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ABSTRACT 

Lung cancer is the leading cause of cancer-related death and is usually diagnosed at 

advanced stage leading to poor patient survival.  Therefore there is a pressing need for 

early detection of disease.  DNA methylation is an early event in carcinogenesis and 

a limited number of diagnostic markers have been developed for clinical use.  This 

thesis seeks to address whether the development and application of novel DNA 

methylation assays can diagnose lung cancer at early stage. 

Previously identified DNA methylation biomarkers, along with novel targets 

identified by methylation microarray, were developed in multiplex assay format.  

Twelve markers were used to screen 417 bronchoalveolar lavage specimens from 

Liverpool Lung Project (LLP) subjects divided into training and validation sets.  The 

optimal biomarker panel (CDKN2A, RARB and TERT) demonstrated improved clinical 

sensitivity and specificity (Sensitivity/Specificity: 85.7%/93.8%, AUC: 0.91) 

compared to previous studies.  The optimal methylation algorithm detected more than 

60% of stage T1 tumours and 93 cytologically occult lung cancer cases.  Eight 

methylated DNA assays were optimised for use with the newly developed Droplet 

Digital™ PCR (ddPCR) platform and a targeted pre-amplification technique, 

MethPlex enrichment, was developed.  I established a comprehensive analytical 

framework to compare performance of methylation-specific ddPCR and quantitative 

methylation-specific PCR directly and in combination with MethPlex enrichment.  

ddPCR demonstrated greater precision and linearity, lower limit of detection (WT1 

MethPlex ddPCR LOD95 = 1.86 GE), and discriminated twofold differences in 

methylated DNA input.  MethPlex ddPCR detected DNA methylation more frequently 

in lung cancer patient plasma than in controls in a retrospective case-control study.  

Technical methylation controls were consistently and precisely detected at inputs as 

low as 3 methylated copies.  Discriminatory efficiency of marker combinations was 

inadequate, presumably due to limitations in DNA extraction methodology. 

DNA methylation biomarker diagnostic performance in bronchoalveolar lavage merits 

further validation in a prospective trial.  MethPlex ddPCR analysis showed great 

promise, demonstrating highly sensitive DNA methylation detection in technical 

assessment.  It is expected that appropriate DNA extraction procedures and higher 

cfDNA yields will lead to much improved clinical discriminatory efficiency.  
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1.1 General introduction 

Lung cancer is the most common cancer worldwide and is also the leading cause of 

cancer related-death (Ferlay et al., 2015).  Malignancy is usually diagnosed at an 

advanced stage leading to poor patient survival (Liloglou et al., 2014).  In contrast, 

improved patient survival in the event of early detection has previously been 

demonstrated (McPhail et al., 2015).  Previous work within our group identified a 

DNA methylation panel demonstrating very good discriminatory characteristics (82% 

sensitivity, 91% specificity) in bronchoalveolar lavage specimens (Nikolaidis et al., 

2012).  This thesis builds upon this previous work and was carried out as part of the 

Liverpool Lung Project (Field et al., 2005), with the ultimate goal of reducing lung 

cancer mortality through the early detection of this devastating disease. 

 

The remainder of this chapter primarily serves as a concise presentation of background 

information regarding lung cancer and the detection of DNA methylation in cancer.  

Chapter 2 outlines the materials and methods used throughout this thesis.  In Chapter 

3, additional experimentally identified DNA methylation markers were added to the 

panel identified in the previous study (Nikolaidis et al., 2012).  These were assessed 

in a retrospective case-control study of bronchoalveolar lavage samples, independent 

to those analysed previously.  We hypothesized that the interrogation of additional 

markers would improve the diagnostic accuracy of the pre-existing marker panel.  In 

addition, the assays used to detect DNA methylation have been further developed into 

multiplex reactions and it was anticipated that potential analytical improvements 

would also enhance the discriminatory ability of diagnostic algorithms.  As a 

consequence, we also expected that DNA methylation analysis of bronchoalveolar 

lavage would be more sensitive than current gold-standard cytological diagnosis.  
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While bronchoalveolar lavage is classified as being a moderately invasive procedure, 

it has to be performed in a clinical environment, is rather unpleasant for the patient 

and is not without risk.  In addition it is a costly clinical process. Non-invasive 

diagnostic procedures involving blood draws would be far more preferable.  Previous 

experience within the group indicated that quantitative methylation-specific PCR 

assays (qMSP), such as those used in the Chapter 3, do not possess the analytical 

sensitivity required to reliably and precisely detect methylated DNA in blood plasma.  

At the start of this project, Droplet Digital™ PCR (ddPCR) was a newly developed 

technology that can detect nucleic acids with greater precision than real-time PCR 

methodologies (Hindson et al., 2011, 2013).  Chapter 4 describes and documents the 

development and optimisation of assays and associated workflows for the detection of 

a number of methylated DNA targets.   This was done at a moderately high level of 

total DNA input to emulate the likely yields from specimens such as bronchoalveolar 

lavage, and also at a very low level to imitate the low yields expected from plasma 

samples (Devonshire et al., 2014).  Methylated DNA analysis  at low level total DNA 

input also necessitated the development of a methylated target multiplex PCR pre-

amplification method which I have designated MethPlex enrichment.  The primary 

objective of this part of the study was to develop a number of highly optimised, robust 

methylation-specific ddPCR assays that would perform reliably in the detection of 

methylated DNA markers present in clinical samples. 

A comprehensive technical comparison of ddPCR and qMSP technologies in the 

detection of methylated DNA is covered in Chapter 5.  Two of the newly developed 

assays targeting methylated RASSF1 and WT1 promoters were initially evaluated on 

both platforms in the analysis of multiple methylated DNA standard curves.  
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Methylated DNA was diluted in nominally unmethylated peripheral blood 

mononuclear cell (PBMC) background at moderate total DNA quantity (66 ng/20,000 

GE).  A similar analysis of low total DNA inputs (10 ng/3030 GE) in conjunction with 

MethPlex enrichment was also performed, resulting in a moderate sized dataset for 

each marker/platform combination (N = 270).  The data obtained was subjected to a 

rigorous, comprehensive analysis including the use of methods published as ISO 

standards (ISO, 1994a, 1994b, 1994c, 2000).  The primary aim of this part of the study 

was to compare the performance of the two nucleic acid detection technologies.  

Droplet Digital™ PCR has previously demonstrated highly precise quantification of 

nucleic acids (Pinheiro et al., 2012) and indeed exhibited increased precision 

compared to qPCR in the analysis of diverse nucleic acid species (Hindson et al., 2013; 

Sedlak et al., 2014; Strain et al., 2013). 

 

The final experimental chapter, Chapter 5, demonstrates the screening plasma 

specimens in a retrospective case-control study using MethPlex ddPCR assays.  This 

study was intended to assess the utility and discriminatory ability of novel assays 

targeting methylated DNA in non-invasive clinical samples.  The final chapter of the 

thesis is a general discussion and appraisal of the completed study. 
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1.2 Lung cancer 

Lung cancer is the second most common cancer in men and women in the UK, 

accounting for 13% of new diagnoses (Cancer Research UK, 2015a).   Between 2001 

and 2005 the UK lung cancer five-year survival rate was as low as 7.5% (Holmberg et 

al., 2010).  This has improved marginally and is still below 10% (Cancer Research 

UK, 2015b) (Figure 1.2-1).  As a result, lung cancer is by far the most common cause 

of cancer-related death in the UK, with 35,895 deaths in 2014 at a mortality rate of 61 

per 100,000 persons (Cancer Research UK, 2015c) (Figure 1.2-2). 

 

 

Figure 1.2-1 Age-Standardised Five-Year Net Survival, Selected Cancers, Adults (Aged 

15-99), England and Wales, 2010-2011 

(Cancer Research UK, 2015b) 
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Figure 1.2-2 The 20 most common causes of cancer death, 2014 

Lung cancer is by far the most common cause of cancer-relataed death in the UK (Cancer 

Research UK, 2015c). 

 

Worldwide, the lung cancer mortality rate exceeds that of colon, prostate and breast 

cancer combined, and, as previously stated, lung cancer is the most frequent cause of 

cancer-related death (Dela Cruz et al., 2011; Ferlay et al., 2015). 

 

High mortality rates are primarily caused by diagnosis of disease at late stage when 

curative treatment is not feasible (Mulshine and van Klaveren, 2011).  Figure 1.2-3 

definitively shows that lung cancer was most frequently diagnosed at Stage IV in the 

UK (48% in England in 2014) and only 13% to 18% diagnosed at Stage I (Cancer 

Research UK, 2015d).  Diagnosis of disease at Stage I and subsequent early 

intervention can give rise to 5-year survival rates in the region of 70% (Field and Raji, 

2010).  There is therefore a genuine and pressing need to develop biomarkers for early 

detection of lung malignancy. 
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Figure 1.2-3 Proportion of Lung Cancer Cases Diagnosed at Each Stage, All Ages 

England 2014, Scotland 2014-2015, Northern Ireland 2010-2014 (Cancer Research UK, 

2015d)   

 

1.2.1 Lung cancer histological classification 

Lung cancer is usually split into two classes based on histology, with non-small cell 

lung cancer (NSCLC) accounting for approximately 80-85% of all lung cancers and 

adenocarcinoma and squamous cell carcinoma composing about 80% of this category 

(Langer et al., 2010).  Adenocarcinoma is the most frequently diagnosed lung cancer 

subtype, accounting for about 40% of lung cancer cases and is normally located 

peripherally.  Squamous cell carcinoma, on the other hand, is usually centrally located 

in primary and secondary bronchi and is more common in smokers.    

Small cell lung cancer (SCLC) is found in about 15% of lung cancer cases, is highly 

aggressive, is normally located centrally and is strongly associated with smoking 

(Tartarone et al., 2017).  Extensive SCLC has a median survival of less than twelve 

months (Gaspar et al., 2012). 
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Figure 1.2-4 Example images of lung cancer histological types 

H&E stained slides of (A) adenocarcinoma, (B) squamous cell carcinoma and (C) small cell 

carcinoma of the lung. Images adapted from Davidson, 2013 (C) and Travis, 2013 (A) and 

(B) (Davidson et al., 2013; Travis et al., 2013a). 

 

1.2.2 Lung cancer staging 

The international TNM staging system is used in the designation of disease stage, 

based upon the pathological assessment of tumour size, nodal status and metastasis 

classification.  The proposed classifications for staging are organized by the 

International Association for the Study of Lung Cancer (IASLC) Staging Project.  A 

revised eighth edition has been proposed, based upon a retrospective analysis of more 

than 94,000 cases of lung cancer collected from around the world between 1999 and 

2010 (Goldstraw et al., 2016) and is presented in Table 1.2-1.  This is due to be 

implemented in January 2018. 
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Table 1.2-1 Proposed stage groupings for the eighth edition of the TNM classification 

for lung cancer 

Changes to the seventh edition are highlighted in bold and underlined. 

TNM, tumour, node, metastasis; Tis, carcinoma in situ; T1a(mi), minimally invasive 

adenocarcinoma. Adapted from Goldstraw, 2016 (Goldstraw et al., 2016). 

Clinical stage  T  N  M 

Occult carcinoma  TX  N0  M0 

Stage 0  Tis  N0  M0 

Stage IA1  T1a(mi)  N0  M0 

  T1a  N0  M0 

Stage IA2  T1b  N0  M0 

Stage IA3  T1c  N0  M0 

Stage IB  T2a  N0  M0 

  T2b  N0  M0 

Stage IIA  T1a-c  N1  M0 

Stage IIB  T2a  N1  M0 

  T2b  N1  M0 

  T3  N0  M0 

Stage IIIA  T1a-c  N2  M0 

  T2a-b  N2  M0 

  T3  N1  M0 

  T4  N0  M0 

  T4  N1  M0 

Stage IIIB  T1a-c  N3  M0 

  T2a-b  N3  M0 

  T3  N2  M0 

  T4  N2  M0 

Stage IIIC  T3  N3  M0 

  T4  N3  M0 

Stage IVA  Any T  Any N  M1a 

  Any T  Any N  M1b 

Stage IVB  Any T  Any N  M1c 
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1.2.3 Lung cancer diagnosis 

Conclusive lung cancer diagnosis requires the analysis of an adequate tissue and is 

vitally important not only in diagnosis itself but also the planning of (Rivera et al., 

2013).  A relatively large amount of tissue is required or molecular testing.  There a 

number of methods in routine use that can obtain cytology specimens or small 

biopsies.  Bronchoscopy is more efficient at detecting central lesions.  CT-guided 

transthoracic needle aspiration generally works better for detection in the periphery.  

Methods such as endobronchial ultrasound (Herth et al., 2006) and electromagnetic 

navigation (Lamprecht et al., 2009) can increase diagnostic yields in patients with 

peripheral lesions.  A thorough review of lung cancer diagnosis in small biopsies and 

cytological samples published in 2013 engages with the implications of the 2011 

International Association for the Study of Lung Cancer/American Thoracic 

Society/European Respiratory Society Classification (Travis et al., 2013b) and is 

recommended for an in depth understanding of this area. 

 

1.2.4 Lung cancer treatment 

1.2.4.1 Surgery 

Surgery is the most common procedure in the management of lung cancer at early 

stage (Lackey and Donington, 2013).  Surgical intervention may require 

pneumonectomy (whole lung excision), lobectomy (removal of a lobe), wedge 

resection or segmentectomy (both involving the removal of a smaller portion of the 

effected lung).  This is dependent upon the size of the tumour and pulmonary function 

(Narsule et al., 2011). 
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1.2.4.2 Radiotherapy 

Radiotherapy treatment is primarily used in the treatment of inoperable tumours or in 

patients were surgery would present complications (Zappa and Mousa, 2016).  

Stereotactic ablative radiotherapy (SABR), also known as stereotactic body 

radiotherapy (SBRT), is a highly precise method of high dose radiation treatment 

involving the delivery of multiple smaller doses of radiation from multiple positions 

around the body (Haasbeek et al., 2009), reducing the risk of normal organ toxicity 

(Louie et al., 2015).  This technique results in a high rate of local tumour control with 

few side effects (Senan et al., 2013).  A study involving 4605 elderly Dutch patients 

indicated that patients 75 years of age and older treated with SABR exhibited a 

reduction in the hazard ratio of death compared to the control group (HR 0.64, 95% 

CI 0.56–0.74), and median overall survival significantly increased from16.8 months 

to 26.1 months (Haasbeek et al., 2012). 

 

1.2.4.3 Chemotherapy 

Chemotherapeutic agents may be used as neoadjuvant therapy (before surgery) or as 

adjuvant therapy (after surgery), with postoperative treatment being more common in 

NSCLC (McElnay and Lim, 2014).  Typical classes of chemotherapeutic drugs used 

in the treatment of lung cancer include antimitotic agents such as paclitaxel, platinum-

based antineoplastic drugs such as cisplatin and carboplatin, and antimetabolites such 

as pemetrexed.   

 

A large proportion of both SCLC and NSCLC patients are diagnosed at a late stage 

when therapeutic interventions are less likely to be effective (Heuvers et al., 2012).  

Treatment of patients diagnosed at late stage is directed towards improving patient 
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survival and reducing adverse effects (Zappa and Mousa, 2016).  The 2017 ASCO 

Clinical Guideline Update recommends chemotherapy doublets of platinum-based 

therapy (cisplatin/carboplatin) in combination with docetaxel, paclitaxel, pemetrexed 

or vinorelbine as first-line therapy for NSCLC patients with negative or unknown 

tumour EGFR mutation or ALK/ROS1 gene rearrangement status and with 

performance status (PS) of 0 or 1 (Hanna et al., 2017).  Platinum-based chemotherapy 

is also recommended for the treatment of locally advanced stage III NSCLC (Postmus 

et al., 2017).  The standard treatment for metastatic SCLC consists of 

cisplatin/carboplatin and etoposide (Fruh et al., 2013). 

 

1.2.4.4 Anti-angiogenic agents 

The induction of angiogenesis is considered one of the hallmarks of cancer (Hanahan 

and Weinberg, 2011).  The growth of the tumour-associated vascular network not only 

provides oxygen and nutrients that maintain tumour growth but can also be exploited 

by tumour cells to enable metastasis (Carmeliet and Jain, 2011).  The monoclonal 

antibody bevacizumab inhibits VEGF (vascular endothelial growth factor), a growth 

factor that stimulates angiogenesis (Hicklin and Ellis, 2005), and overexpression of 

VEGF has been associated with disease progression and poor prognosis in lung cancer 

(Fontanini et al., 1997).  Improved overall response and time to progression were 

observed in patients with advanced disease when bevacizumab was administered in 

combination with established chemotherapeutic agents (Johnson et al., 2004).  The 

addition of bevacizumab to adjuvant cisplatin-based treatment regimens provided no 

additional benefit in surgically resected early stage NSCLC patients (Wakelee et al., 

2016). 
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1.2.4.5 Targeted therapy 

The identification of oncogenic driver mutations and the emergence of targeted 

therapies, such as precision tyrosine kinase inhibitors (TKIs), allows for the matching 

of systemic therapies with patient/tumour-specific genetic alterations.  Epidermal 

growth factor receptor (EGFR) is overexpressed in more than half of NSCLC patients 

and EGFR TKIs, such as erlotinib and gefitinib, have provided impressive clinical 

benefits in patients with activating EGFR mutations (Mok et al., 2009; Rosell et al., 

2012).  The majority of patients develop resistance to EGFR TKIs and progress after 

a median of 10 to 14 months (Oxnard et al., 2011).  Mechanisms of acquired resistance 

include tumour cells compensating for blockade of EGFR signalling pathways through 

the activation of alternative pathways (Ohashi et al., 2013).  For example, MET 

overexpression can drive ERBB3-dependent activation of the PI3K/AKT pathway, 

abrogating the reliance upon activating EGFR mutation (Engelman et al., 2007).  The 

most frequent mechanism of secondary resistance, however, is via the acquisition of 

the T790M mutation within exon 20 of EGFR (Blakely and Bivona, 2012; Pao et al., 

2005; Yu et al., 2013).  The use of irreversible EGFR inhibitors can potentially 

overcome this mechanism of resistance (Kobayashi et al., 2005).  Indeed, the third-

generation drug osimertinib is an irreversible EGFR tyrosine kinase inhibitor that is 

selective for both inhibition-sensitizing mutations and the T790M resistance mutation 

(Jänne et al., 2015) and is recommended for use in patients that develop T790M-

mediated resistance (Goss et al., 2016; Yang et al., 2017). 

 

Chromosomal rearrangement in the anaplastic lymphoma kinase (ALK) gene has been 

identified as an oncogenic driver in NSCLC (Rikova et al., 2007; Soda et al., 2007).  

Patients carrying ALK gene fusions are treated with crizotinib as first-line treatment 



14 
 

(Novello et al., 2016).  Other potentially targetable oncogenic drivers include KRAS, 

BRAF and ERBB2 mutations and RET and ROS1 amplifications (Cardarella et al., 

2013; Davies et al., 2012; Gadgeel, 2016; Mazières et al., 2013; Wang et al., 2012).  

An in-depth, comprehensive review of lung cancer molecular targeted therapies in 

non-small cell lung cancer was published in 2015 (Morgensztern et al., 2015) and is 

recommended for an in depth understanding of this area. 

 

1.3 DNA methylation 

DNA methylation is the most widely studied epigenetic modification (Kulis and 

Esteller, 2010).  In adult mammalian cells, DNA methylation is predominantly 

confined to cytosines within CpG dinucleotides (Jones and Baylin, 2007).  5-

methylcytosine is produced through the addition of a methyl group to the C5 position 

of cytosine, contributed by the methyl donor S-adenosylmethionine (Bird, 2002), and 

catalysed by DNA methyltransferases (DNMTs) and accessory proteins such as 

UHRF1 (Bashtrykov et al., 2014; Daskalos et al., 2011).  The de novo DNA 

methyltransferases, DNMT3A and DNMT3B, are essential for the establishment of 

DNA methylation patterns in early development (Okano et al., 1999), while the so-

called maintenance DNA methyltransferase, DNMT1, is mainly responsible for the 

addition of methyl groups to the unmethylated, nascent daughter strand during DNA 

replication and has a preference for the hemimethylated DNA (Hermann et al., 2004).  

It is now apparent, however, that DNMT1 is not solely responsible for methylation 

preservation and DNMT3A/3B play a vital supporting role in enabling the efficient 

propagation of DNA methylation patterns (Jones and Liang, 2009).  The catalytically 

inactive homologue of Dnmt3a/3b, Dnmt3L, interacts with Dnmt3a and Dnmt3b and 
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facilitates their action in de novo methylation and the establishment of maternal 

imprinting in mouse oocytes (Hata et al., 2002).     

 

Spontaneous and/or enzymatic deamination of 5-methylcytosine to thymine induces a 

greater than 75% under-representation of CpG dinucleotides in the human genome 

(Lander et al., 2001).  Epigenetic methylation marks can directly confer genetic 

alterations through this mechanism (Pfeifer, 2010; Rideout et al., 1990).  Relatively 

short, predominantly unmethylated CpG-rich regions with high G + C content, termed 

CpG islands (CGIs), are interspersed throughout the mammalian genome, primarily 

coinciding with gene promoters (Bird et al., 1985; Cooper et al., 1983; Meissner et al., 

2008; Weber et al., 2007).  In practice, CGIs are predicted computationally and 

characterized as being longer than 200 bases, presenting at least a content of 50% of 

guanines and cytosines and an observed-to-expected CpG ratio greater than 0.6 (Wu 

et al., 2010).  Actively transcribed genes that contain CGIs within their promoters 

normally have nucleosome-depleted regions at their transcription start sites, typically 

with adjacent H2A.Z-containing nucleosomes bearing the H3K4 trimethylation mark 

(Kelly et al., 2010).  Inactive CGI-containing promoters do not commonly gain DNA 

methylation but acquire the repressive H3K27 trimethylation mark via a Polycomb-

facilitated mechanism (Lynch et al., 2012; Tanay et al., 2007).  Interestingly, in 

experiments using a colon cancer cell model system, histone deacetylase inhibitors 

(HDACi) transiently reactivated expression of methylated genes, with repression 

returning after two weeks, indicating that DNA methylation does not permanently 

silence gene expression but acts as a long term epigenetic molecular marker for gene 

silencing memory (Raynal et al., 2012). 
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1.3.1 DNA methylation and cancer 

Cancer cells are typified by genome-wide DNA hypomethylation, site-specific 

aberrant hypermethylation of gene promoters, changes in covalent histone 

modifications and dysregulated expression of histone-modifying enzymes and 

chromatin-remodelling catalytic subunits (Portela and Esteller, 2010; Sharma et al., 

2010).  DNA methylation at gene promoters is generally associated with condensed 

chromatin structure and long-term stabilization of transcriptional repression (Jones, 

2012) and is involved in various physiological processes, such as cell differentiation 

and development (Reik, 2007), X-chromosome inactivation (Reik and Lewis, 2005), 

gene imprinting (Kacem and Feil, 2009), alternative splicing (Lev Maor et al., 2015) 

and genomic stability (Daskalos et al., 2009).  DNA methylation also occurs at regions 

of lower CpG density that flank CGIs, typically within c. 2 kb, known as CpG shores, 

and has also been demonstrated to strongly associate with silencing of gene expression 

(Irizarry et al., 2009).  DNA methylation abnormalities have been demonstrated in 

human diseases including neurodegeneration, inflammation, metabolic syndromes and 

cancer (Portela and Esteller, 2010). 

  

Hypermethylation of promoter regions can contribute to the promotion of 

carcinogenesis through the silencing of tumour suppressor genes (TSG) (Laird and 

Jaenisch, 1996).  The tumour suppressor protein p16INK4A is encoded by CDKN2A 

and inhibits cyclin-dependent kinases CDK4 and CDK6, performing a crucial role in 

cell cycle arrest and senescence (Hara et al., 1996).  CDKN2A is subject to 

transcriptional silencing in lung cancer, principally via aberrant hypermethylation 

(Merlo et al., 1995).  Human bronchial epithelial cells demonstrated invasive 

characteristics when RASSF1 was silenced, and suppression of invasive phenotype 
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was observed to be a result of RASSF1A-mediated activation of the GEF-H1/RhoB 

pathway and downstream inhibition of YAP (Dubois et al., 2016).  Hypermethylation 

of the RASSF1 promoter is frequently observed in lung cancer (Dammann et al., 2000).  

The tobacco smoke carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone 

(nicotine-derived nitrosamine ketone, NNK) readily induces lung tumours in mice 

(Castonguay et al., 1983) and promotes methylation of RARB in tumours and 

preneoplastic hyperplasia (Vuillemenot et al., 2004).  The cellular functions of these 

and other genes investigated in this thesis are presented in Table 1.3-1.  Furthermore, 

a promoter methylation signature demonstrated prognostic utility in stage I NSCLC, 

distinguishing patients with high-risk disease and shorter relapse-free survival from 

patients with low-cancer disease (Sandoval et al., 2013a). 

 

Table 1.3-1 Genes investigated in this thesis and their functions  

Gene  
 

Functional role 
 

Reference 

ACBC1 
 

Drug efflux pump, multidrug resistance 
 

(Higgins, 2007) 

CDKN2A 
 

Cell cycle arrest 
 

(Hara et al., 1996) 

CYGB  Globin protein, function not conclusively known  (Burmester et al., 2002) 

F2R 
 

Thrombin/GPCR signalling 
 

(Coughlin, 2000) 

HOXA1 
 

Transcription factor, embryonic development 
 

(Krumlauf, 1994) 

HOXA10 
 

Transcription factor, embryonic development 
 

(Krumlauf, 1994) 

MT1G 
 

Metal homeostasis and detoxification 
 

(Fu et al., 2013) 

PITX2 
 

Transcription factor, embryonic development 
 

(Quentien et al., 2006) 

RARB  Retinoic acid signalling, transcriptional regulator  (Liu et al., 1996) 

RASSF1 
 

Ras signalling 
 

(Ortiz-Vega et al., 2002) 

SHOX2 
 

Transcription factor, embryonic development 
 

(Clement-Jones et al., 2000) 

TERT 
 

Telomerase maintenance, immortalization 
 

(Baird, 2010) 

WT1 
 

Transcription factor, embryonic development 
 (Wilm and Muñoz-Chapuli, 

2016) 



18 
 

1.3.2 DNA methylation as a cancer biomarker in body fluids 

DNA methylation has been observed in almost all cancer types (Baylin and Jones, 

2011).  Of particular relevance, epigenetic changes occur early in cancer development 

and have the potential to provide effective diagnostic biomarkers (Feinberg et al., 

2006).  DNA methylation is therefore an attractive target for the potential early 

diagnosis of cancer.  It also possesses a number of additional favourable attributes for 

biomarker development.  DNA methylation patterns are preserved through post-

sampling processes, since DNA is a very stable biomolecule and methylation is a 

covalent modification.  In vivo changes to CpG methylation necessitate a DNA 

replication step.  It is, therefore, more robust to changes brought about by 

environmental shocks which cells may go through prior to freezing, as these most 

likely induce cell cycle arrest.  Finally, DNA methylation signatures are present across 

broad regions of DNA, unlike point mutations, facilitating greater flexibility in assay 

design.  

 

The presence of different methylation profiles in tumour and non-tumour cells 

resulting from cancer-specific hypermethylation has potential as a cancer biomarker.  

DNA methylation can be readily detected in biological fluids of lung cancer patients 

using various laboratory techniques (reviewed in Liloglou et al., 2014).  Sufficiently 

sensitive and specific detection of abnormal DNA methylation in body fluids obtained 

through moderately invasive means, such as bronchoalveolar lavage or pleural 

effusion; minimally invasive plasma or serum liquid biopsy collected by 

venepuncture; or non-invasive specimens, such as sputum, could be of great clinical 

benefit in the time-effective and economical diagnosis of lung cancers.  This would 

also greatly reduce discomfort and risk to patients compared to standard tissue biopsy. 
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1.3.3 Quantitative Methylation-specific PCR 

Historically, methylation-specific PCR (MSP) has been the most commonly used 

technique in the detection of DNA methylation (Herman et al., 1996).  This approach 

utilizes bisulfite-mediated hydrolytic deamination and subsequent alkaline 

desulphonation of cytosine to uracil in a single-stranded DNA context.  5-

methylcytosine is resistant to this conversion and remains unchanged effectively 

translating an epigenetic DNA modification into a change in base sequence that can 

be detected to discriminate between methylated and unmethylated DNA.   It should be 

noted that bisulfite-converted DNA is no longer complementary and MSP assays are 

designed to target one of the two strands.  Bisulfite conversion also reduces sequence 

complexity and loss of input DNA can occur during preparation and purification.  

Methylation-specific primers containing guanines (R primer) and cytosines (F primer) 

at or proximal to the 3’ end of each oligonucleotide specifically anneal to conserved 

sequence variants (resulting from non-conversion of 5-methylcytosine): amplicons 

will only be generated from methylated regions of interest under optimal PCR 

conditions (Herman et al., 1996).  Amplification products are subsequently analyzed 

by agarose gel electrophoresis.   

 

The original endpoint variation of MSP, although of great utility when developed, 

provides only qualitative or semi-quantitative outputs, lacks quantification efficiency 

and can often provide challenges regarding analytical sensitivity and specificity.  The 

real-time PCR variant, quantitative methylation-specific PCR (qMSP or MethyLight) 

was developed and introduced by Peter Lairds’s group (Eads et al., 2000).  The most 

frequently adopted strategy uses two methylation-specific primers with the addition 
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of a methylation-specific fluorescent hydrolysis probe (Figure 1.3-1), overcoming 

many of the limitations associated with endpoint MSP. 

 

 

Figure 1.3-1 Methylation quantification by qMSP 

u=uracil, c=5-methylcytosine 

Methylation-specific R-primer anneals to 3’end of region of interest and Taq polymerase 

synthesizes complementary strand [A]. Methylation-specific probe incorporating 

5’fluorescent dye and 3’quencher hybridizes to copied strand [B]. F-primer anneals to 3’end 

of copied sequence. Polymerase extends nascent strand and 5’exonuclease activity cleaves 

probe. Reporter dye is released from FRET quenching of fluorescence [C], generating 

increased fluorescent signal. 

 

 
This methodology results in highly specific detection of DNA methylation that is both 

analytically sensitive and reproducible, detecting one methylated molecule in a 

background of 10,000 unmethylated molecules (Eads et al., 2000).  qMSP enables 

rapid high throughput screening of hundreds to thousands of clinical specimens in one 

PCR step without requiring further analysis (Candiloro et al., 2011).  Methylation 
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biomarkers from multiple loci can be analyzed rapidly using relatively small quantities 

of DNA (de Fraipont et al., 2005).   Multiplexing with methylation independent 

internal controls to normalize for DNA input facilitates relative quantification of 

methylation (Weisenberger, 2005).  The measurement of standard dilutions in concert 

with clinical specimens calibrates run-to-run and operator reproducibility for Quality 

Control and validation assessment (Tost, 2016).  It is suitable for analysis of FFPE 

tissue samples, microdissected specimens, plasma and other body fluids (How Kit et 

al., 2012).  However, qMSP is not without its disadvantages.  DNA methylation is not 

quantified at the individual CpG dinucleotide level and only one DNA strand is 

targeted (Fraga and Esteller, 2002).  Heterogeneous DNA methylation may not be 

reliably detected as qMSP primers and probes are designed to detect fully methylated 

DNA (Alnaes et al., 2015; Claus et al., 2012). 

  

1.3.4 Detection of DNA methylation by qMSP in clinical samples 

A multitude of qMSP cancer biomarker assays are in development for screening, risk 

stratification, diagnosis, prognosis and treatment response employing different sample 

types.  I will here focus on a select number of studies utilizing clinical samples and 

adhering to guidelines for clinical biomarker development and validation or used in 

clinical trials. 

 

A recent multicenter prospective cohort study sought to demonstrate that DNA 

methylation levels could predict risk of metachronous gastric cancer after endoscopic 

resection.  DNA from 826 non-cancerous gastric mucosal samples was analyzed by 

qMSP and patients were categorized into quartiles corresponding to degree of 

methylation.  Multivariate analysis adjusting for other risk factors confirmed that high 
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miR-124a-3 methylation was associated with increased risk of metachronous gastric 

cancer development (Asada et al., 2015). 

 

Methylation-specific PCR MGMT gene promoter analysis of FFPE tissue showed 

within a phase II trial that clinical response of colorectal cancer patients to 

dacarbazine was restricted to the patient group exhibiting MGMT hypermethylation, 

thus characterizing a subgroup of patients for whom treatment with alkylating agents 

may be beneficial (Amatu et al., 2013). 

 

A recent prospective study of 1544 participants evaluated the utility of colorectal 

cancer methylation biomarker SEPT9 in blood plasma.  The limit of detection was 

7.8pg/mL for the specific assay (Epi proColon) employed in this study.  The clinical 

sensitivity was 68% and specificity was 80% based on diagnosis by colonoscopy 

(Potter et al., 2014). 

 

SHOX2, a candidate clinical biomarker for the diagnosis of lung cancer, achieved 68% 

clinical sensitivity at 95% clinical specificity in bronchial aspirates from 281 

malignant lung cancer cases and 242 controls with benign lung diseases.  62% of 

aspirate cases classified as negative by routine cytology were positively identified by 

SHOX2 methylation (Dietrich, 2011). This CE IVD (Conformité Européene in vitro 

Diagnostic) certified assay uses the HeavyMethyl variant of qMSP which facilitates 

specific amplification of bisulfite converted methylated sequences by employing 

methylation-specific oligonucleotides that block annealing of methylation-insensitive 

primers.  Further validation was performed on a 250 patient-case control cohort.  

Analysis of six samples from the previous study with methylation levels close to the 
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cut-off providing 95% specificity informed the clinical decision point for this 

performance analysis.  Reproducible detection was demonstrated at 0.8% methylation 

and clinical sensitivity (78%) and specificity (96%) were marginally superior (Kneip 

et al., 2011).   

 

The use of panels of multiple methylation biomarkers can potentially increase clinical 

sensitivity and provide better diagnostic accuracy.   A large retrospective case-control 

study comprising 655 bronchial lavage specimens used qMSP to evaluate a panel of 

ten lung cancer markers.  Using a robust positive-control-determined dichotomizing 

cut-off of 0.5% methylation (c.  60 pre-bisulfite copies) and mathematical modelling 

to identify the optimal combination of markers, a combination of four genes (TERT, 

WT1, CDKN2A and RASSF1) correctly predicted lung cancer status in 85.9% of 

samples assayed.  Overall, clinical sensitivity was 82% with 91% clinical.  

Importantly, this panel detected greater than 50% of T1 tumors (Nikolaidis et al., 

2012). 

 

1.3.5 Droplet Digital PCR 

Droplet Digital PCR (ddPCR) partitions DNA molecules across c. 20,000 replicate 

reactions, using microfluidics and surfactant chemistry (Hindson et al., 2013).  Due 

to random sampling effects, some reactions will contain one or more target copies 

and others will contain no template.  Reactions are amplified by PCR to end-point 

and analysed by an automated flow-cytometer.  Reactions containing amplified 

template molecules are designated positive on the basis of fluorescence amplitude 

and those without template, and hence lower amplitude, are discriminated as 

negative.  The number of target molecules present can be calculated from the 
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fraction of positive droplets using the following equation, based on the Poisson 

distribution: 

 

𝜆 =  −ln (1 − 𝑝) 

 

The average number of target molecules per droplet is represented by λ and p 

represents the proportion of positive droplets.  Using the average number of target 

molecules, the volume of the ddPCR partitions and the number of droplets 

successfully analysed we can estimate the absolute concentration of the target of 

interest.  Since ddPCR depends on a binary classification of end-point PCR, 

variation in amplification efficiency is well tolerated.  Furthermore, partitioning of 

“bulk” reactions into many thousands of individual reactions increases the tolerance 

to inhibitory substances (Dingle et al., 2013).  ddPCR also uses the same chemistries 

widely employed in qPCR applications. 

 

1.3.6 Detection of DNA methylation by ddPCR 

Prior to this project, there were no peer-reviewed publications utilizing ddPCR for 

the detection of DNA methylation in circulation.  However, a small number of 

studies have now been reported.  MethyLight ddPCR showed higher sensitivity than 

qMSP in the detection of methylated EVL and NTRK3 in a technical performance 

evaluation and demonstrated improved precision in primary colorectal cancer tissue 

(Yu et al., 2015).  After identifying a number of potential biomarkers for the 

detection of breast cancer using methylation array analysis, a four methylation 

marker panel (in conjunction with two additional modelling parameters) achieved a 

sensitivity of 86% and specificity of 83% in case and control plasma samples 
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(Uehiro et al., 2016).  The detection of methylated WIF1 and NPY DNA markers in 

the tissue and plasma of colorectal cancer patients has also been demonstrated using 

a similar droplet-based digital platform, the RainDrop Digital PCR System (Garrigou 

et al., 2016). 

 

1.4 Study aims and objectives 

The aim of this study was to evaluate DNA methylation biomarkers in clinical 

samples to facilitate early detection of lung cancer.  Specific objectives included: 

 (1) The validation of an extended marker panel, using enhanced assays, in 

moderately invasive bronchoalveolar lavage. 

 (2) The development and optimisation of novel ddPCR assays capable of detecting 

very low levels of DNA methylation in minimally invasive liquid biopsy samples 

such as blood plasma, with the intention of replacing invasive surgical/clinical 

procedures with a simple blood draw. 

(3) The comprehensive assessment and comparison of ddPCR and qMSP 

technologies in the detection of moderate and very low quantities of methylated 

DNA to ensure reliability in analysis of clinical samples. 

(4) The validation of DNA methylation assays and detection models using the best 

performing methodology in blood plasma samples in a retrospective case-control 

study. 
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Chapter 2  
 

 

 

 

 

 

 

 

Materials and methods 
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2.1 Sample collection 

2.1.1 Peripheral blood mononuclear cell (PBMC) control DNA 

Genomic DNA previously extracted from many (> 96) non-cancer blood bank PBMC 

samples was pooled and split into two 50 ml polypropylene centrifuge tubes (Corning, 

Corning, NY, USA).  RNase A (Sigma-Aldrich, St. Louis, MO, USA) was added to a 

final concentration of 50 µg/ml and incubated at 37 °C for 1 hour.  Proteinase K was 

then added to a final concentration of 100 µg/ml and incubated at 56 °C for 1 hour.  

One volume of phenol:chloroform:isoamyl alcohol (25:24:1) was added to the pooled 

DNA solution and thoroughly mixed by inversion for 30 seconds.  The tubes were 

centrifuged at 3900 RCF for 10 minutes and the aqueous layer removed to a new 

centrifuge tubes (equal volumes in each).  0.5 volumes 7.5 M NH4OAc was added 

each tube, followed by 2.5 volumes 100% ethanol (molecular biology grade).  DNA 

was precipitated overnight at -20 °C.  Samples were centrifuged at 3900 RCF for 10 

minutes at 4°C and supernatant removed.  1 ml 70% ethanol was added to the tubes 

which were then centrifuged at 3900 RCF for 10 minutes at 4 °C and supernatant 

removed.  The 70% ethanol wash was repeated, removing as much remaining ethanol 

as possible.  The DNA pellets were then dried at room temperature for 10 minutes.  2 

ml TE buffer was added to each tube.  Solutions were left at 4 °C overnight to allow 

for rehydration of the DNA.  Purity was assessed by ultraviolet spectrophotometry 

(see 2.3.1) and concentration estimated by fluorescence quantification (see 2.3.2).  

PBMC DNA was subsequently diluted to 100 ng/µl with TE buffer, aliquoted and 

stored at -20 °C. 
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2.1.2 Bronchoalveolar lavage specimen collection 

Bronchoalveolar lavage samples were collected at participating hospitals according to 

clinical SOPs and a proportion (excess to diagnosis) was provided to LLP in 

Saccomano’s fixative and stored in a temperature-controlled environment (18°C) until 

use. 

 

2.1.3 Blood plasma specimen collection 

Blood samples were collected and plasma isolated according to the SOP located in the 

Appendix. 

 

2.2 DNA extraction 

2.2.1 Bronchoalveolar lavage (BAL) DNA extraction 

2 ml aliquots of bronchoalveolar lavage specimens were transferred into 2.0 ml 

SuperLock microcentrifuge tubes (STARLAB (UK) Ltd., Milton Keynes, UK). 

