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Abstract

In many radar or sonar tracking applications, the amplitude information (AI)

is known to improve data association and target state estimation in most of

multi-object filters. However, when considering targets in noisy backgrounds,

existing multi-object filters rely on a number of assumptions, relating to the

uniformity of the spatial distribution of the clutter and amplitude distribution

of the clutter being Rayleigh. These assumptions are seldom held under realistic

conditions, and as such, the underlying multi-object filters deliver a sub-optimal

tracking performance. In this paper, we incorporate the AI as part of the

multi-object filtering process to render very novel filters that can handle multi-

object tracking in much more difficult and realistic conditions. In particular,

we propose an inverse Gamma Gaussian Model for the target and clutter state,

consisting of kinematic state and return power. We then develop the inverse

Gamma Gaussian Mixture (IGGM) implementation of the RFS filters with AI.

Simulations show that proposed filters, in particular when combined with clutter

estimation and its RFS approximation, are more robust in handling a number

of realistic cases when compared against existing filters.
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1. Introduction

1.1. Background and Motivation

In the context of multi-target tracking, multi-object filters jointly estimate

the number of targets and their states from a history of measurements. How-

ever, the performance of these filters deteriorate very rapidly due to a number5

of reasons such as missed detections from non-ideal sensors, false alarms aris-

ing from non-target originating returns, and incorrect measurement-to-target

associations. On this note, by complementing the existing multi-target tracking

algorithms, such as joint probabilistic data association (JPDA) filter, multiple

hypothesis tracking (MHT) algorithm, and random finite set (RFS)-based fil-10

ters, and by incorporating the amplitude (or signal strength) information (AI),

it is possible to improve the estimation performance. This is becoming increas-

ingly feasible with modern sensors where the outputs include AI along with the

conventional kinematic measurements.

Using AI as part of the multi-target tracking has been explored before. For15

instance, in [1], AI is used to enhance the data association of the probabilistic

data association (PDA) algorithm. In [2] and [3], AI is used to enhance the

MHT algorithm. In [4], target amplitude strength is introduced into a closely-

spaced target tracking model for improving the tracking performance. In [5],

the target amplitude feature is modeled as a Rayleigh likelihood function of the20

target mean signal-to-noise ratio (SNR), and is incorporated into the probabil-

ity hypothesis density (PHD) and cardinalized PHD (CPHD) filters. In [6], a

cardinality-balanced multi-target multi-Bernoulli (CBMeMBer) filter with AI is

proposed. In [7], a more robust multi-object, multi-Bernoulli filter incorporating

AI (MeMBer-AI) is proposed to handle unknown clutter rate. In [8, 9, 10], the25

AI is used in conjunction with multi-object filtering for estimating the target

states and their radar cross sections (RCSs) for robust ground target tracking
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using airborne radar measurements. However, the direct utility of these ap-

proaches is based on one or more assumptions, including: a) spatial density of

the clutter being uniform; b) clutter amplitude being Rayleigh-distributed; and30

c) the clutter model is known a priori.

In practice, however, these assumptions rarely hold true. For instance, when

tracking a faint target over a ground- or sea- background, the AI is often same as

the background information, and thus they are non-distinguishable. Similarly,

spatial density of the clutter and/or the distribution of the clutter amplitude35

may often be non-uniform and/or non-Rayleigh, for instance when considered

over a heterogeneous terrain. As such, it is difficult to treat clutter models as

known a priori, which often leads to sub-optimal tracking performance.

1.2. Brief Survey of Related Work

A number of approaches for estimating the parameters of clutter models in40

the context of multi-object filtering have been proposed before. For instance,

conventional approaches, such as [11], estimate the parameters that characterize

the clutter model independent of the filtering. In [12] and [13], based on Poisson

clutter process assumption, a generalization of the PHD filter, called the inten-

sity filter, augments the target state space with clutter state space, which can45

estimate the clutter model while filtering. Approaches for jointly estimating the

clutter and kinematic states in an unknown clutter background are proposed

in [14] and [15]. The approaches, κ-PHD and κ-CPHD filters, perform this by

relying on a Bernoulli clutter generator. A Bernoulli clutter generator is, like a

target, a Bernoulli RFS. It generates at most a single observation at a time and50

has an unknown state. According to a Markov motion model, the state of the

clutter generator is propagated with time. The total clutter process is modeled

as the union of an unknown number of Bernoulli clutter generators. The num-

ber and states of the targets can be estimated simultaneously with the number

and states of the clutter. Mahler et al. implemented the κ-PHD and the κ-55

CPHD filters by using a Beta-Gaussian Mixture (BGM) approximation. Under

BGM approximation, the intensity function of the clutter can be estimated in
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closed-form as a Gaussian mixture. Another implementations of the κ-PHD and

the κ-CPHD filters are proposed in [16] and [17], respectively, which approxi-

mate the intensity function of the clutter by using a Normal-Wishart mixture60

(NWM). The robust CBMeMBer filter is proposed in [18] and its applicabili-

ties were demonstrated using two examples on visual tracking [19] and sensor

management [20, 21].

Although the literature presented above provides a suite of powerful tech-

niques and methods to relax the assumptions relating to the model of the clutter,65

the key limitation is that all these considered only the spatial distribution of

clutter. As such, they are not directly applicable towards relaxing any assump-

tions on the amplitude distribution of clutter. To the best of our knowledge, our

study here is the first one to make such an approach. Utilizing the AI as part

of the joint estimation of target states and parameters of the clutter model, is70

likely to lead to better outputs, and thus improved multi-object tracking perfor-

mance. In this paper, we use the AI to improve the performance of multi-object

filters in a clutter environment, with a special focus on relaxing the assumptions

outlined above.

In performing the proposed study, this paper makes the following contribu-75

tions:

• By modeling the amplitude features of the target and the clutter using

different distributions, namely the Rayleigh and theWeibull, which is often

adopted in the context of the GMTI radar or sea radar, we simultaneously

incorporate the AI into the target state filtering and clutter estimation80

steps;

• To incorporate the AI into the existing clutter-agnostic multi-object fil-

ter algorithms, such as the κ-PHD, κ-CPHD and the robust CBMeMBer

filters, we propose an inverse Gamma Gaussian (IGG) model with an

augmented state, consisting of the kinematic state and the return power,85

which are assumed to be independent of each other. Then, we develop the

IGG mixture implementation of these filters with the AI;
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• Using a number of simulations mimicking realistic scenarios that relax a

number of assumptions outlined above, we show that the our proposed AI-

incorporated multi-object filters outperform the conventional filters, and90

offer superior multi-object tracking performance.

The rest of the paper is organized as follows. In Section 2, we present

the essential background of the multi-object Bayesian filtering and demonstrate

how the amplitude information can be introduced into the multi-object Bayesian

filter and clutter estimation. In Section 3, we present the amplitude model in95

noise-only and clutter background. In Section 4, we derive the IGG model and

the IGGM implementations of the PHD, CPHD, and the CBMeMBer filters with

AI. We then evaluate the performance of our proposed approach in Section 5

using a number of simulated, yet realistic, scenarios. Finally, we conclude the

paper in Section 6.100

2. Multi-Object Bayesian Filter with Amplitude Information

2.1. Multi-Object Bayesian Filter

Robustly tracking objects in a multi-object tracking scenario is centered

around three key aspects:

1. The ability to handle the variation of the number of objects with time,105

which is directly linked to objects appearing and disappearing within and

off the region of detection;

2. The ability to handle observations coming from imperfect sensors that con-

sists of missed and false detections, which is a collection of measurements

that are not associated with the targets; and110

3. The ability to handle association of observation-to-target, which is am-

biguous when targets are closely spaced.

