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Abstract—Adequate AC power is required for decay heat1

removal in nuclear power plants. Station blackout accidents,2

therefore, are a very critical phenomenon to their safety. Though3

designed to cope with them, nuclear power plants can only do4

so for a limited time, without risking core damage and possible5

catastrophe. The impact of station blackouts on nuclear power6

plant safety is determined by their frequency, as well as duration.7

These quantities, currently, are computed via a static fault tree8

analysis which applicability deteriorates with increasing system9

size and complexity. This paper proposes a novel alternative10

framework based on a hybrid of Monte Carlo methods, multi-11

state modelling, and network theory. The intuitive framework,12

which is applicable to a variety of station blackout problems,13

can provide a complete insight into their risks. Most importantly,14

its underlying modelling principles are generic, and, therefore,15

applicable to non-nuclear system reliability problems, as well.16

When applied to the Maanshan nuclear power plant in Taiwan,17

the results validate the framework as a rational decision-support18

tool in the mitigation and prevention of station blackouts.19

Index Terms—Nuclear Power Plant, Station Blackout, Risk20

Assessment, Accident Recovery, Monte Carlo Simulation21

NOTATIONS22

min (B) Least element of set/vector B.23

min{B,Q} Least element of B ∪Q.24

(B, i) ith element of set/vector B.25

ABBREVIATIONS26

AC Alternating Current.27

DC Direct Current.28

C Node capacity.29

CCF Common-Cause Failure.30

CCG Common-Cause Group.31

CS Cold standby state.32

F Failed state.33

LOOP Loss of offsite power.34

MCS Monte-Carlo simulation.35

S Shutdown state.36

SBO Station blackout.37

SU Start-up state.38

TM Test/preventive maintenance state.39

W Working state.40
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NOMENCLATURE41

A System adjacency matrix.42

C Component capacity vector43

c
{i}
x Capacity of component i in state x.44

{c{i}x }M×1 Set of current capacities of all components.45

Ei Set of attributes of component i.46

e System edge matrix.47

fl LOOP frequency.48

fs SBO frequency.49

fxy (t) Probability density function for transition50

from state x to y.51

G System graph object.52

k Number of edges/links in system graph.53

lb Set of minimum flow through edges/links.54

M Number of system nodes.55

m Number of safety buses/trains.56

N Number of Monte-Carlo samples.57

n1 Number of trains a generator can supply.58

pn SBO probability given the (n− 1)
th SBO.59

ub Set of maximum flow through edges/links.60

r Number of components affected by a CCF.61

rn (t) Non-recovery probability from the nth SBO.62

S Register indicating SBO occurrence.63

s Set of source nodes.64

sj SBO indicator for the jth simulation sample.65

T Component transition matrix.66

t ID of virtual output node.67

Utm Unavailability due to test or maintenance.68

u Proportion of train demand generator satisfies.69

V Set of nodes in the system graph.70

x0 Initial component state.71

Xij Flow from node i to j.72

Xout Flow into the virtual output node.73

Y Set containing flows through all the nodes.74

Θ System inequality constraint matrix.75

Γ System incidence matrix.76

Φ System equality constraint matrix.77

Ωij Maximum flow from node i to j.78

ð Number of intermediate nodes.79

Ψ System flow objective function.80

ρ Set of components making up CCG.81

δ Number of components in CCG.82

θ Set of CCF probabilities.83

β1 Common failure mode for CCG.84

β2 State rendering CCG vulnerable to CCF.85

τ Vector of next node transition times.86

µold Vector of node capacities at last system jump.87
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I. INTRODUCTION88

NUCLEAR power is produced by harnessing in a reactor89

vessel, the heat generated from a fission reaction chain.90

The reactor vessel is placed in a concrete containment to shield91

the environment from the potential release of radioactive mate-92

rials. Core damage ensues when the core temperature exceeds93

a certain threshold or the nuclear fuel elements in the vessel94

are uncovered. This event may trigger containment breach,95

inflicting huge environmental and economic catastrophe.96

Severe accident mitigation is achieved in part by ensuring97

a reliable cooling water circulation in the reactor vessel. This98

objective, during normal plant operation, is achieved through99

heat exchange between the primary and secondary loops of100

the plant’s main cooling system. The process, however, ceases101

on plant shut down and backup cooling systems are required102

to sustain decay heat removal. Like the main cooling system,103

the backup cooling systems rely on AC power provided by104

sources outside the plant (offsite power). When these sources105

fail (Loss Of Offsite Power-LOOP), emergency sources on-106

site are started, to drive the plant’s safety systems. If the107

emergency sources are also unavailable or unable to function108

as required, the plant is said to be in a Station Blackout109

(SBO). The backup cooling systems, however, are equipped110

with alternative turbine or diesel-driven pumps to help the111

plant cope with this incident. These systems, on the downside,112

require for monitoring and control, DC power from DC113

power banks. Their sustainability, therefore, regardless of their114

inherent reliability, is limited by the DC battery depletion time.115

This time, and the boil-off rate of reactor coolant, define the116

maximum acceptable AC power recovery duration [1].117

SBO accidents are the largest contributor to nuclear power118

plant risk, accounting for over 70% of the core damage119

frequency at some plants [1], [2]. LOOP events, which initiate120

these accidents, are classified on the basis of their origin. A121

grid-centred LOOP is due to the failure of the transmission122

network outside the plant, switchyard-centred LOOP arises123

from failures in the switchyard on the plant premises, plant-124

centred LOOP is triggered by the operational dynamics of125

the plant itself, while weather-related LOOP is attributed to126

failures induced by severe and extreme weather, excluding127

lightning [1], [2]. The effective SBO risk is the sum of the128

core damage frequencies induced by the various LOOP types.129

A. Review of Existing Models130

SBO risk quantification starts with LOOP event tree anal-131

ysis [3], where the Emeregency Power System availability132

is checked in the first heading. This event failure, which133

frequency defines the SBO frequency, transfers the analysis134

to the SBO event tree [1]. In the latter, the successes of the135

various mitigating actions, including offsite power and the136

recovery of the Emergency Diesel Generators at specific times137

are also checked. These times, however, vary across plants and138

depend on the status of a plant’s mitigating systems. At the139

Maanshan nuclear power plant, for instance, power recovery140

is checked at 1, 2, 4, and 10 hours into SBO. Each top event141

probability in the SBO event tree requires one or more static142

fault trees [4]–[6] for its quantification.143

Static fault tree analysis employs an analytical approach,144

as such, it carries the important advantage of being compu-145

tationally efficient. For this reason, its sensitivity, importance,146

and uncertainty analysis capabilities are outstanding. These147

attributes explain its wide use for risk analysis in the nuclear,148

aviation [7], and chemical process industries [8]. Unfortu-149

natley, fault trees become intractable with large systems or150

moderate systems with complex interactions [8]. They often151

require a detailed knowledge of the system being modelled,152

making them both difficult to apply and error-prone. Their153

static nature also limits their applicability in many ways. For154

instance;155

i. Implementing certain types of interdependencies is either156

tedious or completely impossible.157

ii. The analyst has to assume SBO is coincident with LOOP158

and that all power recovery efforts start simultaneously159

after SBO sets in. As a consequence,160

a) The SBO frequency and non-recovery probability are161

overestimated in most cases, since the repair of a failed162

element is normally initiated immediately.163

b) For plants with multiple emergency power systems, it164

is impossible to determine which sequence of response165

minimises the SBO frequency and maximises the re-166

covery probability simultaneously.167

c) It is also difficult to investigate the effects of external168

factors like logistic problems, extreme environmental169

events, and human resource constraints on the recovery170

process.171

iii. The analyst is forced to assume the non-occurrence of172

a second SBO after power recovery. This assumption,173

however, loses its validity if the emergency sources are174

recovered first. In this case, a second failure could initiate175

another SBO sequence before offsite power recovery.176

iv. Finally, there is the problem of inconvenience due to177

repetitive modelling. Since the non-recovery probability178

is normally required for multiple instances, each would179

require a dedicated fault tree.180

There are numerous instances of remarkable attempts at181

extending the applicability of fault trees to systems with182

interdependencies and various forms of dynamic interactions183

[6], [9]. Kaiser et al. [10], for instance, introduced a state/event184

fault tree approach that translates fault-trees to Deterministic185

& Stochastic Petri Nets. Similarly, Zhou et al. [11], quite186

recently proposed an approach that converts static fault trees187

to Dynamic Uncertain Causality Graphs in order to tackle the188

dynamic and uncertainty attributes of practical engineering189

systems. However, like Kaiser’s approach [10], Zhou’s [11]190

is restricted to binary-state components and systems. Even191

though the performance of most components could be parti-192

tioned into two levels, the existence of multiple failure modes193

makes binary-state models inadequate. Also, from a modelling194

perspective, there are occasions when the analyst would need195

to model a binary-state element as a multi-state one in order196

to fully define its behaviour. Such flexibility requires a frame-197

work supporting multi-state modelling. Bobbio’s fault tree to198

Bayesian Network mapping procedure [12] effectively solves199

this problem. However, like Kaiser’s and Zhou’s approaches,200
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Bobbio’s mapping procedure is also susceptible to deficiencies201