15 µl 15 % dithiothreitol was added to each sample, mixed using a vortex mixer and 

incubated at room temperature for 30 minutes.  Sample tubes were centrifuged at 

14,000 RCF for 15 minutes at 4 °C.  Supernatants were discarded and genomic DNA 

extracted from pelleted samples was extracted using DNeasy 96 Blood and Tissue Kit 

(Qiagen).  Buffers ATL and AL were first inspected for the formation of precipitates.  

If precipitation was suspected, buffers were warmed to 56 °C for 5 – 10 minutes.  A 

working lysis solution was prepared containing 180 µl Buffer ATL and 20 µl 

proteinase K (activity 600 mAU/ml solution) and mixed by pulse vortexing.  200 µl 

working solution was added to each sample, tubes securely closed and incubated at 56 

°C for 16 hours with constant agitation.  Lysate was collected from microcentrifuge 

tube caps by brief centrifugation.  Complete sample lysis was confirmed by visual 
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inspection.  Gelatinous or very viscous samples were incubated for a further six hours 

after the addition of 20 µl proteinase K.  410 µl premixed Buffer AL and ethanol (260 

ml ethanol to 247 ml Buffer AL) was added to each sample.  Samples were then mixed 

by pulse vortexing and briefly centrifuged to collect any solution form tube lids.  

Samples were transferred to DNeasy 96 plates placed on top of waste collection S-

Blocks.  The plates were sealed with AirPore Tape Sheet (Qiagen), to prevent cross-

contamination during centrifugation, and centrifuged for 10 minutes at 5796 RCF.  

Flow-through was discarded, 500 µl Buffer AW1 added to sample columns, followed 

by centrifugation at 5796 RCF for 10 minutes.  If the lysate had not passed through 

the membrane in all wells, plates were centrifuged for a further 10 minutes.  Flow-

through was discarded, 500 µl Buffer AW2 added to sample columns, followed by 

centrifugation at 5796 RCF for 15 minutes.  The plates were placed on an Elution 

Microtubes RS (Qiagen) racks and incubated at 70 °C for 10 minutes to allow 

evaporation of any traces of Buffer AW2.  The plates were placed on clean Elution 

Microtubes RS racks, 200 μl 0.1 x TE was added to the column matrix directly and 

the column left to stand for 10 minutes to enable greater solubilisation of matrix-bound 

DNA.  DNA was eluted by centrifugation at 5796 RCF for 2 minutes.  To increase 

yield, the eluate was reloaded into columns and centrifugation repeated.  BAL DNA 

was either analysed immediately or stored at -20 °C.    

 

2.2.2 Blood plasma DNA extraction 

cfDNA was extracted from 1.8 ml blood plasma using DNeasy Blood and Tissue Kit 

(Qiagen).  The manufacturer’s protocols were modified to take into consideration the 

larger volumes required for extraction of DNA from plasma.  1.8 ml plasma was 

transferred into 15 ml centrifuge tubes (Corning).  A working lysis solution was 
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prepared containing 1.8 ml Buffer ATL and 20 µl 20 mg/ml proteinase K (Promega, 

Madison, WI, USA) per sample and mixed well.  1.8 ml working solution was added 

to each sample, tubes were tightly closed and mixed by pulse vortexing.  Samples were 

incubated at 56 °C for 16 hours.  Tubes were centrifuged briefly to collect any lysate 

from tube caps.  1.8 ml Buffer AL was added to samples which were mixed by pulse 

vortexing and incubated at 56 °C for 10 minutes.  1.8 ml molecular biology grade 

ethanol was added to samples which were mixed by pulse vortexing.  3 ml of the 

mixture was transferred into 3ml Extension Tubes (Qiagen) fitted into a DNeasy Mini 

spin columns on a QIAvac 24 Plus vacuum manifold and the vacuum pump switched 

on.  As the lysate was drawn through the spin columns further lysate was added until 

all had passed through the column.  The vacuum pump was then switched off.  750 µl 

Buffer AW1 was added to the columns and vacuum reapplied.  When all the Buffer 

AW1 had passed through the columns, the vacuum pump was again switched off, and 

750 µl Buffer AW2 was added to the columns and vacuum reapplied.  When all the 

Buffer AW2 had passed through the columns, the vacuum pump was again switched 

off, the DNeasy Mini spin columns placed in clean 2ml collection tubes and 

centrifuged at 16,000 RCF for one minute in order to dry the column membrane and 

prevent carry-over of Buffer AW2.  DNeasy Mini spin columns were placed in 1.5 ml 

DNase-free microcentrifuge tubes (STARLAB (UK)), 110 μl 0.22 μm-filtered Tris-

HCl, pH 8.0, 0.025% Tween-20 was added to the column matrix directly and the 

column left to stand for 10 minutes to enable greater solubilisation of matrix-bound 

DNA. 

 

DNA was eluted by centrifugation at 12,000 RCF for 2 minutes.  To increase yield, 

the eluate was reloaded into columns and centrifugation repeated.  10 μl plasma 
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cfDNA was aliquoted into PCR strips for real-time PCR genomic DNA quantification 

(see 2.3.3), and stored at -20 °C.  The remaining volume of plasma cfDNA was 

transferred to PCR strips for MethPlex ddPCR analysis.  These DNA samples were 

dehydrated using a Genevac miVac DNA concentrator (Genevac Ltd., Ipswich, UK), 

rehydrated in 20 μl 0.22 μm-filtered Tris-HCl, pH 8.0, 0.025% Tween-20 at 4 °C 

overnight and stored at -20 °C.  

 

2.3 DNA quantification and Quality Control 

2.3.1 Ultraviolet spectrophotometry 

DNA concentration and purity were assessed using a NanoDrop™ 2000 (Thermo 

Scientific, Waltham, MA, USA) following the manufacturer’s instructions.  

Concentration was based on absorbance at 260 nm and the concentration extinction 

coefficient was set to 50 (“Type” = DNA-50).  Purity was assessed by 260/280 and 

260/230 ratios, and general observation of absorbance spectra. 

 

2.3.2 Fluorescence quantification 

PBMC DNA stocks and plasmid DNA samples were quantified using Quant-iT™ 

Broad-Range dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA).  PBMC DNA 

standards used in the development and validation of ACTB qPCR genomic DNA 

quantification assay (see 2.3.3) were quantified using Qubit® High-Sensitivity 

dsDNA Assay Kit (Invitrogen). 

 

2.3.2.1 Quant-iT™ Broad-Range dsDNA Assay Kit 

A working solution was made by diluting Quant-iT dsDNA BR Reagent 1:200 in 

Quant-iT dsDNA BR Buffer and mixing using a vortex mixer.  200 µl was pipetted 
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into the appropriate number of wells of 96 Well Black FLUOTRAC™ 200 

Polystyrene Microplate (Greiner Bio-One International GmbH, Kremsmünster, 

Austria).  10 µl of each λ DNA standard (0, 5, 10, 20, 40, 60, 80 and 100 ng/μl) was 

added to individual wells in triplicate. 5 µl of DNA of unknown concentration was 

added to appropriate wells in triplicate.  All samples were mixed well by thoroughly 

pipetting up and down.  Fluorescence was read using a Tecan GENios™ plate reader 

(Tecan Group Ltd., Männedorf, Switzerland) using a 485 nm excitation filter and a 

535 nm emission filter.  A calibration curve was constructed in Microsoft Excel 2010 

(Microsoft Corporation, Redmond, Washington, USA) by plotting λ DNA standard 

input amount as the independent variable and background-corrected mean 

fluorescence as the dependent variable. Unknown DNA amounts were calculated by 

solving the linear regression equation of a fitted straight line forced through the 

origin for x = background-corrected mean fluorescence of unknown DNA.  

Unknown DNA concentration (ng/μl) was calculated by dividing this number by the 

volume of added unknown DNA and multiplying by any appropriate dilution factor. 

 

2.3.2.2 Qubit® High-Sensitivity dsDNA Assay Kit 

A dilution series of dsDNA standards was constructed by dilution of Qubit® dsDNA 

HS Standard #1 (0 ng/μl in TE buffer) in 0.22 μm-filtered Tris-HCl, pH 8.0, 0.025% 

Tween-20 according to Table 2.3-1.  A working solution was made by diluting 

Qubit® dsDNA HS Reagent 1:200 in Qubit® dsDNA HS Buffer and mixing using a 

vortex mixer.  10 µl of each dsDNA standard (0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 

1.5, 2 and 5 ng/μl) was added to individual wells in triplicate. 3 µl of PBMC DNA of 

unknown concentration was added to appropriate wells in triplicate.  From this point 
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forward the protocol was the same as that for Quant-iT™ Broad-Range dsDNA 

Assay Kit (see 2.3.2.1). 

 

Table 2.3-1 Table of High Sensitivity dsDNA dilution series concentrations and 

volumes 

Concentration 

(ng/µl) 
Dilution 

Volume 

previous 

dilution 

(µl) 

Volume 

Tris-HCl, pH 8.0, 

0.025% Tween-20 

(µl) 

Mixed 

Volume 

(µl) 

10 - - - - 

5 1/2 125 125 250 

2 2/5 80 120 200 

1.5 3/4 135 45 180 

1 2/3 100 50 150 

0.5 1/2 75 75 150 

0.2 2/5 60 90 150 

0.1 1/2 75 75 150 

0.05 1/2 75 75 150 

0.02 2/5 60 90 150 

0.01 1/2 75 75 150 

 

2.3.3 Real-time PCR genomic DNA quantification 

I developed a highly sensitive quantitative real time genomic DNA assay targeting 

the ACTB gene.  This was prompted by the expectation of low circulating cell-free 

DNA yields from blood plasma.  The final assay used for quantification of DNA 

extracted from patient plasma samples used duplicate seven step, 3-fold standard 

curves of PBMC DNA, ranging from 7.29 ng/µl to 0.01 ng/µl. Quantification assay 

runs also included duplicate non-template controls.  

Please refer to Chapter 4 “ddPCR assay and workflow development and 

optimisation” for full assay details. 
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2.4 In vitro genomic DNA methylation 

CpG dinucleotide methylation positive control DNA for methylation detection 

method development, optimisation and clinical screening was produced by in vitro 

methylation of pooled blood bank PBMC DNA using M.SssI CpG methyltransferase 

(New England Biolabs (UK), Hitchin, UK).  Reactions were carried out in PCR 

tubes containing 5 μg genomic DNA, 1 x NEBuffer 2, 640 μM S-adenosyl 

methionine (SAM), 20 U M.SssI CpG methyltransferase and ddH2O in 100 µl total 

volume.  Reactions were thoroughly mixed by pipetting up and down and incubated 

at 37 °C using an Applied Biosystems GeneAmp PCR System 9700 (Applied 

Biosystems, Foster City, CA, USA).  Since SAM is consumed during the reaction, 

an additional 2 μl 32 mM SAM was added after two hours and the reaction was 

incubated for a further two hours followed by heat inactivation at 65 °C for 20 

minutes.  Discrete reactions were combined, mixed and aliquoted, and the resulting 

100 ng/µl in vitro methylated genomic DNA was stored at -20 °C. 

 

2.5 Whole genome amplification 

DNA methylation demonstrates tissue specificity (Chen et al., 2016; Ghosh et al., 

2010; Schilling and Rehli, 2007); therefore, we cannot assume that any given gene 

promoter in the various subpopulations of PBMCs and various individual donors of 

control specimens is unmethylated.  Whole genome amplification (WGA) using 

REPLI-g® Screening Kit (Qiagen) was carried out to produce fully unmethylated 

control DNA.  REPLI-g® Mini DNA Polymerase was thawed on ice.  17 µl Buffer 

SB1 was added to 50 ng PBMC DNA (5 µl), mixed by vortexing and centrifuged 

briefly.  DNA was denatured by incubation at 65 °C for 5 minutes and allowed to 

cool to room temperature.  A master mix containing Buffer SB2 and REPLI-g® Mini 
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DNA Polymerase was prepared in a 17:1 ratio.  18 µl master mix was added to each 

denatured DNA sample and WGA reactions were incubated at 30 °C for 16 hours, 

followed by enzyme inactivation at 65 °C for 3 minutes.  All incubation steps were 

carried out using an Applied Biosystems GenAmp PCR System 9700 (Applied 

Biosystems).  WGA DNA was stored at -20 °C. 

 

2.6 HinP1I restriction digestion of genomic DNA 

To increase specificity of methylation-specific qMSP/ddPCR assays, genomic DNA 

was first digested with methylation-sensitive restriction endonuclease HinP1I prior 

to bisulphite conversion (see Chapter 4).  Reactions contained DNA (varying input 

amounts), 1 x CutSmart® Buffer, 10 U HinP1I (NEB (UK)) and ddH2O in a 100 µl 

total volume.  Reactions were thoroughly mixed by pipetting up and down and 

incubated at 37 °C for 16 hours using an Applied Biosystems GeneAmp PCR 

System 9700 (Applied Biosystems).  Digestion was stopped by heat inactivation at 

65 °C for 20 minutes.  DNA was either bisulphite treated immediately or stored at -

20 °C. 

 

2.7 Bisulphite conversion of DNA 

Genomic DNA was subjected to bisulphite conversion of unmethylated cytosine to 

uracil to enable discrimination between methylated and unmethylated DNA by 

sequence sensitive detection methods.  Single format bisulphite conversion was 

carried out using the EZ DNA Methylation Gold™ kit (Zymo Research, Irvine, CA, 

USA) and the general protocol follows, with modifications specified in appropriate 

chapters.  CT Conversion Reagent was prepared by adding 900 μl ddH2O to the solid 

conversion reagent mixture, followed by 300 μl M-Dilution Buffer and 50 μl M-
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Dissolving Buffer.  The resulting solution was then vortexed thoroughly and mixed 

on a Stuart Scientific Blood Tube Rotator SB1 (Cole-Parmer, Stone, UK) for 10 

minutes.  130 μl CT Conversion Reagent was added to 20 μl DNA sample in a PCR 

tube, mixed by pipetting up and down, and briefly centrifuged.  Samples were 

incubated at 98 °C for 10 minutes and 64 °C for 2.5 hours using an Applied 

Biosystems GeneAmp PCR System 9700 (Applied Biosystems), followed by 

immediate desulphonation/deamination and clean-up steps.  Incubated samples were 

centrifuged briefly to remove any condensate from PCR tube lids, pipetted into 

Zymo-Spin™ IC Columns containing 600 μl M-Binding Buffer and mixed by 

inversion.  Columns were centrifuged at 14,000 RCF for 60 seconds and the flow-

through was discarded.  200 μl M-Wash Buffer was then added to columns and 

centrifugation repeated. 200 μl M-Desulphonation Buffer was added to columns and 

incubated at room temperature for 20 minutes, followed by centrifugation at 14,000 

RCF for 60 seconds.  The flow-through was discarded and the columns were washed 

twice with 300 μl M-Wash Buffer, as above.  Columns were then centrifuged at 

14,000 RCF for five minutes, in clean waste collection tubes, to prevent ethanol 

carry-over.  Spin columns were placed in clean 1.5 ml DNase-free microcentrifuge 

tubes (STARLAB (UK)), 50 μl M-Elution Buffer was added to the column matrix 

directly and the column left to stand for 10 minutes to enable greater solubilisation of 

matrix-bound DNA.  DNA was eluted by centrifugation at 14,000 RCF for 60 

seconds.  To increase yield, the eluate was reloaded into columns and centrifugation 

repeated.  Bisulphite treated DNA was either analysed immediately or stored at  

-20 °C. 
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2.8 Agarose gel electrophoresis 

DNA was analysed by agarose gel electrophoresis.  Restriction digests and 

Pyrosequencing PCR products were run on 1% and 2% (w/v) agarose gels 

respectively.  Gels were produced by dissolving the appropriate mass of agarose in 

0.5 x Tris-borate-EDTA (TBE) buffer (45 mM Tris-borate, 1mM EDTA, pH 8.3) in 

a conical flask, facilitated by microwave heating.  SafeView Nucleic Acid Stain 

(NBS Biologicals, Huntingdon, UK) was then added to a concentration of 1/20,000 

and the melted agarose was mixed on a Stuart Scientific Orbital Shaker SO3 (Cole-

Parmer) for 3 - 5 minutes, allowing sufficient cooling prior to gel casting.  The gel 

was then poured into a casting tray, a comb was inserted and the gel was left to set 

completely.  The comb was removed from the gel which was then placed in a Sub-

Cell GT electrophoresis tank (Bio-Rad, Hercules, USA) and immersed in 0.5 x TBE 

buffer.  5 µl Hyperladder I (Bioline, London, UK) was loaded as a marker for 

restriction digest runs; 5 µl Hyperladder IV (Bioline) was used as a marker for 

Pyrosequencing amplicons.  Pyrosequencing PCR reactions contained CoralLoad 

PCR Buffer (Qiagen, Hilden, Germany) and 5 µl PCR product was loaded directly 

into the wells.  Electrophoresis was carried out at 3 V/cm (distance between the 

electrodes of the unit) until the marker dye had run 3/4 the length of the gel.  Gels 

were transferred to a UVP EC3 ChemiHR 410 imaging system (Ultra-Violet 

Products Ltd, Cambridge, UK) and bands were visualized at wavelength of 365 nm.  

Image analysis was carried out using VisionWorks LS image acquisition and 

analysis software (Ultra-Violet Products Ltd). 
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2.9 Pyrosequencing Methylation Analysis  

The level of methylation of in vitro methylated DNA was assessed by 

Pyrosequencing Methylation Analysis.  The results of this analysis informed the 

consequent adjustment in dilution of methylated DNA to desired percentages/ 

concentrations. 

 

2.9.1 Pyrosequencing assay design 

Target gene sequences were obtained from NCBI GenBank.  CpG rich regions 

within the promoter region 1500 bp proximal to the transcription start site and the 

first exon were identified using CpG Island Finder (http://cpgislands.usc.edu/)1 to 

predict potential for regulation by cytosine methylation. 

Sequences were manipulated in silico to reflect post-bisulphite treatment sequence 

changes.  Sequences were imported into Pyromark Assay Design 2.0 (Qiagen) to 

facilitate assay design.  Regions of interest were defined and optimal forward, 

reverse and Pyrosequencing primers were designed.  Desirable criteria adhered to, if 

possible, are: 

 

 To ensure that template size is between 80 and 120 bp in order to reduce 

likelihood of secondary structure formation. 

 To include at least four CpG dinucleotides within the sequencing region. 

 To avoid thymine runs prior to CpGs within the assay region. 

 PCR primers not to include CpGs to enable amplification of both methylated 

and unmethylated species. 

                                                           
1 This bioinformatics tool is no longer available at this URL.  Alternatives include:  

• http://www.bioinformatics.org/sms2/cpg_islands.html 

• http://www.ebi.ac.uk/Tools/seqstats/emboss_cpgplot/ 
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 PCR primers to include at least three cytosines not in a CpG context so that 

assays are specific to completely bisulphite converted DNA. 

 To avoid mispriming of the Pyrosequencing primer. 

 To avoid potential duplex formation between the Pyrosequencing and 

biotinylated PCR primer. 

 To avoid 3’ template loops. 

 

It is essential to also include bisulphite conversion control sites within the assayed 

sequence.  Multiple control sites should be included if possible.  Favoured 

conversion controls are GCA and ACA trinucleotides, subsequently converted to 

GTA and ATA after bisulphite conversion.  Inefficient conversion is indicated by 

incorporation of cytosine at these sites during the Pyrosequencing reaction.  

Dependent upon which DNA strand the sequencing primer is complementary to, the 

forward or reverse primer is modified with a 5’biotin label.  This facilitates the 

efficient isolation of the strand selected for analysis (see 2.9.3). 

  

Oligonucleotides were obtained from Eurofins Genomics (Eurofins Genomics 

GmbH, Ebersberg, Germany) and are presented in Table 4.9.1.  High Purity Salt Free 

(HPSF) purified, lyophilized oligonucleotides were dissolved in 10 mM Tris-HCl, 

pH 8.0, 1 mM EDTA, 50 % glycerol and stored at -20 °C.  

 

2.9.2 Pyrosequencing PCR amplification 

Bisulphite treated DNA was amplified by PCR in a final volume of 25 µl.  Reactions 

contained 1 x CoralLoad PCR Buffer, 200 µM dNTPs , 0.125 units HotStarTaq Plus 

DNA Polymerase (Qiagen), 300nM unbiotinylated primer, 150 nM biotinylated 
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primer (Eurofins Genomics) and ddH2O.  PCR thermal cycling was carried out using 

a Life Technologies Veriti 96-well Thermal Cycler (Applied Biosystems)  using the 

following thermal profile(s): 95 °C for 5 minutes, followed by 40 cycles of 95 °C for 

30 seconds, annealing temperature of 52 °C (MT1G), 54 °C (RASSF4, RASSF5) or 

56 °C (CDKN2A) for 30 seconds and extension at 72 °C for 30 seconds.  Partially 

synthesized products present from previous amplification cycles were completed by 

a final elongation at 72 °C for 10 minutes (Table 2.9-1).  Amplification of bisulphite 

treated DNA was confirmed by agarose gel electrophoresis (see 2.8) prior to 

Pyrosequencing. 

 

Table 2.9-1  Pyrosequencing PCR thermal cycling conditions. 

 Temperature 

(°C) 
Time 

 
Cycles 

Initial denaturation/ 

Polymerase activation 
95 5 minutes 

 
1 

Denaturation 95 30 seconds 
 

 

Annealing Target specific 30 seconds 
 

40 

Extension 72 30 seconds 
 

 

Final extension 72 10 minutes 
 

1 

 

2.9.3 Pyrosequencing PCR product immobilisation, strand separation and 

sequencing primer annealing 

Biotinylated PCR products were first immobilised on Streptavidin Sepharose™ High 

Performance beads (GE Healthcare Life Sciences, Little Chalfont, UK).  75 µl 

binding mixture containing 3 µl Streptavidin Sepharose™ HP, 50 µl PyroMark 

Binding Buffer (Qiagen) and 22 µl ddH2O was added to each PCR reaction.  PCR 
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plates were then sealed tightly and agitated at 300 rpm for 10 minutes using a vortex 

mixer with microtitre plate stand.  Beads were immediately captured using a 96-pin 

vacuum tool on a PyroMark Q96 Vacuum Workstation (Qiagen) and filter 

probes/attached beads washed in 70% ethanol for 10 seconds (tray 1).  The vacuum 

tool was transferred to a trough containing 0.2 M NaOH (tray 2) in order to denature 

PCR products, resulting in the retention of the biotin labelled strand (bound to the 

isolated beads) and the loss of the unbiotinylated PCR stand.  The vacuum tool was 

then transferred to a trough containing 10 mM Tris-acetate (tray 3) for 10 seconds to 

wash the isolated strand.  Filter probes were then carefully positioned above a 

PyroMark Q96 Plate Low containing 45 µl 0.3 µM sequencing primer (Eurofins 

Genomics) in PyroMark Annealing Buffer (Qiagen), the vacuum pump switched off 

and the Streptavidin-bound biotin-labelled single-stranded DNA released into the 

appropriate wells.  The plate was then incubated at 80 °C for 2 minutes, allowed to 

cool to room temperature for 5 minutes and then placed in a PyroMark Q96 ID 

System (Qiagen) for Pyrosequencing analysis.  Enzyme, substrate and nucleotides 

(PyroMark Gold Q96 Reagents, Qiagen) were pipetted into the Pyrosequencing 

reagent cartridge according to the volumes recommended by the PyroMark Q96 

Software (Qiagen).  The cartridge was then loaded into the PyroMark Q96 ID 

System and Pyrosequencing analysis performed.  

 

2.10 Quantitative Methylation Specific PCR (qMSP) 

 qMSP assays amplify and specifically quantify methylated gene promoter DNA 

sequences after bisulphite conversion (1.3.3).  I previously developed multiplex 

qMSP assays for the screening of clinical BAL DNA in a case-control study 

(Chapter 3).  These triplex assays utilise hydrolysis probe technology, specifically 
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TaqMan® MGB probes (Applied Biosystems), and each individual assay targets two 

potentially methylated gene promoters, probes being labelled with FAM™ and 

VIC™ respectively.  Assays also include a methylation-independent endogenous 

control primers and NED™-labelled probe, targeting a sequence within the ACTB 

gene promoter.  Optimal thermal cycling conditions and primer/probe concentrations 

for qMSP assays had been established prior to this study (Table 2.10-2, Table 

2.10-3).  Two gene-specific assays, however, produced optimal results in duplex 

assays with ACTB control only and were used in this format for the present study.  

qMSP primer and probe sequences can be found in Table 2.10-1. 

 

BAL qMSP reactions contained 1 x TaqMan® Universal Master Mix II (no UNG) 

(Applied Biosystems), 125 nM ACTB primers, 125 nM ACTB NED™ probe,  

1.5 nM methylated FAM™ and VIC™ target probes, 250 nM – 900 nM methylated 

target primers (Table 2.10-2) and 40 ng bisulphite-treated DNA.  Reactions were run 

on StepOne Plus, 7500 FAST and 7500 real-time PCR instruments with an initial 

DNA denaturation and enzyme activation at 95 °C for 10 minutes and 50 cycles of 

95 °C for 15 seconds and annealing/extension steps as indicated in Table 2.10-3. 
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Table 2.10-1 Oligonucleotide sequences, theoretical Tm and modifications of qMSP 

assay primers and probes. 

Gene 

promoter 

Primer/probe 

name 
Sequence (5'-3') 

Tm 

(°C) 
Modification 

ABCB1 ABCB1qmsp_F GGTTTAGAGAGTAGGTTTTCGTATCGC 61.6  

 ABCB1qmsp_R CTAAAACAACGCCCAAACCG 61.2  

 ABCB1qmsp_P CGTTTCGGGTAATATGG 70.5 VIC-MGB 

CYGB CYGBqmsp_F GTGTAATTTCGTCGTGGTTTGC 60.2  

 CYGBqmsp_R CCGACAAAATAAAAACTACGCG 59.5  

 CYGBqmsp_P TGGGCGGGCGGTAG 70.0 FAM-MGB 

CDKN2A p16qmsp_F GGAGGGGGTTTTTTCGTTAGTATC 61.0  

 p16qmsp_R CTACCTACTCTCCCCCTCTCCG 61.2  

 p16qmsp_P AACGCACGCGATCC 69.7 VIC-MGB 

F2R F2Rqmsp_F TTTTTTCGCGTCGTTCGTC 60.7  

 F2Rqmsp_R ACCTCACCGACAAACGCG 61.7  

 F2Rqmsp_P TTTGCGTATTTGGGAGGAG 68.6 VIC-MGB 

HOXA1 HOXA1qmsp_F TCGGGTGGTCGTAAGTACGTC 60.8  

 HOXA1qmsp_R CCTAAAAACCCGAAACGCG 61.3  

 HOXA1qmsp_P TAGCGCGTTTAGTCGGAA 69.0 VIC-MGB 

HOXA10 HOXA10qmsp_F GGGTTTTGAGGGCGTTTTC 60.3  

 HOXA10qmsp_R CCTAAAAACCCGAAACGCG 61.3  

 HOXA10qmsp_P CGGTTTCGCGTTTAC 69.0 FAM-MGB 

MT1G MT1Gqmsp_F GTATAGCGTTTTTTTCGCGAGTC 60.1  

 MT1Gqmsp_R AAATCCCTTAAACGCAACTAAACG 60.5  

 MT1Gqmsp_P ACCGCAAAACGACC 69.0 FAM-MGB 

PITX2 PITX2qmsp_F GATGTTAGCGGGTCGAAGAGTC 60.3  

 PITX2qmsp_R AAAAATCCGTACTCCTACTCCTCG 61.3  

 PITX2qmsp_P CCTCTCCTTTCGCTCC 69.0 VIC-MGB 

RARB RARbqmsp_F GATTGGGATGTCGAGAACGC 61.4  

 RARbqmsp_R ACTTACAAAAAACCTTCCGAATACG 59.7  

 RARbqmsp_P AGCGATTCGAGTAGGGT 68.0 FAM-MGB 

RASSF1 RASSF1qmsp_F GTGGTGTTTTGCGGTCGTC 61  

 RASSF1qmsp_R AACTAAACGCGCTCTCGCA 60.6  

 RASSF1qmsp_P CGTTGTGGTCGTTCG 68.7 VIC-MGB 

TERT TERTqmsp_F TGGGAGTTCGGTTTGGTTTC 60.7  

 TERTqmsp_R ACACCCTAAAAACGCGAACG 60.8  

 TERTqmsp_P AGCGTAGTTGTTTCGGG 69.2 FAM-MGB 

WT1 WT1qmsp_F GAGGAGTTAGGAGGTTCGGTC 57.7  

 WT1qmsp_R CACCCCAACTACGAAAACG 57.5  

 WT1qmsp_P AGTTCGGTTAGGTAGC 65.3 FAM-MGB 

ACTB ACTBmgb_F GGGTGGTGATGGAGGAGGTT 61.9  

 ACTBmgb_R TAACCACCACCCAACACACAAT 60.8  

 ACTBmgb_P TGGATTGTGAATTTGTGTTTG 69.0 NED-MGB 
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Table 2.10-2 Optimal BAL multiplex qMSP assay primer and probe concentrations. 

Assay Gene F/R primer 

concentration 

(nM) 

Probe 

concentration 

(nM) 

Probe dye 

WT1-p16 WT1 900 150 FAM™ 

 CDKN2A 900 150 VIC™ 

 ACTB 125 125 NED™ 

TERT-RASSF1 TERT 900 150 FAM™ 

 RASSF1 900 150 VIC™ 

 ACTB 125 125 NED™ 

RARB-HOXA1 RARB 900 150 FAM™ 

 HOXA1 900 150 VIC™ 

 ACTB 125 125 NED™ 

MT1G-PITX2 MT1G 500 150 FAM™ 

 PITX2 750 150 VIC™ 

 ACTB 125 125 NED™ 

HOXA10-ABCB1 HOXA10 900 150 FAM™ 

 ABCB1 900 150 VIC™ 

 ACTB 125 125 NED™ 

CYGB CYGB 500 150 FAM™ 

 ACTB 125 125 NED™ 

F2R F2R 250 150 VIC™ 

 ACTB 125 125 NED™ 
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Table 2.10-3 Optimal BAL multiplex qMSP assay annealing/extension temperatures 

and times.  

Assay Stage Temperature 
(°C) 

Time 

(s) 

WT1-p16 Annealing 58 90 

 Extension 72 15 

TERT-RASSF1 Annealing 58 90 

 Extension 72 15 

RARB-HOXA1 Annealing 60 90 

 Extension 72 15 

MT1G-PITX2 Annealing 63 90 

 Extension - - 

HOXA10-ABCB1 Annealing 58 90 

 Extension 72 15 

CYGB Annealing 58 90 

 Extension 72 15 

F2R Annealing 60 90 

 Extension - - 

 

 

2.11 MethPlex enrichment 

2.11.1 MethPlex PCR pre-amplification 

Low cfDNA yields from blood plasma made it necessary to develop a pre-

amplification strategy to enrich for methylated gene promoters within my prospective 

biomarker panel.  Refer to Chapter 6 for an exposition of methodological 

development.  The pre-amplification method entailed methylation-specific multiplex 

PCR amplification of bisulphite-converted DNA, targeting eight gene promoters of 

interest, a process that I have termed “MethPlex enrichment”. MethPlex methylation-

specific outer nested primers were designed to pre-amplify bisulphite-treated DNA 

external to methylation-specific ddPCR amplicons and are presented in Table 2.11-1. 

The final procedure utilised a hot start DNA polymerase and buffer optimised for use 
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with bisulphite-converted DNA, EpiMark® Hot Start Taq DNA Polymerase (NEB 

UK).  A shortened initial denaturation of 30 seconds at 95°C was used to avoid further 

damage to bisulphite-converted DNA.  PCR reactions contained 1 x EpiMark® Buffer, 

1.25 units EpiMark® Hot Start Taq DNA Polymerase (NEB UK), 200 µM dNTPs 

(Qiagen), varying concentrations (Table 2.11-2) of MethPlex enrichment primers 

(Sigma-Aldrich), 10 ng bisulphite-treated DNA (technical experiments and screening 

controls) or 20 µl bisulphite-treated DNA (clinical screening), and ddH2O in a total 

volume of 50 µl. 

 

Table 2.11-1 MethPlex oligonucleotide sequences and properties 

Gene  

promoter 
Primer name Sequence (5'-3') Length Tm (°C) 

ABCB1 ABCB1nest_F TATTTATCGTTCGCGGGTT 19 56.7 

 ABCB1nest_R AACTCAAAAACTCCTAAAACAACG 24 56.8 

F2R F2Rnest_F GTGGAATAGGAAGAGCGGTT 20 56.8 

 F2Rnest_R CAAACCATTTCTCTCCTAAACG 22 56.6 

MT1G MT1Gnest_F TGGTAGGGTGAGAGAAGTCG 20 56.3 

 MT1Gnest_R AATACAAAATCCCTTAAACGCA 22 56.5 

CDKN2A p16nest_F AGAGGATTTGAGGGATAGGGT 21 56.6 

 p16nest_R GTAACCAACCAATCAACCGA 20 56.8 

RASSF1 RASSF1nest_F TTAGAAATACGGGTATTTTCGC 22 56.2 

 RASSF1nest_R AAAAACTATAAAACCCGAAAACG 23 56.6 

SHOX2 SHOX2nest_F GTTTTGTTGGTAGAGGTTGAGC 22 56.5 

 SHOX2nest_R GAACTACTACGATCGTCGCG 20 57.0 

TERT TERTnest_F TTTTGGGCGTTTGTGTTC 18 56.5 

 TERTnest_R CCTACACCCTAAAAACGCG 19 56.8 

WT1 WT1nest_F TTTAAATAAGAGGGGTCGGC 20 56.8 

 WT1nest_R ACACCGACCAACTAAAAACG 20 56.2 
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Table 2.11-2 MethPlex primer stocks  

Table indicating final MethPlex enrichment reaction primer concentrations, 20 x stock 

concentrations and volumes of individual 100 µM oligonucleotides required to produce 20 x 

stocks.  2.5 µl 20 x MethPlex primer stock was used per 50 µl MethPlex enrichment 

reaction. 

Gene 

promoter 
Primer 

Final 

concentration 

20 x stock 

concentration 

Volume/250 µl 

20x stock 

ABCB1 ABCB1nest_F 200 nM 4 µM 10   µl 

 ABCB1nest_R 200 nM 4 µM 10   µl 

F2R F2Rnest_F 200 nM 4 µM 10   µl 

 F2Rnest_R 200 nM 4 µM 10   µl 

MT1G MT1Gnest_F 200 nM 4 µM 10   µl 

 MT1Gnest_R 200 nM 4 µM 10   µl 

CDKN2A p16nest_F 100 nM 2 µM 5     µl 

 p16nest_R 100 nM 2 µM 5     µl 

RASSF1 RASSF1nest_F 200 nM 4 µM 10   µl 

 RASSF1nest_R 200 nM 4 µM 10   µl 

SHOX2 SHOX2nest_F 100 nM 2 µM 5     µl  

 SHOX2nest_R 100 nM 2 µM 5     µl 

TERT TERTnest_F 200 nM 4 µM 10   µl 

 TERTnest_R 200 nM 4 µM 10   µl 

WT1 WT1nest_F 200 nM 4 µM 10   µl  

 WT1nest_R 200 nM 4 µM 10   µl  

ddH2O - - - 110 µl 

 

PCR thermal cycling was carried out using a Life Technologies Veriti 96-well 

Thermal Cycler (Applied Biosystems) using the following thermal profile(s): 95 °C 

for 30 seconds, followed by 16 cycles of 95 °C for 15 seconds, annealing 

temperature of 56 °C for 30 seconds and extension at 68 °C for 60 seconds, and a 

final extension step of 68 °C for 5 minutes (Table 2.11-3).  PCR products were 

purified immediately (see 2.11.2). 
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Table 2.11-3 MethPlex enrichment PCR thermal cycling conditions. 

 Temperature 

(°C) 
Time Cycles 

Initial denaturation/ 

Polymerase activation 
95 30 seconds 1 

Denaturation 95 15 seconds 

 

Annealing 56 30 seconds 16 

Extension 68 60 seconds  

Final extension 68 5 minutes 1 

 

2.11.2 MethPlex PCR purification 

MethPlex enrichment PCR products were cleaned in order to remove unincorporated 

oligonucleotides and EpiMark® Hot Start Taq DNA Polymerase enzyme.  Low 

throughput enrichment in the early stages of the project development used using 

QIAquick PCR Purification Kit (Qiagen) (see 2.11.2.1).  High-throughput strategies 

utilised QIAquick 96 PCR Purification Kit (Qiagen) (see 2.11.2.2). 

 

2.11.2.1 QIAquick PCR Purification Kit 

250 µl Buffer PB containing 1:250 pH Indicator I (Qiagen) was added to each 50 µl 

MethPlex sample and mixed by vortexing.  If the solution was orange or violet, 

indicating pH > 7.5, 10 µl 3 M sodium acetate, pH 5.0 was added and the solution 

mixed by vortexing.  Samples were then transferred to QIAquick spin columns, 

placed in collection tubes, and centrifuged at 16,000 RCF for 60 seconds.  The flow-

through was discarded, 750 µl Buffer PE added to the QIAquick columns which 

were centrifuged at 16,000 RCF for 60 seconds.  The flow-through was discarded, 

the columns placed in clean collection tubes and centrifuged at 16,000 RCF for 60 
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seconds, in order to remove residual Buffer PE.  Spin columns were then placed in 

clean 1.5 ml DNase-free microcentrifuge tubes (STARLAB (UK)), 50 μl 0.22 μm-

filtered Tris-HCl, pH 8.0, 0.025% Tween-20 was added to the column matrix 

directly and the column left to stand for 10 minutes to enable greater solubilisation of 

matrix-bound DNA.  DNA was eluted by centrifugation at 16,000 RCF for 60 

seconds.  To increase yield, the eluate was reloaded into columns and centrifugation 

repeated.  Purified MethPlex enrichment products were either analysed immediately 

or stored at -20 °C. 

 

2.11.2.2 QIAquick 96 PCR Purification Kit 

A QIAvac 96 (Qiagen) vacuum manifold was assembled according to the 

manufacturer’s instructions.  A QIAquick 96 PCR Purification plate was placed in 

the QIAvac top plate.  150 μl Buffer PM was added to each 50 µl MethPlex sample 

and mixed by pipetting up and down before careful transfer to the QIAquick plate.  

The plate was then covered with an AirPore Tape Sheet (Qiagen) to avoid airborne 

contamination and the vacuum pump turned on. When all the liquid had passed 

through the plate, the vacuum pump was switched off, AirPore Tape Sheet peeled 

back, 900 μl Buffer PE added to each well and the vacuum reapplied.  This wash 

step was repeated, followed by application of maximum vacuum pressure for 10 

minutes to remove any residual Buffer PE.  The vacuum was then switched off, the 

top plate removed from the base and tapped on absorbent paper to remove any 

remaining buffer from the plate.  The QIAvac 96 waste tray was removed and 

replaced with a 1.2 ml microtube rack.  60 μl 0.22 μm-filtered Tris-HCl, pH 8.0, 

0.025% Tween-20 was added to the centre of each well, AirPore Tape Sheet 

reapplied and the plate left to stand for 10 minutes to enable greater solubilisation of 
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matrix-bound DNA.  DNA was eluted under maximum vacuum pressure for 5 

minutes.  Sample eluates were transferred into PCR strips and tightly capped.  

Purified MethPlex enrichment products were either analysed immediately or stored 

at -20 °C. 

 

2.12 Droplet Digital™ PCR (ddPCR) 

ddPCR was performed using the QX100™ Droplet Digital™ PCR System (Bio-

Rad).  ddPCR reaction preparation,  DG8™ Cartridge loading and droplet transfer 

were all carried out in an AirClean® AC600 PCR Workstation (STARLAB (UK)) 

laminar flow PCR cabinet, previously decontaminated with Distel High Level 

Disinfectant (Tristel Solutions Ltd., Snailwell, UK) and UV light sterilisation. 