The aim of a multi-object Bayesian filter is to handle these three cases at the

same time by jointly estimating the number of time-varying objects, and their

states from accumulated observations.115
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To this end, let N(k) andM(k) be the number of targets and observations at

time k, along with the fact that xk,1, . . . , xk,N(k) ∈ X and zk,1, . . . , zk,M(k) ∈ Z,

are the corresponding states and observations. Corresponding multi-object state

and the multi-object observations are then represented by the following finite

sets:120

Xk =
{
xk,1, . . . , xk,N(k)

}
∈ F(X ) (1)

and

Zk =
{
zk,1, . . . , zk,M(k)

}
∈ F(Z) (2)

where F(X ) and F(Z) are the finite subsets of X and Z, respectively.

Using the random finite set formulations, the multi-object Bayesian recursion

propagates the posterior probability density of a multi-object state fk|k(Xk|Z1:k)

over time, according to125

fk+1|k(X|Z1:k) =

∫
fk+1|k(X|X ′)fk|k(X ′|Z1:k)δX ′ (3)

fk+1|k+1(X|Z1:k+1) =
fk+1|k(Zk+1|X)fk+1|k(X|Z1:k)∫
fk+1|k(Zk+1|X)fk+1|k(X|Z1:k)δX

(4)

where Z1:k = (Z1, . . . , Zk) denotes the accumulated observations up to time k,

fk+1|k(X|X ′) denotes the multi-object transition density, and fk+1|k(Zk+1|X)

denotes the multi-object likelihood. Here, the multi-object transition density

accounts for the uncertainty on the number of targets while the multi-object

likelihood accounts for the detection uncertainty.130

With (3) and (4) involving multiple integrals on the space of X , the opti-

mal multi-object Bayesian filter cannot be implemented in a computationally

tractable manner. This issue can, however, be addressed using a number of

approximations, based on the idea of propagating moment or parameterized ap-

proximations, such as PHD, CPHD and CBMeMBer filters [22, 23, 24]. Instead135

of propagating the full multi-target density fk|k(Xk|Z1:k), the PHD and CPHD
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filters propagate their first-order moments, which are called PHDs, and cardinal-

ity distributions [22, 25]. The CBMeMBer filter approximates the multi-target

density as multi-Bernoulli RFS, and thus propagates the set of multi-Bernoulli

parameters. These multi-object filters have successfully been applied across a140

range of problems stemming from a number of domains, such as image process-

ing, robotics and surveillance [26, 27, 28, 29].

In comparison to the fixed clutter models known a priori, clutter-agnostic

models, which simultaneously estimate the target and clutter states, proven to

be more effective [30]. In the following sub-sections, we outline how we intend145

to augment the capability of these robust filters by including the AI.

2.2. Amplitude Information Likelihoods

Let xt denote the augmented state of a target that contains the kinematic

state x̃t = [ptx, p
t
y, ṗ

t
x, ṗ

t
y]T , with px and py being the positions and ṗx and ṗy

being corresponding velocities. Furthermore, let σt and σc be the power-linked150

attributes of the target and the clutter, respectively. In the context of radar

signal processing, σt can either be the equivalent power of the receiver input,

RCS or mean SNR, and σc can be the power of the clutter. In this paper, we

define σt and σc as the target equivalent power and the clutter equivalent power

of the receiver input, respectively. These are the powers of baseband signals155

after preprocessing, such as frequency conversion, amplifying and demodulation.

With this definition, the augmented state xt is defined as:

xt :=

 x̃t

σt

 (5)

In addition to this, the state of clutter should also be considered when dealing

with a clutter background. Similar to (5), the augmented clutter state xc is

defined as:160

xc :=

 x̃c

σc

 (6)
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where x̃c = [pcx, p
c
y]T represents the spatial state of clutter.

Considering the fact that the observation detected from the receiver con-

sists of a two-dimensional target position z̃ and amplitude a ≥ 0, the following

assumption can be formulated.

Assumption 1. The amplitude of the signal return is independent of state165

location, and the likelihoods for target gt(z|xt) and clutter gc(z|xc) are given by

gt(z|xt) = gtz̃(z̃|x̃t)gta(a|σt) (7)

gc(z|xc) = gcz̃(z̃|x̃c)gca(a|σc) (8)

where gta(a|σt) and gca(a|σc) are the amplitude likelihood functions for target and

clutter, respectively.

Remark 1. The actual amplitude of the return signal, power and SNR of the

receiver input all strongly depend on the distance between sensor and target.170

However, in the context of radar signal processing, particularly in a radar re-

ceiver, there are several gain control techniques [31], for instance sensitivity

time control (STC), that would enable reducing the influence of the distance

on the returned amplitude. Hence, with the techniques like STC in place, the

Assumption (1) is generally valid across many cases.175

Most receivers detect targets by finding the peak of observations that exceed

the detection threshold τ > 0. Thus, the amplitude likelihoods for target and

clutter after thresholding become

gτ,ta (a|σt) =
gta(a|σt)
pτD(σt)

=
gta(a|σt)∫∞

τ
gta(a|σt)da

(9)

gτ,ca (a|σc) =
gca(a|σc)
pτFA(σc)

=
gca(a|σc)∫∞

τ
gca(a|σc)da

(10)

where pτD(σt) and pτFA(σc) are the probability of detection and probability of

false alarm, respectively.180
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For a given multi-object state Xt =
{
xt1, . . . , x

t
nt

}
and clutter state Xc ={

xc1, . . . , x
c
nc

}
, the observation set generated from the receiver is of the form

Z =
(
∪nti=1

∑
(xti)

)
∪
(
∪nci=1

∑
(xci )

)
(11)

where
∑

(xti) and
∑

(xci ) are the random finite sets generated by the single

target state xti and single clutter state xci , respectively. The generated random

finite sets either contain a single observation zi or are empty.185

The multi-object likelihoods for target and clutter, incorporating the AI are

then given by [32, 17, 5]

fk+1(Ztk+1|Xt) =

nt∏
i=1

(1− pτD(σti))×

∑
θ

∏
i:θ(i)>0

pτD(σti) · gtz̃(z̃θ(i)|x̃ti) · gτ,ta (aθ(i)|σti)
1− pτD(σti)

(12)

fk+1(Zck+1|Xc) =

nc∏
i=1

(1− pτFA(σci ))×

∑
φ

∏
i:φ(i)>0

pτFA(σci ) · gcz̃(z̃φ(i)|x̃ci ) · gτ,ca (aφ(i)|σci )
1− pτFA(σci )

(13)

where the sums are over all possible associations θ and φ between Xt and Zt

and between Xc and Zc, respectively.

As the whole measurements Zk+1 can be expressed as Zk+1 = Ztk+1 ∪Zck+1,190

the whole multi-object likelihood is given by:

fk+1(Zk+1|Ẍ) =
∑

Z∈F(Zk+1)

f(Zk+1 −Z|Xt) · f(Z|Xc) (14)

where Ẍ denotes the joint target/clutter state and the sum is over all the ele-

ments of F(Zk+1).

2.3. PHD filter with AI (PHD-AI)

The AI can be incorporated into the standard PHD filter (PHD-AI filter)195

as outlined in [33]. The PHD-AI filter can then be extended to implement the
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sequential Monte Carlo (SMC) variant of the PHD filter with the AI as discussed

in [34]. In the absence of an a priori clutter model, the time-updated PHD of

target and clutter states are given by [32, 17, 33]

Dt
k+1|k(xt) = btk+1|k +

∫
ptS(x′) · f tk+1|k(xt|x′) ·Dt

k|k(x′)dx′ (15)

Dc
k+1|k(xc) = bck+1|k +

∫
pcS(x′) · f ck+1|k(xc|x′) ·Dc

k|k(x′)dx′ (16)

respectively, where btk+1|k and bck+1|k denote the PHD of new birth target and200

clutter, respectively. The observation updates for the PHD filter [32, 17, 33] are

given by

Dt
k+1|k+1(xt)

Dt
k+1|k(xt)

= 1− pτD(σt) +
∑
z∈Z

pτD(σt)gτ,ta (a|σt)gtz̃(z̃|x̃t)
Λ̈k+1|k

(17)

Dc
k+1|k+1(xc)

Dc
k+1|k(xc)

= 1− pτFA(σc) +
∑
z∈Z

pτFA(σc)gτ,ca (a|σc)gcz̃(z̃|x̃c)
Λ̈k+1|k

(18)

Λ̈k+1|k =
〈
Dt
k+1|k, p

τ
D(σt)gτ,ta (·|σt)gtz̃

〉
+
〈
Dc
k+1|k, p

τ
FA(σc)gτ,ca (·|σc)gcz̃

〉
(19)

where 〈f, g〉 is the inner product
∫
f(x)g(x)dx.

