiently.

To remove the assumption of Corollary 1 on the domains, one would need to depart
from shortest paths and find a different way to define payments (e.g., via a closed formula)
allowing efficient computation. A common approach is to understand the structure of the
graph. The graph is very well structured. Indeed, by the proof of Theorem 5 any cycle is a
clique of nodes corresponding to declarations to which the algorithm assigns the same set
S, a(T) = b(T) for all T C S and declarations a and b in the clique. Since all its edges
have weight 0, the clique can be contracted and the same payment assigned to all these
declarations. We are left with a directed acyclic graph, holding out the hope to compute
payments efficiently.

Weak Verification is not Sufficient for the Truthfulness of Algorithm 2. We show
that weak verification is not sufficient for the payments of Theorem 5 to exist. Namely, we
give a domain for bidder 2 and a declaration for bidder 1 such that no matter what order
Algorithm 2 uses in line 2, the declaration graph of bidder 2 has a negative-weight cycle,
when weak verification is used.

We have two goods, named « and 3, so that U = {«a, 8}. There are two submodular bid-
ders N = {1,2}. A valuation function v is represented as a triple (z,y, z), where v({a}) = z,
v({B}) =y, and v({e, B}) = z. We consider valuation function v; = (x1,y1, 21) for bidder
1 and domain Dy = {bg, b, b5, b5’} for bidder 2. We let by = (22,42, 22), b = (25, v, 25),

5 = (z5,y5,25), and by = (2,5, 25 ). We show that if vy, by and b (respectively, vy, by
and b)) satisfy a set of linear constraints, there is a negative-weight 2-cycle in the declara-
tion graph when weak verification is used and Algorithm 2 considers first good « and then
good 3 (respectively, first good 5 and then good «).

We first note that if the following inequalities hold

/ /
xo > 1, 29— X2 > Y1, 1 > Iy, Yoy > 21 — X1,

and Algorithm 2 considers first good « and then 3, bidder 2 with declaration by is allocated
{a, 8} and with declaration b} is allocated {8}. If weak verification is used and the following
inequalities hold
Y2 >, 2y > 22,

both edges (ba, b)) and (b, ba) are present in the declaration graph of bidder 2, as implied
by the allocations above and the definition of weak verification in (2). The weight of (be, b))
in the declaration graph is zo — y2 and the weight of (b, be) is y) — 25. So if Algorithm 2
considers first « and then 8 and the following inequality is also satisfied

/ /
22_52<y2_y27
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the declaration graph of bidder 2 has a negative-weight 2-cycle (be, b}, be). It is straightfor-
ward to verify that the system of the five inequalities above is satisfied by infinitely many
triples of submodular valuations. For a concrete example, the valuations v; = (9.4,6,11),
by = (11,10, 18) and b5 = (9,10, 19) are submodular and satisfy all the five inequalities
above.

Similarly, if Algorithm 2 considers first 5 and then « and the following inequalities hold

yg>ylv zé’—yg>x1, y1>yg/7 l'/2”>21—y1,
bidder 2 with declaration b4 is allocated {«, 8} and with declaration b}’ is allocated {«}. If
weak verification is used and the following inequalities hold

R
both edges (b4, b5") and (b3, b}) are present in the declaration graph of bidder 2. The weight
of (b, b)) is 2/ — 2f and the weight of (b3',b]) is x4’ — z4’. So if Algorithm 2 considers first
£ and then o and
G <y,
is also satisfied, the declaration graph of bidder 2 has a negative-weight 2-cycle (b}, b4, b5).
Again, the system of the five inequalities above is satisfied by infinitely many triples of
submodular valuations, including the valuations v; = (9.4,6,11), b4 = (11,7,16.5) and
/= (11,5.8,16.8).

So, we conclude that there is a valuation vy for bidder 1 and a domain D> for bidder 2
so that for any order of the goods, Algorithm 2 with weak verification results in a negative
cycle in the declaration graph of bidder 2. Therefore, Algorithm 2 does not admit truthful
payments for any order in which the goods are processed, unless strong verification is used.
Strong verification, on the other hand, would eliminate edges (b}, b2) and (b4',b}) in the
respective cases.

5. Computing Payments

The complexity of payment computation is usually no harder than complexity of the corre-
sponding algorithm for the combinatorial problem at hand. This is because explicit formulas
for payments are either known (e.g., VCG, single-dimensional domains) or derived from the
cycle-monotonicity analysis (Lavi & Swamy, 2009; Krysta & Ventre, 2015). However, when
this fails, no other source of hardness for payment computation is sought (Lavi & Swamy,
2009, Section 4) (Ventre, 2014). We initiate here a study of the complexity of payment
computation by decoupling the latter from the computational complexity of the algorithm,
using Algorithm 2 as a case study.