 

2.12.1 ddPCR reaction preparation 

20 μl PCR reactions contained 1 x ddPCR Supermix for Probes (No dUTP) (Bio-

Rad), 750 nM primers (Eurofins Genomics), 250 nM TaqMan MGB probes (Applied 

Biosystems) and varying amounts of bisulphite-treated DNA or MethPlex enriched 

DNA (see experimental chapters for specific details).  Probes targeting potentially 

methylated gene promoter sequences were labelled with FAM™; probes 

complementary to a custom bisulphite-treated CpG methylated pUC19 spike control 

(see Ch. 6) were labelled with VIC™.  PCR reactions were prepared as master mixes 

of a volume corresponding to the number of PCR replicates multiplied by 20 μl 

(individual PCR reaction volume) plus 10 % in PCR strips held in 96 well cold 

blocks.  Capped PCR strips were vortexed, briefly centrifuged and the reaction 

mixture allowed to equilibrate to room temperature prior to droplet generation. NTCs 

were included in all ddPCR plates. 
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2.12.2 ddPCR droplet generation 

20 μl PCR reactions were transferred from PCR strips to the middle row of a DG8™ 

Cartridge placed in a DG8™ Cartridge Holder by multichannel pipette.  It is 

important not to introduce air bubbles as this results in the formation of fewer 

droplets and poor data quality.  Pipette tips were grounded against the bottom edge 

of sample wells at an angle of c. 15° and samples slowly dispensed using consistent 

pressure.  After half the sample had been dispensed, pipette tips were slowly drawn 

up the well walls while dispensing the remainder of the sample (to the first ‘stop’ of 

the multichannel pipette).  70 μl Droplet Generation Oil for Probes (Bio-Rad) was 

added to the bottom wells of the cartridge and a DG8™ Gasket securely hooked over 

the cartridge holder.  The cartridge assembly was then placed into the QX100™ 

Droplet Generator and droplet generation initiated.  When this was complete, the 

assembly was removed and gasket discarded.  40 μl of droplets were aspirated, 

slowly and with consistent force, from the top row of the cartridge using a 

multichannel pipette.  Pipette tips were placed at c. 45° against junction between the 

bottom and side of the wells. Droplets were dispensed into an Eppendorf twin-tec® 

PCR Plate, skirted (Eppendorf, Hamburg, Germany) by positioning pipette tips along 

the side of wells, near to the bottom of the wells, and dispensing slowly.  I was vital 

to meticulously apply these droplet transfer techniques to avoid shearing or 

coalescence of droplets.  The PCR plate was then sealed with Pierceable Foil Heat 

Seal (Bio-Rad) using a PX1™ PCR Plate Sealer (Bio-Rad) and thermal cycled 

immediately. 
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2.12.3 ddPCR thermal cycling 

The PCR plate was immediately transferred to a C1000 Touch™ Thermal Cycler 

(Bio-Rad) and incubated under varying conditions.  Optimal thermal cycling 

temperatures and times are shown in Table 2.12-1.  A ramp rate of 2 °C/s was used 

to avoid droplet instability through rapid temperature changes and to ensure each 

individual droplets reached uniform temperature during cycling. 

 

Table 2.12-1 ddPCR thermal cycling conditions. 

 Temperature 

(°C) 
Time Cycles 

Ramp 

Rate 

Initial denaturation/ 

Enzyme activation 
95 10 minutes 1 

2 °C/s 

Denaturation 94 
30 seconds 

45 

Annealing/extension Ta 90 seconds 

Enzyme deactivation 98 10 minutes 1 

Hold 8 Infinite 1 

 

 

2.12.4 ddPCR droplet analysis 

After PCR amplification, the 96-wellPCR plate was removed from the thermal cycler 

and secured in the QX100™ plate holder and loaded into the QX100™ Plate Reader. 

Droplet reading was then carried out after verification of sufficient ddPCR™ Droplet 

Reader Oil and sufficient volume for waste collection.  Droplet count data was stored 

and analysed using Quantasoft™ Software, version 1.7.4 (Bio-Rad). 
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3.1 Introduction 

The detection of lung cancer at early stage can improve patient survival (McPhail et 

al., 2015).  Epigenetic alterations occur early in cancer development and have the 

potential to provide effective diagnostic biomarkers (Feinberg et al., 2006).  A 

number of studies have demonstrated the detection of DNA methylation in patient 

body fluids (Hubers et al., 2014; Hulbert et al., 2017; Leng et al., 2012; Liloglou et 

al., 2014; Nikolaidis et al., 2012; Ostrow et al., 2010).  It is of note that despite the 

plethora of published studies on cancer biomarkers, only a trivial proportion are 

further developed and moved forward to clinical validation, notwithstanding the 

volume of articles suggesting their utility.  This is primarily because of a lack of 

assay optimisation, diversity in study design and screening methodologies,  and low 

sample size and resultant statistical power (Liloglou and Field, 2010; Liloglou et al., 

2014; Sandoval et al., 2013b).  Previous work within our group sought to assess 

DNA methylation biomarkers in an adequately powered, retrospective case-control 

study using qMSP analysis of minimally invasive bronchoalveolar lavage samples 

from 655 Liverpool Lung Project recruited individuals (Nikolaidis et al., 2012).  

Compliance with NCI Early Detection Research Network (EDRN) guidelines (Pepe 

et al., 2001) and the Cancer Research UK Diagnostic Biomarker Roadmap were 

considered essential in the study design.  This study demonstrated that a panel of 

four targets (CDKN2A, RASSF1, WT1 and TERT) provided for a diagnostic 

algorithm exhibiting 82% clinical sensitivity at 91% specificity in diagnosing lung 

cancer, thus doubling the efficiency of cytology (Nikolaidis et al., 2012).  Additional 

DNA methylation markers were identified by targeted methylation microarray 

(Pulverer et al., 2012) and validated in matched non-small cell lung cancer and 

adjacent normal tissue samples by Pyrosequencing methylation analysis (Tost and 
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Gut, 2007).  The top six markers from the previous bronchial washings study and the 

six newly identified markers with highest methylation frequency in tumour samples 

and absence of hypermethylation in the normal lung tissue were developed and 

optimised as multiplex qMSP assays. 

 

The present study describes the validation of this extended DNA methylation 

biomarker panel in an adequately powered retrospective case-control study, utilizing 

Liverpool Lung Project bronchoalveolar lavage samples (Field et al., 2005).  This 

was intended to confirm the findings of the previous study and further validate the 

superior sensitivity of methylated DNA biomarkers compared to cytology.  The 

evaluation of potential gains in sensitivity and specificity contributed by novel 

markers was also a key aim of this investigation.  Our panel qMSP assays previously 

utilized singleplex hydrolysis probe chemistry and have been modified and 

optimised as multiplex assays.  This may increase assay analytical performance in 

addition to improving the efficiency of sample use by decreasing the number of 

qMSP reactions required in methylation screening.  Furthermore, this will provide 

vital information for the selection of markers to progress to truly non-invasive blood 

plasma DNA methylation screening. 
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3.2 Methods 

3.2.1 Liverpool Lung Project patients and samples 

Training and validation sets included 417 individuals in total (224 lung cancer cases –  

112 in each study arm; 193 age/sex frequency matched controls – 96 in the training 

set and 97 in the validation set).  All patients were recruited to the Liverpool Lung 

Project through the Liverpool Heart and Chest Hospital and were referred for 

bronchoscopy because of clinical suspicion of lung cancer.  As such, control subjects 

were not healthy volunteers, but received diagnosis for various diseases including, but 

not limited to, bronchitis and chronic obstructive pulmonary disorder (COPD).  

Inclusion criteria for the study were as follows: 

 participant resident within the Liverpool Lung Project study area 

 participant < 80 years of age 

 participant willing and able to provide informed consent 

 biopsy sample and brochoalveolar lavage specimens collected on suspicion of 

lung cancer 

 two or more years follow-up participant clinical and epidemiological 

information available through hospital records, Merseyside and Cheshire 

Cancer Registry (MCCR) and the Office for National Statistics (ONS). 

Participants diagnosed with cancers other than lung cancer were not excluded from 

the study.  Specimens were excluded if extracted DNA failed quality control 

procedures. 

 

The LLP study protocol has been approved by the Liverpool Research Ethics 

Committee and all participants provided informed consent in accordance with the 

Declaration of Helsinki. 
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Bronchoalveolar lavage specimens were stored in Saccomanno’s fixative in a 

temperature-controlled environment (18°C).  Cytological adequacy was positively 

assessed by the presence of alveolar macrophages. 

 

DNA was extracted using the DNeasy Blood and Tissue Kit (Qiagen) according to the 

protocol in Chapter 2 (2.2.1).  Extracted DNA concentration was measured by 

fluorescence quantification (2.3.2) and samples were normalised to 1 µg in 20 µl 0.1x 

TE prior to bisulphite treatment (2.7) and qMSP analysis (2.10).  

 

3.2.2 Quantitative methylation-specific PCR 

Multiplex qMSP assays and their use for methylation detection in bronchoalveolar 

lavage are described in 2.10. 

 

3.2.3 Exploratory univariate analysis 

Subjects’ epidemiological, clinical and methylation characteristics were described by 

case-control status separately for training and testing sets.  Descriptive statistics were 

obtained and compared by using Chi-square test or Fischer’s exact test for categorical 

variables and t-tests for normally distributed variables.  The Mann-Whitney 

nonparametric alternative was used where the normality assumption failed.  

Epidemiological and clinical characteristics are presented in Table 3.2-1 and DNA 

methylation statistics are shown in Table 3.3-1.  Figure 3.2-1 provides additional 

evidence that there was no significant difference in the age distributions between case 

and control groups.   
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Table 3.2-1 Epidemiological and clinical  characteristics separated by case-control 

status for training and validations sets 

Numbers in the main body of the table represent frequencies. Numbers in parentheses 

represent percentages. 

  Training set (N = 208)  Validation set (N = 209) 

Subject 

characteristics 

Case 

(n = 112) 
 

Control 

(n= 96) 
 

Case 

(n = 112) 
 

Control 

(n= 97) 

Age group 

 <60 11 (9.8)  16 (16.7)  14 (12.5)  15 (15.5) 

 60 – 79 93 (83.0)  76 (79.2)  92 (82.1)  75 (77.3) 

 80+ 8 (7.1)  4 (4.2)  6 (5.4)  7 (7.2) 

Age 

 Mean ± SD 69.0 ± 7.54  67.5 ±7.74  68.3 ± 7.64  67.8 ± 7.90 

Gender 

 Male 70 (62.5)  53 (55.2)  65 (58.0)  54 (55.7) 

 Female 42 (37.5)  43 (44.8)  47 (48.0)  43 (44.3) 

Smoking status1 

 Never 5 (4.5)  19 (19.8)  6 (5.4)  20 (20.6) 

 Former 49 (43.8)  55 (57.3)  49 (43.8)  55 (56.7) 

 Current 58 (51.8)  22 (22.8)  57 (50.9)  22 (22.7) 

Specimen storage duration (years) 

 <5 15 (13.4)  19 (19.8)  13 (11.6)  19 (19.6) 

 5+ 97 (86.6)  77 (80.2)  99 (88.4)  78 (80.4) 

Cytology1 

 Negative 57 (50.9)  95 (99.0)  62 (55.4)  97 (100.0) 

 Positive 43 (38.4)  0 (0.0)  37 (33.0)  0 (0.0) 

 Suspicious 12 (10.7)  1 (1.0)  13 (11.6)  0 (0.0) 

Histological diagnosis 

 Adenocarcinoma 27 (24.1)    28 (25.0)   

 Squamous cell  44 (39.3)    41 (36.6)   

    carcinoma        

 NSCLC (NOS) 2 16 (14.3)    14 (12.5)   

 Small cell 15 (13.4)    18 (16.1)   

    carcinoma        

 Others2 10 (8.9)    11 (9.8)   

1 Statistically significant in both datasets (P < 0.05) 

2 NSCLC (NOS): Non-small cell lung cancer (not otherwise specified) 

  Others (Large cell carcinoma, carcinoid, lung carcinoma unconfirmed pathology) 
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Figure 3.2-1 Distributions of subject ages in case and control groups 

 

3.2.4 Statistical modelling for the identification of optimal markers 

Three statistical models (Univariate association test, marker combination by Best 

Subset Regression (BSR) using glmulti/bestglm and marker combination by 

Multifactor Dimensionality Reduction (MDR)) were tested to identify the optimal 

marker panel and algorithm for diagnostic efficiency.  Univariate analyses were used 

to explore the marginal effect of each marker on subject status.  Because no single 

model selection criterion exhibits a uniformly superior performance over a wide range 

of scenarios, we implemented best model subset selection and multi-model inference 

using glmulti (Calcagno, 2013) and bestglm (McLeod and Xu, 2017) R packages to 

identify the best additive logistic regression combination most predictive of subject 

status using generalized linear models.  The models were fitted using Akaike 

information criterion (AIC), Bayesian information criterion (BIC) and Bayesian 

Information Criterion with Bernoulli prior (BICq).  Multifactor dimensionality 
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reduction (MDR) was used to develop predictive algorithms that examine non-additive 

combination of markers.  MDR is a non-parametric data reduction procedure that 

searches exhaustively for the optimal combination for predicting subject status (Hahn 

et al., 2003; Winham, 2012; Winham and Motsinger-Reif, 2011).  Each possible 

combination pools relevant markers into a single dimension with two groups classified 

as either high or low risk, and the best combination is chosen that maximises the 

internal cross-validation and minimises the prediction error.  The MDR permutation 

test was used to test the significance of association between subjects’ disease status 

and each marker interaction (Calle et al., 2010). 

 

The predictive performance of each derived algorithm was evaluated in the 

independent test data.  A logistic regression model was used to predict the probability 

of being a case for each observation using the optimal marker panel.  The classification 

accuracy of this probability was assessed using diagnostic measures such as accuracy, 

sensitivity and specificity.  The overall performance of the range of predicted 

probabilities was summarised using the area under the ROC curve (AUC) using the 

pROC R package (Robin et al., 2011).  The diagnostic performance of the optimal 

marker panel, the ‘Top 6 univariate’ and GN models (see 3.3.3) and their extended 

versions incorporating cytology were evaluated in both training and validation datasets 

and also in stratified analyses incorporating epidemiological and clinical risk factors 

such as age, gender, smoking status and lung cancer histological subtypes.  ROC-

AUCs obtained from the stratified analyses were compared using the DeLong test 

(DeLong et al., 1988).  All analyses were performed using R 3.4.0 software (Vienna, 

Austria) and STATA® version 14.2 (StataCorp LP, College Station, Texas). 
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3.3 Results 

The top six markers from the Nikolaidis study (Nikolaidis et al., 2012) were TERT, 

RASSF1, WT1, p16 and RARb (designated CDKN2A and RARB respectively 

throughout this thesis, using the HGNC approved symbols (Wain et al., 2002)).  

Methylated gene promoters identified by methylation microarray and selected via 

Pyrosequencing validation were ABCB1, F2R, HOXA1, HOXA10, MT1G and PITX2.   

qMSP assays targeting the above gene promoters were previously designed, optimised 

and technically validated as triplex qMSP assays (two methylation targets plus 

methylation-independent ACTB endogenous control).  The bronchoalveolar lavage 

case-control training set specimens were screened with these optimised assays.  The 

most frequently methylated gene in lung cancer cases was TERT (82/112 subjects).  

TERT methylation was also detected in 3/97 control specimens.  The detection 

frequencies for all screened methylation assays are depicted in Figure 3.3-1. 

 

Figure 3.3-1 Detection of candidate marker methylated DNA in bronchoalveolar lavage 

training set. 
Methylation positive subject counts realised by qMSP analysis of case and control 

bronchoalveolar lavage specimens are represented by the y-axis. Candidate genes are noted 

on the x-axis.  
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3.3.1 Individual markers classify cases and controls but do not discriminate 

adequately  

Individual sensitivity and specificity were assessed, with the TERT assay showing 

moderate sensitivity (68.8%) and all other assays displaying poor performance 

(sensitivity <60%).  All assays showed excellent specificity (>90%).  Receiver 

operating characteristic (ROC) curve analysis was also implemented, with the area 

under the curve (AUC) being used as a measure of the ability of a test to discriminate 

between cancer and non-cancer classes.  TERT showed good predictive ability to 

discriminate lung cancer from control subjects (AUC = 0.82), while other markers 

classified cases and controls less well (AUC <0.75).  Assays targeting TERT and 

HOXA10 correctly classified greater than 70% of training set subjects.  However, these 

performance characteristics are not adequate for clinical implementation.  Univariate 

analysis statistics for both the training and validation sets are presented in Table 3.3-1. 

 

3.3.2 Identification of optimal marker combinations for classification of the training 

set 

Twelve potential logistic regression model predictors (i.e. our twelve genes of interest) 

suggests 4096 potential additive models (including the null model).  It was not 

desirable or feasible to manually test every possible marker combination.  Therefore 

a number of automated model selection strategies were implemented to identify 

optimal candidate biomarker panels.  Logistic regression models designated ‘Top 6 

univariate’ and ‘Top 4 univariate’ included the appropriate number of markers ranked 

by AUC.  Marker combinations were also selected by best subset logistic regression, 

with   selection based upon AIC, BIC or BICq, and multifactor dimension reduction 

(MDR).  
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Table 3.3-1 Univariate statistics for candidate methylation biomarkers assessed by qMSP in bronchoalveolar lavage training and validation sets 

 Training set 
 

Validation set 

 Positives  Model-based classification1 
 

Positives  
Prediction using trained 

univariate logit model1 

Gene 

promoter 

Case 

(n=112) 

Control 

(n=96) 

χ2  

P value 

Accuracy 

(%) 
AUC (95%CI)  

Case 

(n=112) 

Control 

(n=97) 

χ2  

P value 

Accuracy 

(%) 
AUC (95% CI) 

TERT 77 4 <1 x 10-4 81.3 0.82 (078, 0.87)  82 3 <1 x 10-4 84.2 0.85 (0.81, 0.90) 

HOXA10 60 8 <1 x 10-4 71.2 0.73 (0.67, 0.78)  55 6 <1 x 10-4 69.9 0.71 (0.66, 0.77) 

RARB 45 3 <1 x 10-4 66.3 0.69 (0.64, 0.73)  51 3 <1 x 10-4 69.4 0.71 (0.66, 0.76) 

MT1G 40 2 <1 x 10-4 64.4 0.67 (0.62, 0.71)  55 2 <1 x 10-4 71.8 0.74 (0.69, 0.78) 

WT1 25 2 <1 x 10-4 57.2 0.60 (0.56, 0.64)  39 1 <1 x 10-4 64.6 0.67 (0.62, 0.71) 

CDKN2A 27 1 <1 x 10-4 58.7 0.61 (0.57, 0.65)  29 1 <1 x 10-4 59.8 0.62 (0.58, 0.67) 

PITX2 24 1 <1 x 10-4 57.2 0.60 (0.56, 0.64)       

CYGB 12 1 4 x 10-3 53.9 0.55 (0.52, 0.58)       

ABCB1 43 1 <1 x 10-4 66.4 0.69 (0.64, 0.73)       

RASSF1 49 0 <1 x 10-4 60.4 -       

F2R 48 3 <1 x 10-4 67.8 0.70 (0.65, 0.75)       

HOXA1 10 0 3 x 10-3 51.5 -       

1 Disease class prediction based on predicted Pr(D) ≥ 0.5 
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Models including markers ABCB1, RASSF1, HOXA1 and F2R resulted in complete 

separation in either the training set or both training and validation sets and were 

therefore dropped from the modelling process. 

AIC-based best subset regression selected a large model with seven predictors 

(CDKN2A, MT1G PITX2, HOXA10, CYGB, RARB and TERT).  Best BIC and BICq 

selection provided smaller, more parsimonious models with four and three predictors 

respectively.  TERT and RARB were common to all models, regardless of the selection 

process.   

 

3.3.3 Diagnostic DNA methylation algorithm performance in training and validation 

datasets  

Performance of different discriminatory algorithms in training and validation datasets 

is displayed in Table 3.3-2.  All logistic models classified well in the training set, with 

similar diagnostic accuracy.  The best subset BICq and MDR models displayed 

identical statistics.  The AIC-based model showed the highest sensitivity (83.9%), 

while the BIC and BICq based models attained the highest specificity (92.7%).  The 

‘Top 6 univariate’ model also conducted well, but specificity was reduced when 

markers were dropped from this model (‘Top 4 univariate model’).  Addition of the 

top three ranking two- and three-way marker interactions, identified by MB-MDR 

(Calle et al., 2010), to any of the above models did not improve their discriminatory 

efficiency by any measure.  The best subset BICq logistic regression model including 

TERT, RARB and CDKN2A and the BIC-based model, also including HOXA10, had 

identical sensitivity, specificity and diagnostic accuracy.  Despite the BIC-based 

model displaying a marginally higher AUC than the BICq-selected model, the latter 

was judged to be the optimal model by virtue of being the more parsimonious.   
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Table 3.3-2 Classification and predictive accuracies of DNA methylation models in training and validation datasets 

  Discriminatory algorithms 

Performance 

measure 

 Top univariate markers  Best subset logit model/MDR 

 Top 6 univariate  Top 4 univariate  AIC   BIC  BICq/MDR 

 

Classification performance in training dataset 

Se/Sp (%)  83.0/90.6  83.0/84.4  83.9/89.6  81.2/92.7  81.2/92.7 

DA (%)  86.5  83.7  86.5  86.5  86.5 

AUC (95% CI)  0.91 (0.87, 0.95)  0.89 (0.84, 0.93)  0.92 (0.88, 0.95)  0.90 (0.86, 0.94)  0.88(0.84, 0.93) 
           

Predictive performance in validation dataset 

Se/Sp (%)1  91.1/91.8  87.5/91.8  90.2/90.7  85.7/93.8  85.7/93.8 

DA (%)2  91.4  89.5  90.4  89.5  89.5 

AUC (95% CI)3  0.94 (0.90, 0.97)  0.93 (0.89, 0.96)  0.94 (0.91, 0.97)  0.91 (0.88, 0.95)  0.91 (0.88, 0.95) 
           

1 Se, sensitivity =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

  Sp, specificity = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
; 

 
2 DA, discriminatory accuracy; 

 
3 AUC, area under ROC curve 
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Optimal model performance in the validation dataset, broken down into cytology 

positive and negative cases, can be seen in Table 3.3-3.  Higher sensitivity was 

observed in cytology-positive cases (89.5%) than cytology-negative individuals with 

lung cancer (78.2%).  Nevertheless, DNA methylation panel lung cancer detection in 

cytology-negative subjects represents an increase from zero to 49 diagnoses of 

individuals with lung tumours.  The utility of DNA methylation markers in 

cytologically occult samples is indicated in Figure 3.3-2.  The optimal methylation 

algorithm detected an additional 93 lung cancer cases in cytology-negative subjects 

across both data sets.  Overall, model sensitivity was 85.7% while maintaining 

excellent specificity (93.8%).   

 

 

Figure 3.3-2  DNA methylation classified distributions case in cytology-negative and 

cytology-positive groups 

The total number of subjects in each subgroup is annotated to the right of the bars. 93 lung 

cancer cases classified as negative by cytological diagnosis were classified positive by the 

optimal methylation model. 

 

The optimal marker set identified in the previous study, TERT, WT1, CDKN2A and 

RASSF1 (Nikolaidis et al., 2012) (designated the GN model, using the initials of the 

paper’s first author) was also evaluated in the validation set, exhibiting higher 
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specificity (95.9%) but lower sensitivity (83.9%) than the best subset BICq panel.  

Diagnostic accuracy and AUC were the same as the new diagnostic algorithm. 

The optimal model did not include any of the new markers identified by methylation 

microarray.  Therefore, the ‘Top 6 univariate’ and ‘Top 4 univariate’ DNA 

methylation models, incorporating MT1G and HOXA10, were tested on the 

validation set, also showing improved operational characteristics (Table 3.3-2).  In 

fact, the ‘Top 6 univariate’ showed higher specificity (91.1%) but slightly lower 

sensitivity (91.8%) than the best subset BICq panel.  Diagnostic accuracy and AUC 

showed noticeable improvement in comparison to the smaller models (diagnostic 

accuracy = 91.4%, AUC = 0.94).  ROC curves for the BICq and ‘Top 6 univariate’ 

models are presented in Figure 3.3-3. 

 

 

Figure 3.3-3 BICq and ‘Top 6 univariate’ model ROC curves 

 

Addition of cytological diagnostic result as an additional predictor in DNA 

methylation panel models slightly improved diagnostic parameters.  For example 

best subset BICq sensitivity was 85.7% in the validation set and increased to 88.4% 
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with the addition of cytology result.  No changes were seen in specificity, but 

diagnostic accuracy and AUC increased marginally.  However, the optimal 

methylation panel was clearly superior to cytology result alone in terms of diagnostic 

efficiency.  Cytology sensitivity was 44.6% at 100% specificity. 

 

Table 3.3-3 Best subset logistic regression model performance in the bronchoalveolar 

lavage validation set 

The optimal methylation marker panel comprises CDKN2A, RARB and TERT.  This model is 

compared with its extension, including cytological diagnosis, and cytological diagnosis 

alone. 

Prediction 

model 
Status  Cytology  + -  

Sensitivity 

(%) 

Specificity 

(%) 

Methylation 

marker 

panel 

Lung cancer  +  47 3  94.0  

  -  49 13  79.0  

  Overall  96 16  85.7  

Controls  +  0 0   (100) 

  -  6 91   (93.8) 

  Overall  6 91   (93.8) 
         

Cytology 

only 

Lung cancer    50 62  44.6  

Controls    0 97   (100) 
         

Methylation 

marker 

panel + 

cytology 

Lung cancer    99 13  88.4  

Controls    6 91   (93.8) 
         

 

 

3.3.4 Identification of potential biases in epidemiological and clinical subgroups 

Methylation panel signatures were tested across a unified dataset, including all test 

and validation data.  This analysis was carried out to identify any differences 

between groups when diagnosed using DNA methylation algorithms and the details 

for the optimal (BICq) model are displayed in Table 3.3-4.  No differences in model 

performance were observed between age or gender groups. 
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Table 3.3-4 Performance of the optimal discriminatory model in both training and 

validation datasets, stratified by epidemiological and clinical charateristics  

   %  P value2 

Subject 

characteristics 

Number of 

specimens 
Se Sp AUC (95% CI) (1) (2) (3) (4) 

Diagnosis 

 Lung cancer 224 83.5       

 No malignancy 193  (93.3) 0.90 (0.87, 0.93)     

Age 

 <60 56 64 (96.8) 0.81(0.71, 0.91)     

 60 – 79 336 85.4 (92.7) 0.91 (0.88, 0.94) 0.078    

 80+ 25 92.9 (90.9) 0.94 (0.85, 1) 0.068 0.513   

Gender 

 Male 242 85.2 (90.7) 0.90 (0.86, 0.94)     

 Female 175 80.9 (96.5) 0.90 (0.85, 0.94) 0.925    

Smoking status 

 Never 50 81 (100) 0.91 (0.79, 1)     

 Former 208 81.6 (90.9) 0.91 (0.86, 0.95) 0.955    

 Current 159 85.2 (93.2) 0.88 (0.84, 0.93) 0.681 0.459   

Specimen storage duration (years) 

 <5 65 67.9 (100) 0.84 (0.75, 0.92)     

 ≥5 351 85.7 (91.6) 0.90 (0.87, 0.93) 0.175    

Lung cancer cases only 

Cytology 

 Negative 119 78.2  0.87 (0.83, 0.91)     

 Positive 105 89.5  0.95 (-) <0.001    

Histological diagnosis 

 Adenocarcinoma 55 78.2  0.87 (0.81, 0.92)     

 Squamous cell  85 88.2  0.93 (0.89, 0.96) 0.084    

    carcinoma         

 NSCLC (NOS) 30 76.7  0.87 (0.78, 0.95) 0.986 0.174   

 Small cell 33 93.9  0.95 (0.91, 0.99) 0.022 0.398 0.07  

    lung cancer         

 Others1 21 71.4  0.82 (0.72, 0.93) 0.486 0.063 0.539 0.024 

Stage (pT) 

 1 26 61.5  0.78 (0.68, 0.88)     

 2 62 88.7  0.93 (0.89, 0.97) 0.007    

 3 15 90.0  0.88 (0.77, 0.99) 0.172 0.450   

 4 43 93.0  0.95 (0.91, 0.99) 0.002 0.477 0.264  

Nodal status (pN) 

 0 64 94.4  0.90 (0.85, 0.95)     

 1 25 80.0  0.88 (0.80, 0.97) 0.756    

 2 43 83.7  0.90 (0.84, 0.96) 0.942 0.729   

 3 11 90.9  0.93 (0.84, 1) 0.54 0.452 0.595  

1 NSCLC (NOS): Non-small cell lung cancer (not otherwise specified) 

  Others (Large cell carcinoma (n = 2), carcinoid (n = 3), lung carcinoma unconfirmed pathology (n = 

18);  2 DeLong test. 
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Duration of specimen storage had no effect on diagnostic efficiency.  Sensitivity and 

specificity, and AUC were similar in groups with different smoking status.  The 

methylation marker panel displayed higher specificity (89.5% vs 78.2%) and 

significantly higher AUC (P <0.001) in cytology positive specimens.  The optimal 

methylation model classified 93/119 (78.2%) cytology-negative samples, 20/25 

(80%) suspicious cytology specimens and 74/80 (92.5%) lung cancer cytology-

positive samples as disease positive with significant differences between groups (χ2 

= 0.025).  Interestingly, if the data are classified using the ‘Top 6 univariate’ model, 

six addition cytology-negative subjects classify as disease positive and the difference 

between groups is no longer statistically significant (χ2 = 0.12).  The significance of 

group differences remains if discrimination of subject class uses the GN model from 

the Nikolaidis study (Nikolaidis et al., 2012), (χ2 = 0.002).   

 

Stage T1 tumours were detected with lower frequency (61.5%) than T2, T3 and T4 

(>80%) using the optimal model from this study.  This was similar to the findings of 

the Nikolaidis study (T1 = 63%, T2 – T4 >80%).  When the GN model was used for 

disease discrimination, four fewer T2 tumours were correctly diagnosed resulting in a 

decrease in sensitivity from 88.7% to 82.3%.  Furthermore, the ‘Top6 univariate’ 

model increased stage T4 sensitivity from 93.0% to 97.7%, while also increasing T2 

sensitivity to greater than 90%.  Inspection of Figure 3.3-4 clearly indicates that 

cytological diagnostic sensitivity is considerably lower in all pathological stages and 

relatively small differences between DNA methylation diagnostic algorithms for any 

given stage can also be observed.  Cytology shows markedly higher sensitivity for 

stage T4 tumours, whereas DNA methylation classification was similar for stages T2 

– T4. 
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Figure 3.3-4 Sensitivities of DNA methylation lung cancer discrimination models and 

cytological diagnosis in different pathological pT stages of lung cancer. 

 

Data were also stratified by histological subtype.  The optimal model demonstrated 

higher efficiency of detection for small cell lung cancer (93.9%) and squamous cell 

carcinoma (88.2%) over adenocarcinoma (78.2%).  The GN model demonstrated 

100% efficiency in small cell lung cancer.   
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3.4 Discussion 

Our group’s previous study of DNA methylation detection in bronchoalveolar lavage 

yielded promising data (Nikolaidis et al., 2012).  It was patently clear that a four-

marker panel provided for superior disease detection compared to cytological 

diagnosis.  We hypothesized that diagnostic performance could be improved through 

the interrogation of additional candidate markers, identified experimentally through 

methylation microarray screening of tumour and normal tissue samples and 

subsequent validation.  Furthermore, improvements in discriminatory model 

characteristics were anticipated following the development of multiplex assays. 

 

In the present study, the majority of markers performed moderately well when 

evaluated individually.  Diagnostic performance was improved through their 

consideration as panels of multiple markers, modelled by logistic regression.  The 

optimal selected model included data obtained from assays targeting CDKN2A, RARB 

and TERT, none of which were part of the newly established marker set.  However, 

the ‘Top 6 univariate’ model, including HOXA10 and MT1G, in addition to legacy 

markers (Nikolaidis et al., 2012), presented very strong performance characteristics in 

the validation set (Se 91.1%, Sp 91.8%, AUC 0.94).  It would be justified, therefore, 

to investigate the utility of a subset of these novel markers, alongside more established 

biomarkers, in future blood plasma studies. 

 

The above measures of diagnostic accuracy are superior to those reported in our 

group’s previous study (Se 82.0%, Sp 90.8%, AUC 0.89) (Nikolaidis et al., 2012).  

The GN model also showed improved diagnostic efficacy in the present study (Se 

83.9%, Sp 95.9%, AUC 0.91), presumably due to analytical improvements arising 



73 
 

from assay multiplexing.    However, it should be noted that these changes in disease 

detection could arise for any number of reasons and may simply be peculiar to this 

dataset.   

 

Validation of the CE marked in vitro diagnostic Epi proLung assay in bronchial 

aspirates demonstrated 78% sensitivity and 96% specificity (Dietrich, 2011), 

marginally more specific and notably less sensitive than the markers evaluated in this 

chapter.  An appraisal of SHOX2 methylation, in combination with other methylated 

markers, utilizing plasma of patients with malignant and non-malignant lung disease 

recently indicated that SHOX2 and PTGER4 realized 67% sensitivity at a fixed 

specificity of 90%, and 79% specificity at a fixed sensitivity of 90% (Weiss et al., 

2017), lower than the present study on both benchmarks.  However, it is not surprising 

to see higher performance characteristics in the assessment of locally sampled 

specimens such as bronchoalveolar lavage.  A three-marker combination (TAC1, 

HOXA17 and SOX17), evaluated in the sputum of stage I and IIa non-small cell lung 

cancer patients (i.e. node-negative) and patients with non-cancerous lesions, displayed 

higher sensitivity (98%) and lower specificity (71%) (Hulbert et al., 2017) than the 

final marker panel in this chapter.   More recently, a four-gene model (CDO1, PTGDR, 

MARCH11 and UNCX) conferred sensitivity and specificity of 70.3% and 84.8% when 

promoter methylation was analysed in pleural effusions (Ooki et al., 2017).  Both of 

these diagnostic determinants were lower than our current best bronchial lavage 

model. 
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It is of critical importance that diagnostic algorithms detected disease independently, 

displaying no biases associated with smoking status, indicating that DNA methylation 

differences observed were cancer-specific and not smoking-related alterations.   

 

Analysis of all subject data stratified by histological diagnosis demonstrated 100% 

sensitivity in the detection of small cell lung cancer when using the GN model.  

Similarly, the ‘Top 6 univariate’ algorithm, including methylation detection results for 

TERT, MT1G, HOXA10, RARB, WT1 and CDKN2A, had very high sensitivity (97.0%) 

for the same disease subtype.  Furthermore, this model exhibited exceptionally high 

sensitivity for stage T4 disease.  Unfortunately, this may not be of great clinical utility.  

Small cell carcinoma has the most aggressive development of any lung cancer and 

exhibited median survival of 11.6 months in UK patients who received both 

chemotherapy and radiotherapy (Khakwani et al., 2014).  Stage T4 disease is by 

definition extensive and likely to be highly symptomatic, and therefore diagnosis by 

other means is likely to be straightforward.  However, it is noteworthy that this DNA 

methylation algorithm provided a positive result in 18 out of 19 cytology-negative 

lung cancer cases with T4 pathological staging.  Detection of these aggressive and late 

stage tumours by DNA methylation analysis when other diagnostic modalities fail 

could facilitate appropriate end-of-life care.  The highest priority at this stage may be 

to reduce tumour burden and improve health-related quality of life (Gaertner et al., 

2015). 

 

DNA methylation panels demonstrated higher sensitivity for squamous cell carcinoma 

and small cell lung cancer than for other histological subtypes.  This is to be expected 

as these cancers tend to develop centrally in the lung, and are therefore more likely to 
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be better sampled by bronchoalveolar lavage with a bronchoscope positioned in one 

of the major bronchi.  Furthermore, it is not surprising that stage T1 disease was 

detected less readily than more advanced tumours, since T1 tumours are smaller and 

doubtless contribute fewer cells to any given sample.  Their detection may be 

improved by further improved assay analytical sensitivity. 

 

Statistically significant interactions between markers were found in MDR 

classification.  These did not improve the diagnostic accuracy of the models under test 

and hence were not pursued, being beyond the scope of this study.  However, 

investigation of potential epistatic relationships between methylated gene promoters 

may be of interest and should be investigated further. 

 

The experimental work within this chapter is not without its limitations.  The exclusion 

of markers exhibiting perfect prediction in univariate modelling is inefficient.  In 

effect, markers were dismissed because of limitations in the chosen statistical 

methodology when they could be interesting or informative.  It is possible that this 

characteristic of certain markers was simply an idiosyncrasy of this sample set and 

may not emerge in future studies.  Data also should be reanalysed using additional 

classification methods where this problem does not arise, such as random forest 

classification.  A recent study of plasma DNA methylation markers in the detection of 

breast cancer used support vector machines for disease classification and prediction 

(Uehiro et al., 2016).  This and other machine learning approaches also should be 

considered.  
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In conclusion, this study demonstrates that the optimal, parsimonious three-marker 

diagnostic algorithm attained by analysis of methylated DNA in bronchoalveolar 

lavage specimens presents a minimally invasive method of discriminating between 

lung cancer cases and controls.  It offers vast improvements over standard cytological 

diagnosis, classifying the majority of cytology-negative lung cancer cases positively.  

Assessment in a large, multicentre prospective trial should be a priority.  

Implementation of related methylation panel discriminatory testing in non-invasive 

specimens, such as blood plasma, should be investigated and is indeed the focus of the 

remaining chapters of this thesis.  Eventual clinical validation and implementation 

could decidedly aid in meeting the long term goal of reducing lung cancer mortality.   
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Chapter 4  
 

 

 

 

 

 

 

ddPCR assay and workflow 

development and optimisation 
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4.1 Introduction 

This chapter outlines the experimental strategies pursued in the development of 

sensitive and specific ddPCR assays to facilitate DNA methylation detection and 

quantification.  Droplet Digital™ PCR has previously demonstrated highly precise 

quantification of nucleic acids (Pinheiro et al., 2012) and indeed exhibited increased 

precision  compared to qPCR in the analysis of diverse nucleic acid species (Hindson 

et al., 2013; Sedlak et al., 2014; Strain et al., 2013).  Noting the potentially improved 

analytical characteristics of ddPCR, we decided to investigate its utility in the 

detection of methylated DNA with the expectation that it would increase analytical 

sensitivity and measurement precision.  These properties would be required for the 

successful transition of DNA methylation marker panels to non-invasive clinical 

samples such as blood plasma.  Prior to the commencement of this project, there were 

no reviewed communications regarding the utility of ddPCR for DNA methylation 

detection.  A small number of papers have now been published and some of these are 

described in 1.3.6. 

 

Digital PCR conditions were heavily optimised and validated in order to provide 

reproducible and robust data resulting from assays showing clear differentiation 

between positive and negative ddPCR droplets.  Thorough optimisation of ddPCR 

assays should ensure adequacy of data quality, precision and reproducibility (Taylor 

et al., 2015).  This multifaceted process was realised to provide assays conducive to 

the analysis of CpG dinucleotide methylation of cfDNA in blood plasma. 

 

Evaluation of extraction efficiency and material losses in downstream processing steps 

in clinical methods is critical in establishing analytical sensitivity and requires 
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adequate quality controls.  Since plasma yields low concentration DNA (Devonshire 

et al., 2014; Tamkovich et al., 2005), and it is necessary to divide extracted DNA 

multiple times to assess multiple methylation markers, quantification by UV 

spectroscopy or fluorescence spectroscopy is not appropriate.  Based on our previous 

experience with the low amounts of cfDNA extracted from plasma, which is the 

ultimate targeted sample type, we decided to quantify the extracted DNA by qPCR.  

Such assays are frequently used for measurements of cfDNA (Fleischhacker and 

Schmidt, 2007) and have the advantage of measuring amplifiable DNA.  The qPCR 

assay targeting ACTB was designed and optimised for the quantification of DNA 

extracted from plasma samples (calling it hereafter ACTB cfDNA assay).  However, 

estimated genomic DNA yields from plasma have been observed to vary by over 

twofold within the same subject when using different qPCR genomic DNA assays 

(Devonshire et al., 2014).  The ddPCR workflows in this project, therefore, in addition 

to the ACTB assay, used an exogenous pUC19 plasmid DNA spike-in process control 

to assess losses in DNA extraction and manipulation.  Assay design was complicated 

by the fact that methylation-specific assays require bisulphite-treatment of DNA and 

the resulting changes in sequence made it necessary to manipulate the pUC19 vector 

to provide a suitable control.  Control production and engineering is covered in the 

methods section of this chapter and the optimisation of an assay for its quantification 

is presented in the results. 

