
ar
X

iv
:1

71
0.

05
73

0v
1 

 [
q-

bi
o.

PE
] 

 1
6 

O
ct

 2
01

7

The impact of the infectious period on epidemics

Robert R. Wilkinson ∗† Kieran J. Sharkey †

Abstract

The duration of the infectious period is crucial in determining the
ability of an infectious disease to spread. We consider an epidemic model
that is network-based and non-Markovian, containing classic Kermack-
McKendrick, pairwise, message passing and spatial models as special
cases. For this model, we prove a monotonic relationship between the
variability of the infectious period (with fixed mean) and the probabil-
ity that the infection will reach an arbitrary subset of the population by
time t. The striking importance of this relationship, even under standard
assumptions, is demonstrated.

In a homogeneously mixing large population, under standard assumptions,
the central epidemiological quantity R0 (this being the expected number of sec-
ondary cases per typical primary case in an otherwise susceptible population)
only depends on the infectious period through its mean [1]. However, other im-
portant quantifiers such as the probability of a major outbreak and the initial
growth rate can depend on the variability of the infectious period; with higher
variability tending to decrease these quantities [1]. When incorporating a much
greater degree of realism such that individuals can only make contacts to their
neighbours in a contact network [2], R0 typically depends on the variability of
the infectious period and, even when R0 is held fixed, the probability that any
given individual will eventually get infected is still dependent on the variability
of the infectious period [3]. In this letter, we extend these results to a much
more general epidemic model and consider the effect of the infectious period
distribution on the fundamental probability P (A, t) that the disease will spread
to an arbitrary subset A of the population by an arbitrary time t. This proba-
bility is relevant to the likelihood of an epidemic, and the speed and extent of
its propagation.

It is commonplace to assume that the infectious period is exponentially dis-
tributed because this leads to greater mathematical tractability. In choosing
the parameter for this distribution, the modeller may try to replicate the es-
timated average infectious period or the estimated value for R0. In any case,
data shows that the exponential distribution is not very realistic for this vari-
able. For example, it has been suggested that gamma, Weibull and degenerate
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(non-random) distributions may be more realistic for diseases such as smallpox,
ebola and measles [4, 5, 6, 7]. Thus, investigating the effect of the infectious
period distribution is important for obtaining a qualitative understanding of the
ability of different diseases to propagate, and the effects of intervention strate-
gies which may modify this distribution. It is also important for informing
parameter choices in epidemic models.

The Susceptible-Exposed-Infected-Recovered (SEIR) compartmental model
for the spread of infectious diseases may be considered in a general stochas-
tic and network-based form (see, for example, [8] and [9]). Here we consider
a similar stochastic epidemic model which we construct as a non-Markovian
stochastic process taking place on an arbitrary static contact network (or graph).
We allow arbitrarily distributed exposed and infectious periods, heterogeneous
contact processes between individuals, and heterogeneity in susceptibility and
infectiousness. Many previously studied models such as Kermack-McKendrick
[10], pairwise [11, 12], message passing [9] and spatial models [13, 3] are special
cases [14].

The convex order [15], which provides a type of variability ordering for ran-
dom variables with the same mean, is central to the work that we present here.
Our main result shows that, under mild assumptions, by changing the infectious
period distributions such that they decrease in convex order, we can only in-
crease P (A, t). We discuss some important corollaries of this and then present
examples and a numerical illustration.

The most relevant previous work [3] compares two Susceptible-Infected-
Recovered (SIR) network-based epidemic models, where the infectious period
is random in one and non-random in the other, and where the ‘transmission
probability’ that an individual, given that it gets infected, will contact a given
neighbour before recovering is the same in both models. It was shown that, un-
der stronger assumptions than here, the long term probabilities limt→∞ P (A, t)
are greater (or the same) in the model with the non-random infectious period.
To relate more directly to this result, we define (following [16]) the ‘transmissi-
bility’ to be the posterior probability that an infected individual, with a given
infectious period, will make a contact to a given neighbour before recovering.
Thus, the transmissibility is a random variable since it is a function of the
infectious period, and its expected value is the transmission probability. We
show that by changing the infectious period such that the transmissibility is
decreased in convex order, which we shall see keeps R0 constant, we can only
increase P (A, t). We discuss some important corollaries of this and then present
an example and numerical illustration.