(3) and (4) outlined above.202

Dynamic Fault Trees [13]–[16] are perhaps the closest203

researchers have come to solving the limitations of static fault204

trees. Various approaches have been proposed for their solution205

but Markov analysis [14], [15], [17] remains the most popular.206

Markov modelling, however, like static fault tree analyis,207

becomes intractable with large systems and is only applicable208

to exponentially distributed transitions. Nevertheless, state209

explosion is no longer an issue, with the introduction of210

intuitive Dynamic Fault Tree software [18], [19]. Even with211

these developments, most of the Dynamic Fault Tree solution212

approaches are susceptible to deficiencies (3) and (4) outlined213

above. These deficiencies can only be addressed by approaches214

offering the flexibility to replicate the exact behaviour of215

the system. Such an approach, however, was put forward by216

Rao et al. [16], which they used to model the power supply217

system of a nuclear power plant. The approach simulates218

a system’s Dynamic Fault Tree and addresses most of the219

limitations of static fault trees. However, like the majority of220

system reliability models, Rao’s work is only applicable to221

binary-state components. The development of a more universal222

simulation framework, therefore, is desirable.223

B. The Proposed Approach and Scope224

As evidenced in Rao’s, Rocha’s, and Lei’s works [16],225

[20], [21], Monte Carlo Simulation (MCS) is flexible enough226

to model any system attribute. Its problem, however, is that227

most of the existing MCS algorithms are system-specific and228

require either the structure function, cut sets, or path sets of229

the system. An intuitive event-driven MCS procedure, offering230

multi-state component modelling opportunities has recently231

been proposed [22]. This procedure is general and does not232

require the definition of the system’s path & cut sets or233

structure function, thanks to its embedded graph model.234

In this work, the graph and multi-state models proposed235

in [22] are adopted. The graph model is used to model the236

topology of the system and allow the performance of the237

system to be directly computed from the performance of the238

components. This attribute eliminates the need for an explicit239

association of component failure combinations to the state of240

the system. The multi-state model, on the other hand, is used241

to model the behaviour of the components, overcoming the242

assumption of a perfectly binary behaviour of components. It243

is particularly useful to the multiple failure mode and dynamic244

attribute representation of the Emergency Power Systems. This245

model, for instance, could be exploited to investigate the246

effects of limited maintenance teams or the unavailability of247

spares on the Emergency Power Systems recovery [23]. We248

extend the original model to incorporate interdependencies249

by means of a dependency matrix and an efficient recursive250

algorithm to propagate the effects of failures across the system.251

Completing the framework, we propose a simple MCS algo-252

rithm that induces LOOP in the system, replicate the ensuing253

sequence of events, and monitor the availability of power at254

the various safety buses. The number of available safety buses,255

as a function of time, is computed after each system event.256

From the simulation history, any SBO index can be computed,257

thereby providing an opportunity for more insights into SBO258

risks. The multi-state component model, together with the259

dependency matrix, adequately captures and represents the260

redundancies in the emergency power system of the plant.261

Consequently, the explicit modelling of these redundancies,262

which poses a significant challenge, is eliminated.263

1) Merits & Novelty of Proposed Approach: The frame-264

work, for now, is limited to grid and switchyard induced265

LOOP, given their dominance [2]. Its preliminary results were266

first presented at the 13th Probabilistic Safety Assessment and267

Management (PSAM) conference [24]. However, this paper268

proposes several improvements. Firstly, an extensive review269

of the suitability of fault trees and their derivatives, to SBO270

analysis has been included. We have also considered the effects271

of Common-Cause Failures (CCF), unavailability due to test272

or maintenance, and human error on the SBO frequency and273

recovery probability. We also show how the results obtained274

from the framework can be absorbed in the existing model.275

Finally, we extend the number of computable SBO indices and276

consider the effects of system configuration and the sequence277

of operator response on system recovery.278

This paper is the first documented application of load-flow279

simulation to a complete SBO risk assessment. With respect280

to the existing models discussed in Section I-A, the proposed281

framework exhibits the following advantages;282

• Adequacy & Flexibility - it models realistic attributes283

of the plant’s power recovery and provides more insights284

into SBO risks. For instance, it enhances the investigation285

of the possibility of a second SBO after the first.286

• Convenience & Generality - it is convenient in the sense287

that the modeller does not need to deduce the combination288

of component failure leading to system failure. They also289

do not need to explicitly model component redundan-290

cies, as these are implicitly captured by the modelling291

framework. The modelling framework, in addition, is292

applicable to many system reliability problems.293

2) Solution Sequence: The proposed approach is applied as294

summarised by the following chronological steps;295

i. Identify the key elements of the system, define its topol-296

ogy, and derive its flow equation parameters.297

ii. Develop the multi-state model for each system element.298

iii. Model the interdependencies between the elements.299

iv. Force a LOOP event and simulate the behaviour of the300

standby power systems.301

v. Compute the SBO indices from the simulation history.302

II. STATION BLACKOUT MODELLING303

A nuclear power plant’s power system consists of the grid,304

the switchyard, the Emergency Power Systems, alternative305

Emergency Power System, and the safety buses. The Alter-306

native Emergency Power Systems are additional emergency307

sources (such as Gas Turbine Generators) available at some308

plants to boost their LOOP/SBO recovery capability. In this309

section, we show how the plant’s power system is accurately310

modelled and analysed, in line with the solution sequence311

outlined in Section I-B2.312
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A. The System Topology313

We represent the topology of the plant’s power system by314

a graph which nodes depict the components of the system.315

Connecting the nodes are perfectly reliable links portraying316

the direction of power flow. Flows from all the safety buses317

are terminated on a virtual node, introduced to represent the318

total available power. This virtual node would later be used to319

compute the non-recovery probability of AC power.320

Let the nodes of the system be numbered from 1 to M and321

represented by the set V = {1, 2, ...,M}. Since the links are322

perfectly reliable, the adjacency matrix, A, of the system is323

defined as;324

A = {aij}M×M | aij =

{
1 If flow is i→ j

0 Otherwise
(1)

The topology of the system, therefore, can be defined by325

G | G = (V,A). Using the parameters of G only, the flow326

equations of the system can be derived [22]. These equations327

can then be used in synergy with the current state properties328

of the system nodes to deduce the performance of the system.329

For this, a linear programming algorithm is employed, given330

the possibility of flow redirection and the need to satisfy331

the capacity constraints of the nodes and their links. The332

objective is to find the flow across each link of the system333

that maximizes the flow into the virtual node. If Xij is the334

flow across the link between nodes i and j and given there335

are k such links for all (i, j) ∈ e, where e is the edge matrix of336

the system as defined in [22], the linear programming problem337

is formulated by (2), (5), (7), and (8).338

Θ{Xij}k×1 ≤ {c{i}x }M×1 | (i, j) ∈ e, ∀i ∈ V (2)

Equation (2) expresses the inequality constraints to be satis-339

fied, where c{i}x denotes the capacity of node i when residing340

in state x. {c{i}x }M×1, therefore, is the vector of current341

capacities of all the nodes of the system. The inequality matrix,342

Θ, is related to the incidence matrix, Γ, as follows,343

Θ = {θiq}M×k | θiq =

{
1, γiq 6= 0

0, otherwise
(3)

344

Γ = {γpq}M×k | γpq =


1, p = i

−1, p = j

0, otherwise
(4)

Γ is related to A by (4), where q = 1, 2, ..., k (the edge345

number) is the index of the edge between nodes i and j in e346

and p = 1, 2, ...,M .347

Φ{Xij}k×1 = {0}ð×1 ∀(i, j) ∈ e (5)

Equation (5) expresses the equality constraint to be satisfied,348

where Φ and Γ are related thus;349

Φ = {φλq}ð×k | φλq = γpq

λ = 1, 2, ...,ð | ð < M f : λ→ p ∀p ∈ (s ∪ t)′
(6)