 

Validation of ACTB cfDNA quantification assay in a moderately large blood plasma 

sample set revealed that the majority of specimens did not yield sufficient DNA to 

enable methylated DNA screening of multiple markers.  It was necessary, therefore to 
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devise a strategy to overcome this challenge, leading to the development and 

validation of MethPlex enrichment ddPCR. 

 

Schematic representations of optimisation workflows follow in Figure 4.1-1, Figure 

4.1-2 and Figure 4.1-3. 

 

Due to the large amount of data reported in this chapter, I have combined the results 

and discussion sections, as this may be helpful to the reader. 

 

 

Figure 4.1-1 Control (spike-in) assay optimisation workflow 

Schematic showing key steps in the optimisation of the methylated pUC19 ddPCR assay.  

Corresponding chapter sections are noted in bold to the right of the figure.  
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Figure 4.1-2 Target gene promoter ddPCR optimisation workflow 

Schematic showing key steps in the optimisation of the methylated DNA biomarker duplex 

ddPCR assays.  Corresponding chapter sections are noted in bold to the right of the figure. 
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Figure 4.1-3 Target gene promoter MethPlex ddPCR optimisation workflow 

Schematic showing key steps in the optimisation of the MethPlex DNA enrichment and 

subsequent detection by methylation-specific ddPCR.  Corresponding chapter sections are 

noted in bold to the right of the figure. 
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4.2 Materials and methods 

4.2.1 pUC19 spike-in control production and engineering 

The assay in development required digestion of the target DNA sample with the DNA 

methylation sensitive endonuclease HinP1I and subsequent bisulphite conversion. 

Therefore, the pUC19 vector control required appropriate modification to 

accommodate this pre-treatment.  In addition, our previous experience in similar 

control assay development indicated that efficient PCR amplification requires 

linearization of the plasmid.  Hence, the plasmid was initially linearized by SspI 

endonuclease and then subjected to in vitro methylation by SssI methylase. The latter 

is necessary to block the conversion of cytosines in CpGs in order to increase the 

sequence complexity of the control and facilitate assay design.  ddPCR primers and 

hydrolysis probe were designed to target the bisulphite-converted sequence containing 

methylated CpG.  Primers (pUC19-dd_F: 5’-AGCGGATGTCGGGAGTAGATAAG-

3’, pUC19-dd_R: 5’-GCATCTATACGATATTTCACACCGC-3’) were obtained 

from Eurofins Genomics and VIC™ dye-labelled TaqMan® MGB probe (pUC19-

mgb_P: 5’ -VIC™- TTAGGGCGCGTTAGC-3’) was from Applied Biosystems and 

were designed to anneal to and amplify a 140bp region of modified pUC19 (see 4.2.1.2 

and Figure 4.2-1). 

 

4.2.1.1 pUC19 plasmid amplification in bacterial culture 

One Shot™ TOP10 Chemically Competent E. coli (Invitrogen) transformed with 

pUC19 vector (NEB) were grown at 37°C for 16 hours in Luria-Bertani (LB) broth 

containing 100µg/ml ampicillin.  Isolation of pUC19 plasmid was performed using 

the Zyppy™ Plasmid Midiprep Kit (Zymo Research) following the manufacturer’s 

vacuum protocol. The plasmid DNA was eluted with 0.1x TE, and purity and  
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Figure 4.2-1 pUC19 restriction map 

Restriction map of pUC19 plasmid vector indicating SspI restriction site and CpG 

methylated amplicon position. 

 

concentration were measured using a Nanodrop 2000 (Thermo Scientific) (see 2.3.1) 

and Quant-iT™ Broad-Range dsDNA Assay Kit (Invitrogen) (see 2.3.2.1) 

respectively.  Purified pUC19 DNA was stored at -20 °C.  

 

4.2.1.2 Linearization and in vitro methylation of pUC19 plasmid 

pUC19 DNA (1 µg) was linearized by restriction endonuclease digestion with SspI in 

reactions containing 1 x NEBuffer™ 2 Buffer, 10 U SspI (NEB (UK)) and ddH2O in 

a 50 µl total volume.  Reactions were incubated at 37 °C for 1 hour and the enzyme 

was heat inactivated at 65 °C for 20 minutes.  Reaction volume was then increased to 

100 µl by the addition of in vitro methylation reagents, resulting in a reaction 

containing 640 µM S-adenosyl methionine (SAM), 1x NEBuffer™ 2 Buffer, 20 U 

M.SssI CpG methyltransferase DNA (NEB (UK)) .  Reactions were incubated at 37 

°C.  Since SAM is consumed fast during the reaction, an additional 2 μl 32 mM SAM 

was added after two hours and the reaction was incubated for a further two hours 
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followed by heat inactivation at 65 °C for 20 minutes.  SspI-digested, CpG methylated 

pUC19 DNA (SspI mCpG pUC19 DNA) was then purified using QIAquick PCR 

Purification Kit (2.11.2.1).  Purified DNA was either analysed immediately or stored 

at -20 °C.  DNA purity and concentration was measured using a Nanodrop 2000 

(Thermo Scientific) (2.3.1) and Quant-iT™ Broad-Range dsDNA Assay Kit 

(Invitrogen) (2.3.2.1).  Linearization of plasmid was confirmed by agarose gel 

electrophoresis (2.8). 

 

For ease of comprehension SspI mCpG pUC19 DNA is referred to as “methylated 

pUC19 DNA” from this point forward. 

 

4.2.2 Measurement of methylation levels of in vitro methylated PBMC DNA 

CpG dinucleotide methylation positive control DNA for assay optimisation and 

production of methylated DNA dilution series was produced by in vitro methylation 

of pooled blood bank PBMC DNA using M.SssI CpG methyltransferase (NEB (UK)) 

as outlined in 2.4.  Efficacy of CpG methylation by the enzyme was assessed by 

Pyrosequencing Methylation Analysis (2.9).   

Pyrosequencing assays targeting two gene promoters within the prospective ddPCR 

biomarker panel, CDKN2A and MT1G, and one gene external to the panel, RASSF4, 

were used to analyse M.SssI-treated and untreated DNA.  Pyrosequencing PCR 

amplification and analysis was carried out in triplicate and representative pyrograms 

are presented in Figure 4.2-2 and average levels of methylation are shown in Table 

4.2-1.  The mean average of methylation of the three promoter assays was used to 

inform the preparation of methylated DNA dilution series and calculation of 

methylated copies present in positive controls. 
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Figure 4.2-2 Representative pyrograms 

CDKN2A pyrograms from A. M.SssI-treated DNA and B. PBMC DNA.  The x-axis shows 

the nucleotide dispensation order.  The y-axis shows the amount of light by the 

chemiluminescent reactions when each nucleotide is incorporated onto the growing DNA 

template strand. The light blue columns indicate the interrogated CpG dinucleotides. A 

bisulphite conversion control is highlighted in pale yellow.  Percentage methylation of each 

CpG is indicated in the small blue boxes towards the top of each panel. The percentage of 

methylation is calculated as the C/(C + T) peak ratio per CpG.  Taking the first examined 

CpG as an example, in panel A. there is a clear peak corresponding with the C dispensation, 

indicating (92%) methylation.  In panel B. the peak coincides with a T dispensation, 

indicating C-T bisulphite conversion and the absence of methylation.  

 

 

Table 4.2-1 Methylation % of M.SssI-treated DNA and PBMC DNA measured by 

Pyrosequencing 

 

 

 

 

 

 

  

 M.SssI-treated DNA  PBMC DNA 

Assay Methylation% SD 
 

Methylation% SD 

CDKN2A 91.2 5.3  1.9 1.8 

MT1G 90.2 5.6  6.3 5.3 

RASSF4 88.1 5.4  0.9 1.7 

Mean average 89.8 2.4  3.0 1.6 
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4.2.3 ACTB cfDNA real-time PCR quantification assay optimisation 

ACTB cfDNA qPCR assay annealing temperature and primer/probe concentrations 

were optimised using a temperature gradient and 500 nM, 750nM and 900nM primer 

concentrations and probe concentrations ranging from 100 nM to 250 nM.  Primers 

(ACTBre_F: 5’- GACTGTGAACCTGTGTCTGCCA-3’, ACTBre_R: 5’- 

CCAGTTCACGGTACAAGGCTG-3’) and FAM™ dye-labelled TaqMan® probe 

(ACTBre_P: FAM™- 5’-CTCAGCCAATGGGACCTGCTCCTC-3’-BHQ1) were 

obtained from Eurofins Genomics.  Reactions contained 1 x TaqMan® Universal 

Master Mix II (Applied Biosystems), variable concentrations of primers and probe as 

indicated above, and 50 ng PBMC DNA.  Triplicate qPCR reactions were thermal 

cycled on a 7500 FAST real-time PCR instrument (Applied Biosystems) with an 

initial DNA denaturation and enzyme activation at 95 °C for 10 minutes and 45 

cycles of 95 °C for 15 seconds and annealing/extension steps ranging from 57°C to 

62°C for 60 seconds.  Non-template controls were run in parallel and produced no 

amplification.  Optimal annealing temperature was selected on the basis of the 

highest temperature resulting in the lowest consistent Cq value and no nonspecific 

amplification.  The lowest primer and probe concentrations resulting in no increase 

in Cq value were considered to be optimal. 

 

4.2.4 HinP1I restriction endonuclease digestion of DNA 

Previous work in our group indicated that digestion of DNA with methylation-

sensitive restriction endonuclease HinP1I can increase analytical specificity of qMSP 

assays containing HinP1I restriction sites (Figure 4.2-3).  All methylation-specific 

target amplicons tested within study contained at least one HinP1I restriction site.  
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Prior to bisulphite conversion and ddPCR analysis, all samples were digested with 

HinP1I according to the methodology laid out in 2.4. 

 

Figure 4.2-3 HinP1I restriction site 

 

4.2.5 MethPlex enrichment PCR amplification 

MethPlex pre-amplification was performed according to general procedures outlined 

in section 2.11. 

 

4.2.6 Droplet digital™ PCR (ddPCR) 

ddPCR was performed according to procedures outlined in section 2.12. 

Methylated target primers and probes had the same sequences as qMSP 

oligonucleotides presented in Table 2.10-1 with the addition of an assay targeting a 

130 bp region of the SHOX2 gene promoter: 

 

SHOX2_F: 5’- TTTGTTGGTAGAGGTTGAGCGTC -3’ 

SHOX2_R: 5’- CTCCAACACCTCCCGATACG -3’ 

SHOX2_P: FAM™- 5’- AATCGCCTCCTTCTTCTCCTT -3’ 

 

TaqMan® probes were labelled with FAM™.  pUC19 control primers and VIC™ 

probe sequences were as above (4.2.1). 

 



89 
 

4.3 Results & Discussion 

4.3.1 Methylated pUC19 spike-in control assay optimisation and validation 

4.3.1.1 pUC19 temperature gradient with methylated pUC19 DNA input only  

Initial experiments assessed the optimal annealing temperature for the pUC19 ddPCR 

control assay in singleplex format with three different input quantities (copy numbers) 

of linearized, methylated pUC19 DNA template, namely, 1.5 x 105, 1.5 x 104 and 1.5 

x 103.  These tenfold dilutions were based on methylated pUC19 concentrations 

determined by dsDNA fluorescence quantification (2.3.2.1).  Annealing temperatures 

ranged from 57°C to 62°C (Figure 4.3-1 and Figure 4.3-2).  Visualisation of droplet 

fluorescence amplitude in 1D format displayed single, discrete positive and negative 

populations indicative of single amplification products and high assay specificity.  

Manual selection of optimal annealing temperature is a somewhat subjective process 

based on the separation of positive droplets from the negative cluster.  Figure 4.3-1 

and Figure 4.3-2 show that separation of positive and negative droplet clusters for the 

pUC19 ddPCR assay did not increase to any great extent within the gradient range of 

this experiment.   
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Figure 4.3-1 Annotated QuantaSoft ddPCR 1D output of methylated pUC19 

temperature gradient at eight different temperatures and three different nominal input 

amounts 

pUC19 positive droplets (VIC) are indicated in green and negative droplets appear as dark 

grey.  Solid fuchsia horizontal line indicates fluorescent amplitude threshold level.  Each 

segment between solid vertical black lines contains data points for >10, 000 individual 

ddPCR partitions. 
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Figure 4.3-2 Modified QuantaSoft ddPCR graphical outputs of methylated pUC19 

temperature gradient 

A. Modified QuantaSoft ddPCR 1D output with false colour heat mapping illustrating the 

same information conveyed in Figure 4.3-1 with red indicating high density of droplets and 

blue indicating lower droplet density.  Error bars represent 95% confidence intervals derived 

from the Poisson distribution.  B. ddPCR concentration measurements with varying 

methylated pUC19 input and temperature. C. Density histogram of ddPCR measured 

amplitude for 1.5 x 104 nominal copies methylated pUC19 input at an annealing temperature 

of 60.2°C.  
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False colour heat mapping of droplet density in QuantaSoft software (Figure 4.3-2A) 

showed clear differences in positive droplet density between different methylated 

pUC19 inputs but no clear difference between temperatures. 

 

The representative density histogram in Figure 4.3-2C indicates that the assay exhibits 

good resolution in terms of the separation of the positive and negative clusters.  

Graphical plots of temperature against measured concentration (facetted by input 

amount) similarly indicate clear differences in measured pUC19 concentration 

between different input amounts (Figure 4.3-2B).  Similar concentration 

measurements at different temperatures were observed for the same input quantity 

(Figure 4.3-2B).  For the lowest template input, there was some variability in the 

measured concentration, exhibiting a coefficient of variation of 12.4%.  The higher 

template amounts, namely 1.5 x 105 and 1.5 x 104, showed greater precision with 

coefficients of variation of 4.7% and 5.9% respectively.  A 15% CV tolerance level 

for this control assay was selected a priori and the level of precision was therefore 

satisfactory.  For all template inputs differences in measured concentration did not 

follow any observable trend, appearing to be randomly distributed. 

 

Since separation of positive and negative clusters did not increase with decreasing 

annealing temperature, the annealing temperature (60.2°C) producing the measured 

concentration closest to the mean average across temperatures for 1.5 x 105 and 1.5 x 

104 copies input was selected as being optimal (Table 4.3-1).  
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Table 4.3-1 pUC19 concentrations measured by ddPCR and absolute difference from 

their mean average across annealing temperatures at different inputs. 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.1.2 Methylated pUC19 assay singleplex performance in the pure template 

context 

To assess pUC19 assay linear dynamic range and potential inherent assay background, 

duplicate ddPCR reactions (Ta = 60.2°C) were carried out using a seven point, tenfold 

methylated pUC19 dilution series ranging from 2 x 106 to 2 x 100 copies reaction input, 

diluted in 0.1x TE.  No negative droplets were detected at the 2 x 106 copies input 

level, making it impossible to measure target concentration (i.e. reactions  were 

saturated).  However, as all droplets were positive at this level, this simplified the 

setting of the threshold for target positive droplets.  Only one positive droplet in one 

of two replicates was observed for 2 x 100 copies input (Figure 4.3-3).  No 

amplification was detected in non-template controls. 

 Methylated pUC19 input (copies) 

 1.5 x 105  1.5 x 104 

Annealing 

temperature 

Measured 

pUC19 

concentration 

Absolute 

difference 

from mean 

 
Measured 

pUC19 

concentration 

Absolute 

difference 

from mean 

(°C) (copies/µl) (copies/µl)  (copies/µl) (copies/µl) 

62 1639 113.9  147 6.6 

61.7 1652 100.9  141 12.6 

61.2 1715 37.9  143 10.6 

60.2 1734 18.9  153 0.6 

59 1794 41.1  158 4.4 

58 1797 44.1  160 6.4 

57.3 1868 115.1  165 11.4 

57 1824 71.1  162 8.4 

mean 1752.9 -  153.625 - 
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Linear regression analysis of measured concentration against methylated pUC19 input 

in the 2 x 100 to 2 x 105 range (log10-transformed data) revealed more favourable 

parameters than those exhibited in the 2 x 101 to 2 x 105 range (Table 4.3-2).  The 

slope for the limited regression range was close to unity (1.01, 95% CI [0.94, 1.08]) 

indicating a tenfold increase in measured concentration when methylated pUC19 input 

increased tenfold.  Limiting the range also increased the R2 value to 0.993 and halved 

the root mean squared error (Figure 4.3-3B and Table 4.3-2), indicating that this 

model explains a greater degree of variance than the extended range and provides a 

better fit to the data. 

 

Table 4.3-2 Methylated pUC19 linear regression parameters from tenfold dilution 

series 

 

 

 

 

 

 

 

 

 

 

Parameter 

 
Input range (copies) 

 
2 x 100 – 2 x 105 

 
2 x 101 – 2 x 105 

β0 (95% CI)  -1.86  -1.94 

 
 

(-2.18, -1.54) 
 

(-2.19, -1.69) 

β1 (95% CI) 
 

0.99 
 

1.01 

 
 

(0.89, 1.09) 
 

(0.94, 1.08) 

R2 
 

0.981 
 

0.993 

RMSE 
 

0.236 
 

0.123 
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Figure 4.3-3 Tenfold methylated pUC19 dilution series QuantaSoft 1D output, 

scatterplots and linear regression 

A. Methylated pUC19 positive droplets (VIC) are indicated in green and negative droplets 

appear as dark grey.  Solid fuchsia horizontal line indicates fluorescent amplitude threshold 

level.  Each segment between solid vertical black lines contains data points for two wells 

containing >10, 000 individual ddPCR partitions each. B. Scatterplot of log10-transformed 

ddPCR measured concentration against log10-transformed nominal methylated pUC19 input 

with linear regression lines superimposed.  Shaded areas around regression lines indicate 

95% confidence band. 
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4.3.1.3 Methylated pUC19 multiplex assay performance in the presence of 

methylated/unmethylated PBMC DNA background and a methylation-

specific ddPCR assay 

To evaluate the methylated pUC19 assay when competing with methylation-specific 

ddPCR assay in a complex background matrix more representative of clinical samples, 

triplicate duplex ddPCR reactions targeting methylated pUC19 and methylated 

CDKN2A gene promoter (Ta = 59°C, CDKN2A optimal annealing temperature (Table 

4.3-5)) were carried out using a seven point, tenfold methylated pUC19 dilution series 

in the presence of: 

 66 ng 1.5% methylated PBMC DNA, equivalent to 300 methylated GE in a 

total of 20,000 GE PBMC DNA (see 4.3.1.3.1) 

 13.3 ng 1% methylated PBMC DNA, equivalent to 40 methylated DNA GE in 

a total of 4000 GE PBMC DNA (see 4.3.1.3.2). 

 

4.3.1.3.1 Methylated pUC19 multiplex assay performance: 66 ng 1.5% 

methylated PBMC background 

Measurement of methylated pUC19 concentration by ddPCR was assessed with a 

moderately high methylated/untreated PBMC DNA input to mimic assay conditions 

in clinical samples from body fluids yielding relatively high DNA yields (e.g. 

bronchoalveolar lavage).  Methylated pUC19 inputs ranged from 100 to 106 copies per 

well. Graphical output of ddPCR measurements from QuantaSoft software is shown 

in Figure 4.3-4A and visually indicates a linear relationship between methylated 

pUC19 input and measured concentration, and stable CDKN2A concentration across 

pUC19 inputs.  Initial regression analysis of data obtained using inputs from 101 to 
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106 showed good characteristics (Figure 4.3-4B, Table 4.3-3).  Reduction in the range 

of methylated pUC19 analysed by linear regression to include only data above 

 
Figure 4.3-4 Tenfold methylated pUC19 dilution series, 66ng 1.5% methylated PBMC 

DNA background: CDKN2A and pUC19 ddPCR measured concentration and linear 

regression 

A. QuantaSoft concentration output. Coloured point indicate measured concentration at 

given input calculated from counts in merged meta-wells.  Darker error bars represent 95% 

Poisson confidence interval, lighter error bars represent overall 95% confidence interval. 

B. Scatterplots of log10-transformed ddPCR measured methylated pUC19 concentration 

against nominal methylated pUC19 input with linear regression lines superimposed.  Black 

dashed regression line and text correspond to 101 – 106 input range, red regression line and 

text correspond to 102 – 106 input range. Shaded areas around regression lines indicate 95% 

confidence bands. 

 

102 copies input brought the regression slope closer to unity, while narrowing the 

confidence interval of the slope (β1 = 0.95 (95% CI [0.93, 0.96]), indicating that a 
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tenfold increase in input results in a measurement closer to tenfold higher in the 

reduced model.  Reduction in range also increased the coefficient of determination to 

0.999 and reduced the root mean squared error fourfold (Table 4.3-3), indicating better 

linear regression model fit.  Reducing the range to include 102 to 106 copies input also 

reduced the within-subject CV (i.e. within the same methylated pUC19 input) from 

22.7% to 7.7% and the between-subject CV (i.e. across methylated pUC19 inputs) 

from 10.9% to 10.0%.  CDKN2A concentration measured by ddPCR remained stable 

across the range of methylated pUC19 template inputs with a mean value of 6.60 

copies/µl (95% CI [6.27, 7.03]) and CV of 7.1%.  

 

Table 4.3-3 Methylated pUC19 linear regression parameters from tenfold dilution 

series in the presence of 20,000 GE PBMC (DNA 300 GE methylated DNA) in duplex 

ddPCR targeting CDKN2A and pUC19 

 

 

 

 

 

 

 

 

 

Taken together, the above indicates that the methylated pUC19 control assay has a 

linear dynamic range from 102 to 106 copies input in the presence of 20,000 GE PBMC 

DNA when simultaneously assaying for methylated CDKN2A with a nominal 

methylated DNA target input of 300 GE.  Within this range the pUC19 assay showed 

good linearity and expected tenfold increases in measured concentration when 

Parameter 

 
Input range (copies) 

 
101 – 106 

 
102 – 106 

β0 (95% CI) 
 

-1.54 
 

-1.79 

  (-1.68, -1.40)  (-1.78, -1.68) 

β1 (95% CI) 
 

0.91 
 

0.95 

 
 

(0.87, 0.94) 
 

(0.93, 0.96) 

R2 
 

0.994 
 

0.999 

RMSE 
 

0.118 
 

0.028 
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template input was increased tenfold.  In addition, the pUC19 assay did not affect the 

detection of methylated CDKN2A at this input level. 

 

4.3.1.3.2 Methylated pUC19 multiplex assay performance: 13.3 ng 1% 

methylated PBMC background 

In order to better emulate assay conditions expected when using blood plasma as a 

clinical sample of interest, determination of methylated pUC19 concentration by 

ddPCR was assessed in a low methylated/untreated PBMC DNA background (40 

methylated DNA GE in a total of 4000 GE PBMC DNA input per well).  Methylated 

pUC19 inputs ranged from 2 x 100 to 2 x 106 copies per well.  Non-template controls 

were run in parallel and no amplification was observed. 

Graphical output of ddPCR measurements from QuantaSoft software is shown in 

Figure 4.3-5A and visual inspection implied a linear relationship between methylated 

pUC19 input and measured concentration, and fairly stable CDKN2A concentration 

across pUC19 inputs. No negative droplets were detected at the 2 x 106 copies input 

level, making it impossible to measure target concentration (i.e. reactions  were 

saturated, QuantaSoft software returns 1,000,000 copies/µl by default).  ddPCR wells 

nominally containing two methylated pUC19 copies were also negative.  Initial 

regression analysis of data obtained using the full range of inputs showed excellent 

characteristics with an R2 of 0.999 and a slope indistinguishable from unity (β1 = 0.99 

(95% CI [0.969, 1.01]) (Figure 4.3-5B and Table 4.3-4).  Model parameters did not 

change upon reducing the range to 2 x 102 – 2 x 105 but their confidence intervals were 

slightly reduced.   
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Figure 4.3-5 Tenfold methylated pUC19 dilution series, 13.3ng 1% methylated PBMC 

DNA background: CDKN2A and pUC19 ddPCR measured concentration and linear 

regression 

A. QuantaSoft concentration output. Coloured point indicate measured concentration at 

given input calculated from counts in merged meta-wells.  Darker error bars represent 95% 

Poisson confidence interval, lighter error bars represent overall 95% confidence interval. 

B. Scatterplots of log10-transformed ddPCR measured methylated pUC19 concentration 

against nominal methylated pUC19 input with linear regression lines superimposed.  Black 

dashed regression line and text correspond to 2 x 101 – 2 x 106 input range. Grey shaded area 

around regression lines indicates 95% confidence band. 
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Table 4.3-4 Methylated pUC19 linear regression parameters from tenfold dilution 

series in the presence of 4,000 GE PBMC (DNA 40 GE methylated DNA) in duplex 

ddPCR targeting CDKN2A and pUC19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reduction in the range of linear regression increased R2 to 1 and reduced RMSE from 

0.046 to 0.019 (Table 4.3-4), indicating a marginally better fit for the model with 

reduced pUC19 input range.  Reduction in analysed input range also reduced the 

within-subject CV (i.e. within the same methylated pUC19 input) from 12% to 5.2% 

and the between-subject CV (i.e. across methylated pUC19 inputs) from 8.4% to 6.8%.  

This indicates that the methylated pUC19 control assay has a linear dynamic range 

from 2 x 101 to 2 x 105 copies input in the presence of 4,000 GE PBMC DNA when 

simultaneously assaying for methylated CDKN2A with a nominal methylated DNA 

target input of 40 GE.  The pUC19 assay did not affect the detection of methylated 

CDKN2A at this input level. 

 

Considering these findings and those from 4.3.1.1, 4.3.1.2 and 4.3.1.3.1, it is apparent 

that the methylated pUC19 control assay functions well in the 102 to 2 x 105 copy 

ddPCR input range, displaying linearity and high precision.  The assay also performs 

well across a range of different annealing temperatures.  The assay is also specific and 

Parameter 

 
Input range (copies) 

 
2 x 101 – 2 x 105 

 
2 x 102 – 2 x 105 

β0 (95% CI)  -1.921  -1.920 

 
 

(-1.991, -1.852) 
 

(-1.967, -1.874) 

β1 (95% CI) 
 

0.988 
 

0.988 

 
 

(0.969, 1.01) 
 

(0.976, 1) 

R2 
 

0.999 
 

1 

RMSE 
 

0.046 
 

0.019 
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neither interferes with nor is affected by multiplexing with the CDKN2A assay.  Use 

of methylated pUC19 spike in ddPCR workflows at amounts resulting in downstream 

ddPCR inputs within this range should be acceptable for use as a control to assess 

extraction recovery and amplifiable DNA losses induced by sample manipulations 

required in the analysis of methylated DNA.  

 

4.3.2 Methylated DNA gene promoter ddPCR assay optimisation  

4.3.2.1 Duplex assay annealing temperature optimisation 

Optimal annealing temperatures for methylation-specific ddPCR assays in duplex 

format in conjunction with methylated pUC19 control assay (see 4.3.1) were assessed 

using temperature gradients.  Initial experiments assessed the amplification detected 

in ddPCR reactions containing 6.6 ng HinP1I digested, bisulphite-treated PBMC 

DNA.  Methylation positive wells contained 50% in vitro methylated DNA (1000 GE 

methylated DNA / 1000 GE untreated PBMC DNA); methylation negative wells 

contained 2000 GE untreated PBMC DNA alone.  All reactions were also spiked with 

6000 copies bisulphite-treated methylated pUC19 DNA.  The temperature gradient 

comprised eight annealing temperatures ranging from 57°C to 62°C (Figure 4.3-6). 

Optimal annealing temperatures were selected considering the following: 

 No amplification in methylation negative reactions 

 Separation of positive droplets for the methylated target assay 

 Separation of positive droplets for the methylated pUC19 assay 

 Maximum concentration of methylated target measured by ddPCR 

 Consistent methylated pUC19 concentration between methylation positive 

and negative wells. 
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Figure 4.3-6 Modified QuantaSoft ddPCR 1D and concentration output of CDKN2A-

pUC19 duplex temperature gradient at eight different temperatures 

ddPCR fluorescence amplitude and positive/negative droplet identification for A. CDKN2A 

and B. pUC19.  CDKN2A positive (FAM) positive droplets are indicated in blue, methylated 

pUC19 positive droplets (VIC) are indicated in green and negative droplets appear as dark 

grey.  Each segment between solid and dashed vertical black lines contains data points for 

>10, 000 individual ddPCR partitions.  C. QuantaSoft concentration output. Blue points 

correspond to CDKN2A concentration, green points correspond to pUC19 concentration.  

Error bars represent 95% Poisson confidence interval. 
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Representative QuantaSoft 1D amplification plots for the CDKN2A-pUC19 duplex 

ddPCR assay (Figure 4.3-6A) indicate no amplification in methylation negative wells 

and increasing separation of positive and negative droplet populations in methylation 

positive wells.  CDKN2A concentration was consistent across the temperature range, 

when taking the margin of error into account, while the maximum CDKN2A 

concentration measurement was observed at 57.3°C (Figure 4.3-6C).  Methylated 

pUC19 positive/negative cluster separation was consistent across the temperature 

gradient range (Figure 4.3-6B) and measured concentration was consistent between 

methylation positive and negative wells respectively (Figure 4.3-6C).  The initial 

optimal annealing temperature assigned to the CDKN2A-pUC19 assay was 59°C. 

  

Modified 1D amplification plots and QuantaSoft ddPCR concentration plots for all 

target gene promoters can be found in Appendix, Figure 8.1 and Appendix, Figure 

8.2.  Optimal annealing temperatures for all targets were verified by further 

temperature gradient experiments (six annealing temperatures [57°C, 58°C, 59°C, 

60.2°C, 61.2°C, 62°C) in duplicate.  All target assay annealing temperatures were 

successfully verified, with the exception of WT1-pUC19 and MT1G-pUC19, both of 

which produced low levels of amplification in methylation negative reactions (Figure 

4.3-7, Appendix, Figure 8.1 and Appendix, Figure 8.2).  In the case of these two 

genes, increasing annealing temperature resulted in no amplification in methylation 

negative reactions with no accompanying difference in amplification in methylation 

positive reactions.  Optimal annealing temperatures are presented in Table 4.3-5. 
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Figure 4.3-7 Modified QuantaSoft ddPCR 1D and concentration output of WT1-pUC19 

duplex verification temperature gradient at six different temperatures 

A. ddPCR fluorescence amplitude and positive/negative droplet classification for WT1.  WT1 

positive (FAM) positive droplets are indicated in blue, and negative droplets appear as dark 

grey.  Each segment between solid and dashed vertical black lines contains data points 

from > 22, 000 individual ddPCR partitions. Note positive (blue) droplets in negative 

reactions at 57°C and 58°C.   

B. QuantaSoft concentration output. Blue points correspond to WT1 concentration, green 

points correspond to pUC19 concentration.  Error bars represent 95% Poisson confidence 

interval.  Concentration values are derived from the merging of duplicate wells as a single 

meta-well containing > 22,000 droplets. 
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Table 4.3-5 Initial and final methylation-specific duplex ddPCR optimal annealing 

temperatures 

 

 

 

 

 

 

 

 

 

 

4.3.2.2 Evaluation of methylated DNA detection and quantification using 

methylated target-pUC19 duplex assays and complex background matrix 

Having identified optimal annealing temperatures for multiplex methylation-specific 

ddPCR assays, two assays (CDKN2A-pUC19 and ABCB1-pUC19) from the potential 

methylation biomarker panel were evaluated further.  Duplex assay performance was 

assessed using a six point, twofold methylated DNA dilution series resulting in ddPCR 

inputs from 20 GE to 640 GE.  ddPCR reactions were run in triplicate.  In vitro 

methylated PBMC DNA (2.4) was diluted in untreated PBMC DNA of the same 

concentration.  PBMC DNA and WGA DNA were used as biological and technical 

controls respectively.  PBMC DNA was used as the diluent since the most likely 

potential “contaminating” DNA in bronchoalveolar lavage and blood plasma is that 

originating from leukocytes, and dilution in water would simply dilute the methylated 

DNA target without a concomitant increase in potentially competing “unmethylated” 

DNA copies.  While most CpG islands are unmethylated in leukocytes, a large number 

Target gene 

 
Optimal annealing temperature (°C) 

 
Initial 

 
Final 

ABCB1 
 

60.2 
 

60.2 

CDKN2A 
 

59.0 
 

59.0 

F2R 
 

58.0 
 

58.0 

MT1G 
 

61.2 
 

62.0 

RASSF1 
 

59.0 
 

59.0 

SHOX2  60.2  60.2 

TERT 
 

60.2 
 

60.2 

WT1 
 

58.0 
 

59.0 
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can become methylated under certain circumstances (Bock, 2006).  It was therefore 

important to include technical unmethylated controls produced by whole genome 

amplification (2.5) to assess assay specificity. 

 

 

Figure 4.3-8 CDKN2A-pUC19 duplex assay performance evaluation using twofold 

methylated DNA dilution series 

A. Modified QuantaSoft ddPCR 1D plot indicating positive/negative droplet classification 

for CDKN2A.  CDKN2A positive (FAM) positive droplets are indicated in blue, and negative 

droplets appear as dark grey.  Each segment between solid vertical black lines contains data 

points from > 27, 500 individual ddPCR reactions. 

B. QuantaSoft concentration output. Blue points correspond to CDKN2A concentration, 

green points correspond to pUC19 concentration.  Light grey error bars represent overall 

95% confidence intervals between replicate ddPCR wells and darker error bars represent 

95% Poisson confidence intervals.  Concentration values are derived from the merging of 

duplicate wells as a single meta-well containing > 27,500 droplets. 
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No amplification was observed in either technical or biological methylation negative 

DNA controls for either gene promoter, indicating good analytical specificity.  

Amplification was detected at all levels of methylated DNA serial dilution, indicating 

a limit of detection (LOD) below 20 GE (0.1% methylated) for both assays (see 

Chapter 5 for a more rigorous evaluation of LOD).  Initial inspection of 1D ddPCR 

plots indicated that the number of positive droplets decreased as methylated DNA was 

serial diluted with unmethylated DNA (Figure 4.3-8A and Figure 4.3-9A). 

Concentration plots in QuantaSoft software suggested a linear relationship between 

methylated DNA input and ddPCR measured methylated gene promoter concentration 

(Figure 4.3-8B and Figure 4.3-9B).  Methylated pUC19 concentration was also 

consistent across reactions (CDKN2A: mean pUC19 concentration = 11.07 copies/µl, 

SD = 1.10; ABCB1: mean pUC19 concentration = 10.80 copies/µl, SD = 1.41).  

Quantitative assessment of linearity by regression analysis of technical replicates 

including linear and quadratic terms, as suggested by Vynck et al. (Vynck et al., 2017), 

confirmed a linear relationship between nominal methylated DNA input and measured 

concentration across the full dilution series for CDKN2A (F(1, 15) = 0.155, P = 0.699).  

Similar evaluation of the ABCB1-pUC19 assay indicated deviation from linearity 

when considering the full dilution series range (F(1, 15) = 5.76, P = 0.030) but 

supported a linear relationship in the range from 40 to 640 methylated DNA GE input 

(0.2% to 3.2%) (F(1, 12) = 0.45, P = 0.516) (Figure 4.3-10).  Regression analysis of 

log2 transformed data provided slopes approaching unity and indicated that a doubling 

in methylated DNA input resulted in a near doubling in measured concentration 

(Table 4.3-1).  Both assays also returned models with coefficients of determination 

greater than 0.95. 
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Figure 4.3-9 ABCB1-pUC19 duplex assay performance evaluation using twofold 

methylated DNA dilution series 

A. Modified QuantaSoft ddPCR 1D plot indicating positive/negative droplet classification 

for ABCB1.  ABCB1 positive (FAM) positive droplets are indicated in blue, and negative 

droplets appear as dark grey.  Each segment between solid vertical black lines contains data 

points from > 27,500 individual ddPCR reactions. 

B. QuantaSoft concentration output. Blue points correspond to ABCB1 concentration, green 

points correspond to pUC19 concentration.  Light grey error bars represent overall 95% 

confidence intervals between replicate ddPCR wells and darker error bars represent 95% 

Poisson confidence intervals.  Concentration values are derived from the merging of 

duplicate wells as a single meta-well containing > 27,500 droplets. 

 

Methylated DNA was consistently detected at the 20 GE input level in both of the 

evaluated assays.  This is comparable to the absolute limits of detection for methylated 

DNA diluted in water (EVL: 19 GE, NTRK3: 38 GE) observed in one of the earliest 
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published methylation-specific ddPCR peer-reviewed papers (Yu et al., 2015).  Both 

assays also displayed excellent linearity and were specific, with no amplification 

detected in methylation negative controls. 

 

 

 
 

Figure 4.3-10 Evaluation of methylated DNA detection and quantification – linear 

regression plots 

Scatterplot of log10-transformed A. CDKN2A and B. ABCB1 ddPCR measured concentration 

against log10-transformed nominal methylated DNA input with linear regression lines 

superimposed. Dotted and solid regression lines in the ABCB1 plot encompass the full and 

limited (40 – 640) range of inputs respectively. 

 

 

Table 4.3-6 Duplex ddPCR assay regression parameters for twofold methylated DNA: 

PBMC DNA dilution series 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*ABCB1 regression analysis range limited to 40 – 640 GE methylated DNA input 

 

Parameter 

 
Methylated DNA target gene 

 
CDKN2A 

 
ABCB1* 

β0 (95% CI) 
 

-4.718 
 

-5.75 

 
 

(-5.288, -4.146) 
 

(-6.623, -4.878) 

β1 (95% CI) 
 

0.9149 
 

1.054 

  (0.833, 0.996)  (0.937, 1.171) 

R2 
 

0.973 
 

0.967 

RMSE 
 

0.262 
 

0.276 
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4.3.2.3 CDKN2A-pUC19 ddPCR assay technical validation 

The performance of methylation-specific ddPCR was further evaluated in the 

detection of CDKN2A in three independent twofold methylated DNA dilution series.  

In vitro methylated PBMC DNA (2.4) was diluted in untreated PBMC DNA of the 

same concentration.  The methylated DNA dilution series was extended, when 

compared to the standards used in 4.3.2.2, ranging from 5 GE to 640 GE.  PBMC DNA 

and WGA DNA were again used as biological and technical controls respectively.  

ddPCR reactions were carried out in triplicate and contained 66 ng (20,000 GE) total 

DNA. 

 

Figure 4.3-11 CDKN2A-pUC19 duplex assay performance evaluation using three 

independent twofold methylated DNA dilution series 

A. Modified QuantaSoft ddPCR 1D plot indicating positive/negative droplet classification 

for CDKN2A.  CDKN2A positive (FAM) positive droplets are indicated in blue, and negative 

droplets appear as dark grey.  Each segment between solid vertical black lines contains data 

points from > 122,000 individual ddPCR reactions. 

B. Scatter plot of three independent methylated DNA dilution series. Coloured data points 

are derived from the merging of triplicate wells as a single meta-well containing > 40,000 

ddPCR partitions associated error bars represent 95% confidence intervals.  

 

Non-template controls and WGA technical unmethylated controls produced no 

amplification.  Very low concentrations of methylated DNA were detected in six out 

of nine PBMC control wells (0 to 0.09 copies/μl).  Since no methylation positive 
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droplets were detected in any NTC or WGA control wells, this is unlikely to be non-

specific amplification but as a result of very low levels of methylated DNA in the 

pooled PBMC DNA stock. 

 

Methylated DNA was detected in all replicate wells for all three dilution series down 

to and including a nominal methylated DNA input of 20 GE (0.1%).  Qualitative 

detection began to drop out at an input of 10 GE with methylated DNA detected in 

only a proportion of replicate wells (Table 4.3-7).  However, methylation-specific 

amplification positive droplets were detected in at least one well per dilution series at 

the lowest tested input of 5 GE (Table 4.3-7).    

