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Abstract

We consider the integrability problem of an exponential process with un-
bounded coefficients. The integrability is established under weaker conditions
of Kazamaki type, which complements the results of Yong obtained under a
Novikov type condition. As applications, we consider the solvability of lin-
ear BSDEs and market completeness, the solvability of a Riccati BSDE and
optimal investment, all in the setting of unbounded coefficients.
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1. Introduction

Let (Ω,F , (Ft, t ≥ 0),P) be a given complete probability space on which
a d-dimensional standard Brownian motion (W (t), t ≥ 0) is defined. We
assume that Ft is the augmentation of σ{W (s) : 0 ≤ s ≤ t} by all the P-null
sets of F . The exponential supermartingale S(·) is defined as:

S(t) := e−
1
2

∫ t
0 |θ(s)|

2ds−
∫ t
0 θ
′(s)dW (s), t ∈ [0, T ],

where θ(·) is some suitable Ft-adapted process. As its name implies, S(·) sat-
isfies the following inequality (see, for example, Karatzas and Shreve (1988)):

sup
t∈[0,T ]

E[S(t)] ≤ 1. (1.1)
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In Yong (2006)1, the following generalisation of S(·) is considered:

M(t) := M(t ; r(·), θ(·)) := e−
∫ t
0 [r(s)+

1
2
|θ(s)|2]ds−

∫ t
0 θ(s)

′dW (s), t ∈ [0, T ], (1.2)

for some suitable Ft-adapted process r(·), and named the exponential pro-
cess. Yong’s main concern was with the integrability problem of this process,
i.e. the problem of finding the range of values of q > 0 under which these
expectations are finite:

sup
t∈[0,T ]

E [M(t ; r(·), θ(·))q] , (1.3)

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))q
]
, (1.4)

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))−q
]
. (1.5)

The motivation was the solvability of linear backward stochastic differential
equations (BSDEs) and market completeness with unbounded coefficients.
Several estimates of (1.3), (1.4), and (1.5) were obtained under different
assumptions on r(·). The assumption on θ(·) was the following:

Gβ := E
[
e
β
2

∫ T
0 |θ(s)|

2ds
]
<∞, (1.6)

for some β > 0, which is a Novikov type condition.

In this paper, we also consider the integrability problem of M(·) through
the finiteness of (1.3), (1.4), and (1.5). Our assumptions on r(·) are mostly
the same as those of Yong. However, instead of condition (1.6), we assume
that θ(·) satisfies the following Kazamaki type condition:

H±β := sup
t∈[0,T ]

E
[
e±

β
2

∫ t
0 θ
′(s)dW (s)

]
<∞. (1.7)

1Throughout the paper, by Yong (2006) we mean the paper: J. Yong, Completeness
of security markets and solvability of linear backward stochastic differential equations, J.
Math. Analy. Appl., 319 (2006), 333-356.
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The Kazamaki condition is weaker than the Novikov condition in the sense
that (see the Remark in Kazamaki (1978)):

Gβ <∞ ⇒ H±
√
β <∞. (1.8)

It is to be expected that if we work under weaker conditions, then we
should obtain weaker integrability. This is indeed the case for our first es-
timate of (1.3) as given by Theorem 1 below. However, for all our other
estimates, we obtain the same integrability as Yong while making the weaker
assumption (1.7). These are unexpected conclusions, and complement well
those of Yong.

As already mentioned, the main motivation of Yong in considering the in-
tegrability problem was the solvability of linear BSDEs. These are equations
of the form:

dY (t) = [r(t)Y (t) + θ′(t)Z(t)]dt+ Z ′(t)dW (t), t ∈ [0, T ],

Y (T ) = ξ, a.s.,
(1.9)

where ξ is a given FT -measurable random variable. The problem of solv-
ability for (1.9) is the problem of existence of a solution pair (Y (·), Z(·)) of
adapted processes such that (1.9) holds. Linear BSDEs were introduced by
Bismut (1976), whereas the nonlinear BSDEs are introduced by Pardaoux
& Peng (1990). The BSDEs are studied extensively since then and have
found wide applications in areas such as mathematical finance, stochastic
control, and stochastic controllability; see, for example, Lü et al. (2012),
Lü & Zhang (2014), Tang & Zhang (2004), Tang & Zhang (2009), Gashi
& Pantelous (2013), Gashi & Pantelous (2015), Gashi (2015), Karoui et al.
(1997), Ma & Yong (1999), Mao (2011), Peng (1994), Wang (2013), Yong
& Zhou (1999), and the references therein. An assumption in virtually all
of the literature on BSDEs is that the coefficients of the equation are bounded.

The BSDEs with possibly unbounded coefficients are important in mathe-
matical finance. When the interest rate is modeled as a solution to a stochas-
tic differential equation (see, for example, Bingham & Kiesel (2004), Date
& Gashi (2013), Yong (2006)), which in general is an unbounded process,
gives rise to various problems in a market with unbounded coefficients. One
such a problem is the market completeness (see, for example, Bingham &
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Kiesel (2004)). This has motivated Delbaen & Tang (2010), Gashi & Li,
Karoui & Huang (1997) and Yong (2006), to consider the problem of solv-
ability of BSDEs with unbounded coefficients. In Gashi & Li and Karoui &
Huang (1997), general BSDEs are considered, and solution pairs are shown
to exist in certain weighted spaces. Different from these papers, Yong (2006)
considered linear BSDEs with unbounded coefficients and under different as-
sumptions on the terminal value ξ. His approach is based on establishing the
integrability of exponential processes and the reduction of the linear BSDE
to a more basic form. The solution pairs in this case belong to non-weighted
spaces.

In this paper, as the first application of our integrability results, we con-
sider the problem of existence of the solution pair (Y (·), Z(·)) for BSDE (1.9)
under weaker conditions on the unbounded coefficients as compared to Yong
(2006) (see Theorem 4.1 below). One motivation for this is that it almost
immediately solves two basic problems of mathematical finance: the mar-
ket completeness and the problem of pricing and hedging (see, for example,
Karatzas & Shreve (1998), Duffie (1992)). If a market is complete, then
any contingent claim (from a certain set) can be hedged, i.e. there exists
a self-financing portfolio that exactly replicates the value of the contingent
claim. This is equivalent to the solvability of (1.9). On the other hand, as
a by product of the solvability problem, we also solve the pricing and hedg-
ing problem since Y (0) is the price at time zero of the contingent claim ξ,
whereas the process Z(t) is the heading strategy.