We begin by observing, via a connection with the implicit payment computation of
Babaioff et al. (2015, 2013), that seemingly shortest-path payments cannot overlook the
structure of the declaration graph. Informed by this, and in order to prove hardness of
payment computation, we enrich the classical mechanism design model by including bidding
domains as input to the mechanisms. We will adapt a standard black-box approach and
assume that in addition to bidders’ declarations, the bidders’ domains are either given
explicitly as part of the input encoded in binary or they are represented succinctly and the
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mechanism can access them by queries. The running time of a mechanism is measured as
a function of m 4+ n and the size of domains’ description or the number of queries, where
each query takes constant time.

5.1 Impossibility of Implicit Payment Computation

We present an example indicating that we need to carefully take the structure of the dec-
laration graph into account when we compute the payments for Algorithm 2. As noted
above, by Theorem 5, if we fix the declarations of all other bidders to b_;, the declaration
graph of bidder i reduces to a directed acyclic graph. Among the nodes of the DAG, we are
particularly interested in the node, that we call 0, containing all the declarations mapped
by the algorithm to 0.

We observe that 0 is a sink of the DAG. Fix i, b_; and let a € D; be a declaration
mapped by Algorithm 2 (denoted as A below) to (). Assume that a could lie, according
to (3), and say b such that A;(b,b_;) = S # 0, and let r be the first good of S according
to the order considered by the algorithm in line 2. By the greedy rule in line 3 (and the
fixed tie-breaking rule within), we have that b({r}) > marg_,(r) > a({r}), with at least
one of the inequalities being strict, where marg_;(r) denotes the maximum marginal on
of bidders other than ¢ at this point. The above inequality chain shows that b is a lie which
contradicts (3).

Proposition 1 for acyclic graphs can be proved by setting the payment of bidder 4 in the
declarations profile (b;,b_;) to the equal to the length of the shortest path from b; to 0,
denoted as SP(b;,0). Indeed, fixed i and b_;, for an edge (a,b) of the declaration graph for
bidder ¢, SP(a,0) < SP(b,0) + a(A;(a,b_;)) —a(A;(b,b_;)) which simply rewrites (1). We
note that this payment can be negative, i.e., we pay the bidders so that they do not underbid
on their allocated set. Moreover, as noted in (Krysta & Ventre, 2015), scaling down all the
payments so that they become non-negative (while remaining truthful) may require that
the utility of some bidders becomes negative, i.e., violate voluntary participation.

One could try to compute (the length of the shortest path from b; to 0 and) the payment
of bidder 7 in (b;,b_;) by considering the path from b; to 0 consisting of all declarations
obtained by uniformly scaling down all the coordinates b;. Such a path would go down
through all declarations Ab;, for all A € [0, 1]. Then, similarly to (A.Archer, Papadimitriou,
Talwar, & Tardos, 2003; Babaioff et al., 2015, 2013), one can set the payment of bidder 4
as follows:

Pi(b;, b_;) = bi(Ai(bi, b_;) — / 1 bi(Ai(Abs, b_;))dA. (15)
0

It would be particularly interesting if the payments for Algorithm 2 can be computed
in this way because (A.Archer et al., 2003; Babaioff et al., 2015, 2013) prove that random
sampling w.r.t. A yields an unbiased estimator of the integral in (15). Therefore, using
the techniques of (A.Archer et al., 2003; Babaioff et al., 2015, 2013), we could estimate
the payments in randomized polynomial time, thus turning Algorithm 2 into a truthful-in-
expectation mechanism with strong verification. Our next example shows that (15) may not
result in the right (shortest path length and) payments, thus indicating that this technique
does not work with our declaration graph.
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Our example uses 2 goods U = {a, 5} and 2 submodular bidders N = {1,2}, and a
valuation function v is a triple (z,y, z), where v({a}) = z, v({8}) = y, and v({a, B}) = z.
We let v; = (11 — £,12,12), for a small £ > 0, be = (23,12,23) and b, = (11,12,12).
Algorithm 2 considers first « and next (3, and always breaks ties in favour of bidder 1.
We first calculate the payment of (15) if bidder 2 bids ba. Then, As(b2,v1) = {a} and
bo(Az2(b2,v1)) = 23. Moreover, for all A € (122 1], Ay(Abg,v1) = {a}, because 23\ > 11—¢;

23
for all A € (L2, L22]) Ay (Abo,v1) = {B}, because 23X < 11 — ¢ and 12X > 1 4 ¢; and for
all X € [0, 452], Ag()\bz,vl) (. Therefore,

23 for all A € (1552, 1]

bo(Aa (b2, v1)) = { 12 for all A € (42, 15=2]

0 for all A € [0, 4]

Applying (15), we get that

Py(by,v1) =23 — (23 ( 12) + 12 (455 — L))

11 _ 144+12¢
=11 35 +1 —l—e R £

So, applying (15) to Algorithm 2 results in bidder 2 paying an amount of % for
declarations (ba,v1).