 

Table 4.3-7 Proportion of methylation positive ddPCR wells at low input quantities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nominal 

methylated 

DNA input 

(GE) 

 
Methylation 

% 
 Dilution series  

Number of 

positive wells/ 

total wells 

20  0.1%  A  3/3 

    B  3/3 

    C  3/3 

10  0.05%  A  1/3 

    B  3/3 

    C  1/3 

5  0.025%  A  3/3 

    B  2/3 

    C  1/3 

PBMC  PBMC  A  3/3 

    B  1/3 

    C  1/3 

WGA  WGA  A  0/3 

    B  0/3 

    C  0/3 
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Intermittent detection of methylated DNA at low copy number is not surprising.  

Quoted methylated DNA inputs are nominal and are calculated based upon genomic 

DNA quantification prior to bisulphite treatment and assume 100% conversion and 

recovery.  In fact, degradation of DNA during bisulphite treatment and clean-up is 

considerable and can extend to a reduction in intact, full-length DNA of 90% (Grunau 

et al., 2001).  Recovery of bisulphite converted DNA using different commercially 

available kits can range from 29% to 92% (Holmes et al., 2014; Leontiou et al., 2015).  

At low target inputs, sampling variation is also an issue.  I will illustrate this using a 

theoretical nominal ddPCR input of 8 GE as an example.  This originates from 

bisulphite treatment of 80 GE DNA, eluted in a volume of 50 µl, 5 µl of which is 

added per ddPCR well, equivalent to splitting the eluate into ten aliquots.  If we now, 

not unreasonably, assume a processing loss of 75% of material, we have a true average 

expected ddPCR input of 2 GE per well.  However, due to random sampling effects, 

there is variation in the copy number between wells and they will not all contain 

exactly two CDKN2A copies, some wells receiving more, some fewer and some none, 

with probabilities dictated by the Poisson distribution.  In this example, the probability 

of obtaining exactly two CDKN2A copies is 27%, three copies is also 27% and five 

copies is 18%.  Furthermore, the probability that a well receives no CDKN2A copies 

is 14% and the probability a ddPCR well actually contains the target is only 86%.  The 

probability of target positivity for a random well from a sample containing an average 

of one copy per well falls to 63% and has a corresponding 37% probability of target 

absence.  The probability distributions of wells contains a particular number of target 

molecules are shown in Figure 4.3-12. 
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Figure 4.3-12 Sampling variation due to Poisson distribution of low target inputs 

The probability that ddPCR wells contain a certain number of target molecules, when the 

average sample concentration is 0.75, 1.5, 3, 6 and 12 methylated target molecules per well. 

 

4.3.2.3.1 Linear regression modelling of CDKN2A-pUC19 validation data 

Data limited to the 20 to 640 GE input range was centred to the average log2-

transformed nominal methylated DNA input so that intercept parameters would be 

more interpretable, applying at the geometric mean of the methylated DNA inputs 

(113.1 GE) rather than at an input not included in the model (i.e. 1 GE input without 

centring).  Linear regression modelling of centred data including an explanatory 

variable controlling for different dilution series, with contrasts set to compare to the 

grand mean, indicated that the most appropriate model included an interaction, 

reflecting differences in slopes between dilution series.  This model explained almost 

all of the variance in log2-transformed measured CDKN2A concentration [adjusted R2 

= 0.987, F(5, 12) = 266.6, P < 0.001].  After back-transformation to the measurement 

scale, ddPCR measured CDKN2A concentration increased by a factor of 2.108 (95% 

CI [2.015, 2.204]) when nominal methylated DNA input was doubled.   
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Figure 4.3-13 CDKN2A-pUC19 duplex assay scatterplot and linear regression plot 

Scatter plot of three independent methylated DNA dilution series (20 – 640 GE nominal 

methylated DNA input) superimposed linear regression lines. Plotted points are derived 

from the merging of triplicate wells as a single meta-well containing > 40,000 ddPCR 

partitions. The grand mean regression for all three dilution series is shown in black and 

superimposes almost directly over that for dilution series A.  

 

While the interaction between methylated DNA input and dilution series B is 

significant at the 95% confidence level, it accounts for a 2.27-fold increase in 

measured concentration for a doubling in input when compared to the average of the 

three dilution series.  This equates to an absolute increase above the average of less 

than 8%, which is acceptable.  Similarly, statistically significant shifts in the intercept 

attributable to different dilution series are of small effect size (<1%).   

 

The CDKN2A-pUC19 assay produced excellent analytical performance with relatively 

high methylated DNA input. 
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4.3.3 ACTB cfDNA quantification assay optimisation and validation 

ACTB TaqMan® PCR quantification assay was optimised on the basis of annealing 

temperature and primer and probe concentrations.  Final optimal conditions included 

61°C annealing temperature and 500 nM forward and reverse primers and 200nM 

probe.  PCR efficiency calculated from triplicate measurement of a standard curve 

(0.25 ng to 32 ng per qPCR well) of PBMC DNA (concentration determined by 

fluorescent quantification) was 97.0% (R2 = 0.999, P <0.001).  The pooled intra-assay 

standard deviation was 0.067 Cq (minimum SD: 0.02 Cq, maximum SD: 0.11 Cq) 

indicating high precision of measurement. 

 

 

Figure 4.3-14 ACTB cfDNA qPCR quantification assay standard curve 

 

It was important that this assay exhibited efficiency close to 100%, high precision and 

good linearity in order to quantify amplifiable cfDNA with confidence. 

Utility of the quantification assay was tested on cfDNA extracted from 1 ml plasma 

samples from 134 cancer-free control subjects.  cfDNA was successfully quantified in 

all samples and the distribution of yields is shown in Figure 4.3-15. 
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Figure 4.3-15 Plasma cfDNA yield 

Histogram showing frequency of DNA yield based on concentration measured using ACTB 

cfDNA quantification assay (n = 134). 

 

Yields were lower than anticipated (median: 3.0 ng, Interquartile range: 2.0 ng - 5.6 

ng) and 94/134 samples presented yields lower than 5 ng.  Clinical sensitivity is 

improved through the use of panels consisting of multiple markers (Laird, 2003) and 

low cfDNA yields could prohibit the use of multiple assays.  Suppose a minimum of 

10 methylated DNA copies per well are required for reliable detection.  DNA 

methylation present in the plasma at 2% of total cfDNA, assayed for eight markers in 

duplicate wells, would call for in excess of 25 ng cfDNA extracted per patient sample.  

In this set of samples, only four specimens fulfilled this criterion.  It is also important 

to note that this calculation does not take into consideration any DNA losses occurring 

in sample handling and treatment, or the effect of random sampling (see 4.3.2.3).  In 

order to successfully screen patient samples, it is therefore necessary to extend the 

utility of an individual specimen.  This precipitated the development of methylation-

specific multiplex PCR pre-amplification of bisulphite-converted DNA, or MethPlex 

enrichment. 
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4.3.4 MethPlex enrichment ddPCR optimisation and validation 

Global pre-amplification of bisulphite-treated DNA using unselective techniques such 

as whole genome amplification utilising multiple displacement amplification, can lead 

to deviations from original bisulphite-modified DNA (Bundo et al., 2012).  Multiplex 

PCR using primer pools is the most popular method of targeted pre-amplification 

(Ståhlberg and Kubista, 2014).  Specific pre-amplification, solely enriching a panel of 

targets of interest (Livak et al., 2013; Tang, 2006), MethPlex enrichment, was 

therefore developed to increase the amount of target DNA available for ddPCR-based 

detection.   

 

4.3.4.1 MethPlex enrichment ddPCR optimisation and validation 

Although the same methylation-specific hydrolysis probe assays used in the analysis 

of moderate input (66ng / 20, 000 nominal GE) bisulphite-treated DNA were used to 

detect methylated DNA sequences after pre-amplification, it was considered necessary 

to determine optimal ddPCR annealing temperatures for MethPlex enrichment 

products.  Methylation-specific qMSP/ddPCR uses bisulphite-treated DNA as 

template for amplification and cytosine to uracil conversion produces non-

complementary, partially single-stranded DNA (Clark et al., 2006).  Bisulphite-treated 

DNA is also highly degraded (Grunau et al., 2001), in particular fragmentation via 

depurination (Raizis et al., 1995) and chain breakage (Suzuki et al., 1994).  This results 

in a reduction in the functional amount of amplifiable target DNA available (Leontiou 

et al., 2015).  Taq DNA polymerase also has lower amplification efficiency when 

presented with templates containing uracil (Millar et al., 2015).  MethPlex enrichment 

entails PCR amplification of bisulphite-treated DNA resulting in double-stranded 

DNA products that are templates for downstream methylation-specific ddPCR, albeit 
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with reduced sequence complexity compared to genomic DNA.  It is feasible, 

therefore, that the reaction kinetics of methylation-specific ddPCR using MethPlex 

enrichment products and bisulphite-treated DNA will be different and reasonable to 

expect different optimal ddPCR annealing temperatures. 

 

Duplicate ddPCR annealing temperature gradient experiments for all methylated DNA 

ddPCR assays were carried out using purified MethPlex enrichment products (Ta = 

58°C) at a one in eight dilution.  Methylation positive MethPlex reactions contained a 

nominal input of 50 methylated DNA copies in a background of 50 unmethylated DNA 

copies (330pg 50% methylated PBMC DNA) and methylation negative MethPlex 

reactions 100 unmethylated DNA copies (330pg untreated PBMC DNA).  Optimal 

annealing temperatures were selected on the basis of criteria previously described (see 

4.3.2).  Representative figures for the F2R-pUC19 assay are shown in Figure 4.3-16 

and clearly indicate no amplification in methylation negative wells across the 

temperature range.  Separation of positive and negative of droplets was evident at 

62°C, increasing with decreasing temperature to a maximum separation at 59°C, and 

F2R concentration measurements were consistent at temperatures with similar 

positive-negative cluster separation.  Methylated pUC19 positive/negative cluster 

separation was consistent across the temperature gradient range and ddPCR estimated 

concentration was consistent between methylation positive and negative wells.  Initial 

optimal MethPlex ddPCR annealing temperatures are presented in Table 4.3-8.   
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Figure 4.3-16 F2R MethPlex ddPCR annealing temperature optimisation 

A. ddPCR fluorescence amplitude and positive/negative droplet identification for F2R 

positive (FAM) positive droplets are indicated in blue and negative droplets appear as dark 

grey.  Solid red horizontal line indicates fluorescent amplitude threshold level.  Each 

segment between solid vertical black lines contains data points for > 26,600 ddPCR 

reactions/metawell. 

B. QuantaSoft concentration output. Blue points correspond to F2R concentration, green 

points correspond to pUC19 concentration.  Error bars represent 95% Poisson confidence 

intervals.  Concentration values are derived from the merging of duplicate wells as a single 

meta-well containing > 26,600 droplets. 
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Table 4.3-8 Initial optimal MethPlex ddPCR annealing temperatures 

 

 

 

 

 

 

 

 

 

 

 

4.3.4.2 MethPlex primer concentration optimisation 

Methylation-specific PCR enrichment reactions exhibited clear amplification bias, 

with methylated RASSF1 and ABCB1 detected by methylation-specific ddPCR at 

concentrations of only 19% and 15% of the median for all methylated targets (Table 

4.3-8).  Furthermore, CDKN2A and SHOX2 were over-represented sevenfold and 

sixteen fold, respectively, compared to the median for all methylated targets (Table 

4.3-8).  To rectify this, final CDKN2A and SHOX2 MethPlex primer concentrations 

were reduced to 100 nM.  Target enrichment and ddPCR detection carried out as 

before.  RASSF1 pre-amplified methylated DNA ddPCR measurement increased to 

15.9 copies/µl (95% CI [13.8, 18]) and ABCB1 increased to 45.7 copies/µl (95% CI 

[42.6, 48.8]), while CDKN2A and SHOX2 reduced to 46.8 copies/µl (95% CI [43.6, 

50]) and 30.4 copies/µl (95% CI [27.4, 33.3]), respectively.  Amplification bias is to 

be expected in a multiplex reaction of this nature (Polz and Cavanaugh, 1998) and it 

Target gene 

 Initial optimal MethPlex ddPCR 

annealing temperature (°C) 

 

Initial 

 ddPCR 

concentration 

(copies/ul)  

ABCB1 
 

61.2 
 

2.3 

CDKN2A 
 

59 
 

109.6 

F2R 
 

59 
 

14.9 

MT1G  58  10.3 

RASSF1 
 

59 
 

2.9 

SHOX2 
 

59 
 

240 

TERT 
 

59 
 

17.2 

WT1 
 

59 
 

15.6 
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is important to note that although all but one MethPlex primer were designed with  a 

Tm = 56±0.6°, this is simply a software-based prediction and does not reflect the true 

complex nature of the reaction dynamics and kinetics.  Observed improvements were 

deemed sufficient and future MethPlex enrichment reactions used 100 nM CDKN2A 

and SHOX2 MethPlex primers and 200 nM for remaining target pre-amplification 

primers.    

 

4.3.4.3 MethPlex enrichment annealing temperature optimisation 

Duplicate MethPlex pre-amplification reactions containing the following nominal 

bisulphite DNA inputs were subject to annealing temperature gradients from 50°C to 

60°C: 

 30 methylated DNA GE, 3000 untreated PBMC DNA GE 

(10ng 1% methylated PBMC DNA) 

 3030 untreated PBMC DNA GE 

(10ng untreated PBMC DNA) 

 303 methylated DNA GE, 30,000 untreated PBMC DNA GE 

(100ng 1% methylated PBMC DNA) 

 30,303 untreated PBMC DNA GE 

(100ng untreated PBMC DNA) 

MethPlex enrichment of 10 ng inputs was performed to emulate expected yields from 

patient blood plasma samples, while pre-amplification of 100 ng inputs served to 

simulate preparation of ddPCR templates from high yielding specimens.  Purified PCR 

products were diluted 1/8 and analysed in duplicate by methylation-specific ddPCR 

for each individual gene promoter target in the panel.  Annealing temperatures for 

ddPCR reactions were as listed in Table 4.3-8. 
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An optimal MethPlex annealing temperature of 56°C was selected based upon a 

combination of magnitude and similarity of measured concentration for MethPlex pre-

amplification replicates from methylation positive inputs and no/low signal measured 

in 10 ng PBMC DNA methylation negative controls.  Low level amplification was 

present in the majority of wells following pre-amplification of 100ng PBMC DNA. A 

higher degree of DNA methylation was detected for the MT1G assay (mean at 56°C: 

30.75 copies/µl).  This is not surprising since Pyrosequencing Methylation Analysis 

of pooled PBMC DNA carried out in the validation of in vitro methylated DNA 

preparation indicated some background MT1G methylation (see 4.2.2), a fact that may 

require careful consideration when drawing conclusions regarding MT1G DNA 

methylation.   

 

4.3.4.4 Verification of MethPlex ddPCR optimal annealing temperature 

Optimal ddPCR annealing temperatures using purified, diluted PCR products resulting 

from MethPlex enrichment (Ta = 56°C) were verified by further ddPCR temperature 

gradient experiments (eight annealing temperatures, 57°C - 62°C).  MethPlex pre-

amplification inputs were as follows: 

 30 methylated DNA GE, 3000 untreated PBMC DNA GE 

(10ng 1% methylated PBMC DNA) 

 30,303 untreated PBMC DNA GE 

(100ng untreated PBMC DNA) 

10 ng inputs into MethPlex reactions were used to replicate expected yields from 

patient blood plasma samples, while 100 ng inputs represented high yielding samples, 

in order to assess potential background signal induced by high DNA input.   
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All optimal annealing temperatures were verified as the same as presented in Table 

4.3-8, exhibiting good separation of positive and negative droplets.  High PBMC DNA 

inputs resulted in amplification detection by ddPCR and may potentially result from 

pre-amplification of previously undetected methylated DNA copies in pooled blood 

bank PBMC stocks.  For all genes, methylated samples could be distinguished from 

“unmethylated”, despite the presence of signal in PBMC samples. 

 

4.3.4.5 CDKN2A-pUC19 MethPlex ddPCR assay technical validation 

The three independent twofold methylated DNA dilution series used in the technical 

validation of the CDKN2A-pUC19 assay with moderately high ddPCR reaction inputs 

were again used to evaluate the performance of the same ddPCR assay, facilitated by 

MethPlex enrichment with low methylated DNA input.  MethPlex pre-amplification 

was carried out in triplicate with a total DNA input of 10 ng (~3030 GE).  MethPlex 

enrichment products were diluted one in eight and analysed by methylation-specific 

ddPCR. 

 

The results of this analysis are depicted as a scatter plot in Figure 4.3-17.  No 

amplification was observed in either technical or biological methylation negative 

DNA controls, indicating good analytical specificity.  CDKN2A methylation was 

reliably detected across all ddPCR and MethPlex replicates at 12 GE nominal 

methylated DNA input and above.  Below this input quantity drop-out was observed 

at the MethPlex level with all three ddPCR replicates from one of three MethPlex 

enrichment reactions exhibiting detectable CDKN2A methylation at 1.5 GE and 3 GE 

nominal methylated DNA inputs.  Pre-amplification of low inputs introduced 
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substantial variation in ddPCR analysis, making quantification unreliable due to a high 

degree of uncertainty.   

 

 

Figure 4.3-17 CDKN2A-pUC19 MethPlex ddPCR assay performance evaluation using 

three independent twofold methylated DNA dilution series 

Scatter plot of three independent methylated DNA dilution series. Coloured data points are 

derived from the merging of triplicate wells as a single meta-well containing > 44,000 

ddPCR partitions associated error bars represent 95% confidence intervals. 

 

Increasing the amount of MethPlex enrichment product analysed in methylation-

specific ddPCR analysis could possibly remedy this issue.  In fact, a higher quantity 

of purified pre-amplification product was used for method comparison in the 

following chapter.    
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4.4 General discussion 

Digital PCR has the potential for use in the analysis of nucleic acid biomarkers in 

clinical management of patients (Day et al., 2013).  Furthermore, digital PCR has 

demonstrated greater precision and sensitivity in the detection of nucleic acids at low 

copy number than qPCR methods (Hindson et al., 2013; Jones et al., 2014; Strain et 

al., 2013).  However, the ability to implement robust and relevant experiments and to 

exploit the latent enhanced precision of digital PCR analysis requires appropriate 

experimental design and execution (Huggett et al., 2013; Whale et al., 2012).  Poor 

quality assay design in combination with inadequate performance of reaction 

condition optimisation is likely to lead to lower technical precision and false positive 

and/or negative detection of intended target amplicons (Bustin and Huggett, 2017).  

Therefore the extensive empirical optimisation described in this chapter was 

necessary and vital to the success of this project overall.   

 

The production of appropriate control material and the optimisation of total cfDNA 

quantification methodology, the MethPlex targeted pre-amplification process and 

methylation-specific ddPCR assays that comprise this thesis chapter were the most 

time-consuming and labour-intensive elements of this entire body of work.  While 

perhaps somewhat unexciting and uninformative, these contributions formed the 

foundation for the remainder of this thesis by ensuring that robust process controls 

were available and yields of amplifiable cfDNA could be reliably determined.  

Importantly, thorough optimisation and validation of ddPCR assays should facilitate 

the production of valid, reproducible data when these assays are used in the analysis 

of clinical samples.  This will hopefully ensure that minimal further assay 

development will be required in order to meet stringent regulatory requirements 

should these assays progress to validation in clinical trial. 
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Potential methylation biomarkers, such as CDKN2A, are more likely to be effective 

in the detection of lung cancer as part of multiple marker panels in preference to 

analysis as single gene indicators of disease (Warton and Samimi, 2015).  Validation 

of ACTB cfDNA quantification assay using cfDNA extracted from blood plasma 

revealed yields that would preclude the use of multiple methylated DNA marker 

assays; a limiting quantity of methylated DNA copies would require distribution 

among multiple ddPCR reactions resulting in stochastic effects due to random 

sampling error.  The development of the MethPlex enrichment method effectively 

extends the utility of samples that yield limited cfDNA through the targeted 

methylation-specific amplification of genomic regions of interest.  This could also 

potentially increase overall analytical sensitivity of workflows that include 

downstream ddPCR detection.   

 

At this stage in the project we had confidence that DNA methylation detection 

workflows including process controls, cfDNA quantification, MethPlex pre-

amplification and ddPCR assays had been sufficiently optimised for use with clinical 

plasma samples.  However, superior performance of MethPlex ddPCR over and 

above that of legacy qMSP assays remained yet to be demonstrated and comparison 

of these methods is described in the following chapter. 
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Comparison of Droplet Digital™ PCR 

and real-time PCR for the detection of 

methylated DNA 
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5.1 Introduction 

Having satisfactorily developed and optimised methylation-specific assays for PCR-

based analysis of bisulphite-treated DNA, the experimental work in this chapter was 

performed to compare the detection and quantification of methylated DNA by 

ddPCR and qMSP analysis.   This was carried out both directly, at moderately high 

input, and at low input, assisted by MethPlex enrichment of methylated targets of 

interest.  The experimental design employed in this method comparison (5.2.1) 

facilitated  a comprehensive analysis of the data obtained using both detection 

methods, including the analysis of variance components at different levels within the 

experimental workflow (Tichopad et al., 2009).  Methods and procedures from ISO 

technical standards (ISO, 1994a, 1994b, 1994c, 2000) were used in the analysis of 

relevant data in order to incorporate standardised assessment techniques.  These 

assays are intended for use in pre-clinical and, ultimately, clinical study and will 

require stringent validation.  Evaluating assay performance in this manner, at this 

early stage, should go some way to ensuring data acquired in their use are 

sufficiently accurate to meet strict requirements in pre-clinical assessment. 

 

The experimental design structure was hierarchical (or nested).  In order to account 

for subsequent non-independence of data and appropriately analyse data produced, I 

have used linear mixed modelling (Bates et al., 2015; Gelman and Hill, 2007; Laird 

and Ware, 1982; Pinheiro and Bates, 2000; Zuur, 2009).   
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5.2 Materials and methods 

5.2.1 Experimental design 

Methylated DNA dilution series were used to assess methylation-specific ddPCR and 

qMSP performance, testing assays targeting the RASSF1 and WT1 gene promoters.  

High total DNA inputs (66ng/20,000 GE) were used as a technical representation of 

assay behaviour when carried out with high yielding clinical samples such as tissue 

samples or bronchoalveolar lavage specimens; low total DNA inputs (10ng/3030 GE) 

were used as a facsimile of blood plasma liquid biopsy and were pre-amplified by 

MethPlex target enrichment. 

 

 

Figure 5.2-1 Hierarchical structure of high total DNA input experimental design 

In vitro methylated DNA (50 ng/µl) was diluted to 3.2% with untreated PBMC DNA (50 

ng/µl). Three aliquots of 3.2% methylated DNA were serially diluted to produce three 

independent two-fold dilution series also including PBMC (biological) and WGA (technical) 

controls. Each dilution series was independently HinP1I/bisulphite treated resulting in 30 

“Prep” level samples in total.  ddPCR/qMSP measurements were performed in triplicate 

resulting in 9 “Measure” level data points per methylated DNA input quantity per 

measurement method. 

* Methylated and total DNA quantities refer to ddPCR/qMSP reaction inputs.  
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Three eight-point, two-fold in vitro methylated PBMC DNA dilution series (with 

unmethylated PBMC DNA as the background matrix/diluent) were constructed, 

ranging from 0.025% to 3.2% methylation, incorporating PBMC DNA matrix controls 

and WGA DNA technical methylation negative controls.  These were then digested 

with methylation-sensitive restriction nuclease HinP1I and bisulphite treated.  The 

three dilution series allowed us to assess the random error resulting from dilution, 

digestion and bisulphite treatment (designated “preparation” error) in addition to 

measurement/PCR error.  

 

 

Figure 5.2-2 Hierarchical structure of low total DNA input experimental design 

including MethPlex enrichment 

In vitro methylated DNA (50 ng/µl) was diluted to 3.2% with untreated PBMC DNA (50 

ng/µl). Three aliquots of 3.2% methylated DNA were serially diluted to produce three 

independent two-fold dilution series also including PBMC (biological) and WGA (technical) 

controls. Each dilution series was independently HinP1I/bisulphite treated resulting in 30 

“Prep” level samples in total.  “Prep” level samples were pre-amplified by MethPlex 

enrichment in triplicate resulting in 90 “MethPlex” level samples in total. ddPCR/qMSP 

measurements were performed in triplicate resulting in 27 “Measure” level data points per 

methylated DNA input quantity per measurement method. 

* Methylated and total DNA quantities refer to MethPlex enrichment reaction inputs.  

 

High DNA input assessment was performed in triplicate with nominal methylated 

DNA inputs ranging from 5 to 640 GE (0.025 – 3.2% methylation).  Assay 
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performance was evaluated at low DNA inputs by MethPlex pre-amplification of each 

dilution in triplicate, purification and dilution of PCR products and triplicate ddPCR 

and qMSP analysis.  Nominal pre-amplification inputs ranged from 0.75 to 96 GE 

(0.025 – 3.2% methylation).  Triplicate target enrichment enabled estimation of 

random error resulting from pre-amplification and clean-up (designated “MethPlex” 

error) in addition to “preparation” and measurement/PCR error. 

 

5.2.2 Statistical methods 

5.2.2.1 Outlier treatment 

Data were screened for outliers through various mean, e.g. data points in linear 

regression with Studentized residuals with a value greater than three were considered 

outliers; Grubbs’ test was used to identify outliers in precision and trueness analysis.  

When outliers were present, data collection and analyses were audited for potential 

procedural errors.  Genuine potential outliers were judged to be representative of the 

study population and the uncertainty in measurement at low inputs and were therefore 

retained. 

 

5.2.2.2 Significance of model parameters 

The significance of fixed effect parameters in linear mixed models was assessed 

using the Kenward-Roger approximate F test for fixed effects in linear mixed models 

performed using the pbkrtest package in R (Halekoh and Højsgaard, 2014; Kenward 

and Roger, 1997).  Random effects were evaluated by likelihood ratio test (LRT) 

with P value correction appropriate for a 50:50 mixture of chi-squared distributions 

with 0 and x degrees of freedom (Self and Liang, 1987; Stram and Lee, 1994). 
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5.2.2.3 Other statistical procedures  

Other statistical tests and methods used in this chapter are noted in the text of the 

relevant results sections. 

 

5.3 Results 

5.3.1 Analysis of methylated RASSF1 and WT1 by ddPCR and qMSP at high assay 

input 

Bisulphite-treated methylated DNA dilution series were analysed by ddPCR and real-

time PCR to facilitate assessment of analytical characteristics.  Total DNA input per 

PCR reaction was 20,000 GE (66ng) and methylated DNA inputs ranged from 5 to 

640 GE (0.025 – 3.2% methylation).  PBMC DNA and WGA DNA were included as 

matrix and technical methylation negative controls respectively.  Methods were 

evaluated on the following criteria: sensitivity, precision, trueness and resolution.  

 

Contributions of dilution series construction, HinP1I digestion and bisulphite 

treatment (combined as “preparation”), and PCR to the total variance across the 

measured range and for individual nominal methylated DNA input quantities was also 

assessed. 

 

Scatter plots of measured methylated DNA abundance are presented in Figure 5.3-1. 
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Figure 5.3-1 Comparative analysis of methylated DNA dilution series and PBMC DNA 

at high DNA input 

Scatter plots of ddPCR/qMSP measured concentration against methylated DNA input 

amounts from analysis of three independent dilution series (‘Preparation’).  Data are 

presented with a log2-transformed y-axis for more readily interpretable visualisation.  Each 

point represents an individual ddPCR/qMSP replicate, with nine PCRs for each point of the 

standard curve. Wide bars and error bars represent the grand mean of all replicates and 95% 

confidence intervals respectively.  qMSP data represent relative abundance of target 

normalised to methylated pUC19 control and the mean average of all data for 640 GE 

nominal methylated DNA input using the Pfaffl method (Pfaffl, 2001).  ddPCR data are 

displayed as relative concentration normalised to the mean average of target assay data for 

640 GE nominal methylated DNA input to enable direct comparison with qMSP data.   

 

5.3.1.1 Limit of detection 

Both methods and both promoter assays returned no signal for water NTCs (n = 9) or 

WGA DNA (n = 9) indicating a zero theoretical bound to instrumental limit of 

detection.  Using an informal definition of the limit of detection (LODqual) as the 

lowest non-zero assay input at which all replicate measurements render positive 
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qualitative results (Yu et al., 2015), both methods displayed LODqual of 5 nominal 

methylated DNA GE (0.025% methylation) for both assays.  A more formal capability 

of detection assessment was performed using methods outlined in technical standard 

ISO 11843-2 (ISO, 2000) and summarised by Lavagnini and Magno (Lavagnini and 

Magno, 2007).   

 

 

Figure 5.3-2 Capability of detection regression diagnostics 

Representative diagnostic plots relate to WT1 ddPCR data.  Studentized residuals are plotted 

against model fitted values in the left-hand panels and are indicative of scedasticity 

(constancy of variance) and should not reveal any clear trends.  The upper plot, with a clear 

“fanning-out” pattern is typical of heteroscedastic data.  Distributions of residuals are 

represented by Q-Q plots in right-hand panels with points lying along the plotted line 

indicating a normal distribution.  Upper panels show diagnostics for unweighted linear 

regression, while lower panels display those for weighted least squares regression.  

 

This approach involves linear calibration of the analytical response of matrix blank, in 

this case untreated PBMC DNA, and methylated DNA inputs in the range expected in 
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clinical testing, and thus controls for the probability of committing both false positives 

and false negatives (α = β = 0.05). 

 

Inspection of residuals resulting from naïve linear regression reveals an increasing 

trend in variance, proportional to fitted values, indicating heteroscedasticity (Figure 

5.3-2 (upper left panel) and Appendix, Figure 8.3).  Q-Q plots also suggest that 

residuals are non-normally distributed and imply a “heavy-tailed” distribution (Figure 

5.3-2 (upper right panel) and Appendix, Figure 8.3).   

 

Table 5.3-1 Regression parameters for WLS calibration models 

RSD = Residual standard deviation of the model 

Parameter 
 RASSF1  WT1 

 ddPCR  qMSP  ddPCR  qMSP 

β0 (95% 

CI) 
 0.22  -0.0020  0.58  0.0406 

  (0.16, 0.28)  (-0.0083, 0.0048)  (0.51, 0.65)  (0.0251, 0.0562) 

β1 (95% 

CI) 
 0.021  0.0018  0.022  0.0027 

  (0.019, 0.023)  (0.0016, 0.0021)  (0.020, 0.025)  (0.0022, 0.0032) 

R2  0.85  0.79  0.83  0.59 

RSD  0.11  0.011  0.12  0.027 

 

Weighted least squares regression (WLS), with weights inversely proportional to 

nominal methylated DNA copies input, gives a more symmetrical distribution of the 

residuals around the zero values and thus corrects for the non-constant variance 

(Figure 5.3-2 (bottom left panel) and Appendix, Figure 8.3).  Residual Q-Q plots 

provide strong evidence that weighting produces normally distributed residuals for 

both ddPCR assays (Figure 5.3-2 (bottom right panel) and Appendix, Figure 8.3).  

WLS provided only marginal improvements in qMSP residuals (Appendix, Figure 

8.3).  The addition of quadratic covariates to account for potential curvature in 
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regression line was unnecessary.  Table 5.3-1 shows the parameters of the four 

calibration models. 

 

This more formal approach indicated higher limits of detection in the DNA input 

domain than LODqual, resulting from variability in measurement and from uncertainty 

in the calibration curve linear regression model (Lavagnini and Magno, 2007).  The 

ddPCR limit of detection (xD) was significantly lower than that for qMSP for both 

assays (RASSF1: P = 0.04, df = 42.1; WT1: P = 1.7 x 10-7, df = 32.1 (Welch’s t-test, 

two tailed)), with ddPCR reducing the limit of detection by 20% and 47% for RASSF1 

and WT1 respectively (Table 5.3-2). 

  

Table 5.3-2 Capability of methylated DNA detection characteristics in the case of 

moderately high total DNA input (66 ng/20,000 GE) 

Signal domain characteristics are representative of the response variable (units – ddPCR 

(copies/ul), qMSP (relative concentration). 

LC: critical value, signal domain; LD: limit of quantification, signal domain; LQ: limit of 

quantification, signal domain. 

DNA input quantity domain characteristics give a read-out in trems of DNA input copies 

required for reliable detection and quantification. 

xC: critical value, DNA input quantity domain; xD: limit of detection, DNA input quantity 

domain; xQ: limit of quantification, DNA input quantity domain. 

95% confidence intervals for assay parameters in the DNA input quantity domain are 

enclosed in parentheses. 

   Signal domain  DNA input quantity domain (GE) 

Gene Method  LC LD LQ  xC 
xD 

(LOD) 

xQ 

(LOQ) 

RASSF1 ddPCR  0.40 0.58 1.28  
8.27 16.85 49.61 

(4.8, 11.74) (13.39, 20.32) (46.14, 53.08) 

RASSF1 qMSP  0.02 0.04 0.11  
10.28 20.95 61.68 

(5.98, 14.59) (16.65, 25.26) (57.37, 65.99) 

WT1 ddPCR  0.78 0.99 1.80  
9.05 18.44 54.27 

(5.25, 12.84) (14.64, 22.23) (50.48, 58.06) 

WT1 qMSP  0.09 0.13 0.32  
17.44 34.50 101.56 

(9.75, 25.13) (26.81, 42.19) (93.87, 109.24) 
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Absence of statistical significance in differences between measurements for PBMC 

DNA and methylated DNA inputs below the calculated limits of detection was 

confirmed by Dunnett’s multiple comparison test Appendix, Table 8.1.  RASSF1 

ddPCR, however, exhibited a significant difference between 10 GE and PBMC input 

(P = 0.005), as did WT1 qMSP at 20 GE input (P = 0.028). 

 

Significant differences were observed between measurements for inputs above xD and 

PBMC DNA (Figure 5.3-1 and Appendix, Table 8.1).  Differences between PBMC 

DNA and RASSF1 qMSP 40 GE input, and PBMC DNA and WT1 ddPCR 20 GE 

input, however, were not significant at the 95% significance level. 

 

5.3.1.2 ddPCR has superior precision considering high total DNA inputs 

Precision and trueness of the two methods were compared for data in the 20 – 640 GE 

input range, for both methylated DNA assays, using standard deviation and coefficient 

of variation as measures of precision, and bias as an indicator of trueness.  This range 

was chosen as it encompasses all inputs above the highest calculated limit of detection.  

In order to evaluate precision between methods on a comparable relative scale, ddPCR 

concentration (copies/µl) was transformed by dividing the response variable by the 

mean average for 640 copies input.  Precision analyses were performed using 

procedures described in technical standard ISO 5725 (parts 2, 3 and 6) (ISO, 1994a, 

1994b, 1994c). 

 

Inspection of scatter plots (Figure 5.3-1) indicates differences between digital and 

real-time methodologies, with ddPCR exhibiting tighter grouping.  Repeatability 

standard deviations (sr) at different methylated DNA input levels were consistently 
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lower for ddPCR measurements (Appendix, Table 8.2).  WT1 ddPCR at all 

methylated DNA quantities, and RASFF1 ddPCR at the maximum input, provided 

significantly better precision at the 95% confidence level than qMSP (Appendix, 

Table 8.2).  Average variances (sr
2) across input levels (root mean square average, 

using log2 transformed data to account for variances increasing in proportion to input 

DNA quantity) were also significantly lower for methylated DNA measurement by 

ddPCR (RASSF1 Fr = 0.472, WT1 Fr = 0.464, F(0.025), 30, 30 = 0.482). 

 

Since sr and intermediate standard deviations (si(prep)) were proportional to methylated 

DNA input, I also compared the coefficient of variation (CV%) between methods.  

Figure 5.3-3 clearly shows that CV% values cluster above the line of identity, 

indicating consistently higher qMSP imprecision. 

 

 

Figure 5.3-3 Coefficient of variation comparison plots for high total DNA inputs 

Coefficients of variation were calculated for both methods for all dilution points above 20 

GE and were plotted against each other.  PCR CV% (within-preparation) was calculated 

using direct root mean square approach (Bland, 2006).  Preparation CV% (between-

preparation) was determined as the standard deviation of mean measurement values at the 

preparation level divided by the measurement grand mean for a given methylated DNA 

input. 
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ddPCR reduced RASSF1 and WT1 average PCR CV% by 34% and 35% respectively.  

Similarly preparation level CV% was reduced by 78% and 66% (Table 5.3-3). 

 

Table 5.3-3 Coefficient of variation comparison table 

Coefficients of variation, calculated at the PCR and preparation level, are presented for 

nominal methylated DNA inputs above 20 GE. 

PCR CV% (within-preparation) was calculated using direct root mean square approach 

(Bland, 2006).  Preparation CV% (between-preparation) was determined as the standard 

deviation of mean measurement values at the preparation level divided by the measurement 

grand mean for a given methylated DNA input.  Reduction in CV = (CVqMSP – CVddPCR)/ 

(CVqMSP).  Averages for method and promoter assay combinations are root mean square 

averages. 

  PCR  Preparation 

Gene 

Nominal 

methylated 

DNA input 

(GE) 

CV 

ddPCR 

(%) 

CV 

qMSP 

(%) 

Reduction 

in CV 

(%) 

 

CV 

ddPCR 

(%) 

CV 

qMSP 

(%) 

Reduction 

in CV 

(%) 

RASSF1 640 20.04 50.14 60.04  3.71 17.22 78.44 

 320 48.61 41.77 -16.38  28.61 16.34 -75.14 

 160 38.09 56.06 32.05  25.55 49.23 48.10 

 80 41.41 41.06 -0.86  2.01 34.30 94.13 

 40 48.38 66.09 26.79  9.66 79.38 87.84 

 Average - - 33.53  - - 78.34 

         

WT1 640 29.03 89.71 67.64  4.49 17.67 74.60 

 320 40.25 46.92 14.21  12.48 33.41 62.66 

 160 35.48 43.06 17.61  9.22 25.95 64.45 

 80 49.36 49.84 0.96  17.31 62.93 72.49 

 40 38.64 57.63 32.95  23.62 49.04 51.84 

 Average - - 35.14  - - 65.71 

 

 

5.3.1.3 qMSP displays proportional bias across the measured range 

Bias was assessed by linear regression between the observed relative methylated DNA 

abundance and the expected relative abundance, normalised to the maximum 

methylated DNA input.  For an ideal assay, this approach should produce a straight 

line that is not significantly different to the line of equality, having a gradient equal to 

one and an intercept of zero (y = x).  Deviation from the equality line indicates a bias 

in the method and statistical evaluation of regression parameters provides a formal test 
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of this.  Disparity in intercepts and slopes demonstrate constant and proportional bias 

respectively.  Data were modelled in log2 space in order to correct for the lognormal 

distribution of response data and heteroscedasticity.  Model residuals were assessed 

for normality and homogeneity of variance and were satisfactory (Appendix, Figures 

8.4 and 8.5).   

 

 

Figure 5.3-4 Linear regression plots of expected vs observed relative methylated DNA 

abundance to assess assay bias 

Expected and obderved relative abundance data were log2-transformed, modelled by linear 

regression and plotted.  This should yield a straight line not significantly different to the 

equality line.  Slopes and intercepts statistically different to one and zero indicate the presence 

of linear proportional bias and constant bias respectively (Table 5.3-4 and Table 5.3-5). 

 

Models did not display constant bias for either measurement technique or promoter 

methylation assay in the 40 – 640 GE nominal methylated DNA input range (Figure 
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5.3-4 and Table 5.3-4), nor across ranges limited above respective limits of 

quantification (Figure 5.3-4 and Table 5.3-5).  Similarly, measurement of RASSF1 

DNA methylation by ddPCR did not reveal any proportional bias.  Apparent 

proportional bias present in RASSF1 qMSP and WT1 ddPCR assays was ameliorated 

by limiting the lower end of the modelled range to the respective limits of 

quantification (Figure 5.3-4 and Table 5.3-4).  Similar adjustment of WT1 ddPCR 

data did not provide any improvement (Figure 5.3-4 and Table 5.3-5). 