Another basic problem of mathematical finance if that of optimal invest-
ment, i.e. of financial asset management. Here we have an investor with
wealth given by equation (1.9), but instead of the terminal value ξ being
specified, it is the initial value Y (0) that is specified to be equal to the in-
vestor’s initial capital Y0. Such an investor is interested to invest in a certain
optimal way. One popular criterion for optimal investment is the expected
utility of terminal wealth, i.e. the investor wishes to choose the trading
strategy Z(t) so that the cost function E[U(Y (T ))] is maximized for some
suitable utility function U . If the market coefficients are bounded, then this
problem is essentially solved in Pliska (1986), Cox & Huang (1989), Karatzas
et al.(1987) (see also Karatzas & Shreve (1998), Korn (1997), Duffie (1992),
for a textbook account). This problem has been studied expensively since
then (see, for example, Li, Chen and Liu (2016), Li, Rong, and Zhao (2016),
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Shen and Siu (2017), Stefano and Daniele (2016), Zhao and Rong (2017),
for some recent results on the asset management problem). Explicit solu-
tions are known only in special cases, and these include the mean-variance
(linear-quadratic utility) Lim & Zhou (2002), exponential and power utility
Ferland & Waiter (2008). The problem of optimal investment with unbounded
coefficients is known to a much lesser extent (see, for example, Bielecki &
Pliska (2004), Bieleki et al. (2004), Korn & Kraft (2001), Kraft (2005)). The
unboundedness of the coefficients is due to the modeling of coefficients by
stochastic differential equations, and the Markovian structure of the model
is exploited in finding the solution. The recent paper Shen (2015) considers
the mean-variance optimal investment problem in a market with unbounded
coefficients.

In this paper, as our second application, we consider the problem of op-
timal investment in a market with possibly unbounded coefficients. Using
our results on the integrability of the exponential process, as well as our re-
sults on the solvability of the linear BSDE (1.9), we first give conditions on
the existence of a solution pair for a Riccati BSDE (see Lemma 4.2 below),
which is a nonlinear equation. This is then used to solve in an explicit closed-
form the optimal investment problem for the power utility U(x) = xγ, where
γ ∈ (0, 1) (see Theorem 4.2 below). We remark that in Yong (2006) nei-
ther of these two applications are considered. Finally, let us emphasize that
an insufficient appreciation of the role of integrability of certain processes
when solving the asset management problem in a market with unbounded
coefficients has lead to several incomplete or even erroneous results (see, for
example, Kraft (2009) and the second of Yong’s 2006 papers2

The rest of the paper is organized as follows. The next subsection gives
the notation for various spaces. In section 2, we give our integrability results
and compare them with those of Yong, whereas the proofs follow in section
3. In section 4, which accounts for half of the paper, we give the applications
mentioned earlier.

2Here we mean the paper J. Yong, Remarks on some short rate term structure models,
J. Indu. Man. Opt., 2 (2006), 119-134.
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1.1. Notation for some spaces

Let E denote a finite dimensional Euclidian space with norm | · |.

• L0
FT (Ω;E) is the set of all FT -measurable E-valued random variables.

• LpFT (Ω;E) is the set of all random variables ξ ∈ L0
FT (Ω;E) which for

some p ∈ (0,∞) satisfy the condition. E|ξ|p <∞.

• L0
F(0, T ;E) is the set of all Ft-adapted processes ψ : [0, T ]× Ω→ E.

• LpF(Ω;Lq(0, T ;E)) is the set of all processes ψ(·) ∈ L0
F(0, T ;E) which

for some p, q ∈ (0,∞) satisfy the condition

E
[∫ T

0

|ψ(t)|qdt
]p/q

<∞.

• Lp(0, T ;E) := LpF(Ω;Lp(0, T ;E)), for some p ∈ (0,∞).

• L0
F(Ω;C([0, T ];E) is the set of all processes ψ(·) ∈ L0

F(0, T ;E) with
almost all paths continuous.

• LpF(Ω;C([0, T ];E) is the set of all processes ψ(·) ∈ L0
F(Ω;C([0, T ];E)

which for some p > 0 satisfy the condition

E

[
sup
t∈[0,T ]

|ψ(t)|p
]
<∞.

• LqF(0, T ;Lp(Ω;E)) is the set of all processes ψ(·) ∈ L0
F(0, T ;E) which

for some p, q ∈ (0,∞) satisfy the condition∫ T

0

(E|ψ(t)|p)q/p dt <∞.

• Lq+FT (Ω;E) :=
⋃
p∈(q,∞] L

p
FT (Ω;E) for some q > 0.

• Lq−FT (Ω;E) :=
⋂
p∈(0,q) L

p
FT (Ω;E) for some q > 0.

• Lp±F (Ω;Lq±(0, T ;E)) and Lp±F (Ω;C([0, T ];E)) are defined in a similar
way to the above.

6



2. Results

In this section we give our integrability results, i.e. we give sufficient
conditions under which the expectations (1.3), (1.4), and (1.5) are finite.
The motivation for considering these different expectations comes from our
applications (see §4 below). Our first two results (Theorem 2.1 and Theorem
2.2 below) consider the finiteness of (1.3). They differ on their assumptions
on the process r(·). In order to ensure that the process M(·) is well defined,
we make the following standing assumptions:

r(·) ∈ L1
F(Ω;L1(0, T ;R)), and θ(·) ∈ L1

F(Ω;L2(0, T ;Rd)).

Theorem 1. If for some α0 > 0, β > 1, we have

A−α0 := sup
t∈[0,T ]

E
[
e−α0

∫ t
0 r(s)ds

]
<∞, (2.1)

H−β = sup
t∈[0,T ]

E
[
e−

β
2

∫ t
0 θ
′(s)dW (s)

]
<∞, (2.2)

then
sup
t∈[0,T ]

E [M(t ; r(·), θ(·))p1 ] ≤ κ1, (2.3)

where p1 := α0β/(β + 2α0) and κ1 := (Aβ−α0
H2α0
−β )1/(β+2α0).