2.4. CPHD filter with AI (CPHD-AI)

Similar to the PHD-AI extension above, the CPHD filter can also be ex-205

tended to incorporate the AI [5]. However, when the clutter background is not

known, the time-updated joint target/clutter cardinality distribution is given

by [32, 17, 5]

p̈k+1|k(n̈) =
∑
n̈≥0

p̈k+1|k(n̈|n̈′) · p̈k|k(n̈′) (20)
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p̈k+1|k(n̈|n̈′) =

n̈∑
i=0

p̈Bk+1|k(n̈− i) · Cn̈′,i · ψ̈ik(1− ψ̈k)n̈
′−i (21)

p̈Bk+1|k(n̈) =
∑

nt+nc=n̈

pB
t

k+1|k(nt) · pB
c

k+1|k(nc) (22)

ψ̈k =

〈
Dt
k|k, p

t
S

〉
+
〈
Dc
k|k, p

c
S

〉
N t
k|k +N c

k|k
(23)

where Cn̈′,i is the binomial coefficient, p̈Bk+1|k(n̈) is the joint target/clutter birth

cardinality distribution, and N t
k|k =

∫
Dt
k|k(x)dx and N c

k|k =
∫
Dc
k|k(x)dx. Sim-210

ilar to the PHD filter, the time-updated PHD of target and clutter are given by

(15) and (16), respectively.

The observation-updated joint cardinality distribution is given by

p̈k+1|k+1(n̈)

p̈k+1|k(n̈)
=

l̈Zk+1
(n̈)∑

l≥0 l̈Zk+1
(l) · p̈k+1|k(l)

(24)

l̈Zk+1
(n̈) = Cn̈,mk+1

· φ̈n̈−mk+1

k+1 (25)

φ̈k+1 =

〈
Dt
k|k, 1− p

τ
D(σt)

〉
+
〈
Dc
k|k, 1− p

τ
FA(σc)

〉
N t
k+1|k +N c

k+1|k
(26)

where N t
k+1|k =

∫
Dt
k+1|k(x)dx and N c

k+1|k =
∫
Dc
k+1|k(x)dx.

The observation-updated PHD of CPHD filters are then given by215

Dt
k+1|k+1(xt)

Dt
k+1|k(xt)

=
1− pτD(σt)

N t
k+1|k +N c

k+1|k
·
G̈

(mk+1+1)
k+1|k (φ̈k+1)

G̈
(mk+1)
k+1|k (φ̈k+1)

+
∑
z∈Z

pτD(σt)gτ,ta (a|σt)gtz̃(z̃|x̃t)
Λ̈k+1|k

(27)

Dc
k+1|k+1(xc)

Dc
k+1|k(xc)

=
1− pτFA(σc)

N t
k+1|k +N c

k+1|k
·
G̈

(mk+1+1)
k+1|k (φ̈k+1)

G̈
(mk+1)
k+1|k (φ̈k+1)

+
∑
z∈Z

pτFA(σc)gτ,ca (a|σc)gcz̃(z̃|x̃c)
Λ̈k+1|k

(28)
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G̈
(l)
k+1|k(φ̈k) =

∑
n̈≥l

p̈k+1|k(n̈) · l! · Cn̈,l · φ̈n̈−lk (29)

2.5. CBMeMBer filter with AI (CBMeMBer-AI)

The robust CBMeMBer filter proposed in [18] can estimate the unknown

clutter intensity and detection profile while filtering. In this paper, we incor-

porate the AI into the CBMeMBer filter, similar to the approach adopted to-

wards the CPHD-AI filter. For the reasons of brevity, the full details of the220

CBMeMBer-AI filter is given in Appendix A.

3. Amplitude Information Model

In this section, we consider the specific probability distributions for the tar-

get and clutter amplitude observations used in radar signal processing. We first

show the amplitude likelihood in a noise-only background and then present the225

amplitude likelihood in a clutter background.

3.1. Amplitude Likelihood in Noise Background

When processing radar returns, the target power fluctuates for a number

of reasons [31], and this is captured by Swerling models with two probability

density functions (PDF). These are exponential and fourth-degree Chi-square230

PDFs. These models can be viewed as special cases of a Chi-square density

function with a degree of 2n, given by

p(σ|σ̄, n) =
n

Γ(n)σ̄

(nσ
σ̄

)n−1

exp

(
−nσ
σ̄

)
, σ > 0 (30)

where σ̄ is the mean target power, the exponential corresponds to n = 1, while

the fourth-degree Chi-square corresponds to n = 2.

In the presence of noise, such as thermal noise, the output power of the235

receiver is a function of the target and the noise returns. Assuming a linear
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detector, coherent receiver noise has a complex Gaussian amplitude distribu-

tion prior to detection, and a Rayleigh distribution after detection. Thus, the

probability densities of amplitude a outputted by a linear envelope detector, for

noise-only and, target with noise inputs are given by240

pn(a) =
2a

σn
exp

(
− a

2

σn

)
(31)

and

ps+n(a|as) =
2a

σn
exp

(
−a

2 + a2
s

σn

)
I0(2aas/σn) (32)

respectively, where as =
√
σ is the detected signal voltage, and I0(·) is the

modified Bessel function of the first kind and zero order1. The false alarm

probability is

pτFA =

∫ ∞
τ

pn(a)da = exp

(
− τ

2

σn

)
(33)

The amplitude probability density function of the noise-only case after thresh-245

olding is

pτn(a) = exp

(
−a

2 − τ2

σn

)
(34)

The PDF of amplitude a, which depends on the mean target power, can be

derived as

p(a|σ̄, n) =

∫ ∞
0

ps+n(a|
√
σ)p(σ|σ̄, n)dσ (35)

1Notice that σn is the noise power and is not the standard deviation of the noise process

defined in signal processing literature
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Utilizing characteristic functions and Fourier transform pairs, the PDF for

the exponential and fourth-degree Chi-square models can be expressed as250

p(a|σ̄, n = 1) =
2a

σ̄ + σn
exp

(
− a2

σ̄ + σn

)
(36)

and

p(a|σ̄, n = 2) =
8a

(σ̄ + 2σn)2
exp

(
−2

a2

σ̄ + 2σn

)
·
[
σn +

σ̄a2

σ̄ + 2σn

]
≈ 8a3

(σ̄ + σn)2
exp

(
−2

a2

σ̄ + σn

) (37)

The approximation in (37) is adopted under the large SNR, i.e. σ̄ � σn, that is

the power of target signal is significantly larger than the power of the noise of

receiver. We define a general Rayleigh probability density function to describe

the amplitude in noise background as255

RL(a;σ, n) =
(2a)2n−1

(σ + σn)n
exp

(
−n a2

σ + σn

)
(38)

And using the approximated expression

pτD(σ, n) = exp

(
−n τ2

σ + σn

)
(39)

the general Rayleigh probability density after thresholding becomes

RLτ (a;σ, n) =
(2a)2n−1

(σ + σn)n
exp

(
−na

2 − τ2

σ + σn

)
(40)

3.2. Amplitude Likelihood in Clutter Background

Radar clutter returns come from objects that are of no interest to the appli-

cation in consideration, such as precipitation, vegetation, ground or sea. Clutter260

statistics can be similar to those of noise, especially when the radar resolution
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is low. Under this condition, returns from objects of no interest can be viewed

as a composition of small, nearly equal-sized scatterers, resulting in Rayleigh

distribution. However, as the radar resolution improves and scatterers change,

the clutter distributions tend to a have longer tail than the Rayleigh distribu-265

tion [35]. This can be approximated by the Weibull distribution, which is a

commonly used for approximating the natural clutter [36], and given by:

p(σ|σ̄0, b) =
1

σ̄0
bσb−1 exp

(
−σ

b

σ̄0

)
(41)