 

 

Table 5.3-4 Assay bias modelling parameters and statistical values for inputs above 20 

GE nominal methylated input 

   Constant bias (H0: β0 = 0)  Proportional bias (H0: β1 = 1) 

Gene Method 
 

β0 95% CI df F 
p-

value 
 β1 95% CI df 

t- 

value 

p-

value 

RASSF1 ddPCR 
 

-0.10 (-0.4, 0.19) 1 0.50 0.483  0.98 (0.86, 1.10) 43 -0.29 0.770 

 qMSP 
 

0.26 (-0.22, 0.75) 1 1.17 0.284  1.22 (1.02, 1.42) 43 2.21 0.032 

WT1 ddPCR 
 

-0.10 (-0.41, 0.21) 1 0.42 0.520  0.85 (0.72, 0.98) 43 -2.41 0.020 

 qMSP 
 

0.31 (-0.17, 0.80) 1 1.69 0.201  0.71 (0.51, 0.9) 43 -2.99 0.005 

  
 

           

 

 

Table 5.3-5 Assay bias modelling parameters and statistical values for inputs above 

limit of quantification 

   Constant bias (H0: β0 = 0)  Proportional bias (H0: β1 = 1) 

Gene Method 
 

β0 95% CI df F 
p-

value 
 β1 95% CI df 

t- 

value 

p-

value 

RASSF1 ddPCR 
 

-0.12 (-0.43, 0.20) 1 0.56 0.460  0.97 (0.8, 1.1) 34 -0.36 0.770 

 qMSP 
 

0.25 (-0.24, 0.73) 1 1.07 0.307  1.20 (0.94, 1.42) 34 1.59 0.115 

WT1 ddPCR 
 

-0.02 (-0.35, 0.31) 1 0.01 0.925  0.93 (0.76, 0.98) 34 -0.77 0.446 

 qMSP 
 

0.20 (-0.37, 0.77) 1 0.51 0.484  0.55 (0.11, 0.9) 25 -2.11 0.046 
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A more exhaustive analysis of relative bias, defined as: 

 

(𝑚𝑒𝑎𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑 𝐷𝑁𝐴 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑 𝐷𝑁𝐴 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒)

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑 𝐷𝑁𝐴 𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒
 

 

at individual methylated DNA input quantities, indicated that for inputs greater than 

20 GE, RASSF1 ddPCR mean measured abundance closely matched expected relative 

abundance, resulting in relative biases ranging from -4.1% to 7.3%, while qMSP 

measurements exhibited larger systematic error, ranging from -16.3% to 51.7%.  

Observational error was higher for both WT1 assays and indicated a clear trend, 

inversely proportional to methylated DNA input. WT1 qMSP displayed considerable 

positive relative bias, ranging from 34.2% to 230.8%, vastly overestimating target 

relative abundance (Appendix, Table 8.2).  

  

5.3.1.4 ddPCR can discriminate twofold differences in methylated DNA inputs 

Linear mixed-effects regression of measured relative abundance on nominal 

methylated DNA input above 20 GE was used to assess the ability of assays to 

discriminate between different methylated DNA inputs.  Post-hoc pairwise 

comparisons (Tukey’s honest significant difference test, using the multcomp R 

package (Hothorn et al., 2008)) (Figure 5.3-5, Table 5.3-6 and Appendix, Table 8.3) 

reveal that measurement of methylated RASSF1 DNA by ddPCR distinguished all 

twofold differences across the tested range, while qMSP analysis showed limited 

significant differences, with fourfold differences evaluated as significant in the 80 – 

640 GE nominal methylated DNA input range.  WT1 ddPCR differentiated two-fold 

differences above 40 GE nominal methylated DNA input whereas the equivalent 

qMSP assay data did not support any two-fold differences.  WT1 qMSP data also failed 



144 
 

to reject the hypothesis that 160 and 640 GE inputs (a fourfold difference) were 

equivalent at the 95% confidence level. 

 

 

 

Figure 5.3-5 High DNA assay input boxplots in the 40 – 640 GE nominal methylated 

DNA input range 

Box and whisker plots depict distributions of data for measurement of methylated DNA 

abundance by ddPCR and qMSP. Box limits represent first and third quartiles and the central 

line shows the median.  Whiskers denote 1.5 x interquartile range and outliers beyond the 

limits of the whiskers appear as individual points. Inputs with the same letter at the top of 

the boxplots are not significantly different by Tukey’s honest significant difference test 

(Hothorn et al., 2008) (Table 5.3-6).  Quantification method and methylated gene promoter 

assay are indicated in the bottom right corner of individual boxplots. 
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Table 5.3-6 Table of statistics resulting from Tukey’s honest significant difference test 

This limited table presents statistical values limited to twofold comparisons. Additional 

comparisons can be found in the full post-hoc statistical table in Appendix, Table 8.3. 

  ddPCR   qMSP 

Gene 

Comparison 

(Methylated 

DNA input) 

[GE] Estimate 

95% 

CI 

Tukey's 

q 

statistic 

Adjusted 

P value  Estimate 

95% 

CI 

Tukey's 

q 

statistic 

Adjusted 

P value 

RASSF1 80 - 40 1.08 
(0.33, 

1.83) 
3.91 0.001  1.24 

(0.05, 

2.43) 
2.84 0.036 

 160 - 80 0.93 
(0.17, 

1.68) 
3.36 0.007  1.08 

(-0.11, 

2.27) 
2.47 0.097 

 320 - 160 0.83 
(0.08, 

1.58) 
3.01 0.022  1.82 

(0.63, 

3.00) 
4.17 2.8 x 10-4 

 

 
640 - 320 1.21 

(0.45, 

1.96) 
4.38 1.2 x 10-4  0.51 

(-0.68, 

1.69) 
1.16 0.774 

           

WT1 80 - 40 0.46 
(-0.32, 

1.23) 
1.61 0.493  0.71 

(-0.49, 

1.91) 
1.62 0.486 

 160 - 80 1.05 
(0.28, 

1.83) 
3.71 0.002  0.77 

(-0.43, 

1.97) 
1.74 0.407 

 320 - 160 0.89 
(0.12, 

1.67) 
3.13 0.015  1.14 

(-0.06, 

2.34) 
2.58 0.073 

 640 - 320 0.87 
(0.09, 

1.64) 
3.06 0.019  -0.04 

(-1.24, 

1.16) 
-0.10 1 

 

5.3.1.5 Preparation error does not contribute significantly to total experimental 

variance 

The linear mixed models characterized in 5.3.1.4 not only attempt to explain the 

variation in methylated DNA measurement as a function of the methylated DNA input, 

but also estimate the unexplained variation (i.e. the changes in y not explained by the 

methylated DNA input quantity) associated with “preparation”.  This is represented 

by an additional “preparation” variance term in the model, also known as a random 

effect.  Recall that preparation includes variability due to dilution series construction, 

HinP1I digestion and bisulphite treatment.  In all cases, the random effect for 

preparation, whether defined as an intercept, slope or multiple random intercept and 

random effects, was not significant (P = 0.75 to 1, Likelihood ratio tests).  This is 

illustrated most clearly by the almost direct superimposition of the regression lines for 
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each preparation and the average, or marginal, regression line in linear mixed effects 

regression plots (Figure 5.3-6).    

 

 

Figure 5.3-6 Linear mixed effects regression plots generated from high total DNA input 

methylation measurement data  

Log2-transformed relative abundance data were modelled in the 40 – 640 GE nominal 

methylated DNA input range, with log2-transformed methylated DNA input quantities 

centred on the 160 GE input for more informative interpretation of the intercept (x = 0). 

The three preparation group regression lines, indicated by different colours shown in the 

legend below the plot, do not vary from the marginal regression line (black dashed line). 

 

Further evidence is provided by plots of the conditional means of the preparation 

random effect (i.e. the deviation from the average log2 (relative abundance) for 

individual preparation group effects at x = 0).  There was a very small variance 

contributed by preparation random effect in the RASSF1 qMSP assay but this was not 

significantly different to zero (Figure 5.3-7). 

 

Random intercepts were retained, however, in order to control for the non-

independence and pseudoreplication stemming from multiple repeated measures for 

each preparation and nominal methylated DNA input combination.  Furthermore, 
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assessment of linearity by quadratic regression did not indicate a deviation from 

linearity. 

 

Figure 5.3-7 Linear mixed model conditional means of preparation group-level effects 

Plots of conditional means of random effects give a view of the variation between 

preparation groups and the magnitude of these effects.  95% confidence intervals were 

constructed by simulation (n = 1000) and indicate a non-significant random effect when they 

cross zero (red horizontal line). In all cases there was no significant difference from zero.   

 

We can also assess the contribution of preparation groups to the variation in 

quantification at the individual nominal methylated DNA input quantities.  Results of 

variance component analysis presented graphically in the upper panel of Figure 5.3-8 

clearly indicate that there is little variation in the measured response that is attributable 

to the different preparation groupings, with the largest preparation contribution present 

for 640 GE RASSF1 input for both detection techniques.  Similarly, evaluation of the 

between-group variation in linear mixed models, controlling for the nominal 

methylated DNA input, indicated that there was essentially no preparation 

contribution to the experimental variance and fundamentally no measurable difference 

imparted upon similar DNA samples by HinP1I digestion and bisulphite treatment 

when measured using either technique (Figure 5.3-8, lower panel).  Furthermore, 

when the contributions of the fixed effect (nominal methylated DNA input), random 
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effect (preparation) and residual (predominantly PCR measurement error) to the total 

modelled variance were analysed, it was again apparent that preparation effects were 

minimal, and that the methylated DNA input explained most of the variation in 

response.  In fact, quantification by ddPCR explained substantially more of the 

experimental variance than qMSP (Figure 5.3-8, right-hand panel). 

 

Figure 5.3-8 Variance component analysis of high total DNA input methylated DNA 

quantification data 

The upper panel shows the contribution of the different levels of the experimental nested 

hierarchy to the total variance at the different nominal methylated DNA input quantities. 

Results were acquired using ANOVA-methodology implemented in the VCA R package 

(Schuetzenmeister, 2017).  The four methylated DNA assay/ detection method combinations 

are displayed.  The lower panel shows these same contributions modelled across the 

methylated DNA input range, through analysis by linear mixed effects regression and 

assessment of intra-class correlation coefficients, controlling for the variation due to the 

methylated DNA input, using the rptR package (Stoffel et al., 2017).  The right-hand panel 

shows the contributions of the methylated DNA input (fixed effect), preparation (random 

effect) and PCR measurement error (residual variance) to the total experimental variance. 
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5.3.1.6 ddPCR models provide for more accurate and precise prediction of 

methylated DNA abundance 

Further interrogation of model parameters reveals that residual variation (i.e. changes 

in y neither explained by methylated DNA input quantity nor by variability associated 

with “preparation”) was greater than twofold higher for qMSP assays than for DNA 

methylation quantification by ddPCR.  Marginal (fixed effects) and conditional (fixed 

effects and random effects) R2
GLMM (Johnson, 2014; Nakagawa and Schielzeth, 2013) 

values also demonstrate that ddPCR models explain a greater proportion of the 

variance than qMSP measurement, with and without any preparation effects 

respectively (R2
GLMM (conditional): RASSF1 ddPCR = 0.859, WT1 ddPCR = 0.806, 

RASSF1 qMSP = 0.781, WT1 qMSP = 0.538).  ddPCR slope parameters (β1) are close 

to unity, indicating that a twofold increase in input results in a near twofold increase 

in measurement, and are also more precise, signified by narrower confidence intervals 

(Table 5.3-7).   

Table 5.3-7 Linear mixed effects model parameters 

Parameter 
 RASSF1  WT1 

 ddPCR  qMSP  ddPCR  qMSP 

Fixed          

β0 (95% CI)1  -2.07  -2.17  -1.80  -1.10 

  
(-2.23, 

-1.90) 
 

(-2.53, 

-1.81) 
 

(-1.97, 

-1.62) 
 

(-1.41, 

-0.78) 

β1 (95% CI) 1  0.98  1.22  0.85  0.71 

  
(0.86, 

1.10) 
 

(1.02, 

1.41) 
 

(0.73, 

0.97) 
 

(0.51, 

0.90) 

Random         

σ2 (Preparation)  0.000  0.017  0.00  0.000 

σ2 (Residual)  0.323  0.856  0.355  0.874 

Observations  45  45  45  45 

R2m / R2c  0.859 / 0.859  0.776 / 0.781  0.805 / 0.805  0.538 /0.538 

1 (95% CI) = Bootstrap confidence intervals 
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5.3.1.6.1 Mixed model predictions 

We can also predict the (marginal) measured relative abundance at specified input 

quantities for the average preparation using these models, providing predicted 

estimates for the possible population of preparations.  By resampling the observed data 

with replacement many times (bootstrapping), we can also build a sampling 

distribution for a given prediction, and associated 95% confidence intervals.   

 

Figure 5.3-9 Histograms of bootstrap estimates for prediction at 320 GE nominal 

methylated DNA input 

Sampling distributions from 10,000 bootstrap model simulations presented for each gene 

promoter methylation assay and measurement method.  Model output has been back-

transformed into the relative measurement scale.  If models and measurement assays are 

accurate distributions should peak at 0.5 relative methylated DNA abundance, indicated by 

the red dashed line.  Point estimate of predictions are shown as empty circles and error bars 

represent 95% confidence intervals. 
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Predictions at x = 1 for the centred models correspond to a nominal methylated DNA 

input of 320 GE or, alternatively stated, expected relative methylated DNA abundance 

of 0.5.  Prediction estimates for ddPCR models at this input, back-transformed into the 

measurement scale, are similar to 0.5 (RASSF1: 0.47 (95% CI [0.41, 0.54]), WT1: 0.52 

(95% CI [0.45, 0.60])).  Across the measured range, estimates based upon qMSP 

models are, in contrast, more removed from expected values for given inputs, 

especially in the case of WT1 which overestimates relative methylated DNA 

abundance by 50% at 320 GE input (WT1: 0.76 (95% CI [0.61, 0.96])).  Moreover, the 

evident overestimation of the WT1 qMSP assay increases to almost 100% at the 160 

GE input level (WT1: 0.47 (95% CI [0.39, 0.56])) (Appendix, Figure 8.6).  This is 

clearly demonstrated by histograms of predictions presented in Figure 5.3-9  and 

reflects the greater accuracy of ddPCR, and offers further credence to bias results 

provided in 5.3.1.3.  Furthermore, ddPCR prediction distributions are decidedly 

narrower than those for qMSP assay models, providing for more restricted confidence 

intervals and attesting to superior ddPCR assay precision. 
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5.3.2 Analysis of methylated RASSF1 and WT1 by MethPlex ddPCR and qMSP at 

low assay input 

Analytical characteristics of ddPCR and qMSP methylated DNA detection and 

quantification were also assessed through the measurement of methylated DNA 

dilution series following HinP1I digestion, bisulphite treatment and MethPlex 

enrichment.  Total DNA input per MethPlex pre-amplification reactions was 3,030 GE 

(10ng) and methylated DNA inputs ranged from 0.75 to 96 GE (0.025 – 3.2% 

methylation).  PBMC DNA and WGA DNA were again included as matrix and 

technical methylation negative controls respectively.  Methods were evaluated same 

criteria as in 5.3.1.  Contributions of dilution series construction, HinP1I digestion and 

bisulphite treatment (combined as “preparation”), MethPlex enrichment and 

purification (combined as “MethPlex”) and PCR to the total variance across the 

measured range and for individual nominal methylated DNA input quantities was also 

assessed.  This experimental design resulted in a total of 270 observations for each 

promoter methylation assay/quantification method combination.  Scatter plots of 

measured methylated DNA abundance are presented in Figure 5.3-10. 
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Figure 5.3-10 Comparative analysis of methylated DNA dilution series and PBMC 

DNA at low DNA input 

Scatter plots of MethPlex ddPCR/qMSP measured concentration against methylated DNA 

input amounts from analysis of three independent dilution series (‘Preparation’).  Each 

dilution point was pre-amplified in triplicate, resulting in three MethPlex level samples for 

each preparation/dilution point. Each graphical point represents an individual ddPCR/qMSP 

replicate, with three PCRs for each MethPlex level sample nine PCRs for each preparation 

and 27 PCRs for each point of the standard curve.  Data are presented with a log2-

transformed y-axis for more readily interpretable visualisation.  Horizontal bars and error 

bars represent the grand mean of all replicates and 95% confidence intervals respectively.  

qMSP data represent relative abundance of target normalised to methylated pUC19 control 

and the mean average of all data for 96 GE nominal methylated DNA input using the Pfaffl 

method (Pfaffl, 2001).  ddPCR data are displayed as relative concentration normalised to the 

mean average of target assay data for 96 GE nominal methylated DNA input to enable direct 

comparison with qMSP data.  
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5.3.2.1 ddPCR methylation assays displayed lower limits of detection than their 

real-time PCR counterparts 

5.3.2.1.1 Model selection 

To evaluate limits of detection, MethPlex ddPCR assay data were modelled with 

mixed effects logistic regression using the lme4 package (Bates et al., 2015) in R (R 

Core Team, 2017), employing Laplace approximation.  Prospective models were 

compared by likelihood ratio test with P value correction appropriate for a 50:50 

mixture of chi-squared distributions with 0 and x degrees of freedom (Self and Liang, 

1987; Stram and Lee, 1994).  Model diagnostics were implemented using the 

DHARMa (Hartig, 2017) and arm (Gelman and Su, 2016) R packages and modelling 

assumptions were not violated in any of the selected models. 

 

The most appropriate models for RASSF1 gene promoter assays incorporated random 

slope terms for preparation and MethPlex: 

 

 glmer(pos ~ log2methcopies + 

  (0 + log2methcopies|prep/methplex), 

  Family = binomial(link = “logit”) 

 

in R programming terms. 

 

Models selected for WT1 assays included random preparation and MethPlex 

intercepts: 

 

glmer(pos ~ log2methcopies + 

  (1|prep/methplex), 

  Family = binomial(link = “logit”) 

 

in R programming terms. 
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Table 5.3-8 LOD95 for MethPlex DNA detection and model parameter statistics 

   Fixed effects  Random effects 

Gene Method 
LOD95 (95% 

CI)1 
-2 log Λ2 P value  -2 log Λ2 P value 

RASSF1 ddPCR 
3.16 (1.88, 

5.00) 
11.3 3.8 x 10-4  3.96 9.2 x 10-2 

 qMSP 
3.32 (1.78, 

5.70) 
10.4 6.2 x 10-4  16.59 1.5 x 10-4 

        

WT1 ddPCR 
1.86 (1.27, 

2.59) 
202.1 3.7 x 10-46  12.08 1.4 x 10-3 

 qMSP 
13.44 (5.67, 

30.25) 
108.7 9.6 x 10-26  26.4 1.1 x 10-6 

1(95% CI) = Profile confidence intervals 
2Likelihood Ratio test 

 

 

In all four models random effects were significant (Table 5.3-8), as where MethPlex 

random effects alone (Appendix, Table 8.4).  Preparation random effects were not 

significant (Appendix, Table 8.4) but were retained, however, because of the 

hierarchical experimental design and to control for dependence due to repeated 

measures and pseudoreplication.  It should also be noted that fixed effect parameter 

estimates and standard errors were equivalent with and without preparation random 

effects, indicating that results are robust under differing assumptions. 

 

5.3.2.1.2 Limits of detection (LOD95) 

The limits of detection of methylated RASSF1 promoter DNA by ddPCR and qMSP 

were similar (P = 0.90; Welch’s t-test, two tailed), at just above 3 nominal methylated 

DNA GE input, with LOD95 qMSP being less precise, considering  its wider 

confidence intervals (Table 5.3-8 and Figure 5.3-11).  qMSP also exhibited greater 

variance attributable to random effects (ddPCR σ2
prep:methplex = 0.58 (95% CI [0, 1.80]), 

qMSP σ2
prep:methplex = 1.07 (95% CI [2.46 x 10-13, 3.04])).  WT1 MethPlex qMSP 

performed poorly compared to MethPlex ddPCR, exhibiting a much flatter probability 
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of detection curve (Figure 5.3-11) and significantly higher LOD95 (P = 9.2 x 10-5; 

Welch’s t-test, two tailed) of 13.4 GE nominal methylated input (Table 5.3-8).  

 

 

Figure 5.3-11 LOD95 for MethPlex enrichment methylation detection 

Binary qualitative data from ddPCR/qMSP analysis of samples contributing on average 0 to 

96 methylated DNA molecules to MethPlex enrichment reactions were modelled by mixed 

effects logistic regression. Predicted responses were converted to the probability scale and 

plotted.  At 95% confidence (red horizontal dotted line), the LOD95 is the corresponding 

value on the x-axis (red vertical dotted line).  Point estimates for LOD95 (red triangles) and 

corresponding confidence intervals were calculated using a custom version of the dose.p.glm 

function from the MASS R package (Venables and Ripley, 2002), modified to allow 

functionality with generalized linear mixed models.  95% confidence intervals of predicted 

plot lines were estimated by bootstrap resampling (n =1000).  
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Table 5.3-9 Mixed effects logistic regression final model parameters 

Parameter 

RASSF1  WT1 

ddPCR qMSP  ddPCR qMSP 

Fixed OR OR  OR OR 

β0 (95% CI) 1 0.03 0.03  0 0.22 

 
(0.01 – 

0.12) 

(0.01 – 

0.12) 
 

(0.00 – 

0.03) 

(0.06 – 

0.73) 

β1 (95% CI) 1 22.42 19.95  799.19 3.19 

 
(6.33 – 

79.39) 

(5.69 – 

69.99) 
 

(32.64 – 

9568.77) 

(2.30 – 

4.44) 

Random      

σ2 (prep:methplex) 0.578 1.068  5.243 2.299 

σ2 (prep) 0 0  0 0 

Nmethplex:prep 9 9  9 9 

Nprep 3 3  3 3 

Observations 243 243  243 243 

Deviance 85 90.455  37.242 150.513 

1 (95% CI) = Profile confidence intervals 

 

5.3.2.2 MethPlex ddPCR measurement at low DNA inputs is more precise than 

qMSP 

I compared precision and trueness of the two methods using data in the 6 – 96 GE 

input range, for both methylated DNA assays.  As above, standard deviation and 

coefficient of variation as measures of precision, and bias as an indicator of trueness.  

This range was chosen as it encompasses all inputs above LOD95 for three out of the 

four methylated gene promoter assay/detection methodology combinations without 

excessively reducing the range of data available for analysis.  
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Figure 5.3-12 Coefficient of variation comparison plots for low total DNA MethPlex 

inputs 

Coefficients of variation were calculated for both methods for all dilution points above 6 GE 

and were plotted against each other.  CV% values were calculated by variance component 

analysis using the VCA R package (Schuetzenmeister, 2017).  Data points clustered to one 

side of the line of identity indicate greater imprecision for the method associated with the 

nearest plot axis. 

 

As in 5.3.1.2, ddPCR concentration (copies/µl) was transformed by dividing the 

response variable by the mean average response for maximum methylated DNA input, 

in this case 96 GE, to enable comparison of precision between methods on a 

comparable relative scale.  Precision analyses were performed using procedures 

described in technical standard ISO 5725 (parts 2, 3 and 6) (ISO, 1994a, 1994b, 

1994c). 

 

It is evident immediately from examination of scatter plots (Figure 5.3-10) that there 

was far greater variation in methylated DNA measurement by qMSP, with large 95% 

confidence intervals and inconsistency in the pattern of means.  There is a clear 

implication that the response does not follow a linear relationship due to inherent 

randomness, imprecision and inaccuracy of measurement, despite a general positive 
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trend.  These initial observations were further evaluated using more formal 

methodologies. 

 

Repeatability standard deviations (sr), gauging the precision of measurement at the 

PCR level, were generally lower when using MethPlex ddPCR assays and, therefore, 

equivalence of variances (sr
2) was also tested.  MethPlex ddPCR displayed 

significantly better precision at four out of the five inputs quantities above 3 GE for 

measuring WT1 methylation (Appendix, Table 8.5).  Average variances across input 

levels (root mean square average, using log2 transformed data to account for variances 

increasing in proportion to input DNA quantity) were also significantly lower for 

methylated DNA measurement by ddPCR (RASSF1 Fr = 0.654, WT1 Fr = 0.375, 

F(0.025), 90, 90 = 0.659). 

 

Much the same as when evaluating high total DNA assay input analyses (5.3.1.2), 

repeatability standard deviations and intermediate standard deviations (si(prep)) were 

proportional to methylated DNA input.  The coefficient of variation (CV%) was 

therefore compared between methods.  When MethPlex ddPCR and qMSP CV% 

values were plotted against one another, plotted points distinctly clustered above the 

line of identity, indicating consistently higher qMSP imprecision at all nominal 

methylated DNA inputs above 6 GE and across hierarchical design levels.  

Measurement by MethPlex ddPCR reduced RASSF1 and WT1 average PCR CV% by 

50% and 57% respectively.  Similarly MethPlex level CV% was reduced by 56% and 

63%, and preparation level CV% was reduced by 62% and 68% (Table 5.3-10). 
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Table 5.3-10 MethPlex coefficient of variation comparison 

Coefficients of variation, calculated at the PCR, MethPlex and preparation level, are presented for nominal methylated DNA inputs above 20 GE. 

CV% values were calculated by variance component analysis using the VCA R package (Schuetzenmeister, 2017).  Reduction in CV = (CVqMSP – CVddPCR)/ 

(CVqMSP).  Averages for method and promoter assay combinations are root mean square averages. 

 

   PCR  MethPlex  Preparation 

Gene 

Nominal 

methylated 

DNA input 

(GE) 

 

CV 

ddPCR 

(%) 

CV 

qMSP 

(%) 

Reduction 

in CV 

(%) 

 

CV 

ddPCR 

(%) 

CV 

qMSP 

(%) 

Reduction 

in CV 

(%) 

 

CV 

ddPCR 

(%) 

CV 

qMSP 

(%) 

Reduction 

in CV 

(%) 

RASSF1 96  23.3 78.1 70.2  29.0 123.6 76.5  33.0 143.5 77.0 

 48  43.6 49.7 12.2  52.0 55.5 6.4  52.0 83.6 37.8 

 24  48.0 46.0 -4.3  73.9 186.5 60.4  73.9 188.8 60.9 

 12  46.3 123.3 62.4  75.1 183.6 59.1  75.1 197.5 62.0 

 6  38.1 90.3 57.8  49.5 98.5 49.7  59.2 171.3 65.4 

 Average  N/A N/A 49.7  N/A N/A 55.7  N/A N/A 61.9 

              

WT1 96  32.9 70.5 53.3  32.9 70.5 53.3  33.5 130.3 74.3 

 48  36.0 69.8 48.4  49.0 114.9 57.3  49.2 119.8 58.9 

 24  34.7 108.7 68.1  68.7 122.1 43.7  68.7 128.7 46.6 

 12  40.5 83.0 51.2  62.5 193.2 67.7  62.5 196.8 68.3 

 6  30.6 77.4 60.5  35.3 214.7 83.6  35.3 224.1 84.3 

 Average  N/A N/A 56.7  N/A N/A 62.6  N/A N/A 67.7 
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5.3.2.3 MethPlex qMSP displays substantial proportional bias across the measured 

range which is not improved by limiting the modelled range 

Bias was assessed using a similar approach to the high total DNA input case (5.3.1.3).  

In this instance, however, linear regression between observed and expected relative 

methylated DNA abundance was undertaken using linear mixed models to account for 

the hierarchical, nested data structure and account for lack of independence of 

observations that would otherwise affect parameter standard errors and inferences 

made relating to the biases of interest.  The procedure produces a straight line (y = x), 

if the assay is optimal and exhibits no bias, and statistical hypothesis testing of the 

intercept and slope assesses whether any observed biases are significant.  Data were 

modelled in log2 space in order to correct for the lognormal distribution of response 

data and heteroscedasticity.  Model residuals were assessed for normality and 

homogeneity of variance and were satisfactory (Appendix, Figure 8.7). 

 

Table 5.3-11 MethPlex enrichment assay bias modelling parameters and statistical 

values for inputs above 3 GE nominal methylated input 

  Constant bias (H0: β0 = 0)  Proportional bias (H0: β1 = 1) 

Gene Method β0 
Bootstrap 

95% CI 
df F1 P-value  β1 

Bootstrap 

95% CI 
df t2 P-value 

RASSF1 ddPCR -0.23 (-0.55, 0.12) (1, 4) 1.78 0.25  1.07 (0.91, 1.23) 10.1 0.88 0.401 

 qMSP -0.27 (-2.26, 1.9) (1, 2.2) 0.06 0.83  1.76 (1.4, 2.13) 10.1 4.05 0.002 

WT1 ddPCR -0.24 (-0.58, 0.12) (1, 3.3) 1.99 0.25  0.98 (0.9, 1.05) 127 -0.56 0.576 

 qMSP -0.22 (-1.85, 1.33) (1, 2.5) 0.07 0.81  1.81 (1.3, 2.37) 10.1 2.93 0.015 

1 Kenward-Roger adjusted F-test 2 Wald t-test 

 

Initial inspection of plots of the marginal (average) fitted models, clearly shows that 

both MethPlex ddPCR assays provide for regression lines closely following the line 

of equality (Figure 5.3-13, left-hand panels).   MethPlex qMSP assays, on the other 

hand, were clearly suboptimal, producing modelled plots with far steeper gradients 
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than the identity line, implying severe proportional bias (Figure 5.3-13, right-hand 

panels).  Formal qualification of these observations revealed that neither measurement 

technique exhibited constant bias (Table 5.3-11), corresponding to a vertical shift in 

the regression line.  Indeed, statistical testing revealed that neither MethPlex ddPCR 

assay projected proportional bias, while both MethPlex qMSP assays displayed 

proportional bias significant at the 95% confidence level (Table 5.3-11).  Proportional 

biases, where present, were not removed on reduction of the modelled range (Figure 

5.3-13). 

 

 
Figure 5.3-13 Linear mixed effects regression plots of expected vs observed relative 

methylated DNA abundance to assess assay bias 

Expected and observed relative abundance data were log2-transformed, modelled by linear 

mixed effects regression and representative marginal fits are plotted reproduced above.  This 

should yield a straight line not significantly different to the equality line.  Slopes and intercepts 

statistically different to one and zero indicate the presence of linear proportional bias and 

constant bias respectively (Table 5.3-11). 
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5.3.2.4 MethPlex ddPCR and RASSF1 qMSP can discriminate twofold differences 

in methylated DNA inputs in the 6 to 96 nominal methylated DNA GE 

range 

 

Linear mixed effects regression of measured relative abundance on nominal 

methylated DNA input above 3 GE was used to evaluate the ability of assays to 

differentiate different methylated DNA inputs. 

 

 
 

Figure 5.3-14 10ng DNA MethPlex assay input boxplots in the 6 – 96 GE nominal 

methylated DNA input range 

Box and whisker plots depict distributions of data for measurement of methylated DNA 

abundance by ddPCR and qMSP. Box limits represent first and third quartiles and the central 

line shows the median.  Whiskers denote 1.5 x interquartile range and outliers beyond the 

limits of the whiskers appear as individual points. Inputs with the same letter at the top of 

the boxplots are not significantly different by Tukey’s honest significant difference test 

(Hothorn et al., 2008).  Quantification method and methylated gene promoter assay are 

indicated in the bottom right corner of individual boxplots.  
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Post-hoc pairwise comparisons (Tukey’s honest significant difference test, using the 

multcomp R package (Hothorn et al., 2008)) (Figure 5.3-14 and Table 5.3-12) reveal 

that measurement of methylated RASSF1 DNA by both MethPlex ddPCR and 

MethPlex qMSP, and methylated WT1 DNA by MethPlex ddPCR distinguished all 

twofold differences across the tested range.  MethPlex qMSP quantification of WT, 

on the other hand, was limited to fourfold differences at best in the 6 to 48 GE range.  

Median WT1 qMSP measurements were, in fact, higher for 6 GE nominal methylated 

DNA input than for 12 GE.  This difference was not, however, statistically significant 

(Figure 5.3-14 and Table 5.3-12). 

 

 

Table 5.3-12 Table of statistics resulting from Tukey’s honest significant difference test 

performed upon MethPlex enrichment ddPCR and qMSP data 

This limited table presents statistical values limited to twofold comparisons. 

  ddPCR  qMSP 

Gene 

Comparison 

(Methylated 

DNA input) 

[GE] 

Estimate 
95% 

CI 

Tukey's 

q 

statistic 

Adjusted 

P value 
 Estimate 

95% 

CI 

Tukey's 

q 

statistic 

Adjusted 

P value 

RASSF1 12 - 6 1.19 
(0.67, 

1.71) 
6.26 2.8 x 10-9  2.29 

(1.39, 

3.19) 
6.93 1.5 x 10-11 

 24 - 12 0.91 
(0.39, 

1.43) 
11.03 2.0 x 10-5  1.02 

(0.12, 

1.93) 
3.1 0.017 

 48 - 24 0.94 
(0.42, 

1.45) 
15.95 7.6 x 10-6  1.77 

(0.87, 

2.67) 
5.35 6.6 x 10-7 

 

 
96 - 48 1.41 

(0.89, 

1.93) 
23.35 6.6 x 10-13  2.33 

(1.43, 

3.23) 
7.05 9.7 x 10-12 

           

WT1 12 - 6 0.71 
(0.22, 

1.19) 
4.00 5.7 x 10-4  0.2 

(-1.19, 

1.59) 
0.39 0.995 

 24 - 12 1.04 
(0.56, 

1.52) 
9.88 2.4 x 10-8  3.57 

(2.18, 

4.96) 
7.00 8.3 x 10-12 

 48 - 24 0.9 
(0.42, 

1.38) 
15.00 2.9 x 10-6  0.72 

(-0.67, 

2.11) 
1.41 0.618 

 96 - 48 1.28 
(0.8, 

1.76) 
22.25 2.0 x 10-12  2.44 

(1.05, 

3.83) 
4.8 1.7 x 10-5 
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5.3.2.5 Random effects variances are greater when DNA methylation is measured 

using MethPlex qMSP 

Linear mixed models also characterized the variation in methylated DNA 

measurement in terms of the clustering of preparation and MethPlex samples resulting 

from the dependence structure dictated by the nested experimental design.  Recall that 

“preparation error” includes variability due to dilution series construction, HinP1I 

digestion and bisulphite treatment, while “MethPlex error” incorporates variability 

resulting from MethPlex pre-amplification and purification.  In modelling the data in 

this way, the variation in measured response not attributable to the methylated DNA 

input quantity was (partially) explained by the differences in preparation and 

MethPlex clusters from the average population level response and informatively 

enabled the provision of variance estimates for these random effects. 

 

Table 5.3-13 Statistical significance of MethPlex enrichment DNA methylation 

detection preparation and MethPlex random effects 

   Preparation random effects  
 

MethPlex random effects 

Gene Method  df 
-2 log 

Λ1 
P value2  df 

-2 log 

Λ1 

 

P value2 

RASSF1 ddPCR  1 0.00 1  3 34.08 
 

1.51 x 10-7 

 qMSP  1 8.07 0.0023  3 51.99 
 

1.76 x 10-11 

WT1 ddPCR  1 0.00 1  1 21.95 
 

1.40 x 10-6 

 qMSP  1 6.06 0.0069  3 47.93 
 

1.29 x 10-10 

1Likelihood Ratio Test 
2Corrected P value (Self and Liang, 1987; Stram and Lee, 1994) 

 

 

In the assessment of both methylated gene promoter assays by MethPlex ddPCR, 

assessment of linearity by quadratic regression did not indicate a deviation from 

linearity.  Random preparation intercept effects were not significant (Table 5.3-13), 
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but were retained to account for the data structure.  MethPlex qMSP assays, however, 

did produce significant random preparation intercepts (Table 5.3-13).  This is more 

intuitively demonstrated by plots of the individual fitted regression lines at the 

MethPlex level displayed in Figure 5.3-15 and Figure 5.3-16. 

 

 

 
Figure 5.3-15 Linear mixed effects regression plots generated from 10ng total DNA 

input MethPlex enrichment methylated DNA measurement data 

Log2-transformed relative abundance data were modelled in the 6 – 96 GE nominal 

methylated DNA input range, with log2-transformed methylated DNA input quantities 

centred on the 24 GE input for more informative interpretation of the intercept (x = 0). 

The regression lines, indicated by different colours shown in the legend below the plot, are 

plots of fitted values at the MethPlex level and give an indication of data variability.  The 

marginal (average) regression line is also plotted (black dotted line). 

 

They unequivocally show deviation of the qMSP regression lines from the marginal 

(average) line indicated by the black dotted lines.  This is apparent both in terms of 

vertical shifts (equivalent to random intercepts) and differences in line gradients 
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(corresponding to random slopes), and is evident at both the preparation and MethPlex 

level.  While some divergence from the population average is noticeable for ddPCR 

plots, the magnitude of qMSP variation is much greater.    

 

 
Figure 5.3-16 MethPlex enrichment ddPCR and qMSP linear mixed effects regression 

plots, facetted by preparation 

Log2-transformed data, modelled and plotted in Figure 5.3-15, are replotted with different 

preparation groups separated out into different facets to better enable contrast of prep level 

and MethPlex level regressions.  Again, regression lines are at the MethPlex level, indicated 

by different colours shown in the legend below the plot, and the marginal (overall average) 

regression line is represented by the black dotted line. 

 

This is confirmed by examination of  the linear mixed model regression parameters 

(Table 5.3-14). 

 

MethPlex qMSP assay models produce random effects variances that are more 

considerable than those for MethPlex ddPCR.  For example, the RASSF1 qMSP   
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MethPlex random intercept variance is more than five times larger than its ddPCR 

counterpart (Table 5.3-14).  A more intuitive representation of this can be seen in 

random effects plots (Figure 5.3-17), showing the magnitude and confidence intervals 

of random effects predictors.  MethPlex qMSP random effect magnitudes are larger 

and more variable, with a greater number of significant individual random effect 

groups, indicated by dots and error bars highlighted in black.   

 

 
Figure 5.3-17 Linear mixed model conditional means of preparation and MethPlex 

group-level effects 

Plots of conditional means of random effects give a view of the variation between 

preparation groups and that between MethPlex clusters and the magnitude of these effects.  

95% confidence intervals were constructed by simulation (n = 1000) and indicate a non-

significant random effect when they cross zero (red horizontal line). Points that are 

distinguishable from zero (i.e. the confidence interval does not cross the red line) 

represented in black. Within an individual plot (e.g. “RASSF1 ddPCR”) upper panels show 

the random effects for intercepts and the lower left panel displays the conditional means for 

MethPlex random slopes (lower right panels are empty and uninformative).  Note that the 

WT1 ddPCR model included random intercepts only for both preparation and MethPlex level 

nesting. 
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Further inspection of model parameters (Table 5.3-14), informs that MethPlex ddPCR 

fixed effect slope parameters (β1) are close to unity, indicating that a twofold increase 

in input results in a near twofold increase in measurement, while qMSP slopes 

approach two, with evident proportional bias (5.3.2.3).  MethPlex ddPCR parameters 

are also more precise, signified by narrower confidence intervals. 