Theorem 2. Let (2.2) hold for some β > 1. If

inf
t∈[0,T ]

∫ t

0

r(s)ds ≥ −κ, a.s., (2.4)

for some κ ∈ R, then

sup
t∈[0,T ]

E [M(t ; r(·), θ(·))p2 ] ≤ κ2, (2.5)

where p2 := β2/(2β − 1) and κ2 := e
κβ2

2β−1H
2β−2
2β−1

−β .

Let us compare the above two results with Theorem 3.2 (ii)-(iii) of Yong
(2006), respectively. Our assumptions on r(·) are the same as those in Yong
(2006). But for θ(·), instead of assuming Gβ <∞ for β > 1 as in Yong (2006),
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we make the weaker assumption H−β < ∞. Now we compare the degree of
integrability, i.e. the coefficients p1 and p2 with those in Yong (2006), which
for convenience we denote as p̄1 and p̄2, respectively. Note that due to (1.8),
when comparing our results with Yong (2006), we should use

√
β instead of

β in our results, otherwise we obtain an erroneous comparison. Therefore,
our degree of integrability and that of Yong (2006) for the above two results
are:

p1 =
α0

√
β√

β + 2α0

, p̄1 =
α0

√
β√

β + 2α0 − (α0/
√
β)
, (2.6)

p2 =
β

2
√
β − 1

, p̄2 =
β

2
√
β − 1

. (2.7)

From (2.6), it is clear that p1 < p̄1, which is to be expected since we are
assuming less. Also note that as β → ∞ we have p1 = p̄1 = α0, i.e. asymp-
totically we have the same degree of integrability as in Yong (2006). However,
from (2.7) it is clear that we always have the same degree of integrability as
in Yong (2006), although we assume less, which is unexpected.

Our next three results (Theorems 2.3-2.5 below) consider the problem of
finiteness of expectation (1.4) for different ranges of the Kazamaki condition
and different assumptions on the process r(·).
Theorem 3. Let the following condition hold for some α0 > 0:

B−α0 := E

[
sup
t∈[0,T ]

e−α0

∫ t
0 r(s)ds

]
<∞. (2.8)

If (2.2) holds for some β > 1, then

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))p3
]
≤ κ3,

where p3 := α0β2

β2+2α0β−α0
, κ3 := c1B

β2

β2+2α0β−α0
−α0

H
2α0(β−1)

β2+2α0β−α0
−β with c1 :=

(
α0β2

α0β2−2β2−2α0β+α0

) α0β
2

β2+2α0β−α0 .

Theorem 4. Let (2.8) and (2.2) hold for some α0 > 0 and β ∈ (0, 1],

respectively. Then for any p4 ∈
(

α0β
2α0+β

, α0β
α0+β

)
, we have:

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))p4
]
≤ κ4,
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where κ4 := c2B
p4
α0
−α0

H
2α0β−2p4(α0+β)

α0β

−β with c2 :=
(

α2
0p

2
4

α2
0p

2
4−β(α0−p4)[(β+2α0)p4−α0β]

) α0p
2
4

β[(2α0+β)p4−α0β] .

Theorem 5. (a) If (2.2) and (2.4) hold for some β > 1 and κ ∈ R, respec-
tively, then

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))p5
]
≤ κ5,

where p5 := β2

2β−1 , κ5 := c3H
2β−2
2β−1

−β with c3 := e
κβ2

2β−1

[
β2

(β−1)2

] β2

2β−1
.

(b) If (2.2) and (2.4) hold for some β ∈ (0, 1] and κ ∈ R, respectively,
then for any p6 ∈

(
β
2
, β
)
, we have:

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))p6
]
≤ κ6,

where κ6 := c4H
2(β−p6)

β

−β with c4 := eκp6
[

p26
p26−β(2p6−β)

] p26
β(2p6−β) .

Let us now compare the above three results with Theorem 3.4 (i)–(iii)
of Yong (2006), respectively. Our assumptions on r(·) are the same as Yong
(2006), whereas for θ(·) we make the weaker assumption H−β < ∞ instead
of Gβ < ∞. It can be easily checked that our degree of integrability is the
same as that in Yong (2006), i.e. the parameters p3, p4, p5, and p6 are the
same with the corresponding ones of Yong (once we use

√
β instead of β due

to (1.8)), despite making weaker assumptions.

Our next two results (Theorem 2.6 and Theorem 2.7 below) consider
the finiteness of the expectation (1.5) for different ranges of the Kazamaki
condition. Note that different from the previous two results, here we consider
the integrability of the inverse of the exponential process, and our previous
results are used in the proofs (see §3 below).

Theorem 6. Let α > 0 and β0 > 1 be given. If

Cα := E

[
sup
t∈[0,T ]

eα
∫ t
0 [r(s)+|θ(s)|

2]ds

]
<∞, (2.9)

Hβ0 = sup
t∈[0,T ]

E
[
e
β0
2

∫ t
0 θ
′(s)dW (s)

]
<∞, (2.10)
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then

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))−p7
]
≤ κ7,

where p7 :=
αβ2

0

β2
0+2αβ0−α , κ7 := c5C

β20
β20+2αβ0−α
α H

2α(β0−1)

β20+2αβ0−α

β0
with c5 :=

(
αβ2

0

αβ2
0−2β2

0−2αβ0+α

) αβ20
β20+2αβ0−α .

Theorem 7. If (2.9) and (2.10) hold for some α > 0 and β0 ∈ (0, 1],
respectively, then

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))−p8
]
≤ κ8,

where p8 ∈
(

αβ0
2α+β0

, αβ0
α+β0

)
, and κ8 := c6C

p8
α
α H

2αβ0−2p8(α+β0)
αβ0

β0
with

c6 :=
(

α2p28
α2p28−β0(α−p8)[(β0+2α)p8−αβ0]

) αp28
β0[(2α+β0)p8−αβ0] .