The SEIR epidemic model under consideration is defined as follows: Let
G = (V , E) be an arbitrary simple undirected graph, where V is a finite or
countably infinite set of vertices (individuals) and E is a set of undirected edges
between the vertices. For i ∈ V , let Ni = {j ∈ V : (i, j) ∈ E} be the set of
neighbours of i and let |Ni| < ∞ for all i ∈ V (the graph is thus described as
‘locally finite’). We assume that two individuals are neighbours if and only if
at least one can make direct contacts to the other. Let νi ∈ [0,∞] denote i’s
exposed (infected but not infectious) period if i is ever infected; µi ∈ [0,∞]
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is i’s infectious period if i is ever infected; ωji ∈ [0,∞] is the time elapsing
between i first becoming infectious and it making a sufficient (for transmission)
contact to j, if i is ever infected (note that the sufficient contact cannot cause
infection if it occurs after i’s infectious period has terminated); W i

out is some
variable on which all of the sufficient contact times ωji(j ∈ Ni) may depend,
e.g. a quantifier of infectiousness arising from sources other than the length
of the infectious period; W i

in is some variable on which all of the sufficient
contact times ωij(j ∈ Ni) may depend, e.g. a quantifier of susceptibility. For
t ∈ [0,∞), i makes an infectious contact to j at time t if and only if (i) i enters
the infected (as opposed to exposed) state at some time s ≤ t, (ii) ωji = t− s,
and (iii) ωji ≤ µi. Susceptible individuals enter the exposed state as soon as
they receive an infectious contact, exposed individuals immediately enter the
infected state when their exposed period terminates, and infected individuals
immediately enter the recovered state when their infectious period terminates.
Individuals may be in any state at t = 0 and may also be vaccinated.

Letting X = ∪i∈V{νi, µi,W
i
in,W

i
out, ωji(j ∈ Ni)}, the situation which we

wish to consider is where X and the initial conditions are random. We will
assume that µi is independent from X \ {µi} for all i ∈ V ; ωji and X \ {ωji}

are independent given W j
in and W i

out for all i ∈ V , j ∈ Ni; and the initial state
of the population is independent from X .

To understand the impact of the infectious periods on the likelihood, speed
and extent of epidemic spread, we will first focus on a single individual i ∈ V and
label a subset B of its neighbours using a bijection to {1, 2, . . . , |B|}. Assume
that i gets infected and consider its behaviour after it leaves the exposed state
and immediately enters the infectious state, and also assume that all of the
variables except µi and ωji(j ∈ Ni) have already been drawn from their joint
distribution. Let i 9 denote the event that i does not make an infectious
contact to neighbour 1 within time period x1 ≥ 0, neighbour 2 within time
period x2 ≥ 0, . . ., and neighbour |B| within time period x|B| ≥ 0, where the xj
are arbitrary non-negative numbers. We may now write

P ∗(i9) = P ∗(ω1i > min{x1, µi}, ω2i > min{x2, µi},

. . . , ω|B|i > min{x|B|, µi})

= E[φ(µi)], (1)

where

φ(τ) =

|B|
∏

j=1

φj(τ) (τ ∈ [0,∞)),

and,
φj(τ) = P ∗(ωji > min{τ, xj}).

We use P ∗ to indicate that we are conditioning on the values already drawn for
W i

out and W j
in(j ∈ Ni), since the ωji(j ∈ Ni) may depend on these. The form

of (1) may be understood by observing that if the infectious period takes the
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value τ and τ < xj , then for no infectious contact to j within time period xj
we only need the sufficient contact time ωji to be greater than τ (since then the
infectious contact never takes place).