The exact probability density of the output amplitude of the receiver, when

considering returns from target and clutter, can be derived as in (32). It is

worth noticing that the clutter power is often significantly larger than that of270

the noise, and at times larger than that of the returns from targets. In most

of the cases, clutter elimination techniques, such as moving target indication

(MTI), moving target detection (MTD) or pulse-Doppler processing, may not

be as effective as intended to be, and as such, the residual clutter signal will

have the same shape as the original distribution [31]. Thus, the probability275

distribution of the amplitude a outputted by the envelope detector in a clutter

background is given by

WB(a; σ̄0, b) =
1

σ̄0
2ba2b−1 exp

(
−a

2b

σ̄0

)
(42)

where σ̄0 is the clutter equivalent power of the receiver input. Thus, the false

alarm probability in a clutter background is given by

pτFA(σ̄0, b) =

∫ ∞
τ

p(a|σ̄0, b)da = exp

(
−τ

2b

σ̄0

)
(43)

The corresponding post-threshold probability density of the clutter ampli-280

tude is given by

WBτ (a; σ̄0, b) =
1

σ̄0
2ba2b−1 exp

(
−a

2b − τ2b

σ̄0

)
(44)
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4. The IGGM-RFS-AI Filters

In this section, we first present an inverse Gamma Gaussian (IGG) augment-

ed state model. We then derive the time evolution and observation-updates for

the parameters of the IGG model. Finally, we present the IGG mixture imple-285

mentation of the RFS-AI filters.

4.1. IGG Augmented State Model

In deriving an augmented state model for the IGG, consider the following

assumption:

Assumption 2. The target return power σtk and clutter return power σck are290

conditionally independent of the kinematic states x̃tk and x̃ck, respectively.

The augmented target state xtk and clutter state xck, conditioned on Zk :=

[Z̃k ak]T , can be modeled as inverse Gamma Gaussian distributed,

p(xk|Zk) = p(σk|ak) · p(x̃k|Z̃k)

= IGAM(σk;αk|k, βk|k)×N (x̃k;mk|k, Pk|k)

= IGG(xk; ξk|k)

(45)

where IGAM(σk;αk|k, βk|k) denotes inverse Gamma probability density func-

tion defined over σ > 0 with shape parameter α > 0 and scale parameter β > 0295

so that

IGAM(σ;α, β) =
βα exp(−βσ )

Γ(α)σα+1

and N (x̃k;mk|k, Pk|k) denotes multi-variate Gaussian probability density func-

tion defined over the vector x ∈ Rnx with mean vector m ∈ Rnx and covariance

matrix P ∈ Snx+ . Therefore,

N (x;m,P ) =
exp

(
− 1

2 (x−m)TP−1(x−m)
)√

(2π)nx |P |
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Furthermore, Snx+ is the set of symmetric positive semi-definite nx×nx matrices,300

and ξk|k =
{
αk|k, βk|k,mk|k, Pk|k

}
is the set of prior IGG density parameters.

The IGG augmented state model is used in [8, 9, 10] to estimate the RCS

of targets. These approaches incorporate the SNR into the target state and

assume amplitude likelihood is Rayleigh. However, the spatial distribution and

amplitude likelihood of the clutter process are assumed to be uniform and of305

the same form as those of the targets. These assumptions are not realistic in

practical scenarios. In this paper, we exploit the IGG to model both the target

and the clutter states, and consider different likelihood functions for target state

filtering and clutter estimation.

4.2. State Transition and Observation Correction310

The state transition density that describes the prediction of the target and

clutter states between two time steps of tk and tk+1 is f(xk+1|xk). This time

evolution involves solving the following Chapman-Kolmogorov equation:

p(xk+1|Zk) =

∫
f(xk+1|xk)p(xk|Zk)dx

=

∫
fσ(σk+1|σk)IGAM(σk;αk|k, βk|k)dσ

×
∫
fx̃(x̃k+1|x̃k)N (x̃k;mk|k, Pk|k)dx̃k

(46)

Assumption 3. Kinematic states of targets and clutters follow a linear Gaus-

sian dynamical model given by

x̃k+1 = Fk+1x̃k + wk+1 (47)

where wk+1 is the zero mean Gaussian process noise with the covariance of

Qk+1, and Fk+1 is the state transition matrix. Thus, the corresponding state315

transition density is given by

fx̃(x̃k+1|x̃k) = N (x̃k+1;Fk+1x̃k, Qk+1) (48)
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With this, the prediction for the kinematic state becomes

∫
N (x̃k+1;Fk+1x̃k, Qk+1)N (x̃k;mk|k, Pk|k)dx̃k

= N (x̃k+1;mk+1|k, Pk+1|k)

(49)

where mk+1|k = Fk+1mk|k and Pk+1|k = Fk+1Pk|kF
T
k+1 +Qk+1

The integral corresponding to the return power is non-trivial to solve. To

address this, an exponential forgetting method [37] can be adopted with a for-320

getting factor of υk|k. With this, the return power prediction becomes

βk+1|k =
βk|k

υk|k
, αk+1|k =

αk|k + υk|k − 1

υk|k
(50)

This prediction has an effective window of length we, given by

we =
1

1− 1/υk|k
=

υk|k

υk|k − 1

The statistics of σ are

E[σk+1] =
βk+1|k

αk+1|k − 1
=

βk|k

αk|k − 1
= E[σk] (51)

and

V ar[σk+1] =
βk+1|k

(αk+1|k − 1)2(αk+1|k − 1)

=
υβ2

k|k

(αk|k − 1)2(αk|k − 2 + 1− υ)

>
υβ2

k|k

(αk|k − 1)2(αk|k − 2)

= υ · V ar[σk]

(52)

Equations (51) and (52) imply that the prediction corresponds to keeping325

the mean value constant while increasing the variance. Furthermore, we set

ξk+1|k, set of time-updated IGG density parameters, as

18



ξk+1|k =
{
αk+1|k, βk+1|k,mk+1|k, Pk+1|k

}
In the following, we derive the observation corrections of the IGG density

parameters with Gaussian kinematic likelihood, Rayleigh target amplitude like-

lihood, and Weibull clutter amplitude likelihood. These updates can be induced330

into the PHD filter, the CPHD filter, and the CBMeMBer filter to form closed

recursions in Section 4.3, 4.4, and 4.5, respectively.

The posterior state density p(xk+1|zk+1) is given by

p(xk+1|zk+1) =
1

K
× g(zk+1|xk+1)p(xk+1|zk)

∝ ga(ak+1|σk+1)IGAM(σk+1;αk+1|k, βk+1|k)

× gz̃(z̃k+1|x̃k+1)N (x̃k+1;mk+1|k, Pk+1|k)

(53)

where the individual measurement likelihood gz(zk+1|xk+1) in (53) describes

the relation between the measurements zk+1 ∈ Zk+1 generated by a target or a335

clutter and the corresponding state xk+1, and K is the normalizing factor given

by

K =

∫
g(zk+1|x)p(x|zk)dx

Assumption 4. The sensor has a linear Gaussian measurement model for kine-

matic state. That is,

z̃k+1 = Hk+1x̃k+1 + ek+1 (54)

where ek+1 is a white Gaussian noise with covariance Rk+1, and Hk+1 is the

measurement matrix. The likelihood function for the kinematic state is given by

gz̃(z̃k+1|x̃k+1) = N (z̃k+1;Hk+1x̃k+1, Rk+1) (55)

340
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Using the Gaussian identity, the correction for the kinematic state becomes

N (z̃k+1;Hk+1x̃k+1, Rk+1)N (x̃k+1;mk+1|k, Pk+1|k)

= N (x̃k+1;mk+1|k+1, Pk+1|k+1)N (z̃k+1; zk+1|k, Sk+1|k)
(56)

where zk+1|k = Hk+1mk+1|k and Sk+1|k = Hk+1Pk+1|kH
T
k+1 +Rk+1.