ð is the number of intermediate nodes, s is the set of source350

nodes, which comprises the grid and standby power systems351

while t is the virtual node representing the total output of the352

system. If the intermediate nodes of the system (i.e., nodes353

not in s and t) are arranged in ascending order of their ID, (6)354

suggests the λth row of Φ is identical to the pth row of Γ,355

where p is the λth element of the ordered set of intermediate356

nodes. In other words, Φ is a sub matrix of Γ, containing all357

the rows of the latter corresponding to intermediate nodes.358

lb = {0}k×1, ub = {Ωij}k×1
Ωij = min{c{i}max, c{j}max} ∀(i, j) ∈ e

(7)

Equation (7) defines the lower and upper bound vectors, lb and359

ub, of the flow through the links, where c{i}max is the maximum360

capacity of node i. Finally, the objective function of the linear361

programming problem is expressed in (8).362

Ψ = −{ψq}1×k{Xij}k×1 | ψq =
∑
i∈s

γiq (8)

Following the termination of the linear programming algo-363

rithm, the vector of flow, Y, through the nodes of the system364

is given by ΘM×k{Xij}k×1. The total output, therefore, is365

given by the tth element, (Y, t), of Y. Interestingly, all the366

parameters, but {c{i}x }M×1, required to compute Y remain367

static during system simulation. The main task, therefore, is to368

update {c{i}x }M×1 after each system event. The derivation of369

(2) to (8) is outside the scope of this paper, interested readers370

are referred to [22]. However, an illustrative example of the371

linear programming problem formulation is provided in the372

Appendix to this paper.
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Forced Transition

Normal Transition
Fig. 1. Multi-state model for Grid and Switchyard nodes

373

B. The System Components374

Each component is defined by a multi-state model that375

takes into account the various parameters that characterise its376
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Fig. 2. Multi-state models for Emergency Diesel and Gas Turbine Generators without human error consideration

operation. Let Ei denote component i, then,377

Ei = (T,C, x0) (9)
378

T = {Txy}n×n | x 6= y (x, y) ∈ {1, 2, ..., n}

Txy =


∞, If x→ y is a forced transition

0, If no transition between states x & y
fxy(t), Otherwise

(10)

Where T is the transition matrix of the component; C |379

C = {cx}1×n, its capacity vector; x0, its initial state; cx,380

its capacity in state x; n, its number of states; and fxy(t), the381

probability density function characterizing the transition from382

state x to y. T contains the density function objects for all the383

transitions depicted in the multi-state model of the component384

and C defines the capacity of the component in each state.385

Each state capacity is expressed as a non-dimensional386

number defining the proportion of total system output the387

node can supply or transmit whilst residing in that state. If388

m is the total number of power trains at the plant, n1, the389

number of power trains the node simultaneously supplies, u,390

the proportion of power train demand it can satisfy, then, its391

capacity when working perfectly is, n1um−1. It expresses392

the total system output as a fraction of the number of power393

trains/safety buses present at the plant. On this note, the grid394

and switchyard nodes are each assigned unity capacity when395

available and 0, otherwise. The virtual output node has a fixed396

capacity of 1 and each safety bus, a fixed capacity of m−1.397

1) Modelling the Grid and Switchyard: The grid is mod-398

elled as a 2-state node; ‘Working’, when available and ‘Failed’,399

otherwise. Though grid failures are mostly random, we model400

them as forced transitions [23], since they already are incor-401

porated in the LOOP frequency. Most often, plants tap their402

AC power from multiple offsite sources, and grid failure is403

defined as the failure of all of these sources. The repair of404

at least one of the failed sources, however, is sufficient to405

achieve grid recovery. For this reason, the transition from406

w
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D

C=1

C=0

C=0

C=0

Fig. 3. Multi-state model for switchyard with human error consideration

‘Failed’ to ‘Working’ is defined by the upper bound of the407

envelope around the cumulative density functions (cdf) of the408

individual source repair distributions. Given this, sampling409

the grid recovery time entails generating a uniform random410

number and reading off its corresponding time from the411

envelope cdf, interpolating where necessary. An important412

point to note is, this approach slightly underestimates the grid413

recovery probability, as it assumes the individual source repair414

actions are initiated concurrently. In practice, the sources do415

not necessarily fail simultaneously and their recovery actions416

may commence at different times. This implies, by the time417

the last source fails, the restoration of already failed sources418

would have begun. The actual grid recovery time, therefore,419
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Fig. 4. Multi-state models for Emergency Diesel and Gas Turbine Generators with human error consideration

is less than that given by the envelope cdf. This, however, is420

acceptable, as the goal in risk management is to ensure risk421

levels are acceptable, even in worst case scenarios.422

Similarly, normal switchyard operation is defined by a 2-423

state node. In cases where the plant is enhanced with multiple424

switchyards, switchyard recovery is treated as in the case of425

multiple grid sources. Fig. 1 shows the multi-state model for426

the Grid and Switchyard.427

2) Modelling the Standby Power Systems: The Emergency428

Power System is constituted by the Emergency Diesel Gen-429

erators (EDG), and in this work, Gas Turbine Generators430

(GTG) constitute the Alternative Emergency Power System.431

In this section, we model only the multi-state behaviour of432

the standby power systems, and the effects of redundancies433

on their operation is considered in a latter section. We make434

the following assumptions in developing these models;435

i. The initiation of test/maintenance is coincident with436

LOOP, and at any instance, there is not more than one437

source in test or maintenance.438

ii. Sources in test or maintenance remain unavailable439

through the sequence.440

iii. Repairs are commenced immediately.441

iv. A generator just from maintenance cannot fail to start.442

This implies a perfect maintenance scenario.443

The Alternative Emergency Power System recovery is assumed444

offsite power recovery in [24]. This assumption is on the445

premise that their failure is included in the LOOP frequency.446

However, the assumption is impractical, given they are mostly447

a standby source. We, therefore, modify their multi-state model448

to include running failures, rendering them an on-site source.449

We consider failure-to-start and failure-to-run as the only450

failure modes an Emergency Diesel Generator is susceptible451

to. Failure-to-start refers to the Emergency Diesel Generator452

failure to start from cold-standby and failure-to-run denotes453

its failure to function for the duration of the LOOP. While454

the former is defined by a crisp probability, the latter is455

characterised by a time-to-failure probability density function.456

However, the Standardised Plant Analysis Risk (SPAR) model457

[1] considers a third Emergency Diesel Generator failure458

mode, failure-to-load, defining the case when the Emergency459

Diesel Generator starts but cannot power the load. This failure460

mode is considered failure-to-start, in the proposed framework.461

We introduce two additional states, ‘Working’ and ‘TM’, as462

shown in Fig. 2, to account for the perfect operation of463

the Emergency Diesel Generator and its unavailability due464

to test or maintenance, respectively. Except otherwise, the465

transition from cold standby to working is instantaneous,466

whilst the transition from cold standby to failure or TM is467

also instantaneous but conditional. Conditional transitions are468

a special type of forced transition depending on a probabilistic469

event that is external to the component and with a known470

likelihood [23]. Conditional and forced transitions have the471

same representation in the transition matrix of the component472

(see (10)).473

The Gas Turbine Generators behave in almost the same way474

as the Emergency Diesel Generators, save for the difference475

in their start-up and manual alignment times. For this, a start-476

up state is inserted between their cold-standby and working477

states, as shown in Fig. 2. Whilst in start-up, they could fail,478

explaining the transition from start-up to failure.479

3) Accounting for Human Error: Human error is very480

important in the risk assessment of engineering systems. In481

SBO recovery, human errors mostly manifest themselves as482

delayed response to a certain SBO mitigation action. For483
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instance, the switchyard is forced into a temporary shut down484