On the other hand, we have that As(be,v1) = Aa(bh,v1) = {a}, which implies that the
weight of edge (ba, b)) in the declaration graph of bidder 2 is 0. Since Ag(11 h01) = {8},
the weight of edge (bh, 12b) is —1. Therefore, for Algorithm 2 with declarations (bo, v1),
we should pay an amount of at least 1 to bidder 2.

5.2 A Computational Criticism to Cycle-Monotonicity

We now show that if domains are represented succinctly, payment computation requires
(and can reveal) crucial information about the declaration graph, and thus, it is NP-
hard. Specifically, we show that, unless P = NP, we cannot efficiently compute minimum
payments, i.e., payments defined as shortest paths on the declaration graph.

Theorem 6. The problem of computing the shortest-path payments for Algorithm 2 with
strong verification is NP-hard, even for n = 2 bidders and m = 2 goods, where bidders’
domains are accessed by queries.

Proof. Suppose we are given an instance with two goods U = {a, 8} and two bidders N =
{1, 2} each with submodular valuation on the bundles of U. A valuation function v; of bidder
i is represented as above by a triple (z,y, z), where v;({a}) = z,v;({5}) = y,vi({e, B}) = 2,
and, because of monotonicity, we have that x < z,y < z, and, because of submodularity,
we have that y > z — .

We will define an instance of CA (and a particular domain) given an instance of the
satisfiability problem which is specified by a CNF input Boolean formula ¢ with £ Boolean
variables. Let the domain of bidder 2 contain just one declaration Dy = {(x,y,z)} for
some fixed positive numbers z,y,z > 0 such that © < z,y < 2z, and y = z — z. Let
S={sj:j=12,... ,2k} be the set of all possible 0 — 1 truth assignments to the k£ Boolean
variables of formula ¢. The domain of bidder 1is: Dy = {(x +¢,y+¢e,x+y+¢/2)} U
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{(x—e/j, y+¢e/2, x+y+e/2—¢c/j): s; satisfies ¢,7 =1,...,28} U{(z —¢/j, y+2¢, z+
Y+ 2¢ —¢/j) : s; does not satisfy ¢,j = 1,...,2%}, where ¢ > 0 is a small fixed constant,
£ < min{z,y}.

Since the declaration of bidder 2 is fixed to (x,y, z), the declaration graph for bidder 1
has D; as the set of its nodes, and before defining its edges we will make some observations
about the greedy algorithm, denoted as A, when « is considered first and 3 second. When we
run A with bidder 1 declaring (z+¢, y+¢, x+y+¢/2) € Dy, then the outcome for bidder 1 is
{a} and {8} for bidder 2. For any declaration of bidder 1 from D\ {(z+¢, y+e, x+y+e/2)}
the A’s outcome for bidder 1 is {8} and {a} for bidder 2.

Given any node by € D1\ {(z+e¢, y+e, z+y+e/2)} and V) = (z+e, y+e, x+y+e/2) €
D, the declaration graph does not have the edge (b1,b]). This follows from the fact that
bi({a}) < z and b ({a}) > x, therefore if edge (b1, b)) were present this would contradict
the no-overbidding verification assumption. Similarly, there is no edge present from b} to
any node by € {(z —¢/j, y +2¢, x +y+ 2 —£/j) : 5; does not satisfy ¢, = 1,...,2"}, as
its presence would contradict the no-overbidding assumption for {8}: b{({8}) =y +¢ <
y+ 25 = by ({8)).

Thus, node b} is connected to the rest of the declaration graph by edge (b}, b1), for some
b€ {(x—c/j,y+e/2,x+y+e/2—¢/j): s;satisfies ¢,j = 1,...,2F}. And, deciding if
node b is connected to the rest of the declaration graph (and thus, whether Algorithm 2
requires a non-zero payment for b)) is equivalent to deciding if formula ¢ is satisfiable.

