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Abstract  
 

USP30 is an integral protein of the outer mitochondrial membrane that counteracts PINK1 and 

Parkin-dependent mitophagy following acute mitochondrial depolarisation. Here we use two 

distinct mitophagy reporter systems to reveal tonic suppression by USP30, of a PINK1-dependent 

component of basal mitophagy in cells lacking detectable Parkin. We propose that USP30 acts 

upstream of PINK1 through modulation of PINK1-substrate availability and thereby determines the 

potential for mitophagy initiation. We further show that a fraction of endogenous USP30 is 

independently targeted to peroxisomes where it regulates basal pexophagy in a PINK1- and 

Parkin-independent manner. Thus, we reveal a critical role of USP30 in the clearance of the two 

major sources of ROS in mammalian cells and in the regulation of both a PINK1-dependent and a 

PINK1-independent selective autophagy pathway. 
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Introduction 

Loss of function mutations in the E3-ligase Parkin and the kinase PINK1 are the most common 

known causes of familial early onset Parkinson’s disease (PD) [1]. Both proteins play a key role in 

the controlled clearance of damaged mitochondria by mitophagy [1,2]. This process is thought to 

involve the engulfment of dysfunctional mitochondrial fragments in an autophagic membrane for 

safe disposal in lysosomes. Failure to clear damaged mitochondria results in the accumulation of 

toxic reactive oxygen species (ROS) and cell death, in particular of the dopaminergic neurons of 

the substantia nigra in PD patients. From a mechanistic point of view, the key signal initiating 

mitophagy, is the generation of phospho-ubiquitin by PINK1 [3]. PINK1 is usually unstable but 

accumulates at depolarised or otherwise compromised mitochondria [4]. Phospho-ubiquitin 

chains can directly recruit specific autophagy receptors, Optineurin and NDP52, which in turn 

engage the autophagy machinery and nascent autophagic membranes [4,5]. Phospho-ubiquitin 

also activates Parkin, which itself becomes phosphorylated by PINK1 on a topologically equivalent 

residue in its UBL domain. This leads to further ubiquitylation of outer mitochondrial membrane 

(OMM) proteins and amplification of the autophagy signal [4,6-9].  

 

USP30 is the only deubiquitylase (DUB) constitutively associated with the OMM, where it has been 

shown to counteract Parkin-dependent mitophagy by deubiquitylating OMM proteins, in 

particular TOMM20 [10-14]. Depletion of USP30 in Parkin-overexpressing cells promotes the 

clearance of mitochondria in response to mitochondrial depolarising agents [10,12]. This suggests 

that USP30 may be an attractive target for therapeutic approaches in PD. However much of the 

current data rely on cells that are engineered to over-express large amounts of Parkin and which 

are subjected to an acute depolarising trigger. Much less is known about the relevance of USP30 

function in unperturbed cells expressing limiting amounts of endogenous Parkin, which precludes 

the whole-scale clearance of the mitochondrial network and thus cannot be monitored by 

straightforward western blotting techniques. 

 

Here, we have made use of two previously described fluorescent mitophagy reporter systems to 

monitor basal mitophagy in the absence of Parkin overexpression. We show that USP30 regulates 

basal mitophagy in a PINK1- (but not Parkin-) dependent manner, whilst PINK1 depletion on its 

own has no effect. Our data lead us to propose a new model that places USP30 upstream of 

PINK1, where it could determine the threshold for mitophagy initiation by tonically suppressing 
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basal ubiquitylation of specific outer mitochondrial membrane proteins. This model reconciles the 

reported poor activity of USP30 on phosphorylated ubiquitin chains [15,16] with its ability to 

modulate PINK1-dependent mitophagy [10,12]. Intriguingly, we find a separate pool of USP30 

associated with peroxisomes where it limits the basal level of pexophagy in a manner that does 

not require PINK1 function. Thus we reveal a critical role of USP30 in the clearance of the two 

major sources of ROS in mammalian cells and in the regulation of both a PINK1 dependent and a 

PINK1-independent selective autophagy pathway. 

 

Results and Discussion 

Enhancement of basal mitophagy by USP30 depletion is dependent on PINK1 

We previously showed that depletion of USP30 in Parkin-overexpressing RPE1 cells accelerates the 

depolarisation-induced ubiquitylation and degradation of TOMM20 in a PINK1-dependent fashion 

[12]. The expression level of Parkin in these cells by far exceeds the endogenous levels seen across 

panels of cell lines. Moreover, in order to observe a synchronised and complete clearance of 

mitochondria, an acute depolarising trigger, for example CCCP or a combination of Antimycin A 

and Oligomycin A, is required. Naturally occurring, sporadic mitophagy events in unperturbed cells 

can be monitored by mitochondrially targeted, pH-sensitive fluorescent reporters that respond to 

the acidic environment of lysosomes, the final destination of eliminated mitochondrial remnants. 

Two main systems have been reported: a mitochondrial matrix targeted Keima-reporter (mt-

Keima), which changes its excitation profile in response to pH [17], and an OMM-targeted 

mCherry-GFP-Fis1(101-152) chimera (MGFIS) [18]. The latter responds to low pH with a loss of 

green fluorescence leading to the emergence of “red only” lysosomal punctate structures 

comprising mitochondrial remnants (mitolysosomes), which provide a quantitative measure of 

mitophagy events.  

 

Depletion of USP30 in U2OS-MGFIS cells using two individual siRNAs (D1 and D3) results in a clear 

increase of mitophagy over a 72 h period (Fig. 1A, B). Separating cells into categories according to 

the number of “red” punctate structures (dots), allows us to capture more accurately the response 

of individual cells within the population. This reveals a highly significant shift in the number of red 

puncta per cell (Fig. 1B). Concomitant depletion of ATG7 abolished the enhancement of 

mitophagy seen in USP30 depleted cells, indicating that this process is contingent on a canonical 

core component of the autophagy machinery (Fig. 1C).  
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We wondered whether by analogy with the role of USP30 in Parkin-overexpressing cells, this 

increase in mitophagy was dependent on PINK1. Depleting PINK1 did not affect basal levels of 

mitophagy, in agreement with two recent reports in mitophagy reporter flies and mice [19,20]. 

However, PINK1 depletion did suppress the enhancement of mitophagy seen upon USP30 

knockdown (Fig. 1D). We did not observe a corresponding requirement for Parkin, which is already 

undetectable by western blotting in these cells (Fig. EV1A). Given that FIS1 has been shown to 

localise to both mitochondria and peroxisomes, a small fraction of the MGFIS1 mitophagy reporter 

could in principle be targeted to peroxisomes [21]. Thus, we further validated these experiments 

in RPE1 cells that were transiently transfected with the mt-keima reporter, which is targeted to 

the mitochondrial matrix. USP30 depletion again enhanced basal mitophagy approximately two-

fold and this effect is contingent on PINK1 (Fig. 1E). Note that RPE1 cells, like U2OS cells, do not 

express detectable levels of Parkin. Taken together, these results suggest that USP30 depletion 

unmasks a distinct component of basal mitophagy that is PINK1- but not Parkin-dependent and is 

tonically suppressed by USP30 in control cells.  