state during grid failures. On grid recovery, the plant personnel485

manually initiate its restoration, which process is susceptible486

to human-induced delays. Accounting for these delays, two487

additional states are introduced in the 2-state model discussed488

in Section II-B1, as shown in Fig. 3. The transitions from489

‘Working’ to ‘Shutdown’ and from ‘Shutdown’ to ‘Delay’490

(D), are influenced by grid failure and recovery respectively.491

‘Shutdown’ denotes grid recovery-in-progress, while ‘Delay’492

represents switching-in-progress. The latter determines the493

difference between the potential and actual bus recovery times.494

If this difference is negligible or the potential, instead of the495

actual bus recovery time is required, the model in Fig. 1 is496

retained.497

Similarly, the Gas Turbine Generator and some Emergency498

Diesel Generators require manual start-up and alignment, this499

is the case for shared diesel generators. A generator is said500

to be shared if it can substitute several units but, however,501

can only replace one unit at a given instance. Therefore, in502

the case of sequential multiple unit failures, only the first unit503

is replaced. For simultaneous failures, any of the units can504

be replaced, since they normally are identical. Since these505

replacements are manually executed, they are susceptible to506

delays, contrary to what most models suggest. Fig. 2, for507

instance, assumes the transition from cold standby to the508

fully functional or failure state to be instantaneous. This, by509

extension, implies, any maintenance action (if the generator510

fails to start) is initiated at once. However, with human error,511

the start-up procedure may be initiated latter than scheduled.512

We, therefore, introduce two states, one each, between cold513

standby & working and failure & cold standby, as shown in514

Fig. 4, to account for these delays. We have assumed the plant515

personnel to be well trained, experienced, and fit to perform516

their assigned tasks as expected. Consequently, the possibility517

of inappropriately executed actions is ignored.518

Transitions 6 → 1 with 4 → 7 and transition 7 → 4 with519

5 → 8, of Fig. 4, account for human error in the recovery520

of manually operated Emergency Diesel and Gas Turbine521

Generators respectively. In practical applications, human error522

is expressed in terms of the probability of not completing523

a given action within a specified time. If this probability is524

known for multiple times, a cdf could be fitted through the525

points. For this, we recommend the Weibull distribution, since526

it can yield a wide range of distributions. Recall the cdf of527

a Weibull distribution is 1 − e−(t/a)
b

, where a and b are528

its scale and shape parameters respectively. Given the human529

error probabilities are the likelihoods of inaction, they define530

the complement of the human reaction time cdf. Therefore,531

the Weibull parameters, a and b, are obtained by fitting the532

set of probability values to the function e−(t/a)
b

.533

C. Modelling Component Interdependencies534

To ensure resilience, system designers often employ multi-535

ple layers of defence, either in the form of redundancies or536

shared components. This proactive strategy inadvertently intro-537

duces interdependencies in the system, resulting in modelling538

accuracy issues. We define interdependency in a more general539

sense as the potential for a state change in one element to540

trigger a state change in another. We propose two models,541

the Common-Cause Failure (CCF) and the cascading failure542

models, to implement these interdependencies.543

1) The CCF Model: This model is used when the random544

failure of any member of a group of similar components,545

performing the same task could cause the failure of one or546

more of the remaining components [25]. Such a group of547

components is called a Common-Cause Group (CCG), and548

its key attributes are;549

• There is a set of probabilities associated with the number550

of components involved in any random failure event. Let551

this set of probabilities be defined by θ | θ = {θr}δ ,552

where r is the number of components affected by the553

failure event, δ, the total number of components in the554

group, and
∑δ
r=1 θr = 1.555

• All the components in the CCG fail in the same mode.556

Implying, the CCG for start-up failures cannot influence557

the CCG for running failures, for instance.558

Each CCG, therefore, is defined by the quadruple,559

(ρ, β1, β2,θ). Where, ρ is the set of components in the CCG,560

β1, the common failure mode, and β2, the state the components561

have to be in to be susceptible to this failure mode. The562

algorithm for propagating CCF is summarised thus;563

i. When a component fails, check if its new state matches564

β1 for its CCG.565

ii. Go to step (v) if there is no match. Else, determine the566

number of components, r, that will fail.567

iii. Go to step (v) if r = 1. Else, remove from ρ, the com-568

ponent initiating the failure event. From the remainder,569

randomly select r − 1 components.570

iv. For each component selected in step (iii), check if its571

current state matches β2 and set this to β1.572

v. End procedure.573

The procedure above requires θ to be in conformity with the α-574

Factor model [25]. CCF probabilities expressed in the Multiple575

Greek Letter model would need to be converted as in [25].576

2) The Cascading Failure Model: This model is used for577

interdependencies not satisfying the CCF criteria. For instance,578

the redundancies among the standby power systems and the579

dependence of the latter on the grid and switchyard. An580

important assumption invoked in this model, however, is that581

on occurrence of the trigger event, the dependent event occurs582

immediately.583

Initially proposed in [26], the model defines interdependen-584

cies by a dependency matrix. The dependency matrix, Di, for585

node i, defines the effects of the node’s state transition on586

other nodes. It takes the form, Di = {dj1, dj2, dj3, dj4}v×4 |587

j = 1, 2, ..., v− 1, v, where dj1 is the state of i triggering the588

event, dj2, the affected node, dj3, the state the node has to589

be in to be vulnerable, and dj4, its target state after the event.590

Each row of Di defines the behaviour of an affected node,591

and v, the number of relationships. For example, consider a 2-592

component system, with each component existing in 3 possible593

distinct states. When component 1 makes a transition to state594

3, component 2 is forced to make a transition to state 2 as595

well, if and only if the latter is currently residing in state 1.596
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Since component 1 is the trigger component in this case, the597

interdependency is defined by D1 as,598

D1 =
(

3 2 1 2
)

(11)

Let a third 3-state component be added to the system. In599

addition to its effect on component 2, let the transition of600

component 1 also affect component 3, such that the latter is601

forced to state 1 if it is in state 3 at the time of the trigger602

event. To represent the overall behaviour of component 1, D1603

is updated as shown in (12), to reflect the new information.604

D1 =

(
3 2 1 2
3 3 3 1

)
(12)

(12) shows that each row of the dependency matrix represents605

a possible outcome.606

Occasionally, a state change in a node can only affect607

another node if a third node is in a certain state. This type608

of dependency is known as a joint dependency, and it is609

outside the scope of the initial model in [26]. We introduce610

the joint dependency matrix, D′ = {d′j1, d′j2, d′j3, d′j4}v×4, to611

resolve this problem. Element d′j1 defines the state the third612

node must be in to satisfy the joint dependency while d′j2,613

d′j3, and d′j4 have the same meaning as dj2, dj3, and dj4614

respectively. Assuming a certain state change in node i only615

affects, say node x, if node ω is in state σ, Di defines the616

relationship between nodes i and ω, while D′ω defines the617

relationship between ω and x. Nodes i, ω, and x are the trigger,618

intermediate, and target nodes respectively. The intermediate619

node does not undergo a state change, meaning its target state620

is the same as its vulnerable state. Therefore, in Di, the 3rd621

and 4th elements of the row corresponding to the intermediate622

node are equal. Given j = 1, for Di, d12 = ω, d13 = d14 = σ623

and for D′ω , d′11 = σ, d′12 = x. The remaining elements retain624

their meaning, as defined earlier. Let, for illustrative purposes,625

the dependency between components 1 and 3 (second row of626

D1 in (12)) only hold if component 2 is in state 2.627

D1 =

(
3 2 1 2
3 2 2 2

)
D′2 =

(
2 3 3 1

)
(13)

To represent this attribute, the second row of D1 is modified628

to reflect the relationship between components 1 and 2, and629

the relationship between components 2 and 3, defined by D′2630

as shown in (13). Notice D′2, instead of D2, has been used,631

since the relationship between components 2 and 3 is due to632

a joint dependency with another component.633

The dependency and joint dependency matrices, indeed, can
be used to represent a wide range of dependencies. However,
there are a few instances that may result in large matrices. Such
cases require an intuitive manipulation, to keep the matrix size
moderate and prevent modelling error. We introduce a negative
sign in front of the trigger or vulnerable state to signify that
the dependency is satisfied only if the component is not in
that state. This notation is analogous to the NOT-gate in fault
trees. For instance, if component 1, in the scenario above,
can affect component 3 only if component 2 is in states 2
or 1, it is efficient to exploit the NOT notation, instead of
inserting an additional row in each of D1 and D′2. Recalling
that component 2 has 3 states, state 2 OR state 1 is logically