Let us now consider the conditions under which φ(τ) is convex since this will
be necessary for our analytical results. It is straightforward that it is convex
if φj(τ) is convex for all j ∈ Ni, since the φj(τ) are non-negative and non-
increasing. It is also straightforward that φj(τ) is convex if the survival function

for ωji, after conditioning on any possible values for W i
out and W j

in, is always
convex; and a non-increasing PDF (probability density function) is sufficient
for a convex survival function. If contact processes are independent Poisson
processes, which is a common assumption, then the ω variables are exponential
and thus have convex survival functions. If the ω variables are independent
and gamma distributed with shape parameters less than or equal to 1 then
their survival functions will be convex. We also note that the survival function
f(x) = (1 + x/λ)−α, where λ, α > 0, for the heavy-tailed Lomax distribution
is convex on [0,∞). Moreover, since any function of the form f(x) = x−α,
where α > 0, is convex on [a,∞), then ω variables which have other heavy-
tailed distributions may have convex survival functions. It has been shown
how processes which depend on human decision-making may develop inter-event
times which have heavy-tailed distributions, and data for some such processes
do indeed indicate heavy tails [17].

An important example where φ(τ) is certainly convex is the case where
W i

in,W
i
out(i ∈ V) take values in (0, 1] and, for all i ∈ V , j ∈ Ni, we have

ωji ∼ exp(βjiW
i
outW

j
in) where βji > 0. This corresponds to a scenario where

i, while infectious, makes contacts to j according to a Poisson process of rate
βji and a contact is sufficient with probability W i

outW
j
in (a time-inhomogeneous

Poisson process could be used instead, but the rate would need to be non-
increasing).

Having discussed scenarios where φ(τ) is convex and put forth arguments
for the realism of this, we will for the remainder of the letter assume it to be
the case. We next use its convexity to prove our analytical results concerning
the effect of the infectious period distribution on the ability of the disease to
spread.

Let X1 and X2 be two random variables which take values in some interval
of the real line. If E[ψ(X1)] ≥ E[ψ(X2)] for all convex functions ψ then we say
that X1 is greater than X2 in convex order and write X1 ≥cx X2. An important
result for the convex order is that

X1 ≥cx X2 implies E[X1] = E[X2],Var(X1) ≥ Var(X2).

(2)

Another useful result is that if E[X1] = E[X2], and FX1
and FX2

cross exactly
once (where these are the cumulative distribution functions for X1 and X2),
and the sign sequence of FX2

− FX1
is −,+, then this implies that X1 ≥cx X2

[15]. We will refer to this as the graphical sufficient condition for the order.
Thus, since φ(τ) is convex, then decreasing µi in convex order can only
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decrease P ∗(i 9) because the expectation in (1) can only decrease. Since the
xj were arbitrarily chosen non-negative numbers and B was an arbitrary subset
of i’s neighbours, the transmission probability that i will make an infectious
contact to j ∈ Ni, given that i gets infected, can only increase. We will assume,
naturally, that R0 is monotonic with respect to these transmission probabilities.
Therefore, R0 can only increase.

More importantly, for all subsets A ⊂ V and all t ≥ 0, the fundamental
probability P (A, t), that a member of A will become infected before time t,
can only increase. To understand this, note that since we have already drawn
all of the variables except µi and ωji(j ∈ Ni), then either it is already known
whether or not the infection reaches subset A by time t (for instance, if all of A
are initially susceptible and ωkl > t for all k ∈ A, l ∈ Nk), or there exists some
choice of B and the xj such that this occurs if and only if i 9 does not occur;
and, as we have shown, the probability of i9 can only decrease.

Since i is an arbitrary member of V and all of the infectious period distri-
butions were arbitrary, we can repeatedly apply this argument to conclude that
P (A, t) can only increase if any subset of the infectious periods are decreased
in convex order. We note here that an entirely analogous argument, which does
not require φ(τ) to be convex, shows that P (A, t) can only increase if infectious
periods are increased in the usual stochastic order; and it is necessary that the
the means are not decreased for this order to hold.