The corresponding Kalman gain, Kalman mean and Kalman variance up-

dates are

Kk+1|k = Pk+1|kH
T
k+1

(
Sk+1|k

)−1 (57)

mk+1|k+1 = mk+1|k +Kk+1|kzk+1|k (58)

Pk+1|k+1 =
(
Inx×nx −Kk+1|kHk+1

)
Pk+1|k (59)

For a large target return power, the amplitude likelihood after thresholding345

gτa(ak+1|σk+1) = RLτ (ak+1;σk+1, n). Then, the posterior density is derived as

RLτ (ak+1;σk+1, n)IGAM(σk+1;αk+1|k, βk+1|k)

= KRLτ (ak+1;αk+1|k, βk+1|k, n)IGAM(σk+1;αk+1|k+1, βk+1|k+1)
(60)

The posterior inverse Gamma parameters are given by

βk+1|k+1 = βk+1|k + na2 − nτ2, αk+1|k+1 = αk+1|k + n

And the innovation factor of the target amplitude measurement is

KRLτ (ak+1;αk+1|k, βk+1|k, n) =
(2ak+1)2n−1

[
(n− 1)α2

k+1|k + αk+1|k

]
β
αk+1|k
k+1|k

(βk+1|k + na2
k+1 − nτ2)αk+1|k+n

(61)
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For clutter return power, the amplitude likelihood after thresholding gτa(ak+1|σk+1) =

WBτ (ak+1;σk+1, b). the posterior density is derived by

WBτ (ak+1;σk+1, b)IGAM(σk+1|k;αk+1|k, βk+1|k)

= KWBτ (ak+1;αk+1|k, βk+1|k, b)IGAM(σk+1;αk+1|k+1, βk+1|k+1)
(62)

The posterior inverse Gamma parameters are given by350

βk+1|k+1 = βk+1|k + a2b − τ2b, αk+1|k+1 = αk+1|k + 1

And the innovation factor of the clutter amplitude measurement is

KWBτ (ak+1;αk+1|k, βk+1|k, b) =
2ba2b−1

k+1 αk+1|kβ
αk+1|k
k+1|k

(βk+1|k + a2b
k+1 − τ2b)αk+1|k+1

(63)

Let

Lt(zk+1;ξk+1|k, n) =

N (z̃k+1; zk+1|k, Sk+1|k)KRLτ (ak+1;αk+1|k, βk+1|k, n)
(64)

Lc(zk+1;ξk+1|k, b) =

N (z̃k+1; zk+1|k, Sk+1|k)KWBτ (ak+1;αk+1|k, βk+1|k, b)
(65)

Furthermore, ξk+1|k+1, the set of observation-updated IGG density param-

eters, is set to

ξk+1|k+1 =
{
αk+1|k+1, βk+1|k+1,mk+1|k+1, Pk+1|k+1

}
4.3. The IGGM-PHD-AI Filter

In order to derive prediction and correction equations for the IGGM-PHD-

AI filter, a number of assumptions are made here in addition to the assumptions355

already described.

Assumption 5. The current estimated PHD Dk|k is an unnormalized mixture

of IGG distributions. That is,

Dt
k|k(xtk) ≈

Jtk|k∑
j=1

ω
t,(j)
k|k IGG(xtk; ξ

t,(j)
k|k ) (66)
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Dc
k|k(xck) ≈

Jck|k∑
j=1

ω
c,(j)
k|k IGG(xck; ξ

c,(j)
k|k ) (67)

where J∗k|k is the number of components, ω∗,(j)k|k is the weight of the j-th compo-

nent, and ξ∗,(j)k|k is the density parameter of the j-th component.

Assumption 6. The intensity of the birth target and birth clutter are also an

unnormalized mixture of IGG distributions with parameter
{
ω
t,(i)
B , ξ

t,(j)
B

}btk+1

i=1
360

and
{
ω
c,(i)
B , ξ

c,(j)
B

}bck+1

i=1
, respectively.

Assumption 7. The survival probability is state independent, i.e., ptS(xt) =

ptS , p
c
S(xc) = pcS.

Utilizing (15), (16), (46) and Assumption 3, the time-updated PHD parameters

are given by365

Dt
k+1|k(xtk+1) =

Jtk|k∑
j=1

ω
t,(j)
k+1|kIGG(xtk+1; ξ

t,(j)
k+1|k) +

btk+1∑
i=1

ω
t,(i)
B IGG(xtB ; ξ

t,(j)
B ) (68)

Dc
k+1|k(xck+1) =

Jck|k∑
j=1

ω
c,(j)
k+1|kIGG(xck+1; ξ

c,(j)
k+1|k) +

bck+1∑
i=1

ω
c,(i)
B IGG(xcB ; ξ

c,(j)
B ) (69)

where ωt,(j)k+1|k = ptSω
t,(j)
k|k , ω

c,(j)
k+1|k = pcSω

c,(j)
k|k . ξt,(j)k+1|k and ξc,(j)k+1|k are derived as

in (49)–(52).

Utilizing (17), (18), (53) and Assumption 4, the observation-updated PHD

are given by

Dt
k+1|k+1(xtk+1) =

Jtk+1|k∑
j=1

ω
t,(j)
k+1|k+1IGG(xtk+1; ξ

t,(j)
k+1|k+1)

+

Mk+1∑
m=1

Jtk+1|k∑
j=1

ω
t,(m,j)
k+1|k+1IGG(xtk+1; ξ

t,(m,j)
k+1|k+1)

(70)
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Dc
k+1|k+1(xck+1) =

Jck+1|k∑
j=1

ω
c,(j)
k+1|k+1IGG(xck+1; ξ

c,(j)
k+1|k+1)

+

Mk+1∑
m=1

Jck+1|k∑
j=1

ω
c,(m,j)
k+1|k+1IGG(xck+1; ξ

c,(m,j)
k+1|k+1)

(71)

where370

ω
t,(j)
k+1|k+1 =

(
1− pτD(σ̂t)

)
ω
t,(j)
k+1|k

Λ̈
(m)
k+1|k =

Jtk+1|k∑
j=1

pτD(σ̂t)Lt(z(m)
k+1; ξ

t,(j)
k+1|k, n)ω

t,(j)
k+1|k

+

Jck+1|k∑
j=1

pτFA(σ̂c)Lt(z(m)
k+1; ξ

c,(j)
k+1|k, n)ω

c,(j)
k+1|k

(72)

ω
c,(j)
k+1|k+1 = (1− pτD(σ̂c))ω

c,(j)
k+1|k

ω
t,(m,j)
k+1|k+1 =

Lt(z(m)
k+1; ξ

t,(j)
k+1|k, n)

Λ̈
(m)
k+1|k

pτD(σ̂t)ω
t,(j)
k+1|k

ω
c,(m,j)
k+1|k+1 =

Lc(z(m)
k+1; ξ

c,(j)
k+1|k, b)

Λ̈
(m)
k+1|k

pτFA(σ̂c)ω
c,(j)
k+1|k

ξ
t,(j)
k+1|k+1 = ξ

t,(j)
k+1|k and ξc,(j)k+1|k+1 = ξ

c,(j)
k+1|k. ξ

t,(m,j)
k+1|k+1 and ξc,(m,j)k+1|k+1 are derived

as in Equations (56)–(62).