equivalent to NOT state 3. Hence, the dependency matrices,
D1 and D′2, become,

D1 =

(
3 2 1 2
3 2 −3 −3

)
D′2 =

(
−3 3 3 1

)
634

We propose a recursive algorithm to implement the depen-635

dency matrices. If xi denotes the new/current state of node i,636

the algorithm is summarised thus;637

i. Define a register, R, to hold the affected components,638

their vulnerable, and target states.639

ii. Using Di and xi , find all components affected by the640

state change and update R with elements 2 to 4 of the641

rows representing the components.642

iii. Select the last row of R and check if its last two elements643

are equal. This row defines the dependency induced in644

component ω by component i.645

iv. If the response to the query in step (iii) is in the646

affirmative, designate the equal elements, ε, delete the647

last row of R, and;648

a) Using ω, D′ω , and xω as inputs, call steps (i) to (vii),649

noting that a row in D′ω is affected by the state change650

only if its first element is ε.651

b) Continue from step (iii).652

Else, proceed to step (v).653

v. Force the designated transition as determined in step (iii)654

and delete the last row of R. If the affected node is in655

standby, and its target state, Working, Delay, or Start-Up,656

initiate its start-up procedure.657

vi. If Dω exists, repeat steps (ii) to (vi), replacing Di and xi658

with Dω and xω respectively.659

vii. Repeat steps (iii) to (vi) until R is empty, and terminate660

the procedure.661

III. SYSTEM SIMULATION & ANALYSIS662

The system’s operation is imitated by generating random663

failure events of components and their corresponding re-664

pairs. For every component transition, the capacity vector,665

{c{i}x }M×1, of the system is updated and used to deduce the666

flow, (Y, t), through the output node. At time t = 0, the grid667

and switchyard nodes are in operation, while the Emergency668

Power Systems and Alternative Emergency Power Systems are669

in cold standby. LOOP is initiated by setting the grid (for670

grid centred LOOP) or the switchyard (for switchyard centred671

LOOP) to its failure state. The next transition parameters672

of the standby systems are sampled, and the simulation is673

moved to the earliest transition time, t. Components with674

next transition time equal to t are identified, the required675

transitions effected, their next transition times sampled, the676

new system performance computed, and the next simulation677

time determined. This cycle of events continues until offsite678

power is recovered.679

Let µold hold the node capacities at the previous system680

transition, τ , the vector of next node transition times, N , the681

number of simulation samples, and S = {sj}N , the register682

indicating the occurrence of an SBO. The indicator register, S,683

is such that, sj = 1 if an SBO occurs in the jth sample, and684

0, otherwise. The simulation algorithm is summarised thus;685
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Fig. 5. An excerpt from the SBO event tree showing headings (credit: [1])

i. Initialize the register storing the flow through the output686

node, set N = 1, S = {}, and define the simulation687

stopping criterion. The stopping criterion could be the688

number of LOOP, number of SBO, or convergence of the689

SBO probability.690

ii. Determine which component will be unavailable due to691

test or maintenance.692

iii. Set sN = 0 and τ = {∞}M , where M is the number of693

nodes in the system.694

iv. Force LOOP as described earlier, accounting for in-695

terdependencies according to the procedures described696

in Sections II-C1 and II-C2. Remember to sample the697

next transition parameters after every node transition and698

update τ . See [22] for the procedure for sampling the699

transition parameters of a multi-state node.700

v. Define µ using the current states of the nodes, that is,701

µ = {c{i}x0 }M×1 and set t = 0, µold = µ.702

vi. Determine Xout | Xout = (Y, t) and save as a function703

of time.704

vii. Set sN = sN + 1 if Xout = 0 and determine the next705

simulation time, t = min (τ ).706

viii. Find nodes with next transition time equal to t. For707

each node, force the required transition, sample its next708

transition parameters (except for nodes returning to cold709

standby), and update µ & τ .710

ix. Restart nodes returning from repairs if Xout, as previ-711

ously determined, is less than 1.712

x. If µold 6= µ;713

a) Compute Xout and set sN = sN + 1 if Xout = 0.714

b) Save Xout if different from the previous.715

c) Temporarily set the capacity of the switchyard node to716

1 if it is in ‘Shutdown’ and calculate the new system717

flow. If this flow is non-zero, set the switchyard to start-718

up, sample its next transition parameters, and update719

τ .720

xi. Set µold = µ, t = min (τ ) , and check if offsite power721

is recovered.722

xii. Repeat steps (viii) to (xi) until offsite power is recovered.723

Discard history N if sN = 0 and set N = N + 1.724

xiii. Repeat steps (ii) to (xii) until the simulation stopping725

criterion is met, and terminate algorithm.726

xiv. Compute the relevant SBO indices727

A. SBO Indices: Computation & Relevance728

The SBO frequency, fs, makes the list of the most informa-729

tive and desired SBO indices. It defines the expected number730

of times, per year, an SBO occurs at a plant. If p1 defines the731

conditional probability of an SBO given a LOOP occurring at732

frequency, fl, per year, then,733

fs = p1fl

p1 =

∑
(S > 0)

N − 1

(14)

The fraction of fs occurring at start-up is deduced from the734

number of SBO at time 0. This index could be used to735

assess the efficiency of the start-up procedure, as well as the736

vulnerability of the generators in cold standby.737

The non-recovery probability, r1 (t), defines the likelihood738

of recovery duration from an SBO accident exceeding a given739

time. It is computed as detailed in [26], and like p1, belongs740

to the set of inputs to the SBO event tree. Given it defines the741

unavailability of power at the plant, r1 (t) can be directly com-742

pared with the reliability of the SBO mitigating mechanism.743

The outcome of such a comparison would help ascertain the744

adequacy of the mitigating mechanism. In addition, fs×r1 (t)745

yields the frequency of exceedance, a measure of the overall746

SBO risk at the plant. The quantity also presents a means747

of assessing the relative effectiveness of multiple recovery748

responses or operational constraints.749

Finally, the conditional probability of a second SBO, p2,750

given an SBO has already occurred is given by,751

p2 =

∑
(S > 1)∑
(S > 0)

(15)

Knowledge of p2 may shape the recovery response on the752

occurrence of a second SBO. For instance, a plant with a753

large p2 would require the logistics used in the recovery of754

the first SBO left in the field and the operations staff kept on755

high alert. This reduces human error, ensuring a lower non-756

recovery probability, r2(t), of the second SBO.757

Generally, the conditional probability, pn, of the nth SBO758

given the (n− 1)
th SBO is expressed as,759

pn =

∑
(S > n− 1)∑
(S > n− 2)

(16)

If absolute probabilities are required instead, the denominator760

in (16) is replaced with N − 1.761
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Fig. 6. Layout of the Maanshan nuclear power plant AC distribution system (credit: Dr Shih-Kuei Chen, NTHU, Taiwan)
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B. Incorporation into the Existing Framework762

Shown in Fig. 5 is an excerpt from the SBO event tree763

presented in [1]. Of its 12 headings, only four; T(PG), EM,764

ER1, and ER2 are of relevance to SBO recovery. The first765

depicts LOOP, and requires the LOOP frequency. The second766

represents SBO occurrence, and requires the unavailability of767

the standby power systems. Here, the chain of complicated768

fault trees in the existing model can be replaced with the con-769

ditional SBO probability, p1. The last two headings represent770

offsite and standby power recovery respectively. These can be771

merged into one heading, say AC power recovery, and the772

complicated fault trees replaced with a crisp value read from773

r1 (t). With these, the core damage frequency induced by the774

first SBO is computed by solving the event tree, using standard775

procedure. For the second SBO, the first is regarded the776

initiating event. The LOOP frequency, therefore, is replaced777

with fs, p1 with p2, and r1 (t) with r2(t).778

IV. CASE STUDY: AN APPLICATION TO THE MAANSHAN779

NUCLEAR POWER PLANT IN TAIWAN780

The Maanshan plant is a two-unit, 1902 MW, Westinghouse781

PWR nuclear power plant operated by the Taiwan Power782

Company. Its offsite power is supplied by six independent783

sources, four of which are connected to the 345 kV switchyard784



IEEE TRANSACTIONS ON RELIABILITY 11

w

F

1

2

F

CS
3

4

C=0.5

C=0

C=0

C=0

TM

5

C=0

Fig. 8. Multi-state model for the main diesel generators (DG-A & DG-B)

F

1

2

F

CS

3

4

C=0.5

C=0

C=0

C=0

TM

5

w

D

D

6

7

C=0

C=0

C=0

Fig. 9. Multi-state model for the shared diesel generator (DG-5)

and the remainder, through the 161 kV switchyard. It is785

powered through two safety buses, AIE-PB-S01 and BIE-786

PB-S01, each with a dedicated Emergency Diesel Generator;787

DG-A and DG-B, respectively. A shared Emergency Diesel788

Generator, DG-5, connected as shown in Fig. 6 is available as789

backup in case any of the dedicated generators is unavailable.790

In addition to the shared Emergency Diesel Generators, are791

two Gas Turbine Generators, GT1 and GT2, connected via792

the 161kV switchyard. These generators form the Alternative793

Emergency Power System of the plant, each satisfying the794

demand on both power trains.795

During normal plant operation, the safety buses are fed796

by the main plant generator, G1, via the red lines and the797

normally closed breakers 19 & 01. On plant shut down, G1798

becomes unavailable, and the safety buses are forced to tap799
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Fig. 10. Multi-state model for the Gas Turbine Generators (GT1 & GT2)
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Fig. 11. Full system graph model showing maximum flow along links

power from the 345kV switchyard (via the black lines and the800

normally open breakers 17 & 03) or the 161kV switchyard801

(via the green lines and the normally open breakers 15 & 05).802

When these sources also become unavailable, DG-A and DG-803

B are automatically started and aligned. DG-5 is manually804

started and aligned by the plant operators on the failure of805

any of these. The manual start-up and alignment procedure806

of GT1 and GT2 is initiated when at least 2 out of the 3807
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TABLE I
HUMAN ERROR PROBABILITIES FOR GT1 & GT2