Let us now consider what this suggests more generally about the importance
of the shape of the infectious period distributions. Firstly it is straightforward
that, for given means, the infectious periods which maximise P (A, t) are non-
random, i.e. have zero variance. This follows from the graphical sufficient
condition for the convex order which shows that any other infectious periods
with the same means are necessarily greater in convex order. Secondly, for
given means and given maximum values, i.e. bounded infectious periods, the
infectious periods which minimise P (A, t) are such that they are either equal to
zero or to their maximum values (their variance is maximal). Again, this follows
similarly from the graphical sufficient condition for the convex order. Thus, the
tendency of decreasing the variances of the infectious periods to increase the
probability that the infection will spread to a given part of the network by a
given time is made clear. This tendency is also highlighted by (2).

Gamma and Weibull distributions are realistic for the infectious periods;
they allow concentration about their mean values unlike the exponential distri-
bution. For two gamma distributions with the same mean, it is straightforward,
using the graphical sufficient condition, that the one with greater variance is
necessarily greater in convex order; the same applies for two Weibull distribu-
tions with the same mean. So if we restrict our distributions to one of theses
two families, and keep the means fixed, then decreasing the variances of the
infectious periods can only increase P (A, t). An illustration of the extent of this
increase, for the case of the gamma distribution, is shown in Fig. 1. The effect
is remarkable when one considers that the mean is fixed and we have just inter-
polated between the exponential distribution and the degenerate distribution,
both of which are commonly assumed for the infectious period. It also reveals
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Figure 1: We consider a special case of the stochastic model where the graph is
a square lattice of 900 individuals and X is mutually independent; ωji ∼ Exp(1)
for all i ∈ V , j ∈ Ni; νi = 0 for all i ∈ V ; µi ∼ Γ(k, 3/4k) for all i ∈ V ; every
individual is independently initially infected with probability 0.01 and initially
susceptible otherwise. On the left we have approximated the expected number
susceptible against time for k = 1, 2, 4, 4000, corresponding to variances of ap-
proximately 0.56, 0.28, 0.14, 0.00014, while on the right we have approximated
the expected number infected against time for k = 1, 2, 4, 4000. Each approxi-
mation was computed as the average of 1000 stochastic simulations. Here, the
mean infectious period is the same for all individuals and kept constant at 3/4.

6



the large amount of error that could be introduced, at all points in time, when
approximating the epidemic as a Markov process and using the reciprocal of the
estimated average infectious period as the recovery rate in the model.

We have shown how R0 is decreasing with respect to the variability (in the
sense of the convex order) of the infectious period. Since it may be sensible to
choose an infectious period distribution for our model such that the estimated
value of R0 for the disease is replicated, as opposed to the estimated mean of the
infectious period, then it is pertinent to consider the sensitivity of P (A, t) to the
infectious period distribution when R0 is fixed. We will assume, naturally, that
R0 may be fixed by keeping the transmission probabilities between all ordered
pairs of neighbours constant.

To proceed, let us now assume that the ω variables are mutually independent
and so we discard the W i

in,W
i
out(i ∈ V) variables; and assume that, for each

i ∈ V , the ωji(j ∈ Ni) are independent and identically distributed (i.i.d.).
However, one gain here is that we do not make any assumptions about the
survival functions of the ω variables. Again, we assume that all of the variables
except µi and ωji(j ∈ Ni) have already been drawn from their joint distribution.
Given our motivation, let Fω.i

(τ) denote P (ωji < τ) and let Zi denote the
random ‘transmissibility’ variable Fω.i

(µi). It is the transmission probability
E[Zi] which we desire to be kept constant. Now note that F−1

ω.i
(Zi) = µi where

F−1
ω.i

(τ) = sup{τ ′ : Fω.i
(τ ′) = τ}, assuming for the moment that Fω.i

(τ) is
continuous. We can write

P (i9) = E[θ(Zi)],

where

θ(τ) =

|B|
∏

j=1

θj(τ) (τ ∈ [0, 1]),

and,

θj(τ) =

{

1− τ if 1− τ ≥ P (ωji > xj)

P (ωji > xj) otherwise.