 

Our data showing that USP30 suppresses a PINK1-dependent component of basal mitophagy, 

indicate a link between USP30 function and phospho-ubiquitin, the key substrate of PINK1 in 

mitophagy. However, USP30 itself is unable to process phosphorylated ubiquitin chains efficiently 

[15,16]. Our epistatic findings are compatible with a working model in which USP30 does not 

merely act downstream of PINK1 and Parkin, but rather restricts the basal ubiquitylation status of 

one or several putative trigger OMM-proteins in range of PINK1. This limits PINK1 substrate and in 

turn the generation of recruitment sites for selective autophagy receptors (and Parkin). PINK1 has 

a high turnover rate, which is contingent on its engagement with the mitochondrial import system 

and as a result it continuously surveys the mitochondrial environment. Constitutive USP30 activity 

may thus serve to prevent unscheduled initiation of mitophagy whilst allowing the system to be 

held at a hair trigger. In this scenario, USP30 acts upstream of PINK1 to set the threshold for 

induction of the mitophagy process and its depletion leads to an increase in the incidence of 

mitophagy events (Fig. 1F).  

 

USP30 localises to peroxisomes  

Imaging USP30-GFP at low expression levels in either U2OS or hTERT-RPE1 cells, we noticed a 

separate population of punctate structures in addition to the mitochondrial localisation, that has 
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previously been observed [13,14]. These punctate structures were reminiscent of peroxisomes, 

single membrane organelles that share with mitochondria a partially overlapping proteome and 

interlinked metabolic functions [22-24]. The punctate pool of USP30 colocalises well with 

peroxisomal proteins, Catalase and PMP70 (Fig. 2A and Fig. EV2A,B). Peroxisomal matrix proteins 

encode a C-terminal consensus motif (SKL) that can be used to target fluorophores to the matrix of 

peroxisomes. Live cell imaging of Cherry-SKL marked peroxisomes in USP30-GFP expressing cells 

provides further confirmation for peroxisomal targeting of USP30 and illustrates the dynamic 

interactions between the mitochondrial network and peroxisomes (Fig. 2A and Movie EV1). 

Immunofluorescence microscopy of SHSY5Y cells allowed us to visualise endogenous USP30, which 

is more abundant in these cells. In addition to the well-characterised mitochondrial localisation, 

we detected a siRNA-sensitive pool of USP30 that is associated with peroxisomes (Fig. 2B, C). 

Further confirmation of the association of an endogenous pool of USP30 with peroxisomes was 

obtained using a well established, orthogonal subcellular fractionation approach (Fig. 2D, E; 

[25,26]). Density gradient centrifugation facilitates the separation of peroxisome-enriched high 

density fractions (Fig. 2D, L1, L2) from the lighter mitochondrial fractions (Fig. 2D, L5, L6). Given 

that the surface area of mitochondria, even in HepG2 cells, by far exceeds that of peroxisomes, it 

is not surprising that the bulk of USP30 co-migrates with mitochondria. However, we also detect a 

distinct peak of USP30 in the peroxisomal fraction (Fig. 2D). Overall, the distribution of USP30 

across the gradient is very comparable to that of glutathione-S-transferase κ (GSTK1), which is also 

shared by peroxisomes and mitochondria [27].  

 

Targeting of USP30 to peroxisomes is independent of mitochondria 

We wondered how USP30 reaches the peroxisomes and first considered the possibility of prior 

insertion into mitochondria followed by shuttling to peroxisomes. McBride and colleagues have 

described a pathway linking mitochondria and peroxisomes that relies on the formation of 

mitochondrial derived vesicles and requires the core component of the retromer complex, VPS35 

[28]. This pathway has previously been proposed to mediate the transfer of the ubiquitin E3 ligase 

Mul1 (also called Mulan or MAPL) from mitochondria to peroxisomes [28,29]. USP30-GFP, 

transfected into cells that had first been efficiently depleted of VPS35, still localised to 

peroxisomes (Fig. 3A). More recently, a mitochondrial derived vesicle pathway that does not 

involve VPS35 has also been implicated in the de novo formation of peroxisomes [30]. We thus 

conceived of an experiment that would allow us to fully discount the involvement of 
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mitochondria. For this purpose we made use of YFP-Parkin over-expressing hTERT-RPE1 cells that 

we and others have previously used to study depolarisation induced mitophagy [12,31]. 

Treatment of these cells with Oligomycin A and Antimycin A (OA) results in a complete elimination 

of mitochondria within 24 h without affecting peroxisome abundance or distribution (Fig. 3B).  

USP30-RFP, subsequently introduced into these cells, is still able to reach peroxisomes. Taken 

together our data suggest that a pool of USP30 can be targeted to peroxisomes independently of 

mitochondria. The same approach, also allowed us to address the question whether the 

endogenous USP30 is targeted to the membrane or the matrix of peroxisomes. Upon OA-induced 

depletion of mitochondria from RPE1-YFP-Parkin cells, the residual predominantly peroxisome 

associated pool of USP30 displays integral membrane protein properties (c.f. PMP70), mirroring its 

behaviour in untreated cells, where the bulk is associated with mitochondria (Fig. 3C and EV2C-D). 

Protease protection assays further indicate that its catalytic domain is exposed to the cytosol 

(Fig.3D).  

 

Different sequence requirements for mitochondrial and peroxisomal targeting of USP30  

What then is the targeting determinant that dictates insertion into the peroxisomal membrane? 

Catalytic activity is dispensable for peroxisomal targeting as a catalytically inactive USP30 mutant 

(C77S) shows a similar degree of colocalisation with peroxisomes (and mitochondria) to the wild-

type protein (Fig. 4A). Although USP30 is not a tail-anchored (TA) protein, its short 

transmembrane domain, framed by conserved stretches of basic residues, is reminiscent of other 

well characterised dually targeted mitochondrial and peroxisomal TA-proteins that engage the 

shuttling receptor PEX19 [32]. We next generated a series of truncation mutants and established 

that the N-terminal region encompassing amino acids 1-53 including the transmembrane domain 

is both necessary and sufficient for targeting USP30 to peroxisomes (Fig. 4B, 4C). Insertion into the 

OMM requires the addition of a short cytoplasmically orientated polybasic stretch (present in 

USP30(1-65)) that has previously been shown to be critical for mitochondrial localisation within 

the context of the full length protein (Fig. 4D) [13]. Thus USP30 localisation to mitochondria and 

peroxisomes relies on distinct targeting sequences.  

 

USP30 limits basal pexophagy 

What then is the role of this distinct peroxisomal pool of USP30? Reversible ubiquitylation has 

previously been shown to play a key role for the import of peroxisomal matrix proteins via the 
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shuttling receptor PEX5 [33-35]. PEX5 is recycled after import and this requires transient 

ubiquitylation by the E3-ligase PEX2. Since the DUB responsible for deubiquitylating PEX5 is 

currently unknown, in principle this could be a possible role for peroxisomal USP30. Alternatively, 

and by analogy with its role on mitochondria, USP30 may regulate pexophagy. Peroxisomes have a 

half life of 1.3 – 2.2 days, and their turnover can be further regulated in tissues depending on 

metabolic demand [36,37]. Two recent studies have provided evidence for a possible involvement 

of PEX2 and ubiquitylation of PEX5, in either ROS- or starvation induced pexophagy in tissue 

culture cells [38,39]. The requirement for ubiquitylation in basal pexophagy has so far not been 

directly assessed, but covalent tagging of peroxisomal membrane proteins with ubiquitin has been 

shown to induce pexophagy [40]. Furthermore, swapping the mitochondrial localisation sequence 

of USP30 for a peroxisomal membrane targeting sequence was reported to limit basal pexophagy 

[11].  