Time (h) 1 2 3 4 6 7 8 10
Probability 2.07× 10−1 2.07× 10−2 3× 10−3 3× 10−4 2× 10−4 1× 10−4 1× 10−5 1× 10−5

TABLE II
COMPONENT RELIABILITY DATA

Component Transition Distribution
Utm

CCF Parameters
Type Parameters Start-up Failure Running Failure

DG-A & DG-B
1-2 Weibull (100,1.24)

0.009 {0.979, 0.021} {0.972, 0.028}2-3 Lognormal (6.42,2)
4-3 Lognormal (5,1.2)

GT1 &GT2

4-1 deterministic 0.5

0.0099 {0.959, 0.041} {0.962, 0.038}

4-2 Weibull (200,1.5)
2-3 Lognormal (5,2)
8-3 Lognormal (7,1.8)
1-2 Weibull (100,1.05)
7-4 Weibull (0.2872,0.8194)
5-8 Weibull (0.2872,0.8194)

DG-5

1-2 Weibull (100,1.24)
2-3 Lognormal (6.42,2)
7-3 Lognormal (5,1.2)
6-1 Weibull (0.197,0.7467)
4-7 Weibull (0.197,0.7467)

Switchyard 4-1 Weibull (0.197,0.7467)
2-1 See Fig. 13

Grid 2-1 See Fig. 12
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Fig. 12. Effective repair cdf for multiple grid sources

Emergency Diesel Generators become unavailable. Following808

their successful start-up, the gas turbine generators take about809

30 minutes to become fully functional.810

A probabilistic assessment of the SBO risk of the plant due811

to grid and switchyard initiated LOOP is required.812

A. Developing the System and Component Models813

Fig. 7 is the simplified schematic of the plant’s AC power814

system, showing all the elements relevant to an SBO. DG-5,815

though serving only one bus at a time, is assumed connected816

to both buses in the system’s adjacency matrix. This implies,817

its flow is divided between the buses, contrary to what obtains818

in reality. However, since the flows from the two buses are819
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Fig. 13. Effective repair cdf for multiple switchyard nodes

emptied into the virtual output node, t, the total flow from820

the shared generator is accounted for. As shown, the six821

grid sources and the two switchyard sources have each been822

represented by single nodes, as proposed in Section II-B1.823

Nodes 1, 7, 8, and 9 are modelled as proposed in Sections824

II-B and II-B1. The switchyard, on the other hand, is modelled825

according to Fig. 3, to account for human error during its826

start-up from shut down. Since DG-A (node 5) and DG-B827

(node 6) are automatically started following a LOOP, they are828

not susceptible to human error, and, therefore are modelled829

as shown in Fig. 8. DG-5, GT1, and GT2, however, require830

human intervention for their start-up and alignment. Node 10,831

therefore, is modelled according to Fig. 9 and nodes 3 and 4,832

according to Fig. 10.833
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TABLE III
COMMON-CAUSE GROUP DEFINITION

CCG Description Attributes
Designation Value

1 Emergency Diesel Generator failure to start

ρ {5, 6}
θ {0.979, 0.021}
β1 4
β2 3

2 Emergency Diesel Generator failure to run

ρ {5, 6}
θ {0.972, 0.028}
β1 2
β2 1

3 Gas Turbine Generator failure to start

ρ {3, 4}
θ {0.959, 0.041}
β1 4
β2 3

4 Gas Turbine Generator failure to run

ρ {3, 4}
θ {0.962, 0.038}
β1 2
β2 {1, 4}

Justifying the values assigned to the state capacities of the
generators, recall the system consists of 2 safety buses (m = 2)
with each of DG-A and DG-B serving only one bus at a time
(n1 = 1). Since these generators can, however, fully meet the
demand on the bus they serve (u = 1), they are assigned a
capacity of 0.5 when working, as proposed in Section II-B.
The Gas Turbine Generators, on the other hand, can fully
serve both buses simultaneously (n1 = 2), and therefore,
have a capacity of 1 when working. From the multi-state
models, the capacity vector for the main diesel generators,
the shared diesel generator, and the gas turbine generators are
{0.5, 0, 0, 0, 0}, {0.5, 0, 0, 0, 0, 0, 0}, and {1, 0, 0, 0, 0, 0, 0, 0},
respectively. Using these parameters in conjunction with Fig.
7, the adjacency matrix of the system is derived as;

A =



0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0


Given the adjacency matrix, the other parameters of the system834

flow equations are obtained as described in Section II-A, where835

s = {1, 3, 4, 5, 6, 10} and t = 9. Fig. 11 is the system’s graph836

model showing the maximum flow along each link, derived837

from the adjacency matrix and the maximum node capacities.838

Component Reliability Data: Though realistic, the data used839

do not represent the actual data for the Maanshan plant.840

They were, however, assumed with the view to reflecting the841

reliability data used in Volumes 1 and 2 of the NUREG/CR-842

6890 report (see [1], [2]).843

The repair times for the six grid sources are lognor-844

mally distributed with means and corresponding standard de-845

viations defined by {8.99, 11.84, 8.24, 10.25, 9.61, 9.15} and846

{6.71, 4.83, 4.05, 6.61, 1.92, 5} respectively. Similarly, switch-847

yard repair times are lognormally distributed, with {8, 10.41}848

and {5.83, 2.5} respectively being the sets of means and849

corresponding standard deviations for the two switchyards.850

The effective repair distributions for the grid and switchyard851

nodes are modelled according to the proposal in Section II-B1,852

as shown in Figs. 12 and 13, respectively.853

All five standby generators are assumed to have a start-854

up failure probability of 1.756 × 10−2. Also, the human855

errors associated with the failure to complete the start-up856

procedures for GT-5 and the switchyard are assumed equal857

but one-sixth of those for GT1 and GT2. Table I defines858

the probability of the operators not completing the start-859

up of the Gas Turbine Generators within selected times.860

Using the procedure proposed in Section II-B3, the parameters861

defining transitions 7 → 4 and 5 → 8 of the Gas Turbine862

Generators were obtained. The same procedure was used to863

obtain the parameters for transitions 6 → 1 and 4 → 7 of864

DG-5 and transition 4 → 1 of the switchyard. These and865

the parameters for the remaining transitions are presented in866

Table II. The column, Utm, defines the unavailability due867

to test/maintenance of the generators. The CCF parameters868

are defined by a set in which each element represents the869

probability of a certain number of components being involved870

in any failure event initiated by the component. The number of871

components is determined by the index of the element in the872

set. For instance, from the Table, the probability that the start-873

up failure of any of the main diesel generators leads to the874

failure of the other generator is 0.021. This implies a total of875

two component failures, explaining why the probability value876

is the second element of the set (see Section II-C1 for details).877

Transition 4→ 1 of the Gas Turbine Generators depicts their878

start-up duration, which as we are told in Section IV, takes879

30 minutes, explaining why it is assigned a deterministic 0.5880

hours.881

B. Representing Component Interdependencies882

The first and easily recognizable form of interdependency883

in the system is CCF, where the failure of a generator could884

trigger the almost instantaneous failure of another generator.885

This type of interdependency is modelled according to the886
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CCF model presented in Section II-C1. DG-A and DG-B,887