 

 

Table 5.3-14 Summary of MethPlex enrichment ddPCR/qMSP methylation detection 

linear mixed model regression parameters 

  RASSF1  WT1 

  ddPCR  qMSP  ddPCR  qMSP 

Fixed          

β0 (95% CI)1  -2.38  -3.79  -2.19  -3.85 

  
(-2.64, 

-2.09) 
 

(-5.73, 

-1.83) 
 

(-2.49, 

-1.87) 
 

(-5.43, 

-2.09) 

β1 (95% CI) 1  1.07  1.76  0.978  1.81 

  
(0.90, 

1.24) 
 

(1.40, 

2.13) 
 

(0.89, 

1.06) 
 

(1.32, 

2.36) 

Random         

σ2 

(Preparationintercept) 
 0  3.159  0  1.711 

σ2 

(MethPlexintercept) 
 0.155  0.599  0.177  0.916 

σ2  

(MethPlexslope)) 
 0.050  0.2857  NA  0.606 

σ2  

(Residual) 
 0.397  0.990  0.428  2.712 

Observations  135  135  135  135 

R2m / R2c  
0.781 / 

0.867 
 

0.541 / 

0.914 
 

0.761 / 

0.831 
 

0.503 

/0.794 
1 (95% CI) = Bootstrap confidence intervals 
 

 

The residual variance (i.e. the experimental variance not explained by the methylated 

DNA input quantity, preparation grouping and MethPlex clustering, and 

predominantly accounted for by measurement error) is far greater for MethPlex qMSP 

assays (Table 5.3-14). 
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5.3.2.5.1 Decomposition of variance 

The contribution of preparation and MethPlex level clustering of data was also 

assessed at the individual nominal methylated DNA input quantities.  Graphical 

representation of variance component analysis results displayed in Figure 5.3-18 

(upper panel) indicate that preparation effects contributed little to the overall 

variance.  Linear mixed model analysis, taking into consideration the full 6 – 96 GE 

methylated DNA input range and controlling for the variation due to the differences 

in these methylated DNA inputs, provides evidence that, overall,  preparation did not 

contribute (Figure 5.3-18, lower panel).  This suggests that there was no overall 

difference imparted upon similar DNA samples by HinP1I digestion and bisulphite 

treatment when measured by MethPlex ddPCR.  Furthermore, when the contributions 

of the fixed effect (nominal methylated DNA input), random effect (preparation and 

MethPlex) and residual (predominantly PCR measurement error) to the total modelled 

variance were analysed, ddPCR random effects were quite insubstantial as a 

proportion of the total experimental variance (Figure 5.3-18, right-hand panel).  In 

contrast, random effects were relatively large in both qMSP instances (RASSF1 qMSP: 

0.373, WT1 qMSP: 0.291, RASSF1 ddPCR: 0.086, WT1 ddPCR: 0.07).  Moreover, 

nominal methylated DNA input explained greater than 75% of the experimental 

variance when samples were analysed by ddPCR , whereas qMSP measurement 

explained around 50% (R2
GLMM(m) (Johnson, 2014; Nakagawa and Schielzeth, 2013) 

RASSF1 qMSP  = 0.541, WT1 qMSP = 0.503) (Figure 5.3-18, right-hand panel). 
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Figure 5.3-18 Variance component analysis of MethPlex methylated DNA 

quantification data 

The upper panel shows the contribution of the different levels of the experimental nested 

hierarchy to the total variance at the different nominal methylated DNA input quantities. 

Results were acquired using nested ANOVA implemented in the VCA R package 

(Schuetzenmeister, 2017) and are shown in Appendix, Table 8.6.  The four MethPlex DNA 

assay/ detection method combinations are displayed above.  The lower panel shows these 

same contributions modelled across the methylated DNA input range, through analysis by 

linear mixed effects regression and assessment of intra-class correlation (ICC or 

repeatability) coefficients, controlling for the variation due to the methylated DNA input, 

using the rptR package (Stoffel et al., 2017).  The right-hand panel shows the contributions 

of the methylated DNA input (fixed effect), preparation/MethPlex (random effects) and PCR 

measurement error (residual variance) to the total experimental variance. 

 

5.3.2.6 MethPlex ddPCR models provide accurate and precise prediction of 

methylated DNA abundance but MethPlex qMSP models perform poorly 

As in 5.3.1.6.1, I made predictions using MethPlex enrichment models, predicting 

marginal measured relative methylated DNA abundance at specified input quantities 

for the average MethPlex enrichment sample within the average preparation.  This 
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provided predicted average relative abundance estimates for the possible population 

of preparation and MethPlex enrichment processes.  Sampling distributions for given 

predictions were again established by bootstrapping and associated 95% confidence 

intervals were constructed. 

 

 
Figure 5.3-19 Histograms of bootstrap estimates for prediction at 48 GE nominal 

methylated DNA MethPlex pre-amplification input 

Sampling distributions from 10,000 bootstrap model simulations presented for each gene 

promoter methylation assay and measurement method.  Model output has been back-

transformed into the relative measurement scale.  If models and measurement assays are 

accurate distributions should peak at 0.5 relative methylated DNA abundance, indicated by 

the red dashed line.  Point estimate of predictions are shown as empty circles and error bars 

represent 95% confidence intervals. 

 

Predictions at x = 1 for the centred models correspond to a nominal methylated DNA 

input of 48 GE or, alternatively stated, expected relative methylated DNA abundance 

of 0.5.  MethPlex ddPCR prediction estimates at this input, back-transformed into the 
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measurement scale, are more similar to 0.5 than qMSP estimates (Figure 5.3-19 and 

Table 5.3-15), underestimates relative methylated DNA abundance by 50%.  Figure 

5.3-19 illuminates us to the fact that MethPlex qMSP predictions are very uncertain, 

indicated by the very wide, flat sampling distributions achieved in qMSP model 

resampling.  Underestimation of relative abundance and very high levels of 

uncertainty were present across the input range for MethPlex qMSP models, whereas 

MethPlex ddPCR predictions proved to be precise and accurate (Table 5.3-15 and 

Appendix, Figure 8.8). 

 

 

Table 5.3-15 MethPlex enrichment linear mixed model predictions and their 95% 

bootstrap confidence intervals 

Gene 

Methylated 

DNA input 

(GE) 

Expected 

relative 

abundance1 

 ddPCR  qMSP 

 

Model 

predicted 

relative 

abundance1 

(95% CI) 1  

Model 

predicted 

relative 

abundance1 

(95% CI) 1 

RASSF1 96 1  0.85 (0.68, 1.08)  0.83 (0.2, 3.51) 

 48 0.5  0.41 (0.34, 0.49)  0.25 (0.06, 0.99) 

 24 0.25  0.19 (0.16, 0.23)  0.07 (0.02, 0.31) 

 12 0.125  0.09 (0.07, 0.12)  0.02 (0.01, 0.09) 

 6 0.0625  0.19 (0.03, 0.06)  0.01 (0, 0.03) 

WT1 96 1  0.85 (0.67, 1.07)  0.86 (0.27, 2.65) 

 48 0.5  0.43 (0.35, 0.53)  0.24 (0.08, 0.69) 

 24 0.25  0.22 (0.18, 0.27)  0.07 (0.02, 0.22) 

 12 0.125  0.11 (0.09, 0.14)  0.02 (0.01, 0.07) 

 6 0.0625  0.06 (0.05, 0.07)  0.01 (0, 0.03) 

1Model-based predictions and confidence intervals were on the log2 scale and are here presented back-

transformed into the measurement scale 
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5.4 Discussion 

DNA methylation is a potential biomarker for the early detection of cancer (Belinsky 

et al., 1998; Fleischhacker and Schmidt, 2007).  For this potential to be realised, 

however, the accuracy of appropriate methods needs to be established (Redshaw et al., 

2014).  In this chapter, I have presented a comprehensive technical analysis of ddPCR 

and qMSP performance in the detection of methylated DNA, diluted in an appropriate 

unmethylated DNA background, at a high total DNA input and in combination with 

MethPlex target enrichment at low DNA input.  This evaluation was performed for 

two genes of interest.   

 

Since digital PCR technologies have been recently developed, relevant DNA 

methylation detection literature is somewhat limited, making it difficult to put these 

results in context.  Analytical performance characteristics are often not reported, are 

inadequate or are relegated to supplementary sections where they are generally 

presented in an unclear fashion, even using inappropriate assessment techniques  

(Barault et al., 2015; Garrigou et al., 2016; Hata et al., 2017; Hayashi et al., 2015; Liu 

et al., 2017b; Uehiro et al., 2016; Yu et al., 2015).  In general, this oversight is 

worrisome, as inadequate consideration of such factors could discredit fundamental 

conclusions (Bustin, 2017, 2014; Vynck et al., 2017) .   

 

It is interesting that RASSF1 methylation signal was detected in normal control PBMC 

DNA by ddPCR but not qMSP analysis of high total DNA input (Figure 5.3-1).  WGA 

technical unmethylated control DNA, which is truly unmethylated since it is 

enzymatically amplified in the absence of 5methyl-dCTP, did not show any 

amplification for either measurement method.  This indicates that these assays have 
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good specificity, provided by a combination of the specificity of the TaqMan assay 

design and pre-digestion with the methylation-sensitive endonuclease HinP1I.  The 

most likely explanation for the observed difference between detection methods, 

therefore, is that the PBMC pool population has an underlying low level of RASSF1 

methylation that is detected by ddPCR but not qMSP.  This indicates that ddPCR is 

more sensitive than qMSP in the detection of RASSF1 DNA methylation.  The low 

background RASSF1 methylation is not unexpected as PBMC control DNA was 

purified from many (>96) blood bank PBMC samples without positive cancer 

diagnosis.  Furthermore, WT1 methylation was detected by both techniques at high 

total DNA input. 

 

RASSF1 and WT1 methylation was detected at high input (20,000 GE) in normal 

PBMC DNA by ddPCR but not with low input MethPlex ddPCR (Figure 5.3-1 and 

Figure 5.3-10).  If the PBMC pool possessed a low degree of background methylation, 

say 0.0125%, then PBMC PCR reactions would contain on average 2.5 methylated 

DNA copies.  There is variation in the copy number between wells, due to random 

sampling, and they, of course, cannot contain exactly 2.5 methylated DNA copies, 

some wells receiving more, some fewer, with probabilities dictated by the Poisson 

distribution.  The probability of a reaction containing one or more methylated DNA 

copies would be greater than 92%, and DNA methylation would be readily detected. 

For the MethPlex low DNA input case (3000 GE), however, methylated DNA would 

be present on average at 0.38 copies per MethPlex enrichment reaction and the 

probability that a pre-amplification reaction contained one or more methylated DNA 

copies would be only 31%.  MethPlex WT1 qMSP reactions were methylation positive 

in two out of nine MethPlex enrichment samples, from different preparations (33% 
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occurrence for each of the two preparations).  Taking the above together suggests that 

positive signals in PBMC DNA samples were genuine methylated DNA background, 

albeit at a very low incidence, which was effectively “diluted out” in low total input 

MethPlex assays.  This therefore confirms the analytical specificity of these PCR-

based techniques. 

 

The above thought experiment may have a disadvantage: in exchange for high 

MethPlex ddPCR specificity there could potentially be an accompanying decrease in 

analytical sensitivity.  MethPlex ddPCR LOD95 values of below 4 GE, however, 

suggest otherwise.  In fact, the theoretical limit of detection for qPCR assays in general 

is three target molecules per reaction volume, and in practice is higher because of 

technical imprecision (Ståhlberg and Kubista, 2014).  Furthermore, ddPCR limits of 

detection (Table 5.3-2, XD) for the 66 ng total DNA input study (i.e. without pre-

amplification) were at least as low as those for methylated EVL and NTRK3 ddPCR 

analysis of methylated DNA diluted in a water background (Yu et al., 2015).  

Moreover, MethPlex limits of detection were considerably lower, both for ddPCR and 

qMSP detection. 

  

A novel minor differentially methylated allele population enrichment technique, 

involving double-strand specific nuclease digestion of bisulphite DNA-

oligonucleotide probe duplexes (MS-NaME), was recently described (Liu et al., 

2017b).  MS-NaME followed by ddPCR analysis was able to increase methylated 

RARβ2 (RARB) representation from 0.1% to 20%, thus enabling detection (Liu et al., 

2017b).  This relative measure cannot be directly compared to the data from the current 

study; however, assuming a mass of 3.3 pg per haploid human genome, MS-NaME 
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inputs can be calculated, and 0.1% would equate to 6 GE, comparable to measurable 

MethPlex enrichment inputs.  Unfortunately, this study lacks assessment of accuracy 

and precision. 

 

Both ddPCR and MethPlex ddPCR, at high and low total DNA inputs respectively, 

demonstrated superior precision in the measurement of methylated RASSF1 and WT1 

(5.3.1.2 and 5.3.2.2).  Analysis of RASSF1 methylation by ddPCR reduced the PCR 

level coefficient of variation across the measured methylation range by 34% for high 

total DNA inputs, imitating clinical assays performed on tissue samples.  MethPlex 

enrichment of low DNA inputs, simulating cfDNA extracted from plasma specimens, 

reduced the same measure of precision by 50%.   A number of studies have similarly 

established high digital PCR sensitivity and precision when compared to qPCR 

(Hindson et al., 2011, 2013; Whale et al., 2012).  This contradicts data generated in 

the measurement of cytomegalovirus DNA (Hayden et al., 2013) and methylated DNA 

(Redshaw et al., 2014), with both of these studies attributing poorer precision to digital 

PCR when compared to qPCR measurement.  Both studies, however, analysed a lower 

quantity of DNA in digital PCR analyses, as acknowledged by both investigating 

groups (Hayden et al., 2013; Redshaw et al., 2014).  

  

Both qMSP and its MethPlex variant suffered from considerable biases when assessed 

directly and through modelling (5.3.1.3, 5.3.1.6, 5.3.2.3 and 5.3.2.6).  It is most 

striking that predicted biases from qMSP models approached 100% over-estimation at 

the 160 GE nominal methylated DNA input level (5.3.1.6.1).  Relative biases of 

similar magnitude were observed from direct estimation (Appendix, Table 8.2)  

 



178 
 

The apparent superior precision and trueness that ddPCR conferred on these assays 

could be explained through the partitioning into thousands of nanolitre-sized reactors 

potentially limiting the effect of PCR inhibitors.  Furthermore, the fact that ddPCR is 

an end-point technique, and thus PCR efficiency is of less importance, could also 

provide tolerance to inhibitors (Hindson et al., 2013) and better enable quantification 

of highly fragmented bisulphite-treated DNA. 

 

Variance component analysis of MethPlex enrichment data, both using classical 

nested ANOVA methodology and linear mixed models, indicated that preparation did 

not contribute substantively to the overall ddPCR variance.  This is in agreement with 

likelihood ratio tests of preparation random intercepts (Table 5.3-13) which infer that 

preparation random intercepts were not significant in the case of ddPCR measurement.  

Significant qMSP preparation random effects (Table 5.3-13) and substantial 

preparation variance components (Figure 5.3-18) suggest differences in preparation 

groups despite ddPCR and qMSP being performed on the same samples.  Considering 

superior ddPCR precision and trueness, and no difference between preparations 

observed in the high DNA input study, it is more likely that there was no true 

heterogeneity in preparations and differences seen in qMSP data were a manifestation 

of their higher uncertainty. 

 

It is clear that there was substantial variation at the MethPlex level.  This is 

unsurprising as multiplex reactions often exhibit amplification bias (Polz and 

Cavanaugh, 1998) and this is unlikely to be consistent from sample to sample due to 

the complex nature of the reaction kinetics involved.  In future analysis of clinical 

samples, replication at this level may improve precision of acquired data.  However, 
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since the quantity of methylated DNA in plasma samples is likely to be limiting, a 

more favourable approach would be to retain all of the bisulphite-treated DNA in a 

single MethPlex pre-amplification reaction and increase the likelihood of successful 

enrichment.  In effect, the division into multiple MethPlex reactions reduces the 

number of methylated DNA copies per sample and so increases experimental noise 

(Tichopad et al., 2009). 

 

The ability of ddPCR, and its combination with MethPlex enrichment at limiting 

input quantity, to resolve twofold differences in methylated DNA input could enable 

reliable and accurate quantification, representing a key improvement over the 

traditional real-time PCR method.  

 

Mixed model analysis of data with only three random effects levels (“Preparation” 

effects) may well attract criticism: at least 5-6 random effects levels are generally 

recommended (Bolker et al., 2009).  Between-cluster variances with fewer levels are 

likely to be poorly estimated.  However, our interest is not in the individual 

preparation effects but how they vary and how any this variation in clusters applies 

to the population of possible preparations, in addition to controlling for non-

independence of data resulting from hierarchical experimental design.  Aggregating 

data would sacrifice important and interesting information relevant to assay 

performance and not including preparation predictors would potentially lead to 

incorrect inferences due to underestimation of regression coefficient standard errors.  

Thus, from a philosophical point of view, the designation of preparation as a random 

effect is justified.  Furthermore, in both the high and low total DNA input cases, 

model (marginal) intercept and slope are identical if preparation is modelled as a 
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fixed or random effect.  Calculated variances are very similar, but most importantly 

the inferences are the same.  Statistical data tables illustrating this are included in 

Appendix, Table 8.7 and Appendix, Table 8.8. 

   

It is anticipated that this comprehensive technical study of various aspects of assay 

performance, including analytical specificity and sensitivity, precision, trueness, 

linearity and resolution, and an analysis of the influence of different workflow 

components, incorporating methods and procedures from ISO technical standards, 

forms a logical framework for the assessment and validation of potential biomarker 

assays at the analytical level, prior to pre-clinical study using patient specimens.  In 

using such a framework, assays are more likely to perform satisfactorily in pre-

clinical study and require little to no modification in order to meet stringent criteria 

demanded in formal clinical validation. 
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6.1  Introduction 

Conclusive lung cancer diagnosis typically requires histological examination of 

invasively obtained tissue biopsy tissue.  Initial diagnostic work-up routinely includes 

less invasive bronchoscopy and cytological diagnosis.  In Chapter 3, I evaluated the 

discriminatory accuracy of methylated DNA biomarkers detected in bronchoalveolar 

lavage specimens obtained during this procedure.  While this is moderately invasive, 

it is not without risk to the patient.  There is a clear need for genuinely non-invasive 

diagnostic procedures in the clinic.  In addition, bronchial lavage is not a standardised 

process i.e. the bronchoscopist will sample the areas looking more suspicious rather 

than following a standard routine.  Therefore, bronchial washings differ between 

patients regarding the representation of the bronchial tree. In contrast, blood is a 

readily accessible clinical specimen, highly standardised and presents an alternative, 

promising source of biomarkers (Crowley et al., 2013).  Indeed, circulating tumour 

DNA (ctDNA) offers much potential and has been detected in patients with different 

cancer types (Schwarzenbach et al., 2011). 

 

Detection of SEPT9 methylation in plasma, marketed as the Epi proColon test, has 

recently been approved by the US FDA for colorectal cancer screening.  This 

biomarker was previously validated in prospective trials (Church et al., 2014; Potter 

et al., 2014).  SHOX2 methylation assays were initially developed and validated for 

the diagnostic evaluation of bronchial aspirates (Dietrich, 2011; Schmidt et al., 2010).  

This marker has subsequently been assessed in plasma, with lower sensitivity (Kneip 

et al., 2011).  However, recently, a combination of SHOX2 and PTGER4 methylation 

demonstrated a sensitivity of 67% and (fixed) specificity of 90% when validated using 
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plasma samples from lung cancer patients and individuals with and without benign 

lung disease (Weiss et al., 2017).  

 

The utility of ddPCR analysis of plasma samples in copy number variation analysis 

(Gevensleben et al., 2013) and tumour genotyping (Oxnard et al., 2014) in cancer, and 

the detection in of nucleic acids in other diseases and disorders has been successfully 

demonstrated (Beck et al., 2013; Persaud et al., 2013; Strain et al., 2013).   

 

Screening of this set of retrospective case-control plasma samples was intended to 

validate the use of MethPlex enrichment and methylation-specific ddPCR in the 

detection of DNA methylation in clinical plasma samples.  It was performed to assess 

the ability of cfDNA concentration and individual methylation markers to discriminate 

between lung cancer cases and controls.  Statistical modelling was planned to identify 

optimal discriminatory algorithms utilizing combinations of markers, and model 

validation by internal cross-validation was proposed. 
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6.2 Materials and methods 

6.2.1 Liverpool Lung Project patients and samples 

The plasma screening set included 180 individuals in total (60 lung cancer cases and 

120 age/sex/storage duration frequency matched).  All patients were recruited to the 

Liverpool Lung Project through the Liverpool Heart and Chest Hospital and were 

referred to the Liverpool Lung Cancer Unit because of clinical suspicion of lung 

cancer.  As such, control subjects were not healthy volunteers, but received diagnosis 

for various diseases including, but not limited to, bronchitis, chronic obstructive 

pulmonary disorder (COPD), emphysema and tuberculosis.  The LLP study protocol 

has been approved by the Liverpool Research Ethics Committee and all participants 

provided informed consent in accordance with the Declaration of Helsinki. 

Blood plasma specimens were stored in at -80°C.  DNA was extracted using the 

DNeasy Blood and Tissue Kit (Qiagen) according to the modified protocol in 2.2.2. 

 

6.2.2 Exploratory univariate analysis 

Subjects’ epidemiological, clinical and methylation characteristics were described by 

case-control status separately.  Descriptive statistics were obtained and compared by 

using Chi-square test or Fischer’s exact test for categorical variables and t-tests for 

normally distributed variables.  The Mann-Whitney U test or Kruskal-Wallis test was 

used for continuous variables where the normality assumption failed.  Epidemiological 

and clinical characteristics are presented in Table 6.2-1, plasma cfDNA yield and 

concentration statistics are displayed in Table 6.3-1 and DNA methylation statistics 

are shown in Table 6.3-2.  Figure 6.2-1 provides additional evidence that there was 

no significant difference in the age, storage duration, smoking duration or smoking 

packyears distributions between case and control groups. 
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Figure 6.2-1 Box plots of epidemiological subject characteristics 

Box limits represent first and third quartiles and the central line shows the median.  

Whiskers denote 1.5 x interquartile range and outliers beyond the limits of the whiskers 

appear as individual points.  Note that there was no statistically significant difference 

between the distribution of cases and controls (P >0.05, Mann-Whitney U test). 
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Table 6.2-1 Epidemiological and clinical  characteristics separated by case-control 

status for the plasma screening sample set 

Numbers in the main body of the table represent frequencies. Numbers in parentheses 

represent percentages. 

 

   
Plasma DNA methylation 

detection set (N = 180) 

Subject 

characteristics 
 

Case 

(n = 60) 
 

Control 

(n = 120) 

Age group 

 <60  3 (5.0)  6 (5.0) 

 60 – 79  55 (91.7)  111 (92.5) 

 80+  2 (3.3)  3 (2.5) 

Age 

 Mean ± SD  69.1 ± 6.49  69.1 ± 6.41 

 Median ± IQR  69.0 ± 12  68.9 ± 11.3 

Gender 

 Male  29 (48.3)  58 (48.3) 

 Female  31 (51.7)  62 (51.7) 

Smoking status1 

 Current  23 (38.3)  43 (35.8) 

 Former  28 (46.7)  76 (63.3) 

 Never  9 (15.0)  1 (0.8) 

Smoking duration 

 Mean ± SD  36.7 ± 19.75  43.2 ± 12.66 

 Median ± IQR  42.5 ± 25   45 ± 12 

Smoking pack years 

 Mean ± SD  38.1 ± 29.24  41.7 ± 24.27 

 Median ± IQR  38.4 ± 34.5  39.4 ± 24.5 

Specimen storage duration (years) 

 <5  28 (46.7)  56 (46.7) 

 5+  32 (53.3)  64 (53.3) 

Histological diagnosis 

 Adenocarcinoma  36 (60)   

 Squamous cell   24 (40)   

    carcinoma     

Stage (pT) 

 1  31 (51.7)   

 2  19 (31.7)   

 3  9 (15)   

 4  1 (1.7)   

Nodal status (pN) 

 0  40 (66.7)   

 1  11 (18.3)   

 2  9 (15.0)   

1 Statistically significant (P < 0.05) 
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6.2.3 MethPlex ddPCR plasma sample DNA methylation screening 

The workflow for MethPlex ddPCR DNA methylation screening is shown in Figure 

6.2-2.  Relevant sections describing different workflow components are indicated in 

the figure and following text.  Briefly, plasma samples were thawed at room 

temperature.  Sonicated salmon sperm DNA (500ng) and methylated pUC19 DNA 

(106 copies) were added to 1.8 ml aliquots of blood plasma.  DNA was extracted 

according to the modified protocol described in (2.2.2).  DNA was eluted in a total 

volume of 110 μl 0.22 μm-filtered Tris-HCl, pH 8.0, 0.025% Tween-20.  10 μl plasma 

cfDNA was aliquoted into PCR strips for real-time PCR genomic DNA quantification 

(2.3.3, 4.2.3, 0).  The remaining volume of plasma cfDNA was transferred to PCR 

strips, desiccated and resuspended in 20 μl Tris-HCl, pH 8.0, 0.025% Tween-20 (0.22 

μm-filtered).  cfDNA samples were digested using methylation-sensitive 

endonuclease HinP1I (2.6) and bisulphite treated (2.7).  Bisulphite-treated DNA  

(20 μl) was enriched for methylated targets of interest by MethPlex pre-amplification 

(2.11.1) and PCR products were purified (2.11.2.2).  MethPlex enrichment products 

were diluted 1/8 (6.3.3) or 1/2 (6.3.4) with ddH2O and analysed by methylation-

specific ddPCR.           
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Figure 6.2-2 Outline of MethPlex ddPCR workflow 

Numbers in bold to the right of boxes indicate chapter sections relevant to individual 

workflow components. 
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6.3 Results 

6.3.1 ACTB cfDNA real-time PCR quantification assay displayed reliable and robust 

performance characteristics 

DNA concentration was measured by qPCR using the in-house developed ACTB 

cfDNA real-time PCR assay (2.3.3).  Samples were randomized across five 96-well 

qPCR plates.  The assay demonstrated excellent precision (within-replicate Cq SD 

(pooled across plates and concentrations) = 0.166) and very good PCR efficiency 

(mean% = 95.9, 95% CI [93.2, 98.6]).  It also produced an excellent average R2 value 

of 0.998 (95% CI [0.997, 0.999]) (Figure 6.3-1).  Amplification was detected in 

178/180 plasma DNA samples tested, with two control subject samples providing no 

amplification signal (Table 6.3-1). No amplification was detected in non-template 

controls.   

 

 

Figure 6.3-1 ACTB cfDNA real-time PCR quantification assay performance 

Standard curves for all five cfDNA quantification plates are displayed. Final qPCR DNA 

concentrations ranged from 0.01 ng/µl to 7.29 ng/µl corresponding to total cfDNA yields of 

1 – 729 ng.   



190 
 

6.3.2 Plasma samples yielded very low quantities of cfDNA 

The absolute yields and concentrations of cfDNA recovered from subject plasma 

samples were lower than expected. ACTB qPCR analysis revealed that 73/180 samples 

demonstrated concentration values below the lowest PBMC DNA concentration 

standard. This means that these 73 samples yielded less than 1 ng amplifiable cfDNA 

overall. Nevertheless, these samples did provide clear amplification signals indicating 

the presence of amplifiable DNA, albeit at low levels.  Yields and concentrations were 

calculated for these samples but should be regarded as somewhat tentative due to being 

outside the range of the standard curve.  Extensive summary statistics of absolute 

cfDNA yields and concentrations (ng cfDNA/ml plasma) are shown in Table 6.3-1.   

The overall median yield from 1.8 ml plasma was 1.3 ng. 

 

Table 6.3-1 Summary statistics of plasma cfDNA yields and concentrations for all 

samples and separated by disease status  

Sample  

summary 

statistics 

(ng or ng/ml) 

 Yield 

(ng) 

 Concentration 

(ng/ml plasma) 

 All samples 

(N = 180) 

 All samples 

(N = 180) 

< 1   73 (40.6)  121 (67.2) 

1 – 5   100 (55.6)  57 (31.7) 

5 – 10   5 (2.8)  0 (0) 

> 10   2 (1.1)  2 (1.1) 

Mean ± SD  2.3 ± 7.77  1.3 ± 4.32 

Median ± IQR  1.3 ± 1.45  0.7 ± 0.80 

Range  0 – 88.98  0 – 49.4 

     

Samples separated by status 

  
Case 

(n = 60) 

Control 

(n = 120) 
 

Case 

(n = 60) 

Control 

(n = 120) 

< 1   17 (28.3) 56 (46.7)  34 (56.7) 87 (72.5) 

1 – 5   37 (61.7) 63 (52.5)  24 (40.0) 33 (27.5) 

5 – 10   4 (6.7) 1 (0.8)  0 (0) 0 (0) 

> 10   2 (3.3) 0 (0)  2 (3.3) 0 (0) 

Mean ± SD  4.3 ± 13.32 1.3 ± 1.08  2.4 ± 7.35 0.7 ± 0.60 

Median ± IQR  1.4 ± 2.14 1.2 ± 1.43  0.8 ± 1.19 0.65 ± 0.79 

Range  0.01 – 88.98 0 – 6.97  0.01 – 49.43 0 – 3.87 
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Figure 6.3-2 Distribution of plasma cfDNA yield for ddPCR methylation study 

Histogram showing frequency of cfDNA yield based on concentration measured using 

ACTB cfDNA quantification assay (N = 178).  Note that the x-axis is limited at a yield of 10 

ng: two samples yielded higher cfDNA quantities (56.1 ng and 89.0 ng) but the figure axis 

was limited for better visualisation of the yield distribution 

 

The distribution of DNA extraction yield for the 180 subject retrospective case-control 

blood plasma set is depicted in Figure 6.3-2.   Inspection of this figure and formal 

testing clearly indicates that the data are not normally distributed (P < 0.0001, Shapiro-

Wilk test).  Boxplots of case and control yields do not display any obvious differences 

between the two groups, the clearest distinction being two very high yield lung cancer 

case outliers (Figure 6.3-3, left panel).  Transformation of the data also revealed low 

yield outliers in the control group (Figure 6.3-3, right panel).   

 

The case median yield (1.4 ng (IQR = 2.1)) was higher than that for the control group 

(1.2 ng (IQR = 1.4)) and the distributions of the two groups differed significantly 

(Mann–Whitney U = 4522, n1 = 60, n2 = 120, P = 0.005 two-tailed).   
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Figure 6.3-3 Boxplots of case and control yields 

The left hand panel indicates measured cfDNA yields obtained using the ACTB cfDNA 

quantification assay. The right hand panel shows the log transformation of the same data 

for better interrogation  of the underlying distributions. 

 

More than two-thirds of cases and controls combined presented with concentrations 

of less than 1 ng cfDNA/ml plasma.  Only two case samples yielded greater than 

10 ng cfDNA overall (Table 6.3-1). 

 

Yields were not significantly different between plasma samples stored for greater than 

or less than five years prior to analysis (P = 0.997, Mann-Whitney U test). No 

correlation was observed between cfDNA yield and storage time prior to analysis  

(rs(178) = -0.01, P = 0.89, Spearman correlation). 

There was no significant difference between the distributions of cfDNA concentration 

for groups with different pathological pT stage (H = 5.021, df = 3, P = 0.170, Kruskal-

Wallis test), pathological pN stage (H = 2.749, df = 2, P = 0.253, Kruskal-Wallis test) 

or clinical stage (H = 6.028, df = 3, P = 0.110, Kruskal-Wallis test).   
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6.3.3 Initial screening of MethPlex ddPCR plasma samples 

MethPlex ddPCR analysis of lung cancer case and control plasma samples for 

methylation of the CDKN2A promoter indicated very low frequency of methylation: 

only three out 60 cases (5%) were methylation positive.  Methylation positive 

controls gave positive results and spike-in methylated pUC19 DNA, functioning as a 

process control, also produced positive, but variable, amplification signals (median ± 

IQR = 326.0 ± 354.2).  The expectation was for a far higher proportion of 

methylation positive results from clinical samples.  Bronchoalveolar lavage 

methylation screening (Error! Reference source not found.) and the earlier Nikolaidis 

tudy (Nikolaidis et al., 2012) displayed 16.2% and 25% CDKN2A methylation 

detection rates, respectively.  Furthermore, the proportion of lung cancer patient 

plasma samples displaying promoter methylation of the same gene in published 

studies was greater than 20% (Belinsky et al., 2005; Zhang et al., 2011).   

 

6.3.4 Increased ddPCR reaction inputs provided for increased methylation detection 

but DNA methylation frequencies were disappointingly low  

I decided to continue screening samples, but, in order to conserve potentially wasted 

resources, the number of controls tested in subsequent ddPCR analysis was halved, 

resulting in a screening set of 60 cases and 60 controls.  The absolute quantity of 

ddPCR input was also increased fourfold by changing the purified MethPlex 

enrichment product dilution factor from eight to two.  A repeated screen of samples 

for CDKN2A methylation showed increased signal in previously positive samples 

and produced a further two positive cases.  No non-lung cancer controls displayed 

CDKN2A positivity. 
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Plasma screening set univariate analysis statistics for all markers are presented in 

Table 6.3-2.  All markers showed low frequency of methylation detection in plasma 

samples and therefore displayed poor sensitivity.  With the exception of MT1G, 

RASSF1 and ABCB1, no methylation was detected in controls samples.  AUC 

statistics were all below 0.60, also indicating that individual markers were poor 

classifiers of disease status. 

 

Table 6.3-2 Univariate statistics for DNA methylation biomarkers in blood plasma 

samples 

 

 Positives   Model-based classification1 

Gene 

promoter 

Case 

(n=60) 

Control 

(n=60) 

χ2 

P value 
 Se/Sp 

Accuracy 

(%) 
AUC (95%CI) 

WT1 7 0 0.013  11.7/100 55.8 0.56 (0.52, 0.60) 

MT1G 15 9 0.254  25/85 55.0 0.55 (0.48, 0.62) 

RASSF1 9 4 0.239  15/93.3 54.2 0.54 (0.49, 0.60) 

CDKN2A 5 0 0.119  8.3/100 53.3 0.53 (0.50, 57) 

TERT 2 0 0.496  3.3/100 51.7 0.52 (0.49, 0.51) 

F2R 2 0 0.496  3.3/100 51.7 0.52 (0.49, 0.54) 

SHOX2 1 0 1  1.7/100 50.8 0.51 (0.49, 0.52) 

ABCB1 2 4 -  - - - 

1 Disease class prediction based on predicted Pr(D) ≥ 0.5 

 

6.3.5 Multiple marker combination models did not discriminate disease status 

adequately 

A logistic regression model including predictors for the four markers with the 

highest frequency of methylation detection in lung cancer case plasma samples 

(WT1, MT1G, RASSF1 and CDKN2A) was assessed.  This model displayed a 

sensitivity and specificity of 46.7% and 70.0%, respectively.  Diagnostic accuracy 

was 58.3% and the ROC AUC was 0.60.  The addition of cfDNA concentration (ng 
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cfDNA/ml plasma), assessed by ACTB cfDNA qPCR quantification assay, increased 

specificity to 85.0%.  The diagnostic accuracy also improved (65.8%), as did the 

overall ability of the test to discriminate between individuals with lung cancer and 

those without (AUC = 0.68).  Note that these are still modest performance 

characteristics. 

 

6.3.6 Positive methylation detection was conclusive when present 

Although frequency of methylation detection was low across the screening set, 

samples that displayed a positive signal for DNA methylation did so unambiguously.  

A representative example for the SHOX2 assay is shown in Figure 6.3-4.  Case 59_C 

produced an unquestionably positive methylation signal when analysed by MethPlex 

ddPCR, with 758 positively identified ddPCR droplets, equivalent to 26.5 copies/µl 

ddPCR reaction concentration.  Control 59_A and the PBMC DNA methylation 

negative control produced no methylated SHOX2 FAM-positive droplets.  

Furthermore, DNA methylation controls also exhibited clear ddPCR positive signal 

and there was a distinctive decline in number of positive droplets as the methylation 

percentage reduced from 1% (ddPCR concentration: 187.0 copies/µl ddPCR) to 0.1% 

(ddPCR concentration: 8.8 copies/µl). 
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Figure 6.3-4 Representative modified QuantaSoft ddPCR 1D output for DNA 

methylation controls, and plasma cfDNA case and control samples 

SHOX2 positive (FAM) positive droplets are indicated in blue, and negative droplets appear 

as dark grey.  Each segment between solid vertical black lines contains data points from two 

wells (>32,500 individual ddPCR reactions). 

 

 

6.3.7 Methylated DNA controls performed satisfactorily in plasma cfDNA screening 

All methylated DNA positive controls in all runs displayed positive ddPCR detection, 

even at a Nominal MethPlex enrichment methylated DNA input of 3 GE.  CDKN2A, 

MT1G and SHOX2 assays also exhibited amplification in PBMC DNA wells.  Assays 

had previously been tested with technical methylation negative WGA DNA controls, 

displaying no amplification, demonstrating their specificity.  Signal present in PBMC 

DNA wells for the aforementioned assays is therefore most likely indicative of low 

levels of methylation in the untreated PBMC DNA control pool.  The PBMC DNA 

measured concentration was consistently and significantly higher than that for 3 GE 

nominal methylated DNA MethPlex reaction input (P = 0.029, Mann-Whitney U test).  

This is symptomatic of the stochastic nature of amplification at very low levels. 
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All non-template controls did not produce any amplification signal.  Plate-to-plate 

reproducibility was also assessed and overall inter-run coefficients of variation each 

DNA methylation assay were between 18.3% and 28.4%.   

 

  

Figure 6.3-5 DNA methylation control performance in cfDNA plasma screening 

MethPlex ddPCR concentrations were log2 transformed for better visualisation.  Plotted 

points are values are derived from the merging of duplicate wells as a single meta-well 

containing > 28,000 droplets. 30, 15 and 3 GE nominal methylated DNA input correspond to 

1%, 0.5% and 0.1% methylated DNA proportions.  Note that the x-axis is categorical and 

methylation controls were not equally spread therefore a linear trend is not necessarily 

expected to be observed. 
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6.4 Discussion 

In this chapter, I have clearly demonstrated that MethPlex ddPCR analysis can detect 

DNA methylation in plasma samples.  Frequencies of methylation detection for all 

markers in clinical specimens were lower than anticipated, resulting in poor 

discrimination between cases and controls as individual markers and combined as a 

discriminatory model.  However, it should be noted that 27/60 cases gave a positive 

DNA methylation signal for one or more markers when assessed by MethPlex ddPCR.  

It is likely that modest marker sensitivity was dictated by the low cfDNA yields 

achieved in extraction of cfDNA from blood plasma.  It has previously been 

demonstrated that DNA yields from plasma samples subject to long-term storage can 

decrease by an average of 30% per year (Sozzi et al., 2005).  The use of samples that 

had been in frozen storage for at least three years was necessary in order to provide 

sufficient subject follow-up.  In fact, 90% of samples had a storage duration of greater 

than four years.  Furthermore, microcentrifuge tubes with untreated tube walls, as used 

in this study, have been shown to negatively influence PCR results at low 

concentration (Ellison et al., 2006; Teo et al., 2002), presumably due to adsorption of 

DNA molecules to untreated plastics. 

  

In addition to the plasma DNA yield, the source of the extracted DNA and the 

proportion originating from malignant cells and/or the tumour microenvironment are 

also of vital importance (Thierry et al., 2016) .  The structural properties of circulating 

DNA are still under investigation and the most frequently communicated circulating 

DNA fragment length resembles the size of mono- or oligo-nucleosomes 

(Fleischhacker and Schmidt, 2007; Holdenrieder et al., 2001; Jahr et al., 2001; Thierry 

et al., 2016).  Experiments in colorectal cancer patients and animal xenograft models 
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somewhat elegantly demonstrated that ctDNA molecules in plasma are more 

fragmented than cfDNA molecules, being primarily less than 147 bp in length 

(Mouliere et al., 2013; Thierry et al., 2010).  This was later confirmed independently 

by next-generation sequencing of hepatocellular carcinoma plasma samples (Jiang et 

al., 2015).  DNA extraction kits assessed for use in this project were evaluated using 

high integrity, high molecular weight PBMC DNA spiked into plasma samples and as 

such did not assess the recovery of these short cfDNA fragments.  Recent studies 

focussing on DNA methylation in plasma (Barault et al., 2015; Garrigou et al., 2016; 

Uehiro et al., 2016), or indeed ctDNA in general (Bettegowda et al., 2014; Oxnard et 

al., 2014; Sacher et al., 2016), used the QIAamp Circulating Nucleic Acid kit, which 

is presumed to specifically enrich for shorter DNA fragments, or other extraction 

methods developed specifically for the extraction of DNA from plasma (Kneip et al., 

2011; Potter et al., 2014; Weiss et al., 2017).  However, other studies have identified 

large sized DNA fragments, potentially originating from necrotic cells (Gormally et 

al., 2007; Jahr et al., 2001; Wang et al., 2003).  It is possible, therefore, that the 

extraction technique used in this study failed to isolate the apparently more abundant 

small cfDNA fragments originating from apoptotic cells or from phagocytosis of 

hypoxia-induced necrotic tumour/tumour microenvironment cells by macrophages 

(Diehl et al., 2005), but retained cfDNA released from necrotic cells or actively 

secreted within exosomes (Kahlert et al., 2014; Thakur et al., 2014).  The two cases 

with high cfDNA concentrations and the small proportion of plasma samples in which 

DNA methylation was detected could quite conceivably contain high molecular 

weight DNA of such origin. 
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The ACTB cfDNA quantification assay performed well and reproducibly presented 

excellent analytical characteristics, enabling reliable DNA quantification as low as 

0.01 ng/µl (PCR reaction concentration) equivalent to a total yield of 1 ng amplifiable 

cfDNA.  The strong analytical performance of DNA methylation controls was 

promising.  The observation of amplification in all samples with 3 GE nominal 

methylated DNA MethPlex reaction input highlights the undoubted analytical 

sensitivity of the developed assays.  This suggests that a lack of positive droplets in 

clinical sample wells was genuinely indicative of methylation negative samples, either 

because of absence of methylation of target gene promoters, insufficient ctDNA in 

patient circulation or inadequate extraction of cfDNA.   