 

We generated a pexophagy reporter by tagging the pH-sensitive Keima fluorophore with a 

peroxisomal matrix targeting sequence (Keima-SKL). Arrival of peroxisomal content in the acidic 

environment of the lysosome, as confirmed by colocalisation with LAMP1 (Fig. EV3A), correlates 

with an increase in the Em561-signal and a decrease in Em445, which we have false coloured red 

and green respectively (Fig. 5A, C, D). The Keima-SKL protein is inserted into mature peroxisomes 

in USP30 depleted and knock-out cells, demonstrating that USP30 is not required for peroxisomal 

import (Fig. 5A-D). Strikingly, USP30 depletion with two independent siRNAs resulted in a highly 

significant increase in the number of red puncta that reflect pexophagy (Fig. 5A). This increase in 

basal pexophagy was contingent on ATG7, indicating the requirement of the canonical autophagy 

machinery (Fig. 5B and Fig. EV3B). Reintroduction of wild-type but not catalytically inactive, siRNA 

resistant USP30 restored pexophagy back to basal levels (Fig. 5C). We further corroborated the 

role for USP30 in basal pexophagy in USP30 CRISPR KO RPE1 cells. These showed an increased 

level of basal pexophagy that in turn could be suppressed by reintroduction of wild-type but not 

catalytically inactive USP30 (Fig. 5D and Fig. EV3C). Transfection with mt-keima, instead of Keima-

SKL, showed that these same USP30 KO cells also undergo enhanced basal mitophagy compared 

to wild-type cells, which likewise could be suppressed by wild-type but not catalytically inactive 

USP30 (Fig. 5E and Fig. EV3D). Importantly, analysis of LC3 and p62 in USP30 KO RPE1 cells, 

treated with an inhibitor of lysosomal acidification (folimycin), showed that our observations do 

not merely reflect a general increase in autophagic flux (Fig. 5F). This conclusion was further 
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corroborated using a well characterised bulk autophagy reporter (RFP-GFP-rLC3b [41]), monitoring 

the number of GFP+/RFP+ autophagosomes and the number of GFP-/RFP+ puncta as an indicator of 

autophagic flux (Fig. EV3E). 

 

We did not observe any significant change in the number or distribution of catalase-containing 

mature peroxisomes, nor in the levels of PEX5, PEX19, Catalase or PMP70 in USP30 depleted or 

USP30 KO RPE1 cells (Fig. EV3F-I). This suggests that USP30 is not essential for peroxisome 

maturation and the increased turnover of peroxisomes in these cells may be balanced by an 

increased rate in biogenesis. Finally, we wondered whether the role of USP30 in basal pexophagy 

was also linked to PINK1 or Parkin. We noted that expression levels of Parkin are below the 

detection limit in hTERT-RPE1 cells. Depletion of PINK1 or Parkin had no effect on basal 

pexophagy, and neither protein was required for the enhancement of pexophagy seen in USP30 

depleted cells (Fig. 5G).  

 

We have not identified the ubiquitin E3-ligase that USP30 is opposing in this process. Amongst the 

potential candidates, PEX2 is essential for the biogenesis of mature peroxisomes and thus cannot 

be easily eliminated. Nevertheless, the fact that only catalytically active USP30 can restore 

pexophagy to baseline levels, provides the first direct demonstration that basal pexophagy is 

regulated by ubiquitylation. We also have not pinpointed a specific peroxisomal substrate for 

USP30 and this may well be challenging without an acute trigger and over-expression of the 

relevant E3 ligase, both representing artificial conditions we have aimed to avoid in this study. 

PEX5 has previously been shown to be differentially ubiquitylated in the context of ROS and 

starvation induced pexophagy and peroxisomal matrix protein import [38,39,42,43], yet we have 

not observed any differentially ubiquitylated species in USP30 knockout cells (Appendix Fig. S1). 

 

A dual role for USP30 in tonically suppressing mitophagy and pexophagy 

Taken together our data suggest a dual role for USP30 in suppressing both basal mitophagy and 

pexophagy (Fig. 5H). Its role in basal mitophagy is linked to PINK1 activity, but is not contingent on 

amplification by Parkin. Its role in pexophagy is independent of PINK1, most likely reflecting the 

involvement of a distinct set of autophagy receptors. In both pathways, the mechanism of action 

involves its catalytic activity. It is possible that USP30 activity is directed at a particular set of outer 

mitochondrial and peroxisomal membrane proteins, which collectively or individually act to 
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nucleate locally restricted, selective autophagy. Previous work records that USP30 shows 

specificity for Lys6 linked ubiquitin chains and preferentially acts on TOMM20, amongst known 

Parkin substrates [16,44]. We have not observed significant global changes in the ubiquitylation 

pattern of USP30 KO lysates or purified mitochondrial fractions (Appendix Fig. S2), nor have we 

seen any changes in TOMM20 ubiquitin status. Given that the fraction of mitochondria undergoing 

basal mitophagy at any one time is very small, it may be very challenging to detect such changes 

by biochemical analysis of total mitochondrial pools. Importantly, within the context of a slowly 

progressing pathology like Parkinson’s disease, the accumulative effect of a doubling of basal 

mitophagy could be highly significant. 

 

 In summary, we propose a model, which suggests that USP30 maintains the ubiquitylation status 

of key OMM and peroxisomal membrane proteins at a low level. Thus, USP30 may enable a 

dynamic ubiquitin economy that is required for multiple core functions at these organelles, whilst 

preventing inadvertent engagement of the autophagy machinery.  
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Materials and Methods  

Cell culture, transfection and RNA interference: 

Cells were cultured in Dulbecco’s modified Eagle’s medium DMEM/F12 (hTERT-RPE1, hTERT-RPE1-

YFP-PARKIN, hTERT-RPE1-FRT-TREX and SHSY5Y) or DMEM (U2OS, HepG2 and HEK293) 

supplemented with 10% FBS, 1% non-essential amino acids and 1% penicillin/streptomycin. U2OS 

cells stably expressing mCherry-GFP-Fis1(101-152) referred to as U2OS-MGFIS, were a kind gift of 

Ian Ganley (University of Dundee, [18] and hTERT-RPE1-FRT-TREX cells were generously donated 

by Jon Pines (London, [45]). For siRNA experiments, cells were treated with 40 nM of non-

targeting (NT1) or target-specific siRNA oligonucleotides (Dharmacon On-Target Plus or siGenome, 

Thermofisher Scientific), using Lipofectamine RNAi-MAX (Invitrogen) according to manufacturer’s 

instruction with a seeding density per well of a 6-well plate of 3x105 cells for a 72 h siRNA 

experiment. Medium was exchanged 6 h after transfection. For depletion of VPS35, a “double hit” 

protocol was used whereby cells were transfected twice over a 144 h timecourse with a pool of 

VPS35-targeting siRNAs. Alternatively, cells were transfected for 24 h with USP30-constructs or 48 

h with pcDNA3.1-Keima-SKL or mt-Keima (h)-pIND(SP1) using Genejuice (Novagen). For rescue 

experiments, pEGFP-N3-USP30-siRes1 or the C77S mutant thereof were transfected together with 

mt-Keima (h)-pIND(SP1) or pcDNA3.1-Keima-SKL for 48 h.  