Let us now compare these two results with Theorem 3.5 (i) and Theorem
3.5 (ii) of Yong (2006), respectively. In this case, both of our assumptions
on r(·) and θ(·) are different as compared to Yong (2006). Recall first that
Yong (2006) obtains his results under assumptions:

Bα0 < ∞, for some α0 > 0, (2.11)

Gβ < ∞, for some β > 1. (2.12)

However, (2.11) and (2.12) together imply Cα <∞ with α = α0β/(2α0 + β)
(see the end of page 347 of Yong (2006)). Therefore, for such an α our
assumptions are weaker than in Yong (2006). Let us now compare the degree
of integrability. Note that in this case our p7 becomes (with α0β/(2α0 + β)
instead of α and

√
β instead of β0):

p7 =
α0β

β + α0(2
√
β + 1)

,

which is the same as the degree of integrability in Theorem 3.5 (i) of Yong
(2006). Similarly, we can conclude that even p8 is the same as the corre-
sponding degree of integrability as in Theorem 3.5 (ii) of Yong (2006).

Finally, let us point out that Yong obtained some other integrability re-
sults which either did not make any assumptions on θ(·) or we could not
improve them further.
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3. Proofs

We first give two useful lemmas; their proofs are elementary, but we
include them for completeness.

Lemma 1. Let α0 > 0 and β > 1 be given. For any γ > 1 there exists a
solution pair (p(γ), q(γ)) to the following system of equations and inequalities:

α0 = pqγ
(γ−1)(q−1) ,

β = 2qγ
γ−1(

√
pγ

γ
+ p),

p > 0, q > 1.

(3.1)

Moreover, the global maximum of p(γ) is p∗ = α0β
β+2α0

.

Proof. The requirement of q > 1 implies (from the second equation in
(3.1)):

q =
β(γ − 1)

2(pγ +
√
pγ)

> 1⇒ β(γ − 1)

2
> pγ +

√
pγ.

If z :=
√
pγ, then z > 0 and

z2 + z − β(γ − 1)

2
< 0. (3.2)

If

z1,2 :=
−1±

√
1 + 2β(γ − 1)

2
,

then we can write (3.2) as (z − z1)(z − z2) < 0. For this inequality to hold,
it is necessary to have

z2 < z < z1 =
−1 +

√
1 + 2β(γ − 1)

2
,

i.e.

z =
√
pγ <

−1 +
√

1 + 2β(γ − 1)

2
. (3.3)
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Thus, in order to have q > 1, (3.3) should be satisfied. Substituting z into
(3.1), and knowing that z > 0, we have:

z =
−1 +

√
1 + 2β(γ − 1) + β2

α0
(γ − 1)

2 + β
α0

. (3.4)

Since 1 + 2β(γ − 1) + β2

α0
(γ − 1) > 0, we can write (3.3) as:

−1 +
√

1 + 2β(γ − 1) + β2

α0
(γ − 1)

2 + β
α0

<
−1 +

√
1 + 2β(γ − 1)

2
. (3.5)

Let Ã := 2β(γ − 1) > 0 and B̃ := β
2α0

+ 1 > 1. Then (3.5) becomes:

−1 +
√

1 + ÃB̃

2B̃
<
−1 +

√
1 + Ã

2

⇒
√

1 + ÃB̃ < − β

2α0

+

√
β2

4α2
0

+
β

α0

+ 1 + ÃB̃2.

The above inequality holds for any γ > 1, and so does q > 1.

Now let us consider the range of values of p. By (3.4), we have:

p =

[
−1 +

√
1 + 2β(γ − 1) + β2

α0
(γ − 1)

]2
(

2 + β
α0

)2
γ

. (3.6)

Therefore, for γ ∈ (1,∞), we have:

p(1) = lim
γ→1+

p(γ) =
−1 + 1

(2 + β
α0

)2
= 0.

p(∞) = lim
γ→∞

p(γ) =
α0β

β + 2α0

.

Setting dp
dγ

= 0, we have:

γ∗ =
−α0 + 2βα0 + β2

α0

. (3.7)
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Note that if β > 1, then γ∗ > 1 always holds. Hence,

p(γ∗) =
(−2α0 + 2βα0 + β2)2α0

(−α0 + 2βα0 + β2)(2α0 + β)2
<

(−2α0 + 2βα0 + β2)2α0

(−2α0 + 2βα0 + β2)(2α0 + β)2

=
(−2α0 + 2βα0 + β2)α0

(2α0 + β)2
=

β2

α0
+ 2β − 2(
β
α0

+ 2
)2

<

β2

α0
+ 2β(

β
α0

+ 2
)2 = p(∞).

Therefore, when γ →∞, p∗ := α0β
β+2α0

is the global maximum of p(γ). 2

Lemma 2. Let β > 1 be given. For any γ > 1 there exists a solution p(γ)
to the following system of an equation and inequality:

β
2

= γ
γ−1(

√
pγ

γ
+ p),

p > 0.

(3.8)

Moreover, p∗ := p(2β − 1) = β2

2β−1 is the global maximum of p(γ).

Proof. From system (3.8) we have

p1,2 =
β(γ − 1) + 1±

√
2β(γ − 1) + 1

2γ
(3.9)

Therefore for γ ∈ (1,∞), we have

p1(1) = lim
γ→1+

p1(γ) =
1 + 1

2
= 1.

p1(∞) = lim
γ→∞

p1(γ) =
β

2
.

p2(1) = lim
γ→1+

p2(γ) =
1− 1

2
= 0.
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p2(∞) = lim
γ→∞

p2(γ) =
β

2
.

Setting dp1
dγ

= 0, we have γ∗ = 2β − 1. So if β > 1, then

p1(γ
∗) =

β2

2β − 1
.

Hence we have p1(γ
∗) > p1(∞) = β2

2β
. Similarly, we obtain p2(γ

∗) = (β−1)2
2β−1 <

p1(γ
∗). 2

Now we present the proofs of previous theorems.