 

This part of the study had a number of weaknesses related to the nucleic acid isolation 

and the quality control process.  Assessment of cfDNA extraction methods should 

have been carried out using DNA of appropriate length, obtained through sonication 

or enzymatic digestion, or more appropriately, isolated nucleosome-associated DNA.  

Clinical plasma with known high cfDNA yield would be the most relevant material to 

use for this purpose but is likely to be required for other studies.  Secondly, the 

methylated pUC19 workflow control was 2686 bp in length; a control of shorter length 

would have been more relevant.  It was also added directly to plasma samples prior to 

lysis.  Degradation by DNases could account for the variability seen in ddPCR analysis 

of this control.  The methylated pUC19 vector should have been added post-lysis or 

introduced in a protected form, for example, encapsulated in a protein coat (Brown 

and Pasloske, 2001).  Assessment of methylated pUC19 recovery in a multiplex assay, 

along with ACTB, at the cfDNA quantification stage may also have been informative 

of the effective recovery in DNA extraction.  Methylated DNA controls were 
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introduced to the workflow at the MethPlex enrichment stage. Additional analytical 

methylation controls should have been included in the workflow at the DNA extraction 

stage.   

 

In conclusion, this chapter establishes that MethPlex enrichment methylation-specific 

ddPCR can detect methylated DNA in plasma samples, and this was more common in 

lung cancer cases than controls.  However, due to a number of experimental 

limitations, primarily the choice of DNA extraction methodology, the methylation 

detection frequency was lower than anticipated and the data acquired did not perform 

well in the classification of lung cancer and controls, and could not adequately 

discriminate disease, either as single markers or as a panel.  DNA methylation 

analytical controls were measured with reasonable precision, considering the 

exceptionally low reaction inputs, and were reliably detected.  It is expected that the 

DNA methylation detection assays assessed in this study will perform well in future 

study if a more appropriate extraction technique is used. 
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Chapter 7  
 

 

 

 

 

 

 

General discussion  
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7.1 Study justification 

The clinical need for the early detection of lung cancer is unequivocal.  Improved 

patient survival in the event of early detection has previously been demonstrated 

(McPhail et al., 2015).  Data generated by the randomized US National Lung Cancer 

Screening Trial (NLST) established that low-dose computed tomography (LDCT) 

screening can reduce lung cancer mortality by 20% (National Lung Screening Trial 

Research Team, 2011).  However, the increased survival comes at a cost of a high 

false-positive rate leading to patient complications caused by additional diagnostic 

procedures (Bach et al., 2012).  The assistance of non-invasive or minimally invasive 

lung cancer biomarkers could potentially improve the specificity of CT screening.  

Furthermore, biomarker detection in body fluids may detect disease earlier than it can 

be identified using imaging.  The present work in developing DNA methylation panels 

and assessing new technologies to facilitate the reliable detection of DNA methylation 

in plasma is therefore justified. 

 

7.2 Cancer Research UK Diagnostic Biomarker Roadmap 

As noted in chapter 4, a considerable number of academic cancer biomarker studies 

have been published yet only a small number of marker assays have been validated 

for clinical use.  Many academic studies do not involve separate discovery and 

validation phases, are frequently underpowered and regularly lack appropriate assay 

optimisation (Liloglou and Field, 2010; Liloglou et al., 2014; Sandoval et al., 2013b).  

Cancer Research UK provides funding for biomarker assay development, validation 

and qualification to projects that have evident potential for clinical implementation 

under the Biomarker Projects Awards scheme.  The strength of study design, including 



204 
 

statistical design and rationale, is one of the key Clinical Research Committee 

assessment criteria.  This funding stream is intended to support appropriate biomarker 

studies only and result in projects that do not suffer from the above listed limitations, 

and therefore have an increased likelihood of providing fit-for-purpose biomarker 

assays that can be transferred to routine clinical use.  A ‘Diagnostic Biomarker 

Roadmap’ is provided by CRUK as a supporting resource, describing a recommended 

model development process from initial biomarker discovery, assay development, 

retrospective comparison with current gold standard diagnostic practice and 

prospective clinical qualification (Figure 7.2-1).  The work contributing to this thesis 

was executed in accordance with these guidelines, with the bronchoalveolar lavage 

screening corresponding to the BIDD (Biomarkers and Imaging Discovery and 

Development) BM (Biomarker) Discovery – Stage 2 (“Study the relationship between 

BM and gold standard diagnostic practice using clinical samples collected 

retrospectively”).  Moderately invasive specimens such as BAL would not be fit-for-

purpose in potential screening or diagnostic programmes yet methylation biomarkers 

displayed excellent diagnostic performance.  This indicated the feasibility of lung 

cancer diagnosis using DNA methylation biomarkers in body fluids and the potential 

for utility of BAL methylation assays in assisting diagnosis.  The biomarker assay 

development process proceeded, therefore, with the development of ddPCR assays, 

corresponding to BIDD Assay Development - Stage 1 (“Development of an accurate 

and reproducible assay to measure BM”).  The screening of case-control plasma 

samples with MethPlex ddPCR assays was equivalent to BIDD BM Discovery – Stage 

2 in the CRUK scheme Figure 7.2-1. 
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Figure 7.2-1 Cancer Research UK Diagnostic Biomarkers Roadmap 
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7.3 Point-of-care testing 

The MethPlex ddPCR methodology that I have developed and described in this thesis 

displays high sensitivity in the detection of methylated DNA.  However, this technique 

is complicated, time-consuming, labour-intensive and requires extensive technical 

expertise.  Clinicians are better able to make timely and correct decisions regarding 

patient care when pertinent information is immediately available through point-of-care 

testing (POCT), potentially improving patient survival through early intervention 

(Louie et al., 2000).  The development of automated real-time PCR systems for clinical 

molecular diagnostic detection of common cancer hot-spot mutations is encouraging 

(Janku et al., 2015, 2016).  Furthermore, the extensive development of DNA 

methylation signature detection into integrated lab-on-a-chip devices may be desirable 

for routine clinical diagnosis (Kalofonou et al., 2012; Toumazou et al., 2013).  Use of 

such compact, inexpensive devices would enable rapid diagnosis by individuals with 

minimal training, reducing public health costs and lessening patient anxiety. 

 

According to the GLOBOCAN series of the International Agency for Research on 

Cancer 2012, c. 58% of all lung cancers occurred in developing countries (Ferlay et 

al., 2015; Wong et al., 2017).  Lung cancer incidence and mortality is increasing in 

several low- and middle- income countries due to increased tobacco usage 

(Sankaranarayanan et al., 2011; Torre et al., 2016).  The low cancer diagnosis rate in 

the African continent and presentation at advanced stage also leads to lower survival 

rate and increased mortality (Gaafar, 2017).  In addition to any desired attempt to halt 

the tobacco epidemic, there is therefore an urgent need for better and earlier lung 

cancer diagnosis in these developing countries.  Point-of-care tests have potential to 

address this demand in resource-limited settings where sophisticated instrumentation 
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may not be available.  Furthermore, since the electricity supply may not be reliable or 

even present in some environments, and patient loss to follow-up may be of concern, 

rapid diagnostic result acquisition with low-power or self-powered devices may also 

be imperative (Rogers-Broadway and Karteris, 2015). 

 

7.4 Future work 

7.4.1 Revised cfDNA extraction methodology 

The MethPlex ddPCR method developed and described in this thesis sensitively and 

specifically detected DNA methylation in technical analytical testing (Chapter 5), 

methylation positive controls run in parallel with clinical specimens (Chapter 6) and 

in a limited number of patient plasma samples (Chapter 6).  Low input positive 

controls tested in plasma screening runs indicated that MethPlex ddPCR consistently 

detected 3 GE of methylated target DNA.  It is therefore probable that methylated 

DNA was not present in cfDNA extracts where no signal was observed, either because 

the interrogated gene promoters were unmethylated or cfDNA extraction was 

inadequate.  Low cfDNA yields measured by ACTB cfDNA quantification assay 

(6.3.2) add support to the latter interpretation.  As indicated in Chapter 6, recent 

ctDNA studies (Bettegowda et al., 2014; Oxnard et al., 2014; Sacher et al., 2016) and 

plasma-based DNA methylation studies (Barault et al., 2015; Garrigou et al., 2016; 

Uehiro et al., 2016) used extraction methods presumed to specifically enrich for 

shorter DNA fragments present in the blood (Mouliere et al., 2011, 2013; Thierry et 

al., 2010, 2016).  Recovery of cfDNA from plasma specimens with known high 

cfDNA yield or plasma samples spiked with short, fragmented DNA using the 

QIAamp Circulating Nucleic Acid kit should be assessed.  Assuming satisfactory 
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DNA recovery, this kit should be used to extract cfDNA from clinical plasma 

specimens for a further MethPlex ddPCR retrospective case-control study. 

 

7.4.2 DNA methylation biomarker discovery in plasma 

The initial discovery phase(s) of potential DNA methylation biomarker identification 

prior to this study, and also in the previous Nikolaidis study (Nikolaidis et al., 2012), 

were implemented using lung cancer and normal lung tissue.  Analysis of singular, 

localised biopsy samples may not correctly reveal the patient tumour DNA 

methylation profile because of intra-tumour heterogeneity (Gerlinger et al., 2012; 

McGranahan and Swanton, 2017).   Liquid biopsy, by contrast, takes a blood-based 

ctDNA sample derived from diverse tumour regions with a profile likely 

representative of overall disease (De Mattos-Arruda et al., 2014; Jamal-Hanjani et al., 

2016).  Therefore, plasma could be a more informative test material when used directly 

during the initial discovery phase. 

 

The utility of liquid biopsy and ctDNA analysis by next-generation sequencing as an 

alternative to traditional tissue biopsy in metastatic disease has been demonstrated 

(Lebofsky et al., 2015; Page et al., 2017; Shaw et al., 2017).  High-throughput 

sequencing to identify multiple mutations in ctDNA of cancer patients and in 

longitudinally monitoring mutational profiles in high-burden disease has also been 

described (Forshew et al., 2012; Murtaza et al., 2013).  Both targeted and genome-

wide bisulphite sequencing approaches have recently been used to successfully map 

the tissue origin of plasma DNA through the identification of tissue-specific 

methylation patterns (Lehmann-Werman et al., 2016; Sun et al., 2015).  Therefore, 
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high-throughput bisulphite sequencing presents a viable alternative approach for 

potential biomarker discovery. 

 

Initial biomarker discovery prior to this study was also restricted to CpG islands within 

promoter regions of protein-encoding genes.  Given the emerging importance of 

miRNA (Bediaga et al., 2013; Seol et al., 2014; Sozzi et al., 2014)  and lncRNA (Ling 

et al., 2015; Schmitt and Chang, 2016) in cancer,  and the differential methylation of 

regulatory enhancer and super-enhancer regions observed in the comparison of human 

cancer and normal cells (Heyn et al., 2016; Vidal et al., 2017), the interrogation of the 

wider non-coding genome may also be important. 

 

Considering the above points, I propose that a future discovery phase should be 

implemented comprising whole-genome bisulphite sequencing of plasma samples.  

MethPlex enrichment and ddPCR assays targeting the most promising potential 

biomarkers should subsequently be developed, validated and used in patient plasma 

screening.  

 

7.4.3 Exosomes as a potential methylated DNA pool 

Exosomes are small (30 to 150 nm) extracellular vesicles (EVs) released by exocytosis 

and are of multivesicular endosomal origin (Kalluri, 2016; Reclusa et al., 2017), 

containing a diverse assortment of biomolecules including mRNA, lncRNA, miRNA, 

lipids and proteins, protected from degradation by a lipid bilayer (Reclusa et al., 2016; 

Vanni et al., 2017).  Exosomal miRNAs have demonstrated diagnostic and prognostic 

utility in lung cancer (Cazzoli et al., 2013; Jin et al., 2017; Liu et al., 2017a).  The 

presence of double-stranded DNA (dsDNA) in exosomes derived from cancer cell 
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lines and in pancreatic cancer patient serum has been described (Kahlert et al., 2014; 

Thakur et al., 2014).  There is also limited evidence indicating that the degree of 

exosomal DNA methylation is comparable to that observed in gDNA (Thakur et al., 

2014).  Therefore, isolated exosomes may provide an alternative source of tumour-

derived methylated DNA that should be investigated further and potentially screened 

by MethPlex ddPCR. 

 

7.5 Concluding remarks      

Screening of the expanded methylation DNA panel in bronchoalveolar lavage 

specimens was successful, improving on the diagnostic accuracy of the Nikolaidis 

study (Nikolaidis et al., 2012).  Although the newly identified markers were not 

selected in the optimal model, diagnostic algorithms including these novel biomarkers 

showed very strong performance characteristics.  In effect, the final choice of markers 

within the screened DNA methylation panel seemed unimportant as the combinations 

of three or more markers attained very similar sensitivity and specificity in the 

validation set.  The multiplexing of assays may have contributed to the improved 

discriminatory performance of DNA methylation markers, indicated by improved 

attributes for the GN model used in the previous study (Nikolaidis et al., 2012). 

 

BAL specimens are obtained during invasive bronchoscopy on suspicion of lung 

cancer.  The application of minimally invasive blood-based testing for lung cancer 

diagnosis and screening would be preferable.  However, a large proportion of patients 

with early stage cancer have been observed to have low abundance or undetectable 

levels of ctDNA (Bettegowda et al., 2014; Cohen et al., 2017; Wang et al., 2015).  

ddPCR has displayed highly precise quantification of nucleic acids (Pinheiro et al., 
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2012) and presented greater precision compared to qPCR (Hindson et al., 2013; Sedlak 

et al., 2014; Strain et al., 2013).  The next objective, therefore, was to develop and 

optimise ddPCR-based DNA methylation assays and associated workflows for 

utilisation with blood plasma samples, leveraging the potentially improved analytical 

performance of this platform.  Eight DNA methylation assays were developed and 

extensively optimised.  A robust cfDNA qPCR quantification assay was also 

established and revealed prohibitively low total DNA yields in patient plasma.  This 

lead to the development of a targeted methylation-specific pre-amplification strategy, 

MethPlex enrichment, which was also meticulously optimised and used in conjunction 

with ddPCR analysis. 

 

The next objective was to compare the newly developed ddPCR assays with legacy 

qMSP analysis of DNA methylation.  ddPCR was revealed to be more precise and 

more sensitive than qMSP, exhibiting limits of detection of approximately 3 GE 

methylated DNA input when used in combination with MethPlex enrichment.  ddPCR 

could also resolve twofold differences in methylated DNA input at moderately high 

(66ng) total DNA input and at low (10ng) total DNA inputs.  As part of the process of 

comprehensively assessing assay performance, a framework for evaluating assays 

before use in pre-clinical studies was also developed. 

 

The final objective was to screen the successfully developed MethPlex ddPCR assays 

in a retrospective lung cancer case-control plasma study.  Diagnostic accuracy of 

markers, individually and combined as marker panels, was inadequate.  This was 

probably as a result of very low cfDNA yields, potentially arising from diminished 

extraction of cfDNA of short fragment length (Underhill et al., 2016).  Nevertheless, 
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DNA methylation assays clearly and unambiguously detected DNA methylation more 

frequently in lung cancer cases than controls.  On a technical level, DNA methylation 

controls were reliably and consistently detected, even at 3 GE methylated DNA 

MethPlex reaction input.  Despite the fact that the objective of validating these markers 

in plasma was not met, the technical performance of ddPCR DNA methylation assays 

was highly promising.   

 

In conclusion, I have demonstrated that a three gene DNA methylation biomarker 

panel assessed by qMSP could assist in the diagnosis of lung cancer using 

bronchoalveolar lavage samples, in particular in cases occult to bronchoscopic 

diagnosis.  I have determined that MethPlex ddPCR is a suitable method for the 

analysis of low abundance methylated DNA and displays greater sensitivity, higher 

precision, lower bias and better resolution than legacy qMSP assays.  Diagnostic 

performance in minimally invasive plasma samples was severely limited by 

inadequate cfDNA yields.  It is expected that biomarker assays will demonstrate 

improved performance if a more suitable cfDNA extraction technique is used in the 

future.  



213 
 

Chapter 8  
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Blood plasma specimen SOP 

 

Standard Operating Procedure Title: 

 

SEPARATION OF WHOLE BLOOD INTO PLASMA AND LYMPHOCYTE 

SAMPLES 

 

SOP Number:    LLP.21.02    Effective Date:   

 

Version Number & Date:  V2 06/01/12    Review Date:  

  

Superseded Version Number & Date (if applicable): V1. 09.01.2009,   

 

Controlled Copy Number: 

 

BACKGROUND 

Blood is one type of biological specimen sample collected from Liverpool Lung Project (LLP) 

Hospital Cohort and Population Cohort participants at a number of clinics across Merseyside. 

At most, a total of 3 tubes of blood are collected from the participant and, once delivered to 

the Cancer Research Centre (CRC), individual blood samples are either frozen whole or 

processed within the laboratory to produce plasma and lymphocyte samples. 

 

PURPOSE 

To correctly separate whole blood in to plasma and lymphocyte samples. 

 

SCOPE  

 

1. WHO? 

This procedure applies to any Laboratory Staff Member that performs this assay for the LLP. 

 

2. WHEN? 

This procedure should be applied when LLP blood samples collected from Population Cohort 

or Hospital Cohort participants are ready for processing at CRC.  
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3. HOW? 

3.1. Reagents 

3.1.1. Lysis buffer. 

3.1.2. Haz Tab tablets – Haz Tab solution prepared as follows: Dissolve 1 tablet in 

approximately 2L of tap water. 

3.1.3. Virkon. 

3.1.4.  

3.2. Equipment 

3.2.1. 50ml Falcon Tubes. 

3.2.2. 150mm Disposable Glass Pasteur Pipettes. 

3.2.3. 3ml Disposable Plastic Pasteur Pipettes. 

3.2.4. 2ml Microtube Vials. 

3.2.5. 5ml Scintillation Vials. 

3.2.6. Vacuum Pump. 

3.2.7. Barcode Labels. 

3.2.8. Microfuge. 

3.2.9. Type II Flow Cabinet. 

3.2.10. Centrifuge. 

3.2.11. FTA classic cards. 

3.2.12. Multi-Barrier pouches. 

3.2.13. Desiccant tablets. 

 

3.3. Method  

Three tubes of blood is the amount collected from a Population Cohort participant attending 

a clinic for specimen collection. The following procedure is planned on the assumption of 

that being the number of blood samples available to work with. Adjustments are included 

for a total of 2 blood samples; if there is only 1 sample of whole blood it will be used for 

inoculation of the FTA card (step 3.3.4) and then stored in a -80oC freezer in Freezer Room 

S16 without further processing.  

To be carried out in the Type II Flow Cabinet in Laboratory F27 of CRC  

FOR EACH SET OF PARTICIPANT BLOOD SAMPLES: 

3.3.1. Each tube of blood is labelled by affixing a barcode label and also writing the relevant 

lab number on the side of the tube.  
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3.3.2. A 50ml Falcon tube is labelled by writing the relevant lab number on the lid and on 

the side of the tube and then placed in a rack. 

3.3.3. 3x5ml vials for plasma storage and 3x2ml vials for lymphocyte storage are labelled 

by affixing barcode labels and also by writing the relevant lab number on the vial 

caps, and then placed in a rack. 

3.3.4. Using a 3ml plastic Pasteur pipette and the required amount of one tube of blood, 4 

circles of an FTA classic card (labelled with participant’s name, D.O.B, barcode label 

and today’s date) are inoculated and left to dry overnight in an incubator at room 

temperature. At this and each subsequent step, when used, the Pasteur pipette is 

used once and then placed in virkon for 24hrs before disposal. 

3.3.5. Combined contents of the other 2 tubes of blood (or the remaining contents of each 

tube, if the total no. is only 2) are transferred to its labelled 50ml Falcon tube. The 

Falcon tube is then centrifuged for 10 minutes at 3000 rpm.  

3.3.6. The Falcon tube is carefully removed from the centrifuge and returned to the Flow 

Cabinet in the rack.  

3.3.7. Plasma (upper layer) is carefully transferred from the Falcon tube to the 3 pre-

labelled 5ml vials using a 3ml plastic Pasteur pipette (approximately 2.5ml plasma 

per vial) and caps are then attached. 

3.3.8. The contents of the Falcon tube is then topped up to 45ml with lysis buffer and gently 

mixed by inverting tube until sediments have dissolved. 

3.3.9. The Falcon tube is then centrifuged for a further 10 minutes at 3000rpm. 

3.3.10. The Falcon tube is carefully removed from the centrifuge and returned to the Flow 

Cabinet in rack. 

3.3.11. Using a disposable glass Pasteur pipette and vacuum pump, supernatant is aspirated 

and discarded in to a 5L flask containing Haz tab solution, leaving a cell pellet at the 

bottom of the tube. The glass pipette is then placed in virkon for 24hrs before 

discarding. 

3.3.12. The cell pellet is thoroughly resuspended in approximately 7.5ml of lysis buffer, using 

a 3ml plastic Pasteur pipette to gently mix.  

3.3.13. The cell suspension is aliquoted equally in to the 3 pre-labelled 2ml vials using a 3ml 

plastic Pasteur pipette, the labelled caps are attached and the vials are spun in the 

microfuge for 2 minutes at 12000rpm. 

3.3.14. The vials are removed from the microfuge and returned to the Flow Cabinet in the 

rack. Supernatant is poured off in to virkon, leaving the lymphocyte cell pellets at the 
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bottom of each vial, and caps are re-attached to the vials (the virkon solution is left 

for 24hrs before discarding). 

3.3.15. Lymphocyte containing and plasma containing vials are stored in a -80oC freezer in 

Storage Room S03, and any remaining tube of whole blood is stored in a -80oC freezer 

in Freezer Room S16.  

3.3.16. The following day the FTA card is placed with a desiccant tablet in a multi-barrier 

pouch, the pouch is then sealed and attached to the back of the Specimen Form, 

which is then stored in the box in Storage Room S03. 

 

ROLES AND RESPONSIBILITIES 

Laboratory Staff Member 

 Correct labelling of vials and Falcon tube. 

 Using the correct number of blood samples for the separation procedure, keeping 

one sample of whole blood for freezing if the total number is 3. 

 

OTHER RELATED PROCEDURES 

SOP LLP.19. ‘Unpacking of LLP Blood, Sputum, Buccal & Bronchial Lavage Specimens with 

Distribution of Paperwork for Entry of Specimen Details in to LIMS’ (Current Version) 
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Figure 8.1 Modified QuantaSoft ddPCR 1D output for annealing 

temperature optimisation of all target assays in duplex with pUC19 

control 

ddPCR fluorescence amplitude and positive/negative droplet identification for all 

methylated DNA targets.  Target positive (FAM) positive droplets are indicated in 

blue and negative droplets appear as dark grey.  Each segment between solid vertical 

black lines contains data points for >10, 000 individual ddPCR partitions.   

  



221 
 

 

  



222 
 

 

 

 



223 
 

 

 

Figure 8.2 Modified QuantaSoft ddPCR concentration output for 

annealing temperature optimisation of all target assays in duplex 

with pUC19 control 

QuantaSoft concentration output. Blue points correspond to methylated target DNA 

concentration, green points correspond to pUC19 concentration.  Error bars represent 

95% Poisson confidence interval.  
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RASSF1 ddPCR 

 
 

 
RASSF1 qMSP 
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WT1 ddPCR 

 
 
 

WT1 qMSP 
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Figure 8.3 High total DNA input unweighted and weighted 

regression diagnostics 

 Studentized residuals are plotted against model fitted values in the left-hand panels 

and are indicative of scedasticity (constancy of variance).  Distribution of residuals is 

represented by Q-Q plots in right-hand panels with points lying along the plotted line 

indicating a normal distribution.  Upper panels show diagnostics for unweighted 

linear regression, while lower panels display those for weighted least squares 

regression. 
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Figure 8.4 High total DNA input RASSF1 ddPCR and qMSP linear regression diagnostic plots 

 Studentized residuals are plotted against model fitted values in the left-hand panels and are indicative of scedasticity.  Distribution of residuals 

is represented by Q-Q plots in right-hand panels with points lying along the plotted line indicating a normal distribution.  Upper panels show 

diagnostics for modelled ranges > 20 GE, while lower panels display those for ranges > LOQ. 
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Figure 8.5 High total DNA input WT1 ddPCR and qMSP linear regression diagnostic plots 

 Studentized residuals are plotted against model fitted values in the left-hand panels and are indicative of scedasticity.  Distribution of residuals 

is represented by Q-Q plots in right-hand panels with points lying along the plotted line indicating a normal distribution.  Upper panels show 

diagnostics for modelled ranges > 20 GE, while lower panels display those for ranges > LOQ. 
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Figure 8.6 Representative histograms of bootstrap estimates for 

mixed model predictions at 640 GE, 320 GE, and 160 GE nominal 

methylated DNA input  

 

640 GE 

 

320 GE

 

 

 

 

 

 

 

 

160 GE 
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Figure 8.7 Low total DNA input bias assessment regression 

diagnostics 

 Studentized residuals are plotted against model fitted values in the left-hand panels 

and are indicative of scedasticity (constancy of variance).  Distribution of residuals is 

represented by Q-Q plots in right-hand panels with points lying along the plotted line 

indicating a normal distribution.   
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Figure 8.8 Histograms of bootstrap estimates for mixed model 

predictions for all experimental nominal methylated DNA inputs in 

the 6 – 96 GE range  
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Table 8.1 Statistical table for Dunnett’s multiple comparison test for high total DNA input RASSF1/WT1 

ddPCR/qMSP assays 

All comparison are to 66ng PBMC DNA baseline  

  ddPCR  qMSP 

Gene 

Comparison          

(Methylated DNA 

input) [GE] Estimate 

Standard 

error 

Dunnett 

t 

statistic 

Adjusted 

P value   Estimate 

Standard 

error 

Dunnett 

t 

statistic 

Adjusted 

P value 

RASSF1 5 - PBMC 0.119 0.071 1.672 0.537  0.007 0.002 3.278 0.008 

 10 - PBMC 0.206 0.060 3.407 0.005  0.012 0.005 2.415 0.119 

 20 - PBMC 0.367 0.141 2.599 0.071  0.018 0.003 6.447 9.1 x 10-10 

 40 - PBMC 0.710 0.147 4.825 1.1 x 10-5  0.058 0.022 2.687 0.056 

 80 - PBMC 1.686 0.232 7.274 2.8 x 10-12  0.105 0.017 6.005 1.5 x 10-8 

 160 - PBMC 3.508 0.549 6.390 1.3 x10-9  0.259 0.060 4.285 1.5 x 10-4 

 320 - PBMC 6.608 1.200 5.508 2.9 x 10-7  0.758 0.100 7.594 2.5 x 10-13 

 640 - PBMC 14.030 0.826 16.986 < 2 x 10-16  1.118 0.176 6.337 1.9 x 10-9 
           

WT1 5 - PBMC -0.009 0.109 -0.082 1.000  0.029 0.019 1.478 0.690 

 10 - PBMC 0.129 0.143 0.903 0.972  0.034 0.013 2.561 0.080 

 20 - PBMC 0.383 0.193 1.983 0.335  0.053 0.018 2.916 0.028 

 40 - PBMC 0.952 0.267 3.565 0.005  0.171 0.048 3.570 0.003 

 80 - PBMC 1.601 0.373 4.290 4.4 x 10-4  0.312 0.095 3.267 0.009 

 160 - PBMC 3.706 0.525 7.064 6.0 x10-9  0.474 0.079 6.002 1.5 x 10-8 

 320 - PBMC 7.639 0.740 10.328 2.2 x 10-14  1.111 0.225 4.939 6.3 x 10-6 

 640 - PBMC 13.894 1.044 13.304 < 2 x 10-16  1.306 0.351 3.718 0.002 
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Table 8.2 Table of precision and trueness estimates for high total DNA input methylated DNA measurement 

Asterisks indicate significant differences in repeatability variance (sr
2) at the 95% confidence level  

 
  ddPCR   qMSP 

 

 

   Repeatability  Intermediate 

precision 
   Repeatability  Intermediate 

precision 
 

 

Gene 

Nominal 

methylated 

DNA input 

(GE) 

Expected 

relative 

abundance 

Mean 

relative 

abundance 

SD 

(sr) 

CV 

(%) 
 SD 

(si(prep)) 

CV 

(%) 

Relative 

bias 

(%) 

 
Mean 

relative 

abundance 

SD 

(sr) 

CV 

(%) 
 SD 

(si(prep)) 

CV 

(%) 

Relative 

bias 

(%) 
  

RASSF1 640 1.00 1.00 0.13* 13.37  0.18 18.50 0.00  1.12 0.39* 34.89  0.57 50.81 11.80  

 320 0.50 0.48 0.29 60.71  0.29 60.71 -4.13  0.76 0.34 44.31  0.34 44.31 51.68  

 160 0.25 0.26 0.13 49.24  0.13 49.24 4.75  0.26 0.17 65.93  0.18 71.28 3.59  

 80 0.13 0.13 0.06 41.09  0.06 41.09 7.25  0.10 0.05 50.48  0.05 50.48 -16.34  

 40 0.06 0.07 0.03 51.13  0.03 51.13 5.00  0.06 0.07 120.90  0.07 120.90 -7.42  

                   

WT1 640 1.00 1.00 0.30* 30.10  0.30 30.10 0.00  1.34 1.19* 88.90  1.19 88.90 34.18  

 320 0.50 0.57 0.23* 40.18  0.23 40.18 13.72  1.15 0.68* 59.09  0.68 59.09 129.49  

 160 0.25 0.30 0.11* 36.06  0.11 36.06 18.93  0.51 0.24* 46.55  0.24 46.55 104.13  

 80 0.13 0.15 0.07* 42.93  0.07 42.93 21.75  0.35 0.25* 70.68  0.30 85.38 178.42  

 40 0.06 0.11 0.04* 34.89  0.04 37.00 71.89  0.21 0.13* 61.54  0.15 70.21 230.75  
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Table 8.3 Table of statistics resulting from Tukey’s honest significant difference test for ddPCR and qMSP analysis 

of methylated DNA in the input range 40 – 640 GE 

  ddPCR  qMSP 

Gene 

Comparison          

(Methylated DNA input) 

[GE] Estimate 95% CI 

Tukey's q 

statistic 

Adjusted P 

value   Estimate 95% CI 

Tukey's q 

statistic 

Adjusted P 

value 

RASSF1 80 - 40 1.08 (0.33, 1.83) 3.91 0.001  1.24 (0.05, 2.43) 2.84 0.036 

 160 - 40 2.00 (1.25, 2.75) 7.28 1.4 x 10-12  2.32 (1.13, 3.51) 5.32 8.0 x 10-7 

 320 - 40 2.83 (2.08, 3.58) 10.29 <2 x 10-16  4.13 (2.94, 5.32) 9.49 <2 x 10-16 

 640 - 40 4.04 (3.28, 4.79) 14.67 <2 x 10-16  4.64 (3.45, 5.83) 10.65 <2 x 10-16 

 160 - 80 0.93 (0.17, 1.68) 3.36 0.007  1.08 (-0.11, 2.27) 2.47 0.097 

 320 - 80 1.75 (1.00, 2.50) 6.37 7.3 x 10-10  2.89 (1.71, 4.08) 6.64 1.2 x 10-10 

 640 - 80 2.96 (2.21, 3.71) 10.76 <2 x 10-16  3.40 (2.21, 4.59) 7.80 3.2 x 10-14 

 320 - 160 0.83 (0.08, 1.58) 3.01 0.022  1.82 (0.63, 3.00) 4.17 2.8 x 10-4 

 640 - 160 2.03 (1.28, 2.78) 7.39 6.4 x 10-13  2.32 (1.13, 3.51) 5.33 1.3 x 10-6 

 640 - 320 1.21 (0.45, 1.96) 4.38 1.2 x 10-4  0.51 (-0.68, 1.69) 1.16 0.774 
           

WT1 80 - 40 0.46 (-0.32, 1.23) 1.61 0.493  0.71 (-0.49, 1.91) 1.62 0.486 

 160 - 40 1.51 (0.73, 2.29) 5.31 1.0 x 10-6  1.48 (0.28, 2.68) 3.36 0.007 

 320 - 40 2.40 (1.63, 3.18) 8.44 1.1 x 10-16  2.62 (1.42, 3.82) 5.95 1.3 x 10-8 

 640 - 40 3.27 (2.49, 4.05) 11.50 <2 x 10-16  2.58 (1.37, 3.78) 5.85 3.5 x 10-8 

 160 - 80 1.05 (0.28, 1.83) 3.71 0.002  0.77 (-0.43, 1.97) 1.74 0.407 

 320 - 80 1.94 (1.17, 2.72) 6.84 3.78 x 10-11  1.91 (0.70, 3.11) 4.33 1.5 x 10-4 

 640 - 80 2.81 (2.04, 3.59) 9.89 <2 x 10-16  1.86 (0.66, 3.06) 4.23 2.6 x 10-4 

 320 - 160 0.89 (0.12, 1.67) 3.13 0.015  1.14 (-0.06, 2.34) 2.58 0.073 

 640 - 160 1.76 (0.98, 2.54) 6.19 9.7 x 10-9  1.10 (-0.11, 2.30) 2.49 0.094 

 640 - 320 0.87 (0.09, 1.64) 3.06 0.019  -0.04 (-1.24, 1.16) -0.10 1 
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Table 8.4 Likelihood ratio test results of significance of MethPlex 

random effects and Preparation random effects in LOD95 modelling 

  MethPlex random effects  Preparation random effects 

Gene Method df χ2 P value  df χ2 P value 

RASSF1 ddPCR (0, 1) 3.41 0.032  (0, 1) 0 1 

 qMSP (0, 1) 14.21 8.2 x 10-5  (0, 1) 7.7 x 10-8 0.50 

         

WT1 ddPCR (0, 1) 12.05 2.5 x 10-4  (0, 1) 0 1 

 qMSP (0, 1) 26.40 1.4 x 10-7  (0, 1) 3.7 x 10-6 0.5 
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Table 8.5 Table of precision estimates for 10ng total DNA input methylated DNA MethPlex enrichment 

quantification 

Asterisks indicate significant differences in repeatability variance (sr
2) at the 95% confidence level  

   ddPCR  qMSP 

    PCR  MethPlex  Preparation   
PCR  MethPlex  Preparation 

Gene 

Nominal 

methylated 

DNA 

input(GE) 

Expected 

relative 

abundance 

Mean 

relative 

abundance 

SD 

(sr) 
CV%  

SD 

(si(MethPlex)) 
CV%  

SD 

(si(Prep)) 
CV%  

Mean 

relative 

abundance 

SD 

(sr) 
CV%  

SD 

(si(MethPlex)) 
CV%  

SD 

(si(Prep)) 
CV% 

RASSF1 96 1.00 1.00 0.23* 23.26  0.29 29.05  0.33 33.02  2.33 1.82 78.05  2.88 123.64  3.34 143.50 

 48 0.50 0.39 0.17 43.65  0.20 51.99  0.20 51.99  0.34 0.17 49.69  0.19 55.54  0.29 83.55 

 24 0.25 0.22 0.11 47.99  0.17 73.87  0.17 73.87  0.13 0.06* 46.03  0.24 186.48  0.25 188.76 

 12 0.13 0.12 0.06 46.31  0.09 75.06  0.09 75.06  0.07 0.08 123.27  0.12 183.64  0.13 197.51 

 6 0.06 0.05 0.02 38.12  0.03 49.53  0.03 59.22  0.01 0.01 90.26  0.01 98.51  0.02 171.32 

                      

WT1 96 1.00 1.00 0.33* 32.91  0.33 32.91  0.34 33.52  2.33 1.64 70.48  1.64 70.48  3.03 130.30 

 48 0.50 0.44 0.16* 36.00  0.22 49.01  0.22 49.22  0.37 0.26 69.76  0.43 114.89  0.45 119.75 

 24 0.25 0.26 0.09* 34.69  0.18 68.68  0.18 68.68  0.21 0.23 108.72  0.25 122.05  0.27 128.69 

 12 0.13 0.12 0.05 40.48  0.08 62.48  0.08 62.48  0.03 0.03* 82.97  0.07 193.22  0.07 196.82 

 6 0.06 0.07 0.02* 30.58  0.02 35.26  0.02 35.26  0.05 0.04 77.40  0.11 214.70  0.12 224.08 
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Table 8.6 MethPlex low total DNA input methylated DNA analysis variance component table 

Variance components were calculated by nested ANOVA using the VCA R package (Schuetzenmeister, 2017).  Equivalent repeatability (ICC) 

calculations of hierarchical decomposition of variances using a mixed model approach in the rptR package (Stoffel et al., 2017) were similar. 

 

Gene Method 
Variance 

component 

Estimated contribution to total variance (%) 

Nominal methylated DNA input (GE) 

         

96  48  24  12  6 

            

RASSF1 ddPCR Preparation 20.3  0  0  0  37.1 

  MethPlex 20.2  19.2  41.5  72.3  27.5 

  PCR 59.4  80.8  58.5  27.7  35.4 

 qMSP Preparation 82.8  70.7  29.3  36.4  77.2 

  MethPlex 10.2  16.9  51.7  47.7  16.9 

  PCR 7  12.4  19  16  5.9 

            

WT1 ddPCR Preparation 0  0  0  5.2  0 

  MethPlex 1.5  30.9  78.2  59.0  26.3 

  PCR 98.5  69.1  21.8  35.8  73.7 

 qMSP Preparation 73.8  4.3  30.2  0  0.2 

  MethPlex 0  69.5  47.6  93.9  98.6 

  PCR 26.2  26.3  22.2  6.1  1.2 
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Table 8.7 Equivalence of preparation as a fixed effect and random effect in the 66 ng total DNA ddPCR input case 

  
Preparation 

variance 
 Residual variance  Model intercept  

Intercept standard 

error 
 

Preparation effect P 

value 

Gene Method Random Fixed  Random Fixed  Random Fixed  Random Fixed  Random1 Fixed2 

RASSF1 ddPCR 0.000 0.004  0.323 0.336  -2.069 -2.069  0.085 0.086  1 0.822 
                

 qMSP 0.017 0.074  0.856 0.856  -2.173 -2.173  0.157 0.138  0.5 0.283 

                

WT1 ddPCR 0.000 0.03  0.355 0.370  -1.797 -1.797  0.089 0.091  1 0.871 
                

 qMSP 0.000 0.048  0.874 0.881  -1.098 -1.098  0.139 0.140  1 0.447 
                

1 Likelihood Ratio Test, corrected P value (Self and Liang, 1987; Stram and Lee, 1994) 
2 F-test 
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Table 8.8 Equivalence of preparation as a fixed effect and random effect in the 10 ng total DNA MethPlex 

enrichment input case 

  
Preparation 

variance 
 Residual variance  Model intercept  

Intercept standard 

error 
 

Preparation effect P 

value 

Gene Method Random Fixed  Random Fixed  Random Fixed  Random Fixed  Random1 Fixed2 

RASSF1 ddPCR 0.000 0.070  0.397 0.397  -2.377 -2.377  0.134 0.157  1 0.457 
                

 qMSP 3.159 3.418  0.990 0.990  -3.790 -3.790  0.861 0.253  0.002 0.002 

                

WT1 ddPCR 0.000 0.061  0.428 0.428  -2.196 -2.196  0.142 0.126  1 0.472 
                

 qMSP 1.711 1.852  2.712 2.712  -3.850 -3.850  0.691 0.317  0.007 0.012 
                

1 Likelihood Ratio Test, corrected P value (Self and Liang, 1987; Stram and Lee, 1994) 
2 Kenward-Roger F-test 
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