4.4. The IGGM-CPHD-AI Filter

The IGGM-CPHD-AI filter also follows Assumptions 2–7. The time-updated

parameters {
ω
t,(j)
k+1|k, ξ

t,(j)
k+1|k, ω

t,(j)
k+1|k, ξ

c,(j)
k+1|k

}
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are same as the parameters of the IGGM-PHD-AI filter and the factor for the

time-updated joint target/clutter cardinality distribution is given by375

ψ̈k =
ptS
∑Jtk|k
j=1 ω

t,(j)
k|k + pcS

∑Jck|k
j=1 ω

c,(j)
k|k∑Jt

k|k
j=1 ω

t,(j)
k|k +

∑Jc
k|k
j=1 ω

c,(j)
k|k

(73)

The factor for the observation-updated joint target/clutter cardinality dis-

tribution is given by

φ̈k+1 = 1−
pτD(σ̂t)

∑Jtk+1|k
j=1 ω

t,(j)
k+1|k + pτFA(σ̂c)

∑Jck+1|k
j=1 ω

c,(j)
k+1|k∑Jt

k+1|k
j=1 ω

t,(j)
k+1|k +

∑Jc
k+1|k
j=1 ω

c,(j)
k+1|k

(74)

The observation-undetected parameters of the CPHD filter are given by

ω
t,(j)
k+1|k+1 =

(1− pτD(σ̂t))ω
t,(j)
k+1|k∑Jt

k+1|k
j=1 ω

t,(j)
k+1|k +

∑Jc
k+1|k
j=1 ω

c,(j)
k+1|k

×
G̈

(mk+1+1)
k+1|k (φ̈k+1)

G̈
(mk+1)
k+1|k (φ̈k+1)

(75)

ω
c,(j)
k+1|k+1 =

(1− pτFA(σ̂c))ω
c,(j)
k+1|k∑Jt

k+1|k
j=1 ω

t,(j)
k+1|k +

∑Jc
k+1|k
j=1 ω

c,(j)
k+1|k

×
G̈

(mk+1+1)
k+1|k (φ̈k+1)

G̈
(mk+1)
k+1|k (φ̈k+1)

(76)

Furthermore,

ξ
t,(j)
k+1|k+1 = ξ

t,(j)
k+1|k

and

ξ
c,(j)
k+1|k+1 = ξ

c,(j)
k+1|k

Observation-detected parameters{
ω
t,(m,j)
k+1|k+1, ξ

t,(m,j)
k+1|k+1, ω

c,(m,j)
k+1|k+1, ξ

c,(m,j)
k+1|k+1

}
also are as same as the parameters of IGGM-PHD-AI filter.380
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4.5. The IGGM-CBMeMBer-AI Filter

We also provide the full details of the IGGM-CBMeMBer-AI filter in Ap-

pendix B.

4.6. Pruning and Merging

The IGGM implementation of RFS-AI filters needs pruning and merging to385

reduce the exponential growth of the number of IGG components. The pruning

procedure is similar to that of the standard GM implementation, where the

relative weights of the IGGM components are considered, and components with

negligible weight will be discarded [38].

A method for merging the mixtures of exponential family distributions is390

described in [37] and [39]. We briefly review this method prior to applying

it to IGGM. When merging multiple Gaussian mixtures, the primary task is

to determine the merging criterion, which is usually found by calculating the

distance between two distributions and comparing it to the merging threshold.

An effective distance measure is the symmetrized Kullback-Leibler divergence395

(SKLD) defined by

DSKL(p(x), q(x) = DKL(p||q) +DKL(q||p)

=

∫
p(x) log

p(x)

q(x)
dx+

∫
q(x) log

q(x)

p(x)
dx

(77)

Let p(σ) and q(σ) be defined as

p(σ) = IGAM(σ;α1, β1) (78)

q(σ) = IGAM(σ;α2, β2) (79)
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Similar to the derivation of the SKLD of Gamma distributions described

in [39], the SKLD between p(·) and q(·) is

DSKL(p(σ), q(σ)) = (α1 − α2)(ψ0(α1)− ψ0(α2) + log
β2

β1
) + (β1 − β2)(

α2

β2
− α1

β1
)

(80)

The merging criterion of IGGM should be defined over both σ and x̃, and400

the following bi-threshold criterion could be used

(DσSKL(p(σ), q(σ)) < Uσ) &
(
Dx̃SKL(p(x̃), q(x̃)) < Ux̃

)
(81)

The merging criteria Dx̃SKL(p(x̃), q(x̃)) of kinematic state x̃, which is Gaus-

sian distributed, is given in [38].

The merging is performed by minimizing the Kullback-Leibler divergence

between the mixture of distributions pΣ and the merged distribution p̄, which405

is given by

p̄(x) = arg minp̄DKL(pΣ||p̄) = arg maxp̄

∫
pΣ(x) log(p̄(x))dx (82)

Let pΣ(σ) and p̄(σ) be defined as

pΣ(σ) =

N∑
i=1

ωiIGAM(σ;αi, βi) (83)

p̄(σ) = ω̄IGAM(σ;α, β) (84)

where ω̄ =
∑N
i=1 ωi, β = ω̄α∑N

i=1 ω
αi
βi

and α is the solution to

logα− ψ0(α) +
1

ω̄

N∑
i=1

ωi(ψ0(αi)− log βi)− log

(
1

ω̄

N∑
i=1

ωi
αi
βi

)
= 0 (85)
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Table 1: Simulation Scenarios Covered by the Evaluation.

Scenario Spatial Amplitude Clutter

Distribution Distribution Rate

S1 Uniform Rayleigh 40

S2 Non-Uniform Rayleigh 40

S3 Uniform Weibull 40

S4 Non-Uniform Weibull 40

S5 Uniform Weibull 160

5. Simulation Results

We consider a number of realistic scenarios to demonstrate the performance410

of the IGGM multi-object filters with amplitude information. We outline these

scenarios in Table 1. In all scenarios, we consider the case of linear multi-

object tracking with 12 targets within the region of surveillance defined by

[−1000m, +1000m]×[−1000m, +1000m]. All targets follow the linear Gaussian

and constant velocity motion model given by the following state transition:415

xk =


1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

xk−1 +


T 2/2 0

T 0

0 T 2/2

0 T

 νk (86)

where xk represents the target state vector at time k and T = 1s is the sampling

period. The process noise νk is a zero mean white Gaussian noise with standard

deviation of 5m/s2. The linear observation model of the kinematic state is given

by

zk =

 1 0 0 0

0 0 1 0

xk +

 1 0

0 1

wk (87)

where the measurement noise wk is an independent zero mean white Gaussian420

noise with standard deviations 10m. In addition, the measurement noise is also
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independent of the process noise.

The length of the simulation is 50 seconds. The targets appear at time 1s,

10s, 20s, and 30s with two targets disappearing simultaneously at time 40s. We

show the trajectories of these targets in Fig. 1.425
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Figure 1: Target Trajectories in the xy Plane.

In the following sub-sections, we discuss the results of our evaluation for each

scenario. We compare the IGGM-CPHD-AI filter against the standard GM-

CPHD [23], GM-CPHD with the amplitude information (GM-CPHD-AI) [5],

and the BGM-CPHD filters for unknown background [40], across all scenarios.

In addition to this, we also evaluate the performance of the IGGM-CBMeMBer-430

AI filter against GM-CBMeMBer, GM-CBMeMBer-AI and BGM-CBMeMBer

filters, for Scenarios S3-S5.

The parameters used to configure the filters are given in Table 2. The prior

clutter rates in the GM-CPHD filter and the GM-CPHD-AI filter are set to

40. The target equivalent return power is 20dB, which yields the detection435

probability is pD = 0.9775. The pruning and merging procedure are performed

using the thresholds stated in Table 2.
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Table 2: Parameter Values Used in Filtering.