 

siRNA and Plasmids 

Sequences of siRNAs used in this manuscript were as follows: USP30 siGENOME (D1, 5’-

CAAAUUACCTGCCGCACAA-3’; D3, 5’-ACAGGAUGCUCACGAAUUA-3’), ONTARGETplus Non-

Targeting siRNA oligo #1 (NT1; 5’-UGGUUUACAUGTCGACUAA-3’), PINK1 (ONTARGETplus pool; 5’-

GCAAAUGUGCUUCAUCUAA-3’, 5’-GCUUUCGGCUGGAGGAGUA-3’, 5’-GGACGCUGUUCCUCGUUAU-

3’, 5’-GAGACCAUCUGCCCGAGUA-3’), Parkin (ONTARGETplus pool; 5’-GUAAAGAAGCGUACCAUGA-

3’, 5’-GAACAUCACUUCAUUACG-3’, 5’-GAUAGUGUUUGUCAGGUUC-3’, 5’-

UUAAAGAGCUCCAUCACUU-3’), VPS35 (ONTARGETplus pool; 5’-GAACATATTGCTACCAGTA-3’, 5’-

GAAAGAGCATGAGTTGTTA-3’, 5’-GTTGTAAACTGTAGGGATG-3’, 5’-GAACAAATTTGGTGCGCCT-3’), 

ATG7 (ONTARGETplus pool; 5’-CCAACACACUCGAGUCUU-3’, 5’-GAUCUAAAUCUCAAACUGA-3’, 5’-

GCCCACAGAUGGAGUAGCA-3’, 5’-GCCAGAGGAUUCAACAUGA-3’).  

The C77S mutation was introduced into USP30 using PCR-based mutagenesis and the following 

primers (5’- gttaatttagggaacacAAgcttcatgaactcc-3’, 5’-ggagttcatgaagcTTgtgttccctaaattaac-3’). 

pEGFP-N3-USP30 and pEGFP-N3-USP30-C77S as well as pEGFP-N3-USP30Δ53, pEGFP-N3-USP30(1-
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53), pEGFP-N3-USP30(1-68) and were generated by subcloning the USP30 ORFs from their 

respective pCR4Topo-entry clones into pEGFP-N3 using restriction enzyme based ligation. The 

siRNA resistant USP30 constructs pEGFP-N3-USP30-siRes1 and pEGFP-N3-USP30C77S-siRes1 were 

generated by introducing 4 silent mutations in the region targeted by siRNA D1 (caa atC acA tgT 

cgG aca aga; mutation in capital) using PCR-based mutagenesis in pCR4Topo-USP30 and C77S, 

then the respective ORFs were subcloned into pEGFP-N3. pRFP-N3-USP30-siRes1, pRFP-N3-USP30-

C77S-siRes were generated by replacing EGFP by RFP in the respective pEGFP-N3 clones. All PCR 

products were sequence-verified and all primer sequences are available on request. mt-Keima (h)-

pIND(SP1) was a generous gift from Hiroko Sakurai. To generate pcDNA3.1-Keima-SKL, the Keima 

sequence from mt-Keima (h)-pIND(SP1) (kind gift from Dr. Atsushi Miyawaki, Riken Brain Science 

Institute, Japan) was PCR amplified and subcloned into pCDNA3.1 using the following primers: 5’- 

GCAGGAATTCATGGTGAGCGTGATCGCC-3’ and 5’-

GCAGCTCGAGTTACAGCTTGGTGAACCGCCCAGCAGG-3’. RFP-GFP-rLC3b [41] was kindly provided by 

Sharon Tooze, London, UK. pCMV6-myc-5’- DDK-mUSP30 was obtained from Origene Technologies 

Inc, USA. 

 

Generation of USP30 knock out cells 

USP30 knock out cells were generated using CRISPR-Cas9 technology with either one of two USP30 

specific sgRNAs targeting exon 3 of isoform 1 (sgRNA1: AGTTCACCTCCCAGTACTCC, sgRNA2: 

GTCTGCCTGTCCTGCTTTCA). These sgRNAs were cloned into the pSpCas9(BB)-2A-GFP (PX458) 

vector (a gift from Feng Zhang, Addgene plasmid #48138 [46]) and transfected into hTERT-RPE1-

FRT-TREX cells. GFP positive cells were FACS sorted 24 h after transfection and single cell diluted. 

Individual clones were amplified and validated by western blotting and genomic DNA sequencing. 

KO2 used in Figure 5 and S3 of this manuscript was obtained using sgRNA1, whereas KO6 (Figure 

S3), was generated using sgRNA2). WT1 used in Figure 5 and WT3 (see Figure S3) are clones that 

underwent the same manipulation with sgRNA1 and sgRNA2 respectively, but retained USP30 

expression. 

 

Antibodies and reagents 

Antibodies and other reagents used were as follows: anti-USP30 (Sigma HPA016952, 1:500 for 

WB), anti-USP30 (gift from Baris Bingol, Genentech [10], 1:100 for IF), anti-PMP70 (Sigma 

SAB4200181, 1:1000), anti-PEX19 (Life technologies, PA522129, 1:1000), anti-Catalase (AbCam, 



13 

ab1877, 1:2000), anti-PINK1 (Novus Biologicals, BC100-494,) anti-GFP (gift from Ian Prior, 

University of Liverpool, Liverpool, UK; 1:5000), anti-VPS35 (AbCam ab10099, 1:1000), anti-p62 (BD 

Transduction, 610833, 1:1000), anti-LC3 (Nanotools, 5F10, 1:500), anti TOMM20 (Sigma 

HPA011562, 1:1000), anti-ACOX1 (gift from T. Hashimoto, Shinshu University, Nagano 390-8621, 

Japan, 1:10000), anti-ACOX1 [EPR19038] (Abcam, ab184032, 1:1000), anti-VDAC1 (AbCam, 

ab15895, 1:1000), anti-GSTK1 (SantaCruz, Sc-515580, 1:200), anti ATG7 (Cell Signalling, 12994), 

mouse anti- actin (AbCam ab6276, 1:10000), rabbit anti-actin (Sigma A2266, 1:10000), mouse anti-

αTubulin (Sigma T5168, 1:10000). anti-Myc (Millipore clone 4A6), Oligomycin A (SIGMA 75351), 

Antimycin A (SIGMA A8674), Epoxomycin (Millipore 324800) and Folimycin (Millipore 344085).  

 

Preparation cell lysates and western blot analysis 

Cultured cells were lysed with RIPA (10 mM Tris-HCl pH 7.5, 150 mM NaCl, 1% Triton-X100, 0.1% 

SDS, 1% sodium deoxycholate) or NP40 (0.5% NP40, 25 mM Tris-HCl pH7.5, 100 mM NaCl, 50 mM 

NaF; only Figure 1E) lysis buffer supplemented with mammalian protease inhibitor cocktail 

(SIGMA). Proteins were resolved using SDS-PAGE (Invitrogen NuPage gel 4-12%), transferred to 

nitrocellulose membrane blocked in 5% milk in PBS or TBS supplemented with Tween 20, and 

probed with primary antibodies over-night. Visualisation and quantification of western blots were 

performed using IRdye 800CW and 680LT coupled secondary antibodies and an Odyssey infrared 

scanner (LI-COR Biosciences, Lincoln, NE). 