as we know, are of the same design and model, different888

from the make of DG-5. Therefore, while the former are889

susceptible to CCF, DG-5 is immune. Similarly, GT1 and890

GT2 are susceptible to CCF, giving rise to four common-891

cause groups, as defined in Table III. The Table is developed892

from the CCF parameters in Table II in conjunction with the893

CCF model proposed in Section II-C1. CCG 1, for instance,894

represents the CCF due to the start-up failure of any of the895

main diesel generators. Since these generators are denoted as896

nodes 5 and 6 in the system, ρ, the set of of components in the897

CCG is defined as {5, 6}. Now, as shown in Fig. 8, the start-up898

failure of DG-A or DG-B is denoted by state 4. Also, the other899

generator could only be affected by this event if it is in cold900

standby (state 3) at the time of occurrence. This explains why901

β1 and β2 are assigned the values, 4 and 3, respectively. The902

parameters for CCG 2 to 4 are derived in a similar fashion.903

The other form of interdependency, like the grid failure ne-904

cessitating the start-up of the standby generators or the failure905

of GT-5 forcing the start-up of the gas turbine generators, is906

a little more subtle and difficult to deduce. It requires a good907

knowledge of the operating principle of the system and cannot908

be modelled by the CCF model. For this, the cascading failure909

model proposed in Section II-C2 is invoked. To ensure the910

reproducibility of the case study, the step-by-step procedure911

for developing the dependency matrices, have been shown by912

recreating the sequence of events following a LOOP.913

i. Let’s assume the occurrence of the initiating event914

(LOOP), due to the failure of the grid (node 1). As already915

stated at the beginning of Section IV, the main diesel916

generators, A (node 5) and B (node 6), are restarted917

from cold standby. This is accounted for by the first 2918

rows of the dependency matrix, D1. However, if the main919

generators are not in cold standby, maybe920

D1 = D2 =


2 5 3 1
2 6 3 1
2 5 −3 −3
2 6 −3 −3


D′5 = D′6 =

(
−3 10 3 6
−3 10 −3 −3

)
D′10 =

(
−3 3 3 7
−3 4 3 7

)
(17)

due to test/maintenance or failure, the shared standby921

generator, DG-5 (node 10), is restarted. Recalling the922

concept of joint dependency discussed in Section II-C2,923

the joint dependency between the grid and DG-5 can be924

deduced. Here, the main generators are the intermediate925

nodes, since they dictate whether or not to start the shared926

generator. This behaviour is jointly represented by the last927

two rows of D1 and the first row of D′5 in (17). Again,928

if the shared generator too is unavailable (i.e., it is not929

in cold standby), the gas turbine generators, GT1 (node930

3) and GT2 (node 4), are restarted (see Fig. 10). This931

attribute is jointly represented by D′10 and the last row932

of D′5. If, however, the gas turbine generators are not in933

cold standby on arrival of their start-up signal, no action934

is taken. This is due to the fact that the signal signifies the935

unavailability of all the standby sources at the plant. D′5936

and D′6 are equal because nodes 5 and 6 produce the same937

effect on the shared generator when unavailable for start-938

up. Similarly, D1 and D2 are equal, as the response of939

the standby systems is the same for grid and switchyard940

failures.941

D5 =


2 6 3 1
4 6 3 1
2 6 −3 −3
4 6 −3 −3

 (18)

ii. DG-A (node 5) fails to start or starts but fails to run (see942

Fig. 2). The system will first check if DG-B (node 6) is943

available for start-up and initiate its start up, if available.944

This behaviour is defined by the first two rows of D5, as945

shown in (18). The effect of the unavailability of DG-B946

on arrival of its start-up signal has already been defined in947

scenario (i) (see the last row of D1). This representation948

is adapted to account for the case when DG-A fails to949

start or run and DG-B is unavailable for start-up, in the950

last two rows of D5 (see (18)).951

D6 =


2 5 3 1
4 5 3 1
2 5 −3 −3
4 5 −3 −3

 (19)

iii. Similarly, DG-B (node 6) fails to start or starts but fails952

to run (see Fig. 8). The system will first check if DG-953

A (node 5) is available, and initiate its start-up. The954

ensuing sequence of events is similar to that in scenario955

(ii). Hence, the dependency matrix is as obtained in (19).956

iv. DG-5 in cold standby fails to start or starts but fails to run
(see Fig. 9). In this case, any repaired Emergency Diesel
Generator is restarted first, otherwise, the Gas Turbine
Generator are restarted. The ensuing possible sequence
of events are already covered by scenarios (i)-(iii), and
it is, therefore, recommended to not explicitly redefine
these in D10, for simplicity. It is deducible that the failure
of DG-5 induces the same response sequence as grid or
switchyard failure. Therefore, recreating a LOOP event
accounts for the failure of DG-5. Hence,

D10 =


2 1 2 2
2 2 2 2
4 1 2 2
4 2 2 2

 D′1 = D1 D′2 = D2

v. GT1 (node 3) starts up successfully and enters the start-957

up state (see Fig. 10). Recall, states 7 and 8 account for958

the time taken by the operator to initiate the start-up of959

the generator. However, since both GT1 and GT2 (node960

4) are in the same location, they are exposed to equal961

delays. Hence, the transitions, 7 → 4 and 5 → 8, of962

GT1 and GT2 are equal. To ensure the satisfaction of this963

constraint, when GT1 enters state 4, GT2 too is forced964

to state 4 if it is in state 7 or state 8, if it is in state965

5. Similarly, when GT1 enters state 8, GT2 is forced to966

state 8 if it is in state 5 or state 4 if it is in state 7. This967
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TABLE IV
SUMMARY OF THE STATIC SBO INDICES OBTAINED

LOOP Type p1 fs (per yr) p2 % of SBO at Start-Up Simulation Samples
Grid 0.0033 6.18× 10−3 0.0022 29.23 1× 108

Switchyard 0.0035 3.65× 10−3 0.0153 27.97 4.5× 107
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Fig. 14. Probability of SBO duration exceedance

behaviour is expressed by the first four rows of D3, as968

shown in (20).969

vi. GT2 (node 4) starts up successfully and enters the start-970

up state (see Figure 10). This scenario has the same effect971

on GT1 (node 3) as scenario (v) has on GT2. Therefore,972

the ensuing sequence of events is accounted for by the973

first 4 rows of D4, as shown in (20).974

D3 =



8 4 5 8
8 4 7 4
4 4 5 8
4 4 7 4
2 4 3 7
2 4 2 2
2 4 8 8
2 4 5 5
2 4 6 6


D4 =



8 3 5 8
8 3 7 4
4 3 5 8
4 3 7 4
2 3 3 7
2 3 2 2
2 3 8 8
2 3 5 5
2 3 6 6



D′3 = D′4 =


2 1 2 2
5 1 2 2
6 1 2 2
8 1 2 2


(20)

975

vii. GT1 fails to run. GT2 is restarted, if it is available for976

start-up, otherwise the system checks whether or not the977

failed diesel generators have been repaired. The first case978

is represented by the fifth row of D3, as shown in (20).979

The sequence of events involved in the second case is980

similar to the events following a LOOP. Therefore, a981

LOOP scenario is recreated, as shown in the last 4 rows982

of D3 and D′4. States 1, 4, and 7 have been left out of983
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Fig. 15. Composite frequency of first SBO exceedance

the possible GT2 states to necessitate the second case984

because, they mean either GT2 is already in operation985

(state 1), or on the verge of operation (states 4 and 7).986

viii. Similarly, GT2 failure to run produces the same effect on987

GT1 and the diesel generators, as in scenario (vii). The988

ensuing sequence of events is defined by D4 and D′3.989

We have not considered the sequence of events following990

the failure of the Gas Turbine Generators to start because,991

being the last standby sources to be called into operation, their992

start-up failure means the unavailability of the other standby993
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sources.994

C. Results and Discussions995

The proposed framework is implemented in the open source996

uncertainty quantification toolbox, OpenCOSSAN [27], [28]997

and used to quantify the SBO risk at the Maanshan nuclear998

power plant. For a grid and switchyard LOOP frequency of999

1.86 × 10−2 and 1.04 × 10−2 per/year respectively, the case1000

study was analysed on a 2.5GHz, E5-2670 v2 Intel R© Xeon1001

R© CPU. A 5% coefficient of variation was imposed on the1002

conditional probability of SBO as the simulation convergence1003

criterion. The analysis took about 3 hours, and the results1004

yielded are summarised in Table IV, Fig. 14, and Fig. 15. The1005

probability of exceedance gives a measure of the likelihood1006

of non-recovery from the SBO within a given time. The com-1007

posite frequency of exceedance is the sum of the frequencies1008

of exceedance yielded by the two LOOP categories.1009

As shown in Table IV, the probability of an SBO given a1010

LOOP is almost the same for both LOOP categories. The slight1011

difference is due to the fact that the Gas Turbine Generator1012

are unusable during switchyard centred LOOP. Their effect,1013

however, is prominent in mitigating the second SBO. The non-1014

recovery probability from an SBO, as shown in Fig 14, is1015

expressed as the non-recovery likelihood as a function of time1016

and number of safety buses. The overall SBO risk at the plant1017

is defined by the composite frequency of exceedance, as shown1018

in Fig. 15.1019

As a way of verifying the convergence of the simulation,1020

the product of p1 and the fraction of SBO at start-up, should1021

match the probability, p0, of the emergency power system1022

being unavailable at time 0. Bear in mind GT-5 and the Gas1023

Turbine Generator have no influence on p0, as a result of the1024

delays characterising their start-up. Therefore, the emergency1025

power system is unavailable at start-up only if DG-A (or DG-1026

B) is unavailable due to test/maintenance and DG-B (or DG-1027

A) fails to start or both are not in test/maintenance but fail to1028

start. If Utm is the unavailability due to test/maintenance of1029

DG-A and DG-B and ps, their start-up failure probability, p01030

is obtained as,1031

p0 = Utm (ps + ps) + (1− Utm) p2s

p0 = 2Utmps + (1− Utm) p2s
(21)