Parameter Value

The survival probability pS 0.99

of actual targets

The false alarm probability pFA 0.10

Detection threshold τ 2.146

Maximum Gaussian components 500

Jmax

Pruning Threshold T 10−5

Merging Threshold U 4

Birth target process Poisson RFS

Birth target process intensity ω(i)
B 0.03

Birth target process kinematic N (x;m
(i)
B , PB)

state density p(i)
B (x) m

(1)
B = [0; 0; 0; 0]T

m
(2)
B = [200; 0;−600; 0]T

m
(3)
B = [−800; 0;−200; 0]T

m
(4)
B = [−200; 0; 800; 0]T

m
(5)
B = [400; 0; 600; 0]T

m
(6)
B = [600; 0;−200; 0]T

PB = diag([10; 10; 10; 10]T )2
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5.1. Scenario S1

In this scenario, we use 400 Rayleigh clutter generators with uniform spatial

distribution to generate observations of clutter. With 0.1 false alarm probability,440

the mean clutter rate after detection is 40. Thus, the GM-CPHD filter and the

GM-CPHD-AI filter match the clutter rate. The output of the IGGM-CPHD-AI

filter in a noisy background is shown in Fig. 2, giving the x and y coordinates of

the true and estimated positions against time. As can be observed, the IGGM-

CPHD-AI filter produces accurate estimates of the target positions. Fig. 3445

shows the average optimal subpattern assignment (OSPA) miss distance [41]

with parameters p = 1 and c = 300m for various filters across 100 Monte Carlo

runs. It can be noticed that the GM-CPHD-AI filter delivers the best OSPA

miss distance, followed by the GM-CPHD, BGM-CPHD and the IGGM-CPHD-

AI filters. Clearly, incorporating the AI as part of the GM-CPHD has improved450

the performance of GM-CPHD. Although the performance of the IGGM-CPHD-

AI is inferior to GM-CPHD-AI and GM-CPHD filters, it still outperforms the

BGM-CPHD filter.
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Figure 2: IGGM-CPHD-AI filter: Variation of true tracks and their estimates

against time in the x and y coordinate space (for S1).
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Figure 3: Variation of OSPA miss distance against time for GM-CPHD, GM-

CPHD-AI, BGM-CPHD, and IGGM-CPHD-AI filters in uniform Rayleigh back-

ground (S1).

5.2. Scenario S2

In this scenario, the actual clutter rate is still 40. The spatial distribution455

under this scenario is the sum of four Gaussian spatial distributions with the cen-

ter positions of [0m, 0m], [−500m, −500m], [500m, −500m], and [0m, 500m],

and with the variance of [100m2, 100m2]. We show the resulting performance in

Fig. 4. From the results, it is apparent that the IGGM-CPHD-AI filter delivers

the best performance, followed by the GM-CPHD-AI and other filters. The per-460

formance of the GM-CPHD and GM-CPHD-AI are sub-optimal to that of the

IGGM-CPHD-AI, primarily due to the use of an incorrect model for the spatial

distribution of the clutter. However, GM-CPHD-AI performs better than the

GM-CPHD with the AI incorporated.

5.3. Scenario S3465

In this scenario, the amplitude of clutter comes from Weibull generators

with the parameter b = 0.8. The clutter power and detection threshold are the
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Figure 4: Variation of OSPA miss distance against time for GM-CPHD, GM-

CPHD-AI, BGM-CPHD, and IGGM-CPHD-AI filters in non-uniform Rayleigh

background (S2).

same as in Scenario S1, but with the actual value for the false alarm probability

increased to pFA = 0.39. To render a fair comparison and to fit the a priori

clutter model with 40 clutter rate, the number of clutter generators is decreased470

from 400 to 100. The resulting performance of various filters, in terms of OSPA

miss distance, is shown in Fig. 5. In 5(a), we show the performance of various

CPHD filters while we show the performance of various CBMeMBer filters in

Fig. 5(b). It is obvious that the GM-CPHD filter and the GM-CBMeMBer filter

outperform the methods, which have the clutter estimation, since the prior spa-475

tial distribution of clutter in these two filter matches the scenario configuration.

Comparing Fig. 3 and 5(a), reveals that an incorrect amplitude model, despite

having same spatial distributions, is likely to lead to loss of performance.

5.4. Scenario S4

We exploit the Weibull clutter generator with non-uniform spatial distribu-480

tion in this scenario. The performance results for various CPHD and CBMeM-

Ber filters are presented in Figures 6(a) and 6(b), respectively. In both cases,
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AI filters
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Figure 5: Variation of OSPA miss distance with time for various filters in uni-

form Weibull background (S3).

it can be observed that IGGM-CPHD-AI and the IGGM-CBMeMBer-AI filters

can handle the non-uniform spatial distribution of the clutter much better than

other filters.485

5.5. Scenario S5

For this scenario, we maintain 400 Weibull clutter generators to form a high

clutter level. The resulting performance is shown in Fig. 7. It can be noticed

that almost all but the IGGM-CPHD-AI filter suffer a large loss of performance,

with their performance not improving with time at all. From the results, it490

is also evident that the proposed filter is more robust in cases where clutter

background is strong and AI from target and clutter are non-distinguishable.

6. Conclusions

In this paper, we have demonstrated how the AI can be incorporated into

the multi-object Bayesian filter. In particular, we have used the inverse Gamma495

Gaussian model to capture the return powers of the target and clutter. By

developing a suite of computationally tractable approximations of these filters
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Figure 6: Variation of OSPA miss distance with time for various filters in non-

uniform Weibull background (S4).
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Figure 7: OSPA miss distance versus time for GM-CPHD, GM-CPHD-AI,

BGM-CPHD, and IGGM-CPHD-AI filters in strong nonuniform Weibull back-

ground (S5).
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and by combining these models with the Gaussian mixture implementation for

the PHD, CPHD, and the CBMeMBer filters, we proposed a number of novel

filters capturing the AI, namely IGGM-PHD-AI, IGGM-CPHD-AI, and IGGM-500

CBMeMBer-AI filters. Using an evaluation involving a number of simulation

studies, reflecting a suite of realistic problems, we have demonstrated that the

proposed filters with AI can simply outperform their counterparts which lack the

AI. These results are encouraging and show that multi-object Bayesian filters

with AI can help in improving the tracking performance in clutter backgrounds.505

In fact, embedding AI helps in relaxing a number of assumptions about the

spatial uniformity of the clutter or their amplitude distribution being Rayleigh-

distributed. In the future, we will apply the proposed method to the multi-

object trackers, such as the generalized labeled multi-Bernoulli (GLMB) filter

[42, 43] and the labeled multi-Bernoulli (LMB) filter [44], which can estimate510

object trajectories and their labels, and evaluate the labeling errors [45] of the

multi-object trackers with AI in clutter background.
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Appendix A. CBMeMBer filter with AI (CBMeMBer-AI)

For the purpose of extending the CBMeMBer filter with AI, especially when660

the cardinality distribution of the clutter and the entire clutter PHD are un-

known, consider a multi-Bernoulli RFS defined as

Π̈k|k =
{
r̈ik|k, p

i
k|k(xt), qik|k(xc)

}ν̈k|k
i=1

(A.1)

where, in each Bernoulli RFS, r̈ik|k is the existence probability, pik|k(xt) is the

target state probability density and qik|k(xc) is the clutter state probability den-

sity.665

The time-updated multi-Bernoulli RFS can then be expressed as

Π̈k+1|k = Π̈persist
k+1|k ∪ Π̈birth

k+1|k

=
{
r̈iP , p

i
P (xt), qiP (xc)

}ν̈k|k
i=1
∪
{
r̈iB , p

i
B(xt), qiB(xc)

}b̈k+1

i=1

=
{
r̈ik+1|k, p

i
k+1|k(xt), qik+1|k(xc)

}ν̈k+1|k

i=1

(A.2)

where ν̈k+1|k = ν̈k|k + b̈k+1 and the components of the persisting multi-

Bernoulli RFS are given by [32, 17, 7, 6]

r̈iP = r̈ik|k ·
(〈
pik|k, p

t
S

〉
+
〈
qik|k, p

c
S

〉)
(A.3)

piP (xt) =

〈
pik|k, p

t
S · f tk+1|k(xt|·)

〉
〈
pik|k, p

t
S

〉
+
〈
qik|k, p

c
S

〉 (A.4)

qiP (xc) =

〈
qik|k, p

c
S · f ck+1|k(xc|·)

〉
〈
pik|k, p

t
S

〉
+
〈
qik|k, p

c
S

〉 (A.5)
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The observation-updated multi-Bernoulli RFS has the form [32, 17, 7, 6]