This holds because P (ωji ≥ F ∗−1
ω.i

(τ)) = 1 − τ for all τ ∈ [0, 1] and all j ∈ Ni.
If we allow Fω.i

(τ) to be discontinuous then F−1
ω.i

(τ) is undefined for all τ ∈ A,
for some A ⊂ [0, 1], but then the probability that Zi belongs to A is zero. It is
straightforward that θ(τ) is convex on [0, 1].

Thus, altering the infectious period such that Zi is decreased in convex
order can only cause P ∗(i 9) to decrease and P (A, t) to increase by the same
arguments as before. Using the graphical sufficient condition we must then have
that, keeping R0 constant, P (A, t) is maximised when the Zi are non-random.
This is the case when the infectious periods are non-random. So, whether the
infectious periods are altered such that the means are held constant, or such
that R0 is held constant (with the slightly different sets of assumptions), P (A, t)
is maximised when the infectious periods are non-random. On the other hand,
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Figure 2: We consider the same scenario as for Fig. 1 except with µi ∼
Γ(k, e3/4k − 1) for all i ∈ V . Here, the transmission probability is the same
for all ordered pairs of neighbours and kept constant at 1− e−3/4 ≈ 0.53, giving
R0 ≈ 3 × 0.53 = 1.59. For k = 1, 2, 4, 4000, the mean of the infectious period
is approximately 1.1, 0.91, 0.82, 0.75, with variance 1.2, 0.41, 0.17, 0.00014,
respectively.

P (A, t) is minimised when the Zi can only be equal to either 0 or 1. This is the
case when the infectious periods can only be zero or infinite. Thus, like with
the infectious periods themselves, there is a clear tendency for decreasing the
variances of the transmissibility variables to increase P (A, t).

Fig. 2 demonstrates the extent to which the infectious period distribution
can affect P (A, t) when R0 is held constant; it is here clearly less important
than when the means of the infectious periods are held fixed. This suggests
that we should base our choice for the infectious period distribution more on
the estimated value of R0 than on the estimated average infectious period - at
least when computing the timecourse of the number susceptible (equivalently,
the timecourse of the total number of cases). For a given epidemic model,
this also suggests the strategy of computing the transmission probability, or
R0, first and then using this to inform a new choice for the infectious period
distribution which will ease numerical solution or mathematical analysis. For
example, for Poisson contact processes, the deterministic message passing and
pairwise models [9, 12] may be solved as ordinary differential equations or delay
differential equations in the case of a zero-or-infinite infectious period or non-
random infectious period respectively. In fact, where these deterministic models
are consistent with the stochastic model [14], we would then get rigorous lower
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and upper bounds on the epidemic timecourses.
The results of this paper may also be applied to the classic deterministic

SIR model proposed by Kermack and McKendrick [10]. The model is defined
as follows:

Ṡ(t) = S(t)

[
∫ t

0

h(τ)F̄µ(τ)Ṡ(t− τ)dτ − I(0)h(t)F̄µ(t)

]

, (3)

I(t) = 1− S(t)−R(t), (4)

R(t) = R(0) +

∫ t

0

fµ(τ)[1 −R(0)− S(t− τ)]dτ, (5)

where the variables on the left hand sides represent the fraction susceptible,
infected and recovered respectively at time t; h(τ) is the rate at which an in-
dividual, that has been infected for time period τ , makes contacts to others;
and µ is the random infectious period with density function fµ and survival
function F̄µ. Let Z∗ =

∫ µ

0 h(τ)dτ such that E[Z∗] is the expected number
of infectious contacts that an infected individual will make before recovering.
Thus Z∗ plays a similar role to the previously defined transmissibility random
variable. Equations 12-15 of Kermack and McKendrick [10] may be obtained
from (3)-(5) after multiplying through by the total population size N and after
appropriately renaming the variables and functions.