 

Immunofluorescence and live-cell imaging 

Cells were fixed using 4% paraformaldehyde in PBS, permeabilised with 0.2% Triton X-100 in PBS, 

prior to staining with AlexaFluor488, 594, or 633 coupled secondary antibodies and imaged using 

either a Zeiss LSM800 with Airyscan (63x NA 1.4 oil, acquisition software Zen 2.3; Fig. 3B-C only), 

or a 3i Marianas spinning disk microscope (acquisition software Slide Book 3i v3) with a 40 x plan-

apochromat NA 1.3 oil (Fig. 1A) or a 63x plan-apochromat NA 1.4 (all other images) objective and a 

digital camera (Hamamatsu Flash 4 sCMOS). For live-cell imaging experiments, cells were seeded 

on a µ-Dish (Ibidi) and images acquired at 37°C in 5 % CO2 using a 3i Marianas spinning disk 

microscope (63 x or a 100 x oil objective, NA 1.4, Slide Book 3i v3) equipped with a Photometrics 

Evolve EMCCD camera. The images were further processed using Adobe Photoshop CC2017 and 

Fiji 1.0 softwares. 
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All images were acquired sequentially. For colocalisation analysis, z-stacks (10 planes, 3.06 µM 

range, 0.34 µM step size) of single, double or triple labeled cells were acquired using the 3i 

Marianas spinning disk microscope (63x oil objective, NA 1.4, Hamamatsu Flash 4 sCMOS camera, 

Slide Book 3i v3) and analysed with the JaCOP plugin in Fiji using the Costes’ automatic threshold 

to derive Manders’ coefficients M1 and M2.   

 

Analysis of basal mitophagy and pexophagy using fluorescent reporters 

For mitophagy quantitation using the U2OS-MGFIS cells, GFP and mCherry live images were 

acquired sequentially using a 3i Marianas spinning disk microscope (63 x oil objective, NA 1.4, 

Photometrics Evolve EMCCD camera, Slide Book 3i v3). The GFP signal was subtracted from the 

mCherry signal using ImageJ/Fiji. Resulting images were thresholded and the number of “red 

puncta” was determined using the “Analyse particles” function from Fiji.  

For pexophagy and mitophagy quantification using Keima-SKL and mt-Keima respectively, live cells 

were imaged sequentially (Ex445/Em600, then Ex561/Em600) using 3i Marianas spinning disk 

microscope (63 x oil objective, NA 1.4; Photometrics Evolve EMCCD camera, Slide Book 3i v3). The 

Ex445/Em600 signal (“green”) was subtracted from the Ex561/Em600 signal (“red”, reporting an 

acidic pH-environment) using ImageJ/Fiji. Resulting images were thresholded and the number of 

“red puncta” was determined using the “Analyse particles” function in Fiji.  

 

Subcellular fractionation of HepG2 cells 

Subcellular fractionation of HepG2 cells was performed according to a previously established 

protocol (Manner & Islinger 2017), however using a step gradient instead of a linear gradient for 

final separation. In brief, HepG2 cells were grown to 80-90% confluency, removed by trypsination, 

washed once in PBS and resupended in a homogenization buffer (HB) consisting of 5 mM MOPS, 

250 mM sucrose, 1 mM EDTA, 1 mM DTT, 1 mM ε-aminocaproic acid, 2 mM PMSF, pH 7.4. All 

further work was carried out on ice or at 4°C. Cells were disrupted by shearing through a syringe 

with a 27G needle using 7 strokes. The resulting homogenate was cleared from debris and 

undisrupted cells by centrifugation at 600 gav for 10 min. The supernatant was further separated 

by a differential centrifugation series to produce the heavy mitochondrial pellet (2,000  gav, 15 

min), the light mitochondrial pellet (20,000 gav, 20 min) the microsomal pellet (100,000  gav, 30 

min) and corresponding cytosolic supernatant. All pellets were resuspendend in HB for further 

Western blot analysis. After removing an aliquot, the light mitochondrial fraction was pelleted 
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(20,000  gav, 20 min) and resuspended in 3.0 ml MOPS-buffered (5 mM) Nycodenz-solution with a 

density of 1.15 g/mL. Subsequently, the organelle suspension was layered in between the 

following MOPD-buffered Nycodenz-solutions of a step gradient: 3.0 ml – 1.30 g/ml, 3.0 ml – 1.17 

g/mL, 3.0 mL – 1.15 g/ml (organelle suspension), 2.0 ml – 1.14 g/ml, 1.5 ml – 1.12 g/ml. 

Centrifugation was performed for 38 min at 100,000 gav, 4°C in a VTI50 vertical rotor (Beckman). 

After the centrifugation organelles were found to be enriched at the boundaries of the density 

steps. The gradient was eluted into 6 fractions (L1-L6, Fig. 2D, E) corresponding to the visible areas 

of organelle enrichment. The gradient fractions were diluted at least 3:1 with HB, prior to 

centrifugation at 100,000 g for 30 min and subsequent resuspension of the pellets in HB for 

protein quantification. Equal amounts of protein (10µg/lane) were subjected to SDS-PAGE for 

immunoblot analysis using organelle-specific antibodies as indicated. After antibody incubation, 

PVDF-membranes were developed with ECL-reagent (Thermo scientific) and chemiluminescence 

was monitored with a Fusion Solo S instrument (Vilber-Lourmat, Marne-la-Vallée, France).  

 

Determination of USP30 topology 

RPE1-YFP-Parkin cells were homogenised in HIM buffer (200mM D-mannitol, 70mM sucrose, 1mM 

EGTA, 10mM HEPES, pH7.5) by passing 4 times through a 23 Gauge needle. A post-nuclear 

supernatant (PNS) was obtained by centrifugation at 600 g and subjected to ultracentrifugation at 

100,000 g for 40 min at 4°C. Membrane pellets were either resuspended in HIM buffer and 

analysed directly by SDS-PAGE or extracted in Alkaline carbonate buffer (100 mM Na2CO3, 10 mM 

Tris pH 11.5 supplemented with mammalian protease inhibitors) or TX100 buffer (2 % Triton X-

100, 1M NaCl supplemented with mammalian protease inhibitors) and incubated on ice for 30 

min. Samples were then centrifuged again for 40 min at 100,000 g to obtain the pellets and 

supernatants, that were further analysed by SDS-PAGE and immunoblotting. 

 

Proteinase protection  

A PNS was obtained from RPE1-YFP-Parkin cells and either left untreated or incubated with 100 

µg/ml Proteinase K (Sigma P2308) in the presence or absence of 1% Triton X-100  for 30 min on 

ice. Samples were then treated with 2 mM PMSF for 5 min on ice prior to analysis by SDS-PAGE 

and immunoblotting. 

 

Statistics 
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P-values are indicated as *p<0.05, **p<0.01 and ***p<0,001 and derived either by t-test, one or 

two way ANOVA, and Dunnett’s or Bonferroni’s post hoc test respectively using GraphPad Prism 6. 
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Figure legends  
 
Figure 1. Enhancement of basal mitophagy by USP30 depletion is dependent on PINK1 

(A) Representative images of U2OS cells stably expressing mCherry-GFP-Fis1(101-152) (U2OS-MGFIS), 

transfected with non-targeting (NT1) or USP30 targeting siRNA (D1, D3) for 72 h prior to imaging. 

Scale bar 10 µm.  