Π̈k+1|k+1 = Π̈legacy
k+1|k+1 ∪ Π̈update

k+1|k+1

=
{
r̈iL, p

i
L(xt), qiL(xc)

}ν̈k+1|k

i=1
∪
{
r̈jU , p

j
U (xt), qjU (xc)

}m̈k+1

j=1

=
{
r̈ik+1|k+1, p

i
k+1|k+1(xt), qik+1|k+1(xc)

}ν̈k+1|k+1

i=1

(A.6)

where ν̈k+1|k+1 = ν̈k+1|k + m̈k+1 and the components of the legacy multi-670

Bernoulli RFS are given by [32, 17, 7, 6]

r̈iL =
r̈ik+1|k ·

(
1−

〈
pik+1|k, p

τ
D

〉
−
〈
qik+1|k, p

τ
FA

〉)
1− r̈ik+1|k ·

(〈
pik+1|k, p

τ
D

〉
+
〈
qik+1|k, p

τ
FA

〉) (A.7)

piL(xt) =
pik+1|k · (1− p

τ
D(σt)))

1−
(〈
pik+1|k, p

τ
D

〉
+
〈
qik+1|k, p

τ
FA

〉) (A.8)

qiL(xc) =
qik+1|k · (1− p

τ
FA(σc)))

1−
(〈
pik+1|k, p

τ
D

〉
+
〈
qik+1|k, p

τ
FA

〉) (A.9)

The components of the updated multi-Bernoulli RFS are given by [32, 17,

7, 6]

r̈jU =

∑ν̈k+1|k
i=1

r̈ik+1|k(1−r̈ik+1|k)·ηj1(
1−r̈i

k+1|k·η2
)2

∑ν̈k+1|k
i=1

r̈i
k+1|k·η

j
1

1−r̈i
k+1|k·η2

(A.10)

pjU (xt) =

∑ν̈k+1|k
i=1

r̈ik+1|k
1−r̈i

k+1|k
ηj3(xt)∑ν̈k+1|k

i=1

r̈i
k+1|k

1−r̈i
k+1|k

· ηj1
(A.11)

qjU (xc) =

∑ν̈k+1|k
i=1

r̈ik+1|k
1−r̈i

k+1|k
ηj4(xc)∑ν̈k+1|k

i=1

r̈i
k+1|k

1−r̈i
k+1|k

· ηj1
(A.12)
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where

ηj1 =
〈
pk+1|k, p

τ
Dg

τ,t
a (aj |·)gtz̃(z̃j |∗)

〉
+
〈
qk+1|k, p

τ
FAg

τ,c
a (aj |·)gcz̃(z̃j |∗)

〉
η2 =

(〈
pk+1|k, p

τ
D

〉
+
〈
qk+1|k, p

τ
FA

〉)

ηj3(xt) = pik+1|k(xt) · pτD(σt)gτ,ta (aj |σt)gtz̃(z̃j |x̃t)

and675

ηj4(xc) = qik+1|k(xc) · pτFA(σc)gτ,ca (aj |σc)gcz̃(z̃j |x̃c)

Appendix B. The IGGM-CBMeMBer-AI Filter

The following assumption is made about the IGGM implementation of the

CBMeMBer-AI filter.

Assumption 8. The current estimated parameters pk|k and qk|k in Multi-

Bernoulli RFS are an unnormalized mixture of IGG distributions. That is,

pk|k(xtk) ≈
Jtk|k∑
j=1

ω
t,(j)
k|k IGG(xtk; ξ

t,(j)
k|k ) (B.1)

qk|k(xck) ≈
Jck|k∑
j=1

ω
c,(j)
k|k IGG(xck; ξ

c,(j)
k|k ) (B.2)

The multi-Bernoulli RFS can also be represented by the set of parameters

{
r̈ik|k,

{
ω
t,(i,j)
k|k , ξ

t,(i,j)
k|k

}Jtk|k
j=1

,
{
ω
c,(i,j)
k|k , ξ

c,(i,j)
k|k

}Jck|k
j=1

}ν̈k|k
i=1
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Thus, the time-updated parameters of the Multi-Bernoulli RFS are given by680

r̈ik+1|k = r̈ik|k ·

ptS J
t
k|k∑
j=1

ω
t,(i,j)
k|k + pcS

Jck|k∑
j=1

ω
c,(i,j)
k|k

 (B.3)

ω
t,(i,j)
k+1|k =

ptSω
t,(i,j)
k+1|k

ptS

Jt
k|k∑
j=1

ω
t,(i,j)
k|k + pcS

Jc
k|k∑
j=1

ω
c,(i,j)
k|k

(B.4)

ω
t,(i,j)
k+1|k =

ptSω
t,(i,j)
k+1|k

ptS

Jt
k|k∑
j=1

ω
t,(i,j)
k|k + pcS

Jc
k|k∑
j=1

ω
c,(i,j)
k|k

(B.5)

With the definitions of

St,(i)ω =

Jtk+1|k∑
j=1

ω
t,(i,j)
k+1|kp

τ
D

and

Sc,(i)ω =

Jck+1|k∑
j=1

ω
c,(i,j)
k+1|kp

τ
FA

The parameters of the legacy multi-Bernoulli RFS are given by

r̈L,ik+1|k+1 =
r̈ik+1|k ·

(
1− St,(i)ω − Sc,(i)ω

)
1− r̈ik+1|k ·

(
S
t,(i)
ω + S

c,(i)
ω

) (B.6)

ω
L,t,(i,j)
k+1|k+1 =

ω
t,(i,j)
k+1|k · (1− p

τ
D)

1−
(
S
t,(i)
ω + S

c,(i)
ω

) (B.7)

ω
L,c,(i,j)
k+1|k+1 =

ω
c,(i,j)
k+1|k · (1− p

τ
FA)

1−
(
S
t,(i)
ω + S

c,(i)
ω

) (B.8)

44



With the definitions of

T t,(m,i)ω =

Jtk+1|k∑
j=1

ω
t,(i,j)
k+1|k · p

τ
D · Lt(z

(m)
k+1; ξ

t,(i,j)
k+1|k, n)

and685

T c,(m,i)ω =

Jck+1|k∑
j=1

ω
c,(i,j)
k+1|k · p

τ
FA · Lc(z

(m)
k+1; ξ

c,(i,j)
k+1|k , b)

The parameters of the updated multi-Bernoulli RFS are given by

r̈
U,(m)
k+1|k+1 =

∑ν̈k+1|k
i=1

r̈ik+1|k(1−r̈ik+1|k)·(T t,(m,i)ω +T c,(m,i)ω )(
1−r̈i

k+1|k·
(
S
t,(i)
ω +S

t,(i)
ω

))2

∑ν̈k+1|k
i=1

r̈i
k+1|k·

(
T
t,(m,i)
ω +T

c,(m,i)
ω

)
1−r̈i

k+1|k·
(
S
t,(i)
ω +S

t,(i)
ω

) (B.9)

ω
U,t,(m,j)
k+1|k+1 =

∑ν̈k+1|k
i=1

r̈ik+1|k
1−r̈i

k+1|k
ω
t,(i,j)
k+1|k · p

τ
D · Lt(z

(m)
k+1; ξ

t,(i,j)
k+1|k, n)∑ν̈k+1|k

i=1

r̈i
k+1|k

1−r̈i
k+1|k

·
(
T
t,(m,i)
ω + T

c,(m,i)
ω

) (B.10)

ω
U,c,(m,j)
k+1|k+1 =

∑ν̈k+1|k
i=1

r̈ik+1|k
1−r̈i

k+1|k
ω
c,(i,j)
k+1|k · p

τ
FA · Lc(z

(m)
k+1; ξ

c,(i,j)
k+1|k , b)∑ν̈k+1|k

i=1

r̈i
k+1|k

1−r̈i
k+1|k

·
(
T
t,(m,i)
ω + T

c,(m,i)
ω

) (B.11)
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