Proof of Theorem 1. Let p1 > 0, q > 1 and γ > 1. By the Hölder’s
inequality and (1.1), we obtain

E[M(t ; r(·), θ(·))p1 ]

=E
[
e−p1

∫ t
0 [r(s)+ 1

2
θ2(s)]ds−p1

∫ t
0 θ
′(s)dW (s)

]
=E

[
e−p1

∫ t
0 r(s)ds−(

√
p1γ

γ
+p1)

∫ t
0 θ
′(s)dW (s) · e

1
γ

∫ t
0

1
2
(
√
p1γθ(s))2ds− 1

γ

∫ t
0

√
p1γ(−θ′(s))dW (s)

]
=E

[
e−p1

∫ t
0 r(s)ds−(

√
p1γ

γ
+p1)

∫ t
0 θ
′(s)dW (s) ·M(t ; 0,−√p1γθ(·))

1
γ

]
≤
{
E
[
e−

p1γ
γ−1

∫ t
0 r(s)ds−

γ
γ−1

(
√
p1γ

γ
+p1)

∫ t
0 θ
′(s)dW (s)

]} γ−1
γ
{
E
[
M(t ; 0,−√p1γθ(·))

1
γ
·γ
]} 1

γ

≤
{
E
[
e−

p1γ
γ−1

q
q−1

∫ t
0 r(s)ds

]} (q−1)(γ−1)
qγ

{
E
[
e−

qγ
γ−1

(
√
p1γ

γ
+p1)

∫ t
0 θ
′(s)dW (s)

]} γ−1
qγ

=
{
E
[
e−α0

∫ t
0 r(s)ds

]} (q−1)(γ−1)
qγ ·

{
E
[
e−

β
2

∫ t
0 θ
′(s)dW (s)

]} γ−1
qγ
,

where α0 = p1qγ
(γ−1)(q−1) and β = 2qγ

γ−1(
√
p1γ

γ
+ p1). Therefore by Lemma 1, when

γ → ∞, p1 = α0β
β+2α0

is the global maximum of p1(γ). Furthermore we have
(q−1)(γ−1)

qγ
= β

β+2α0
and γ−1

qγ
= 2α0

β+2α0
. 2

Proof of Theorem 2. From Theorem 1 and (2.4), we obtain

E[M(t ; r(·), θ(·))p2 ] ≤
{
E
[
e−

p2γ
γ−1

∫ t
0 r(s)ds−

γ
γ−1

(
√
p2γ

γ
+p2)

∫ t
0 θ
′(s)dW (s)

]} γ−1
γ

≤ eκp2
{
E
[
e−

γ
γ−1

(
√
p2γ

γ
+p2)

∫ t
0 θ
′(s)dW (s)

]} γ−1
γ

.
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By Lemma 2, we know when γ = 2β − 1, p2 = β2

2β−1 is the global maximum

of p(γ) and thus (2.5) follows. 2

Proof of Theorem 3. Note that M(t ; 0, θ(·)) is a martingale when (2.2)
holds for β > 1. By the Hölder’s inequality and the Doob’s martingale
inequality, we obtain

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))p3
]

=E

[
sup
t∈[0,T ]

M(t ; 0, θ(·))p3 · e−p3
∫ t
0 r(s)ds

]

≤

{
E

[
sup
t∈[0,T ]

M(t ; 0, θ(·))
p3α0
α0−p3

]}α0−p3
α0

{
E

[
sup
t∈[0,T ]

e−α0

∫ t
0 r(s)ds

]} p3
α0

≤

(
p3α0

α0−p3
p3α0

α0−p3 − 1

) p3α0
α0−p3

·α0−p3
α0 {

E
[
M(T ; 0, θ(·))

p3α0
α0−p3

]}α0−p3
α0

·

{
E

[
sup
t∈[0,T ]

e−α0

∫ t
0 r(s)ds

]} p3
α0

From (2.5), when r(·) = 0, we obtain

sup
t∈[0,T ]

E
[
M(t ; 0, θ(·))

β2

2β−1

]
≤ sup

t∈[0,T ]

{
E
[
e−

β
2

∫ t
0 θ
′(s)dW (s)

]} 2β−2
2β−1

. (3.10)

Then

p3α0

α0 − p3
=

β2

2β − 1
=⇒ p3 =

α0β
2

β2 + 2α0β − α0

and
p3
α0

=
β2

β2 + 2α0β − α0

.

and
2β − 2

2β − 1
· α0 − p3

α0

=
2β − 2

2β − 1
· (2β − 1)p3

β2
=

2α0(β − 1)

β2 + 2α0β − α0

.

2

Proof of Theorem 4. Let us denote β′ = β
p4γ

> 1. By (3.10), we have

α0

γ(α0 − p4)
=

β′2

2β′ − 1
=⇒ γ =

β[(2α0 + β)p4 − α0β]

α0p24
> 0.
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So it is necessary to have (2α0 + β)p4 − α0β > 0, i.e. p4 >
α0β

2α0+β
. On the

other hand, again by (3.10), we have

2β′ − 2

2β′ − 1
· α0 − p4

α0

=
2α0β − 2p4(α0 + β)

α0 + β
> 0, =⇒ p4 <

α0β

α0 + β
.

Hence we have p4 ∈ ( α0β
2α0+β

, α0β
α0+β

) and

0 < p4γ =
β[(2α0 + β)p4 − α0β]

α0p4
< β ≤ 1. (3.11)

Note that

sup
t∈[0,T ]

E
[
e−

β′
2

∫ t
0 p4γθ

′(s)dW (s)
]

= sup
t∈[0,T ]

E
[
e−

β
2

∫ t
0 θ
′(s)dW (s)

]
<∞.