(B) Quantification of mitolysosomes (red dots) in U2OS-MGFIS cells, treated as in (A). Average ±SD; 

n=6 independent experiments, 40 cells/experiment; Left: one-way ANOVA and Dunnett’s multiple 

comparison’s test, ***p<0.001; Right: two-way ANOVA and Bonferroni’s multiple comparison test, 

* p<0.05, **p<0.01, ***p<0.001.  

(C) Quantification of mitolysosomes in U2OS-MGFIS cells transfected with siRNAs targeting either 

USP30 (D1) or ATG7 or both. Average ±SD, n=3 independent experiments, 40 cells per experiment; 

one-way ANOVA and Dunnett’s multiple comparison’s test, *p<0.05. Also shown is a 

representative western blot. 

(D) U2OS-MGFIS cells were treated with siRNA and analysed as in (B). Average  SD; n=3 

independent experiments; 40 cells per experiment; one-way ANOVA and Dunnett’s multiple 

comparison’s test, *p<0.05. Also shown is a representative western blot.  

(E) Quantification of mitolysosomes in hTERT-RPE1 cells transfected with non-targeting (NT1) or 

USP30 (D1, D3) or PINK1 targeting siRNA and mt-keima. Average  SD; n=3 independent 

experiments; 40 cells per experiment; one-way ANOVA and Dunnett’s multiple comparison’s test, 

*p<0.05, **p<0.01. Also shown is a representative western blot. 

(F) Proposed model: USP30 acts upstream of PINK1 and limits the basal ubiquitylation (U) of outer 

mitochondrial membrane proteins, which serve as a substrate for PINK1. Phospho (P) -ubiquitin 

binds to specialized autophagy adapters (Optineurin and NDP52) leading to activation and 

recruitment of the autophagy machinery including LC3-decorated autophagic membranes.  

 

Figure 2. USP30 localises to peroxisomes. 

(A) hTERT-RPE1 cells were transfected with USP30-GFP for 24 h, then fixed and stained for 

Catalase and PMP70, or cotransfected with mCherry-SKL and fixed. Scale bars 10 µm. 

(B) Representative images of SHSY5Y cells transfected for 144 h with non-targeting (NT1) or USP30 

siRNA (D3), fixed and immunostained for endogenous USP30 (AlexaFluor488; green) and PMP70 
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(AlexaFluor594; red). Scale bar 10 µm. I and II; enlarged insets with 2.5 µm scale bars. Arrows 

highlight individual PMP70-peroxisomes that stain positive for USP30. 

(C) Representative western blot of cells shown in (B).  

(D and E) HepG2 subcellular fractionation and density gradient separation of "light mitochondrial" 

fractions (LM). USP30 is present in both peroxisomal (L1, L2) and mitochondrial (L5, L6) fractions. 

HM fractions from wild-type (WT) and USP30 KO RPE1 cells were loaded alongside the HepG2 

fraction for easy identification of the USP30 band. The asterisk marks a non-specific band retained 

in USP30 KO cells. Abbreviations: ACOX1-A, Acyl CoA oxidase 1 A-band; GSTK1, glutathione S-

tranferase κ-1; VDAC1, Voltage-dependent anion-selective channel protein 1; Po, peroxisome 

marker, Mito, mitochondria marker; PNS, post nuclear supernatant; HM, heavy mitochondria 

fraction; Mic, microsome fraction; Cyt, cytosolic fraction; L1-L6, LM gradient fractions.  

 

Figure 3 USP30-GFP is targeted to peroxisomes independently of mitochondria. 

(A) hTERT-RPE1 cells were transfected with non-targeting (NT1) or VPS35 siRNA for 120 h, then 

transfected with USP30-GFP for 24 h and subsequently stained for PMP70. Shown are 

representative images and Pearson’s correlation coefficients (full z-stack, mean ± SD, n=10 cells). 

Scale bars 10 µm. 

(B) hTERT-RPE1 YFP-Parkin cells were first treated for 24 h with Oligomycin A (1 µM) and 

Antimycin A (1 µM) or DMSO, then transfected with USP30-RFP and fixed 24 h post-transfection. 

Cells were stained for Catalase or PMP70 (AlexaFluor350, green) alone. A set of untransfected cells 

treated in parallel were co-stained for TOMM20 (AlexaFluor555, red). Scale bars: 10 µm. 

(C) Peroxisomal USP30 is an integral membrane protein. Membrane fractions derived from hTERT-

RPE1 YFP-Parkin cells, treated for 24 h with Oligomycin A (1 µM) and Antimycin A (1 µM), were 

extracted either with 0.1 M alkaline Na2CO3 or 2% Triton X-100 and 1M NaCl, and supernatants 

and pellets were analysed by SDS-PAGE and immunoblot. Representative experiment (n=2)  

(D) Topology of peroxisomal USP30. A post-nuclear supernatant, derived from hTERT-RPE1 YFP-

Parkin cells treated for 24 h with Oligomycin A (1 µM) and Antimycin A (1 µM), was incubated with 

Proteinase K in the presence or absence of 1% Triton X-100 for 30 min at 4°C, then analysed by 

SDS-PAGE and immunoblot. Representative experiment (n=2) 

 

Figure 4 Different sequence requirements for mitochondrial and peroxisomal targeting of USP30 
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(A) hTERT-RPE1 cells were transfected with USP30-GFP and inactive USP30-C77S-GFP, fixed and 

co-stained for PMP70 (AlexaFluor555) and TOMM20 (AlexaFluor633). Representative images and 

quantification. Left graph: Manders’ coefficients between USP30 (U30) or USP30-C77S (U30C77S) 

and PMP70 or TOMM20 derived from z-stacks (average of 2 independent experiments,  range). 

The right hand graph shows all data points.  

(B) Schematic representation of the USP30 mutants and respective localisation. The 

transmembrane domain (TM) is indicated in light blue, the catalytic domain (USP) in yellow and 

the poly-basic stretch in red. 

(C) hTERT-RPE1 cells were transfected with USP30-GFP, USP30-C77S-GFP, USP30Δ(1-53)-GFP, 

USP30(1-53)-GFP and USP30(1-68)-GFP, fixed and stained for PMP70 (AlexFluor594, red).  

(D) hTERT-RPE1 cells were transfected with USP30(1-53)-GFP and USP30(1-68)-GFP, fixed and 

stained for TOMM20 (AlexaFluor594, red). Scale bars (A, C, D) 10 µm. 

 

Figure 5. USP30 restricts basal pexophagy  

(A) Representative images of hTERT-RPE1 cells treated with non-targeting (NT1) or USP30 siRNA 

oligos (D1, D3). After 24 h, cells were transfected with Keima-SKL and imaged 48 h later. Graphs 

show the quantification of Keima-SKL “red” puncta (dots) per cell. Average SD, n=4 independent 

experiments, 40 cells per experiment. Left: one-way ANOVA and Dunnett’s multiple comparison’s 

test, **p<0.01; right: two-way ANOVA and Bonferroni’s multiple comparison test, ***p<0.001, 

**p<0.01, *p<0.05.  

(B) Quantification of Keima-SKL as in (A) for hTERT-RPE1 cells treated with siRNA targeting USP30 

(D1), ATG7 or both. Average ±SD, n=3 independent experiments, 40 cells per experiment; one-way 

ANOVA and Dunnett’s multiple comparison’s test, *p<0.05.  