Let S1(t) be given by system (3)-(5) but with µ replaced by µ1. Let S2(t)
be given by (3)-(5) but with µ replaced by µ2. Let h(τ) be continuously differ-
entiable. Assume at least one of the following conditions:

(i) µ1 ≤st µ2

(ii) µ1 ≥cx µ2 and h(τ) is non-increasing on [0,∞)

(iii) Z∗
1 ≤st Z

∗
2 (defined using µ1 and µ2 respectively)

(iv) Z∗
1 ≥cx Z

∗
2

Then for all t ≥ 0, we have S1(t) ≥ S2(t). The proof for this is in the Appendix.
Note that if individuals are assumed to make contacts according to a homoge-
neous Poisson process then h(τ) is constant and therefore non-increasing and
continuously differentiable. It is also worth noting that if h(τ) is non-increasing,
then by replacing the infectious period in the Kermack-McKendrick model by
one which is non-random, but with the same mean, a lower bound on S(t) is
achieved for all t ≥ 0.

In conclusion, for an extremely general epidemic model, we have proved a
monotonic relationship between the expected number to get infected by time t
and the variability of the infectious period (with constant mean). Our numerical
results illustrate the high sensitivity to the infectious period distribution when
the mean is fixed compared to when R0 is fixed. However, R0 is much more
difficult to compute empirically. Thus, this adds to recent research which has
sought to articulate the impact of non-Markovian dynamics in epidemic models
[18, 19, 20, 1, 21]. Notably, our results do not depend on the assumption of
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exponential contact times, the validity of which has recently been questioned
since heavy-tailed distributions have been inferred from observation [18, 17, 22].

It is unclear whether similar results can be found in compartmental struc-
tures, such as Susceptible-Infectious-Susceptible (SIS) dynamics, where individ-
uals may be infected multiple times. Indeed, it has recently been shown by Ball
et al. [23] that for a particular stochastic SIS model, in which contact processes
are Poisson, the expected total time that the system spends in any given state
only depends on the infectious period distribution through its mean.

Research sponsored by The Leverhulme Trust Grant RPG-2014-341 to KJS.

Appendix

Let us consider the special case of the stochastic model where the graph G
is an infinite n-regular tree (also known as a Bethe lattice); νi = 0 for all

i ∈ V ; µi
d
= µj for all i, j ∈ V (let µ denote the random infectious period

with this distribution); the W variables are independent from the ω variables

and so may be discarded; ωij
d
= ωkl for all j, l ∈ V , i ∈ Nj , k ∈ Nl (let ω

denote the random contact time with this distribution); and the initial states of
individuals are independent and identically distributed (i.i.d.) random variables.
Let Z = F ∗

ω(µ), where F
∗
ω(τ) = P (ω < τ), be the transmissibility.

Consider a sequence of stochastic models indexed by n = 2, 3, . . ., as defined
above, but where the density function fω depends on n as follows

fω(n)(τ) =
h(τ)

n
exp

(

−
1

n

∫ τ

0

h(τ ′)dτ ′
)

(τ ≥ 0),

and h(τ) is taken from the Kermack-McKendrick model. Note that if h(τ)
is non-increasing then the density function fω(n)(τ) is non-increasing and the
survival function F̄ω(n)(τ) is convex, for all n.

Note that Z must now depend on n, and we have Z(n) = 1−e−Z∗/n which is a
concave function of Z∗ for all n, where Z∗ is defined in the Kermack-McKendrick
model (see the main text). It is straightforward to show that a non-increasing
convex function, applied to a concave function, is a convex function. Therefore,
if the third or fourth condition holds, then E[θ(Z(n))] is greater (or the same)

if µ
d
= µ1 than if µ

d
= µ2, for all n.

Thus, the probability that an arbitrary individual is susceptible at time t ≥ 0

is greater (or the same) if µ
d
= µ1 than if µ

d
= µ2, for every model in the sequence.

Now, using Theorem 6 in [14], which tells us that as n → ∞ the probability
that an arbitrary individual is susceptible at time t converges to S(t) (since
nfω(n)(τ) → h(τ)), we have S1(t) ≥ S2(t) for all t ≥ 0.
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