By Kazamaki (1978), we know M(t ; 0, p4γθ(·)) is a martingale if β′ > 1. By
(3.10) and (3.11), the Hölder’s inequality and the Doob’s martingale inequal-
ity, we obtain

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))p4
]

=E

[
sup
t∈[0,T ]

(
e−

∫ t
0

1
2
p24γ

2|θ(s)|2ds
) 1
p4γ

1
γ · e−p4

∫ t
0 r(s)ds ·

(
e−

∫ t
0 p4γθ

′(s)dW (s)
) 1
γ

]

≤E

[
sup
t∈[0,T ]

(
e−

∫ t
0

1
2
p24γ

2|θ(s)|2ds
) 1
γ · e−p4

∫ t
0 r(s)ds ·

(
e−

∫ t
0 p4γθ

′(s)dW (s)
) 1
γ

]

=E

[
sup
t∈[0,T ]

M(t ; 0, p4γθ(·))
1
γ · e−p4

∫ t
0 r(s)ds

]

≤

{
E

[
sup
t∈[0,T ]

M(t ; 0, p4γθ(·))
α0

γ(α0−p4)

]}α0−p4
α0

{
E

[
sup
t∈[0,T ]

e−α0

∫ t
0 r(s)ds

]} p4
α0

≤

[
α0

γ(α0−p4)
α0

γ(α0−p4) − 1

] α0
γ(α0−p4)

·α0−p4
α0 {

E
[
M(T ; 0, p4γθ(·))

α0
γ(α0−p4)

]}α0−p4
α0

{
E

[
sup
t∈[0,T ]

e−α0

∫ t
0 r(s)ds

]} p4
α0
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≤ c2

(
E

[
sup
t∈[0,T ]

e−α0

∫ t
0 r(s)ds

]) p4
α0

(
sup
t∈[0,T ]

E
[
e−

β′
2

∫ t
0 p4γθ

′(s)dW (s)
]) 2α0β−2p4(α0+β)

α0β

= c2

(
E

[
sup
t∈[0,T ]

e−α0

∫ t
0 r(s)ds

]) p4
α0

(
sup
t∈[0,T ]

E
[
e−

β
2

∫ t
0 θ
′(s)dW (s)

]) 2α0β−2p4(α0+β)
α0β

.

2

Proof of Theorem 5. (a) Note that M(t ; 0, θ(·)) is a martingale if β > 1.
By (2.5) and (3.10) and the Doob’s martingale inequality, we obtain

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))p5
]

=E

[
sup
t∈[0,T ]

M(t ; 0, θ(·))p5 · e−p5
∫ t
0 r(s)ds

]

≤ eκp5 E

[
sup
t∈[0,T ]

M(t ; 0, θ(·))p5
]

≤ eκp5
(

p5
p5 − 1

)p5
E[M(T ; 0, θ(·))p5 ]

≤ e
κβ2

2β−1

[
β2

(β − 1)2

] β2

2β−1 {
E
[
e−

β
2

∫ t
0 θ
′(s)dW (s)

]} 2β−2
2β−1

.

(b) Let us denote β′ = β
pγ
> 1. By (3.10), we have

1

γ
=

β′2

2β′ − 1
=⇒ γ =

β(2p6 − β)

p26
> 0.

So it is necessary to have 2p6− β > 0, i.e. p6 >
β
2
. On the other hand, again

by (3.10), we have

2β′ − 2

2β′ − 1
=

2(β − p6)
β

> 0, =⇒ p6 < β.

Hence we have p6 ∈
(
β
2
, β
)

and

0 < γ =
β(2p6 − β)

p26
< 1.
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So

0 < p6γ =
β(2p6 − β)

p6
< β ≤ 1.

Again M(t ; 0, p6γθ(·)) is a martingale if β′ > 1. By the Doob’s martingale
inequality, we have

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))p6
]

=E

[
sup
t∈[0,T ]

M(t ; 0, p6γθ(·))p6 · e−p6
∫ t
0 r(s)ds

]

≤ eκp6 E

[
sup
t∈[0,T ]

M(t ; 0, pγθ(·))p6
]

≤ eκp6
(

1
γ

1
γ
− 1

) 1
γ

E
[
M(T ; 0, p6γθ(·))

1
γ

]

≤eκp6
[

p26
p26 − β(2p6 − β)

] p26
β(2p6−β) {

E
[
e−

β
2

∫ t
0 θ
′(s)dW (s)

]} 2(β−p6)
β

.

2

Proof of Theorem 6. By Theorem 3, when β0 > 1 we have

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))−p7
]

=E

[
sup
t∈[0,T ]

M(t ;−r(·)− |θ(·)|2,−θ(·))p7
]

≤ c5

(
E

[
sup
t∈[0,T ]

eα
∫ t
0 [r(s)+|θ(s)|

2]ds

]) β20
β20+2αβ0−α

(
sup
t∈[0,T ]

E
[
e
β0
2

∫ t
0 θ
′(s)dW (s)

]) 2α(β0−1)

β20+2αβ0−α

,

where c5 =
(

αβ2
0

αβ2
0−2β2

0−2αβ0+α

) αβ20
β20+2αβ0−α . 2
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Proof of Theorem 7. By Theorem 4, for any p8 ∈
(

αβ0
2α+β0

, αβ0
α+β0

)
when

β0 ∈ (0, 1] we have

E

[
sup
t∈[0,T ]

M(t ; r(·), θ(·))−p8
]

=E

[
sup
t∈[0,T ]

M(t ;−r(·)− |θ(·)|2,−θ(·))p8
]

≤ c6

(
E

[
sup
t∈[0,T ]

eα
∫ t
0 [r(s)+|θ(s)|

2]ds

]) p8
α
(

sup
t∈[0,T ]

E
[
e
β0
2

∫ t
0 θ
′(s)dW (s)

]) 2αβ0−2p8(α+β0)
αβ0

,

where c6 =
(

α2p28
α2p28−β0(α−p8)[(β0+2α)p8−αβ0]

) αp28
β0[(2α+β0)p8−αβ0] . 2

4. Applications

We give the application of some of our results to the solvability of linear
and Riccati BSDEs with unbounded coefficients, which are then used to
solve the problems of market completeness and optimal investment. The
applications to linear BSDE and market completeness are similar to those
of Yong (2006) who considers these problems under the Novikov condition,
whereas the applications to Riccati BSDE and optimal investment are new.