(C) Representative images of hTERT-RPE1 cells treated as in (A) except Keima-SKL was 

cotransfected with siRNA resistant USP30-GFP (U30) and USP30C77S-GFP (C77S). Three 

independent experiments were analysed for the first three conditions, two of which also included 

the C77S rescue. Graph shows the average ±SD or range 20 cells per experiment. One-way ANOVA 

and Dunnett’s multiple comparison’s test, *p<0.05.  

(D) Representative images of Keima-SKL RED puncta in USP30 KO or WT hTERT-RPE1 cells. Keima-

SKL was either transfected on its own or together with USP30-GFP and USP30C77S-GFP for 48 h. 

Three independent experiments were analysed for the first three conditions, of which two 
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experiments also included the C77S rescue. Graph shows the average ±SD or range 20 cells per 

experiment. One-way ANOVA and Dunnett’s multiple comparison’s test, **p<0.01. 

(E) Representative images of mt-Keima RED positive puncta in USP30 KO and WT hTERT-RPE1 

clones, transfected on its own or together with USP30-GFP and USP30C77S-GFP for 48 h with mt-

Keima. Graph shows the average from 3 independent experiments  SD; 20 cells per experiment. 

One-way Anova, *p<0.05. 

(F) hTERT-RPE1 USP30 WT and KO cells (each two independent clones) were treated for 6 or 24 h 

with 100 nM folimycin. DMSO was used as a control. Lysates were separated by SDS-page and 

analysed by western blot as indicated. 

(G) Quantification of Keima-SKL “red” puncta in hTERT-RPE1 cells transfected with siRNA targeting 

USP30 (D1), PINK1 and PARKIN or non-targeting oligos (NT1).  After 24 h, cells were transfected 

with the Keima-SKL for another 48 h prior to image capture. Average ±SD, n=3 independent 

experiments; 20 cells per experiment. One-way ANOVA and Dunnett’s multiple comparison’s test, 

**p<0.01, overlaid on top of the data-points. 

(H) Summary illustration: USP30 opposes both basal pexophagy and PINK1-dependent basal 

mitophagy.  

Scale bars A, C, D, E: 10 µm. 

 

 

Expanded View – Figure legends 

Figure EV1. USP30 regulates basal mitophagy independently of Parkin. 

 (A) U2OS-MGFIS cells were treated with either non-targeting siRNA (NT1) or with siRNA targeting 

USP30 or Parkin, and analysed by 3i-spinning disk confocal microscopy. The number of red 

mCherry-GFP-Fis1(101-152) positive puncta (dots) per cell was quantified in 3 independent 

experiments (average ± SD, 20 cells per experiment). Also shown is a representative western blot. 

 

Figure EV2. GFP, RFP and Myc-tagged USP30 co-localises with the peroxisomal proteins Catalase 

and PMP70 in U2OS and hTERT-RPE1 cells. 

 (A) U2OS cells were transfected with pEGFP-N3-USP30 and pRFP-N3-USP30 for 24 h, fixed and 

stained for the peroxisomal proteins, Catalase and PMP70.  
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(B) hTERT-RPE1 cells were transfected with pRFP-N3-USP30, pCMV6-myc-DDK-mUSP30 (Origene) 

or pCDNA-3.1 for 24 h, fixed and stained for Myc or the peroxisomal proteins PMP70 and Catalase. 

Scale bars (A, B) 10 µm. 

(C) hTERT-RPE1 YFP-Parkin cells were either left untreated or treated for 24 h with Oligomycin A (1 

µM) and Antimycin A (1 µM). A post-nuclear supernatant (PNS) was obtained and analysed by SDS-

PAGE to assess mitochondrial and peroxisomal protein levels. Representative experiment (n=2) 

(D) A membrane pellet obtained from untreated hTERT-RPE1 YFP-Parkin cells was incubated with 

0.1 M alkaline Na2CO3 or 2% Triton X-100 and 1M NaCl, then subjected to ultracentrifugation. 

Supernatants and pellets were analysed by SDS-PAGE. Representative experiment (n=2) 

 

Figure EV3. Basal autophagic flux and peroxisome abundance are not affected in USP30 KO cells 

(A) Representative pictures of hTERT-RPE1 cells transfected with Keima-SKL and CFP-LAMP1 for 48 

h, fixed and analysed by 3i-spinning disk confocal microscopy. Scale bar: 10 µm. Arrows indicate 

Keima-SKL RED puncta that colocalise with the lysosomal marker CFP-LAMP1. 

(B) Representative western blot of cells analysed in Fig. 5B. 

(C) Keima-SKL RED puncta in USP30 KO or WT hTERT-RPE1 cells. Keima-SKL was either transfected 

on its own or together with USP30-GFP and USP30C77S-GFP for 48 h. Two independent 

experiments were analysed, 20 cells per experiment, mean +/-range.  

 (D) Quantification of the percentage of mt-Keima RED puncta in USP30 KO6 or WT1 hTERT-RPE1 

cells (n=2 independent experiments, 20 cells per experiment, mean  range). 

 (E) hTERT-RPE1 USP30 WT and KO cells (WT1, WT3, KO2 and KO6) were transfected with RFP-

GFP-LC3b for 48 h prior to imaging by 3i-spinning disk confocal microscopy. Shown are 

representative images and the numbers of RFP-GFP-LC3b puncta per cell as an assessment of basal 

autophagic flux. Two independent experiments were analysed, 20 cells per experiment, mean +/-

range.  

(F) hTERT-RPE1 were transfected with non-targeting (NT1) or USP30 targeting siRNA (D1 and D3) 

for 72 h and lysed in RIPA buffer. Protein samples were analysed by SDS-PAGE and Western blots 

probed for Catalase, PMP70, PEX5, and PEX19.  

(G) hTERT-RPE1 USP30 WT and KO cells (WT1, WT3, KO2 and KO6) were lysed in RIPA buffer and 

analysed by SDS-PAGE and western blots probed for Catalase, PMP70, PEX5, and PEX19.  
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(H) Quantification of the number of peroxisomes of hTERT-RPE1 USP30 WT and KO cells (WT1 and 

KO2), fixed and stained for PMP70 (AlexaFluor488) and Catalase (AlexaFluor594). Graph shows the 

data from 3 independent experiments in which 10 cells per experiment were analysed. 

(I) Colocalisation analysis of hTERT-RPE1 USP30 WT and KO cells, fixed and stained for the 

peroxisomal protein PMP70 (AlexaFluor488) and Catalase (AlexaFluor594). Graphs show Manders’ 

coefficients between Catalase and PMP70 or PMP70 and Catalase derived from z-stacks of 10 cells 

per experiment (n=3 independent experiments, 10 cells per experiment). Note that PMP70 is a 

component of both immature and mature peroxisomes whereas Catalase is associated only with 

import-competent peroxisomes. Scale bars 10 µm. 