Substituting the required values in (21), an error of 3.17% is1032

realised for grid LOOP and 4.7%, for switchyard LOOP. Since1033

the error in each case is not in excess of 5%, the convergence1034

of the simulation is verified.1035

Ensuring an enhanced risk insight, the system was re-1036

analysed for three additional scenarios as follows;1037

• Case 2: No delays in the start-up of DG-5. This implies,1038

the effects of human error are removed.1039

• Case 3: Gas Turbine Generator start-up is simultaneous1040

with DG-A and DG-B. The generators, however, are kept1041

in warm standby after start-up.1042

• Case 4: A combination of Case 2 and Case 3.1043

Case 1 represents the scenario already analysed, and the results1044

for the four cases are summarised in Figs. 16 to 18 (please1045

note the composite frequencies in Figs. 16 (a) and (b) are1046

expressed on a log-scale). We have used absolute, instead of1047

conditional probabilities in Fig. 18, to ensure uniformity.1048

The following risk insights are inferred by the outcome of1049

the case study;1050

i. As shown in Fig. 14 that, station blackouts induced by1051

switchyard failures are more difficult to recover from1052

and, therefore, contribute more to the overall SBO risk1053

at the plant. In this light, feasible reliability improvement1054

programs should be designed to ensure the high reliability1055

of the switchyard. Such a reliability program should be1056

complemented by an efficient repair policy to keep the1057

non-recovery probability low.1058

ii. The gas turbine generators are the only difference be-1059

tween the recovery durations of grid and switchyard1060

LOOP. These generators, therefore, are very instrumental1061

to mitigating SBO risks at the plant, and their availability1062

should be kept high.1063

iii. Automating the start-up of DG-5 and initiating the start-1064

up of the Gas Turbine Generator just after LOOP guaran-1065

tees an improved resilience to SBO, as endorsed by Figs.1066

16 to 18. However, starting the Gas Turbine Generator1067

simultaneously with the Emergency Diesel Generator1068

brings with it additional costs, borne from fuel consump-1069

tion and maintenance. This decision, therefore, should be1070

preceded by a robust cost-benefit analysis. In fact, under1071

economic constraints, it is prudent to automate the start-1072

up of DG-5 only, as the difference between the outcomes1073

yielded by Case 2 and Case 4 is only just slight.1074

In this case study, we have ignored the explicit sensitivity and1075

importance analyses of the individual components, since these1076

quantities can be achieved even with the existing techniques.1077

V. CONCLUSIONS1078

Station blackout accidents, though a rare occurrence, can1079

have devastating consequences on a nuclear power plant’s abil-1080

ity to achieve and maintain safe shut down. Consequently, the1081

plant’s capability to cope and recover from such occurrences1082

makes a key input to its probabilistic risk assessment model.1083

In this paper, we have proposed an intuitive simulation1084

framework to model a nuclear power plant’s recovery from1085

station blackout accidents. The framework provides a simple1086

means of defining the complex interdependencies that often1087

characterise the operation of practical engineering systems,1088

and therefore, applicable without unrealistic assumptions. This1089

attribute, coupled with its ability to intuitively tolerate the1090

multi-state behaviour of the system’s building block, dis-1091

tinguishes it from the existing approaches. Its applicability1092

has been demonstrated by modelling the SBO recovery of1093

a pressurised water reactor, providing an informed insight1094

into its SBO risks. The proposed approach was able to fully1095

model the dynamic behaviour of the power system and provide1096

valuable insights on the SBO risk at the plant. The non-1097

recovery probability curve obtained, for instance, can be ab-1098

sorbed into the existing probabilistic risk assessment models,1099

getting rid of laborious fault trees. Since this curve also depicts1100

the unavailability of AC power, it can be directly compared1101

with the reliability of the plant’s SBO coping mechanism,1102
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Fig. 16. Comparison of composite frequencies of exceedance
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providing an easier means of determining the need for their1103

reliability improvement. It also helps ascertain the adequacy1104

of the plant’s station blackout recovery capability, without1105

revisiting the entire model. A key desirable feature of the1106

proposed framework is its wide applicability, even to non-1107

nuclear applications.1108

In spite of their well documented limitations relative to the1109

proposed framework, the existing static fault tree-based models1110

still possess desirable attributes that give them an edge in1111

importance, sensitivity, and uncertainty analyses. With this in1112

mind, the proposed framework has been developed with the1113

view to complementing their applicability, instead of serving1114

as an explicit replacement. We have, therefore, included a clear1115

description of how its output can be incorporated into these1116

models. The framework, in addition, has been implemented in1117
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Fig. 18. Comparison of second SBO probabilities

the open-source uncertainty quantification toolbox developed1118

at the Institute for Risk and Uncertainty (see [27], [28]),1119

thereby rendering it readily available.1120

The multi-state model and dependency matrices proposed,1121

create the foundation for the incorporation of additional dy-1122

namic considerations. Such considerations as the optimal num-1123

ber of maintenance teams on-site, Emergency Diesel Generator1124

failure during cold standby, optimal inspection interval, and the1125

availability of spares, are a possibility. Efforts are underway1126

to extend the framework to these considerations, other LOOP1127

categories, and incorporate epistemic uncertainties.1128
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APPENDIX1136

This Section is introduced with the view to providing a1137

detailed example of how the linear programming problem is1138

formulated, stating the exact values of the relevant parameters.1139

The goal is to enable readers to grasp, fully, the concept1140

proposed in this paper, as well as provide a benchmark for1141

validating their implementation of this concept.1142

Consider the 3-component pipeline shown in Fig. 19,
adapted from [22]. A maximum of 4 tons of oil could be
pumped from the source, Xin, to the output, Xout, where
the demand is fixed at 3.5 tons. The state-space of each of
the other components is shown, with the number beside each
state denoting the capacity of the component in that state. The
equivalent graph model of the system is shown in Fig. 20.
Notice the two extra nodes, 1 and 5, representing the source
and output, respectively. The available information is sufficient
to formulate the linear programming problem and derive its
parameters. The first step is to define the adjacency matrix,
since all the other parameters depend on it. From Fig. 20, the

adjacency matrix, A, is obtained as;

A =


0 1 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0


The next task is to deduce the edge and incidence matrices, e
and Γ, respectively. They are obtained thus,

e =


1 2
1 3
2 4
3 4
4 5

 Γ =


1 1 0 0 0
−1 0 1 0 0
0 −1 0 1 0
0 0 −1 −1 1
0 0 0 0 −1


With A, e, and Γ known, the linear programming problem is1143

formulated as follows,1144

1) At time 0, all the components are in their best per-
formance state. The inequality constraint, therefore, is
expressed as,

1 1 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 0 1




X12

X13

X24

X34

X45

 ≤


4.0
1.5
2
4

3.5


2) The equality constraint is expressed as,

 −1 0 1 0 0
0 −1 0 1 0
0 0 −1 −1 1




X12

X13

X24

X34

X45

 =

 0
0
0


3) The bounds on the flow through the edges are,

lb =


0
0
0
0
0

 ub =


1.5
2

1.5
2

3.5


4) The objective function is expressed as,

Ψ =
(
−1 −1 0 0 0

)


X12

X13

X24

X34

X45
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[3] M. Čepin, Assessment of Power System Reliability: Methods and Appli-1155

cations. London: Springer London, 2011, ch. Event Tree Analysis, pp.1156

89–99.1157



IEEE TRANSACTIONS ON RELIABILITY 19

[4] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and1158

D. F. Haasl, “Fault tree handbook,” U.S. Nuclear Regulatory1159

Commission, Tech. Rep. NUREG/CR-0492, 1981. [Online]. Available:1160

https://www.nrc.gov/docs/ML1007/ML100780465.pdf1161
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