Therefore, the problem of computing the payment for node b} is NP-hard provided that
we can represent the declaration graph succinctly in time polynomial in k& and the size of
¢. Such a representation has been shown for the satisfiability problem by small circuits
by Galperin and Wigderson (1983, Definition 2.2 and Lemma 2.2). This representation
essentially reduces to answering in polynomial time (in the size of ¢) a question if given
by € Di\{(z+e,y+e, z+y+e/2)}, does there exists edge (b}, b1), which is just checking
if the appropriate given 0/1 truth assignment s; (defining node b;) satisfies formula ¢ or
not. Thus, our reduction represents the domain D; by presenting an encoding of formula
¢ to the mechanism and mechanism asks queries of the type “does b; satisfy ¢7”.

We will present a further explanation to as why this implies that the problem of com-
puting the payment for node b} is NP-hard. Suppose we are given an instance ¢ of the
satisfiability problem with k variables. Then we encode it as the declaration graph as
above. But because this graph is of exponential size in the size of ¢, we need to represent it
succinctly by small circuits as above: formula ¢ is easily translated into a polynomial size
circuit in polynomial time, see (Galperin & Wigderson, 1983, proof of Lemma 2.2). This
representation is now fed to a hypothetical polynomial time (in the size of ¢) algorithm that
computes payment for node b}. This algorithm accesses the declaration graph by query-
ing the circuit and decides if node b} is connected to the rest of the graph. If yes, then
we know that ¢ is satisfiable and if no then ¢ is not satisfiable. This gives a polynomial
time algorithm for the satisfiability problem and thus shows NP-hardness of the payment
computation. ]

We complement this result by showing that for m = 2, it is indeed possible to compute
efficiently payments that are not defined as shortest paths on the declaration graph. Let
«, B denote the two items and assume that Algorithm 2 considers « before (.
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Definition 3. Let P? be the payment function defined as P¥(b,b_;) = 0 if A;(b,b_;) €

Ha, B}, {8}, 0};
P (b,b_;) = —ba2(B)

otherwise, ba(B) being the mazimum of what the other bidders declare for {5}.

Theorem 7. The payment P leads to a truthful CA with strong verification when coupled
with Algorithm 2 (even for infinite declaration domains).

Proof. Fix i and b_; and consider an edge (a, b) of the resulting declaration graph associated
to Algorithm 2, denoted A in this proof. Since the payment is independent of the declaration
itself there is no problem when A;(a,b_;) = A;(b,b_;). Moreover, as noted above (see
Section 5.1), when A;(a,b_;) = 0 # A;(b,b_;) then edge (a,b) does not exist. The very
same argument shows that we cannot have an edge in the case in which A;(a,b_;) = {8}
and A;(b,b_;) D {a}.

Let us now focus on the case in which A4;(a,b_;) 2 {a}. This means that the algorithm
first allocates « to ¢ and then when allocating 3, it looks at a({«, 8}) —a({a}) in comparison
with b;(3) for all bidders j # i. In the case in which A;(a,b_;) = {a, £}, it is then the case
that

a({a, B}) — a({a}) = b2(P), (16)

whilst when A;(a,b_;) = {a} we can conclude that

a({e, B}) — a({a}) < ba(f). (17)

We use (16) to prove truthfulness for the case in which A;(a,b_;) = {a, 5} and A;(b,b_;) =
{a}. Specifically,

a(4i(a,b_;)) — P;"(a,b_;) = a{a, B}
> a({a}) + b2(B)
= a(Ai(b,b—s)) — P(b,b_y).

Similarly, we can use (17) to prove the truthfulness when A;(a,b_;) = {a} and A;(b,b_;) €
{{o B}, {81}

The remaining cases, (i) 4;(a,b_;) = {«, 8} and A;(b,b_;) = {B} and (ii) 4;(a,b_;) =
{B} and A;(b,b_;) = 0, follow from absence of payments and monotonicity of valuations. [

An important observation is that we use the outcome graph (i.e., same payment for all
the nodes mapped by the algorithm to the same outcome) and therefore by Theorem 7, the
outcome graph for m = 2 has no negative-weight cycles. There are many intuitive reasons
for which the idea behind P}’ would not extend to three items «, 3,7 considered in this
order by the algorithm (e.g., marginals do not align neatly for all possible outcomes; hard
to handle “jumps” from {a} to {«a, 3,v}). We give a formal argument for these intuitions.
This approach of payment-per-outcome fails because the outcome graph might have negative

weight cycles.