 

 



Figure 1

[0-10] [11-20] [21-30] [>30]
0

20
40
60
80

100

No. of red dots per cell

%
 o

f c
el

ls
NT1
D1
D3

***
***

** *

0
5

10
15
20
25

n.
 o

f r
ed

 d
ot

s 
pe

r c
el

l

NT1 D1 D3

*** ***

A

B

CNT1 D1 D3

D

UU
U

PU
U

U
P

E3

PINK1USP30

LC3

Adapter

n.
 o

f r
ed

 d
ot

s 
pe

r c
el

l

NT1
D1

PINK1

  +  
  +  

  +    +  

- - - - -
- -  +  -

D3  +  - -   +  -
  +  

-
-
- - -

USP30

PINK1

ACTIN

55

66

55

43

0

10

20

30

40

50 * * ns nsns

siUSP30

E

** * ns nsns

0

20

40

60

80
n.

 o
f r

ed
 d

ot
s 

pe
r c

el
l

NT1
D1

PINK1

  +  
  +  

  +    +  

- - - - -
- -  +  -

D3  +  - -   +  -
  +  

-
-
- - -

USP30

ATG7

ACTIN

76

52

0

5

10

15

20

NT1
D1

  +  
  +  

- - -
-   +  

ATG7  +  -   +  
-
-

n.
 o

f r
ed

 d
ot

s 
pe

r c
el

l

* nsns

F

USP30

ACTIN

52

38

38

50

60

PINK1

ACTIN
38

ACTIN43



L6

PMP70 (Po)
TOMM20 (Mito)

RPE1

ACOX1 (Po)
GSTK1 (Po & Mito)
USP30

Po Mito

L5L4L3L2L1C
yt

M
ic

LMH
M

W
T

K
O

P
N

S

L6 - Mito

L5 - Mito

L4 

L3 

L1 - Po

1.12

1.14

1.15

1.17

1.30

g/mL

L2 - Po

*

VDAC1 (Mito)

55

15

70

35

55

25





Figure 4

A C

B
U30

U30C77S
S77

C77TM

54 517351
USP

U30(1-53)

U30(1-68)

Mito Po

D

U30
U30C77S

0

0.2

0.4

0.6

0.8

1

M
an

de
rs

’ C
oe

ffi
ci

en
t

PMP70

TOMM20
0.0
0.2
0.4
0.6
0.8
1.0

PMP70 TOMM20M
an

de
rs

’ C
oe

ffi
ci

en
t

U30-GFP TOMM20PMP70

U30C77S-GFP TOMM20PMP70 PM
P70

TO
M

M
20

TO
M

M
20

PM
P70

GFP

TOMM20U30C77S-GFP

U30(1-68) TOMM20

MERGEU30(1-53) TOMM20

GFP

GFP

GFP

GFP

U30Δ(1-53) GFP

MERGEU30Δ(1-53) PMP70

MERGEPMP70U30

MERGEU30C77S

GFP PMP70 MERGE

PMP70

MERGEU30(1-53) PMP70

MERGEU30(1-68) PMP70



Figure 5

B

43

USP30

ACTIN

52

A NT1 D1 D3

40

MERGE
0

10

20

30 **
**

C

D

H

KO2+U30

F

No. of red dots per cell
[0-20] [21-40] [>40]

NT1
D1
D3***

***
** *

E

K
ei

m
a-

S
K

L

K
ei

m
a-

S
K

L

0
10
20
30
40

50

WT1 KO2 KO2
U30

KO2
C77S

NT1 D1 D1+U30

L
K

S- a
mi e

K

WT1 KO2

m
t-K

ei
m

a

ns*

WT1 KO2

NT1
D1

  +  
  +  
- -

-
  +  -

-
- D3

n.
 o

f r
ed

 d
ot

s 
pe

r c
el

l

n.
 o

f r
ed

 d
ot

s 
pe

r c
el

l

NT1 D1 D1
U30

0

10

20

30

40

D1
C77S

50
ns*

n.
 o

f r
ed

 d
ot

s 
pe

r c
el

l

ACTIN
38

PINK1
50

0

20

40

60

80

100

NT1
D1
PINK1
PARKIN

  +  
  +    +    +  

  +    +  
  +    +  

- - - - -
- -

- -
-
- -
- - - -

USP30
50

** ns ns ****

n.
 o

f r
ed

 d
ot

s 
pe

r c
el

l

KO2+U30

USP30

LC3

p62

17
12

52

52

DMSO 6h foli 24h foli

ACTIN
38

W
T3

W
T1

K
O

2
K

O
6

W
T3

W
T1

K
O

2
K

O
6

W
T3

W
T1

K
O

2
K

O
6

G

%
 o

f c
el

ls

0

20

40

60

100

80

WT1 KO2 KO2
U30

KO2

ns*

C77S
0

10

20

30

40
n.

 o
f r

ed
 d

ot
s 

pe
r c

el
l

n.
 o

f r
ed

 d
ot

s 
pe

r c
el

l  

ns* ns

0

10

20

30

40

NT1 D1 ATG7 D1
ATG7

USP30

USP30

PEXOPHAGY

U

U P

USP30

x

U

x

x
U U

Y

Y

Y
Y

MITOPHAGY

UU P
U P

PINK1

ACTIN
38



0

20

40

60

80

100
n.

 o
f r

ed
 d

ot
s 

pe
r c

el
l

NT1
D1

Parkin

  +  
  +  

  +    +  

- - - - -
- -  +  -

D3  +  - -   +  -
  +  

-
-
- - -

USP3055

ACTIN43

Figure EV1
A



U30-RFP PMP70 MERGE

MERGECATALASEU30-GFP U30-RFP PMP70 MERGE

A

U30-MYC MERGE

MERGEpcDNA3.1

B

CATALASE

CATALASE

MERGEPMP70U30-GFP

Figure EV2

C D
PNS  S     P     S     P     S      P   

100K    Na2CO3      TX100

50

60

PMP7060

USP30

60

TOMM20          15
20

Catalase

50

60
USP30

+-

TOMM2015

Catalase60

PNS

24 h O/A

60 PMP70



B

Figure EV3

A

C

WT1 KO6 KO6
U30

KO6
C77S

n.
 o

f r
ed

 d
ot

s 
pe

r c
el

l
K

ei
m

a-
S

K
L

WT1 KO6

n.
 o

f r
ed

 d
ot

s 
pe

r c
el

l
m

t-K
ei

m
a

D

0.5
0.6
0.7
0.8
0.9
1.0
1.1

WT1 KO2

M
an

de
rs

’ C
oe

ffi
ci

en
t

C
at

al
as

e/
PM

P7
0

0

100

200

300

400

500

PMP70 Catalase

KO2
WT1

N
o.

 o
f p

er
ox

is
om

es
 p

er
 c

el
l

0.5
0.6
0.7
0.8
0.9
1.0
1.1

WT1 KO2

M
an

de
rs

’ C
oe

ffi
ci

en
t

PM
P7

0/
C

at
al

as
e

0

20

40

60

80

0

10

20

30

CFP-LAMP1 Keima-SKL-445 Keima-SKL-561 MERGE
hT

E
R

T-
R

P
E

1

I

U30-GFP

NT
1

D1 D3

CATALASE
66
56

ACTIN43

 siRNA

35 PEX19

NT
1

D1 D3

PEX5

PMP7066
66

ACTIN35
43

PEX5

PMP70
PEX19
ACTIN

Catalase

66
66

43
35

66
56

W
T1

W
T3

KO
2

KO
6

 siRNA
G

H

E

F

 R
FP

-G
FP

-L
C

3b
 

do
ts

 p
er

 c
el

l

10
8

6

4
2

W
T1

W
T3

K
O

2
K

O
6

GFP+
RFP+

GFP-
RFP+

W
T1

W
T3

K
O

2
K

O
60

USP30

ATG7

ACTIN

76

52

38

NT1
D1 ATG7

ATG7+
D1

NT1
D1 ATG7

ATG7+
D1

ACTIN
35
43

NT
1

D1 D3  siRNA


	Manuscript Text
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure EV1
	Figure EV2
	Figure EV3