4.1. Linear BSDE and market completeness

In this section, our aim is to use our integrability results and the approach
of Yong (2006) to show the solvability of (1.9), which we repeat here for
convenience:

dY (t) = [r(t)Y (t) + θ′(t)Z(t)]dt+ Z ′(t)dW (t), t ∈ [0, T ],

Y (T ) = ξ, a.s.,
(4.1)

As already mentioned in §1, Yong’s approach is to reduce (4.1) into a
more basic form as follows. The differential of M(·)Y (·) is:

d[M(t)Y (t)] = M(t)[Z(t)− Y (t)θ(t)]′dW (t), t ∈ [0, T ].
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If we define 
Ỹ (t) := M(t)Y (t), t ∈ [0, T ],

Z̃(t) := M(t)[Z(t)− Y (t)θ(t)],

(4.2)

then 
dỸ (t) = Z̃ ′(t)dW (t), t ∈ [0, T ],

Ỹ (T ) = ξ̃ := M(T )ξ.

(4.3)

Note that (4.3) admits a unique adapted solution (Ỹ (·), Z̃(·)) if ξ̃ has suffi-
cient integrability. In this case, the solution pair of (4.1) is:

Y (t) = M(t)−1Ỹ (t), t ∈ [0, T ],

Z(t) = M(t)−1[Z̃(t) + Ỹ (t)θ(t)].

(4.4)

Theorem 8. Suppose that (2.1), (2.2), (2.9) and (2.10) hold with positive
constants α0, α, β and β0 satisfying:

α0 >
αββ2

0

αββ2
0+αβ−2αββ0−2αβ2

0−ββ2
0
,

α >
β2
0

(β0−1)2 ,

β0 > 1, β > 2.

(4.5)

and θ(·) ∈ L
α0αββ

2
0

α0ββ
2
0+2αα0ββ0−α0αβ

F (Ω;L2([0, T ];Rd). Then for any ξ ∈ Lp+FT (Ω;R)
with

p =
α0αββ

2
0

α0αββ2
0 + α0αβ − α0ββ2

0 − 2α0αββ0 − 2α0αβ2
0 − αββ2

0

> 1, (4.6)

the BSDE (4.1) admits a unique solution pair (Y (·), Z(·)) such that:

Y (·) ∈ L1+
F (Ω;C([0, T ];R)), Z(·) ∈ L1+

F (Ω;L2([0, T ];Rd)).
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Proof. By Theorem 1, we know that if

α0 >
β

β − 2
, (4.7)

and β > 2, then
M(·) ∈ Lp1F (Ω;C([0, T ];R)), (4.8)

where

p1 =
α0β

2α0 + β
> 1. (4.9)

By Hölder inequality, for any ξ ∈ Lp2FT (Ω), we have

ξ̃ = M(T )ξ ∈ Lp3FT (Ω;R),

where

p3 =
p1p2
p1 + p2

=
α0βp2

α0β + (2α0 + β)p2
. (4.10)

Suppose p3 > 1, β > 2 and (4.7), then we have

p2 >
α0β

α0β − 2α0 − β
> 1. (4.11)

By Theorem 6, if

α >
β2
0

(β0 − 1)2
, (4.12)

and β0 > 1, we have

M(·)−1 ∈ Lp4F (Ω;C([0, T ];R)), (4.13)

where

p4 =
αβ2

0

β2
0 + 2αβ0 − α

> 1.

By BSDE (4.3), Theorem 1, Theorem 6, the Hölder’s inequality and the
Doob’s martingale inequality with p1, p2, p3, p4, q1, q2 > 1, we obtain
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E

[
sup
t∈[0,T ]

|Y (t)|p5
]

= E

[
sup
t∈[0,T ]

∣∣∣M(t)−1Ỹ (t)
∣∣∣p5]

≤

{
E

[
sup
t∈[0,T ]

|M(t)|−q1·p5
]} 1

q1

·

{
E

[
sup
t∈[0,T ]

∣∣∣Ỹ (t)
∣∣∣ q1
q1−1

p5

]} q1−1
q1

≤

{
E

[
sup
t∈[0,T ]

|M(t)|−p4
]} p5

p4

·

{
E

[
sup
t∈[0,T ]

∣∣∣Ỹ (t)
∣∣∣p3]}

p5
p3

≤ Cp3,p5

{
E

[
sup
t∈[0,T ]

|M(t)|−p4
]} p5

p4

· {E |M(T )|q2·p3}
1
q2

p5
p3 ·
{
E |ξ|

q2
q2−1

p3
} q2−1

q2

p5
p3

≤ Cp3,p5

{
E

[
sup
t∈[0,T ]

|M(t)|−p4
]} p5

p4

· {E |M(T )|p1}
p5
p1 · {E |ξ|p2}

p5
p2 <∞,

where

p5 =
p3p4
p3 + p4

=

α0βp2
α0β+(2α0+β)p2

· αβ2
0

β2
0+2αβ0−α

α0βp2
α0β+(2α0+β)p2

+
αβ2

0

β2
0+2αβ0−α

=
α0αββ

2
0p2

α0βp2(β2
0 + 2αβ0 − α) + αβ2

0 [α0β + (2α0 + β)p2]
.

So in order to ensure p5 > 1, it is necessary to have

(α0αββ
2
0 + α0αβ − α0ββ

2
0 − 2α0αββ0 − 2α0αβ

2
0 − αββ2

0)p2 > α0αββ
2
0 .

Since p2 > 1, in other words it is necessary to have

α0αββ
2
0 + α0αβ − α0ββ

2
0 − 2α0αββ0 − 2α0αβ

2
0 − αββ2

0 > 0,

i.e. if α >
β2
0

(β0−1)2 holds, then

α0 >
αββ2

0

(αββ2
0 + αβ − 2αββ0 − 2αβ2

0 − ββ2
0)
, (4.14)

and thus

p2 >
α0αββ

2
0

α0αββ2
0 + α0αβ − α0ββ2

0 − 2α0αββ0 − 2α0αβ2
0 − αββ2

0

. (4.15)
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It is easy to see that if β0 > 1, then (4.14) is bigger than (4.7) and (4.15)
is also bigger than (4.11). Hence when (4.12) and (4.14) are satisfied, we
always have (4.15). Substituting (4.15) into (4.10), if β0 > 1 and (4.12) hold,
then

p3 =
α0βp2

α0β + (2α0 + β)p2
>

α0αββ
2
0

α0αββ2
0 + α0αβ − α0ββ2

0 − 2α0αββ0
> 1.