Theorem 8. There exists an instance of CAs with submodular bidder withn = 2 andm = 3,
for which the outcome graph associated to Algorithm 2, defined upon strong verification, has
a negative weight cycle.
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Proof. Let A denote Algorithm 2 and «, 3,7 be the three goods in the universe. We are
going to assume that A considers « first, 5 second and v eventually. Define the bid bs of
bidder 2 to be ba(X) = | X| for each X C {a, 8,7}. Consider the domain of bidder 1 to be
D ={a,b,c,d} where for 3/7 > ¢ > 0:

a b c d
{a} 1+e |1+e| 1+e 1+¢/3
{5} 2 2 1+e€ 1+e
{~} 2 2 | 145/3¢|1+4+5/3€

T, 8Y [2+2¢| 2 |2+2/3¢|2+2/3¢
{a,7} 3+€ | 3+e€| 242 2+ 2¢
{B,7} | 3+¢€ | 3+e€ 2 2

{a,B,7} | 34+¢€ | 3+€| 2+42¢ 24 2¢

By inspection, the four bids are submodular. Moreover, given our assumption on the
good ordering, we get that Ai(a,be) = {«, 5}, A1(b,b2) = {a, 7}, A1(c,b2) = {a, 7} and
Ai(d,b2) = {a,p}. It is not hard to check that the edges (a,b) and (c,d) belong to the
declaration graph associated to A. Their weight is —1 4 € and 4/3e, respectively. However,
as Aj(a,be) = A1(d,by) = {a, f} and A1 (b,ba) = Ai(c,b2) = {e, v} then the outcome graph
(cf. Definition 1) has a cycle {a, 8} — {a, v} — {«, 5} of weight —1 + 7/3e < 0. O

5.3 Comparison with the VCG mechanism

We now prove that there are settings of our model relevant to practical applications where
we have a provable advantage over VCG. Specifically, we show that there are settings where
VCG is computationally intractable, but the positive results in this paper apply and give a
truthful constant approximation of the social welfare, in polynomial-time.

Theorem 9. There is a setting of CAs with submodular bidders, for which the problem
of computing payments for Algorithm 2 is solvable in polynomial time, but the problem of
finding a social welfare maximizing allocation is NP-hard to approximate within a factor
2e/(2e — 1) — ¢ for any € > 0.

Proof. We will describe instances of CAs with submodular bidders for which Dobzinski
and Vondrak (2013) prove that the social welfare maximization problem is NP-hard to
approximate within any constant factor better than 2e/(2e — 1) ~ 1.225. Fix any small
€ > 0 and we are given a universe U of |U| = m goods and a set of n bidders. Dobzinski and
Vondrak use the following instances of the Max n-Cover problem (see Dobzinski & Vondrak,
2013, page 9). Let S C 2V be a family of sets partitioned into subfamilies Si,...,S,, such
that: every set in S has the same size s; |Si| = |Sa| = -+ = |Sn| = g; for every two sets
S, T €S, |SNT| <e-s. Note that s and g are absolute fixed constant integers.

The submodular valuation function v; of any bidder i € {1,...,n} is defined as function
f in Definition 3.3 (page 5 in Dobzinski & Vondrak, 2013), where we use the constant
size family S; C 2Y in place of family F and a = i, b = e-s. Observe that, given
€ > 0 and the parameters m,n, s, g of this construction and the family S;, function v; for
bidder i is uniquely and succinctly defined. Suppose now that the declaration of any bidder
JjeA{l,...,n}\ {i} is fixed to his declared valuation v; as defined above for his family S;.
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Then the set D; of all possible declared valuations v; of bidder 4 of the type defined above
has size of at most the number of possible subfamilies §;. Subfamily S; has g subsets of
U each of size s, thus |D;| < ((Tg))g , which is polynomial in m because s and g are fixed
constants. Thus, the declaration graph of Algorithm 2 has polynomial size and payments
are polynomial time computable. ]

6. Conclusions

We considered the question of understanding the structure of truthful greedy mechanisms,
by characterizing the kind of bidders’ misbehavior that needs to be verified. In the context
of CAs, we showed that any greedy fixed priority algorithm is truthful as long as bidders
cannot overbid on the subset of goods they win (if any). We then proved that greedy adap-
tive priority algorithms require stronger assumptions, by proving that the 2-approximation
algorithm for CAs with submodular bidders in (Lehmann et al., 2006) has to also verify
overbidding on the subsets of the awarded set of goods.

The main question left open by our work concerns the computational complexity of
computing the payments for the algorithm in (Lehmann et al., 2006). Our results provide a
first, meaningful case study for the problem of assessing the computational efficiency of the
cycle-monotonicity technique. We conjecture that computing these payments is actually a
hard problem. However, this appears hard to prove, given that the question is not about
optimization but rather search (that is, the existence of a feasible solution is guaranteed and
the question is about computing any feasible solution versus the shortest path solution).
This is similar to the question about the computational complexity of computing Nash
equilibria where a solution is always guaranteed to exist; therefore, for our problem, the
tools adopted to prove the hardness of computing Nash equilibria seem to be required.
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