By Theorem 5.1 in Karoui et al.(1997), we know that BSDE (4.3) admits
a unique solution

Ỹ (·) ∈ Lp3F (Ω;C([0, T ];R)), Z̃(·) ∈ Lp3F (Ω;L2([0, T ];Rd)),

and the following estimate holds

E

[
sup
t∈[0,T ]

|Ỹ (t)|p3 +

[∫ T

0

|Z̃(t)|2dt
] p3

2

]
= Cp3 E

∣∣∣ξ̃∣∣∣p3 = Cp3 E |M(T )ξ|p3

≤ Cp3 {E |M(T )|q3·p3}
1
q3 ·
{
E |ξ|

q3
q3−1

p3
} q3−1

q3 ≤ Cp3 {E |M(T )|p1}
p3
p1 · {E |ξ|p2}

p3
p2 <∞,

where p1, p2, p3, q3 > 1 and Cp3 is some constant. Note that

p5 =
p3p4
p3 + p4

>
α2
0α

2β2β
4
0

α2
0αβ

2β2
0(β2

0 + 2αβ0 − α) + α2
0αβ

2β2
0(αβ2

0 + α− β2
0 − 2αβ0)

= 1.

Finally, taking a constant ε ∈ (0, p5 − 1), using the Hölder’s inequality
and Minkowski’s inequality, we obtain

E
[∫ T

0

|Z(t)|2dt
] p5−ε

2

= E
[∫ T

0

∣∣∣M(t)−1
[
Z̃(t) + Ỹ (t)θ(t)

]∣∣∣2 dt] p5−ε2

≤ E
[

sup
t∈0,T

∣∣M(t)−1
∣∣2 ∫ T

0

[
Z̃(t) + Ỹ (t)θ(t)

]2
dt

] p5−ε
2

= E

 sup
t∈0,T

∣∣M(t)−1
∣∣p5−ε(∫ T

0

[
Z̃(t) + Ỹ (t)θ(t)

]2
dt

) p5−ε
2


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≤
(
E
[

sup
t∈0,T

∣∣M(t)−1
∣∣(p5−ε) p4

p5−ε

]) p5−ε
p4

·

E
[∫ T

0

[
Z̃(t) + Ỹ (t)θ(t)

]2
dt

] p5−ε
2

p4
p4−p5+ε


p4−p5+ε

p4

≤
(
E
[

sup
t∈0,T

∣∣M(t)−p4
∣∣]) p5−ε

p4

·

E
[∫ T

0

[
Z̃(t) + Ỹ (t)θ(t)

]2
dt

] p4(p5−ε)
2(p4−p5+ε)

p4−p5+ε
p4(p5−ε)


p4−p5+ε

p4

p4(p5−ε)
p4−p5+ε

=

(
E
[

sup
t∈0,T

∣∣M(t)−p4
∣∣]) p5−ε

p4

(
E
[∫ T

0

[
Z̃(t) + Ỹ (t)θ(t)

]2
dt

] 1
2

)p5−ε

≤
(
E
[

sup
t∈0,T

∣∣M(t)−p4
∣∣]) p5−ε

p4

·

{(
E
[∫ T

0

[
Z̃(t)

]2
dt

] 1
2

)
+

(
E
[∫ T

0

[
Ỹ (t)θ(t)

]2
dt

] 1
2

)}p5−ε

≤
(
E
[

sup
t∈0,T

∣∣M(t)−p4
∣∣]) p5−ε

p4

{(
E
[∫ T

0

[
Z̃(t)

]2
dt

] p3
2

) 1
p3

+

(
E

[
sup
t∈[0,T ]

∣∣∣Ỹ (t)
∣∣∣ (∫ T

0

[θ(t)]2 dt

) 1
2

])}p5−ε

≤
(
E
[

sup
t∈0,T

∣∣M(t)−p4
∣∣]) p5−ε

p4

{(
E
[∫ T

0

[
Z̃(t)

]2
dt

] p3
2

) 1
p3

+

(
E

[
sup
t∈[0,T ]

∣∣∣Ỹ (t)
∣∣∣p3]) 1

p3

(
E
[∫ T

0

[θ(t)]2 dt

] p3
p3−1

) p3−1
p3
}p5−ε

< ∞

2
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Let us now compare the above result with Theorem 4.1 of Yong (2006).
It can be noted that all our assumptions are implied by those of Yong, i.e.
we have solvability under weaker assumptions on the coefficients. The price
we pay for this is that the space of terminal values is more restricted than
in Yong (2006). Indeed, if in (4.6) we place α instead of α0, α0β/(2α0 + β)
instead of α, and

√
β instead of β and β0 (in order for our assumptions to

be implied by those of Yong (2006)), then

p =
α0α
√
β√

β(αα0 − α− α0)− 4αα0 − αα0/
√
β

Thus, it can be seen that our p is bigger than that in Theorem 4.1 of Yong
(2006), i.e. the space of our terminal values is smaller, which is to be expected
since we are working under weaker assumptions. An important example of a
BSDE considered in the next subsection (see equation (4.21)), requires ξ = 1
which does satisfy our requirements, and thus our result can be applied.

An immediate application of Theorem 8 is to market completeness, and
as a consequence we obtain the completeness of the market under weaker
assumptions on the coefficients as compared to Yong (2006). Thus, consider
a market with one bond and n stocks, the prices of which are, respectively,

dP0(t) = r(t)P0(t)dt,

dPi(t) = Pi(t)[bi(t)dt+ σ′i(t)dW (t)], i = 1, ..., n,

Pi(0) > 0, i = 0, 1, ..., n.

(4.16)

The process r(·) is the interest rate, the processes bi(·), i = 1, ..., n, are the
appreciation rates, and the processes σ′i(t) = [σi1(t), ..., σ1d(t)], i = 1, ..., n,
are the volatilities of the stocks. If πi(t) denotes the value of the holdings in
asset i at time t, then it can be shown (see, for example, Bingham & Kiesel
(2004), Yong & Zhou (1999)) that the value Y (t) of a self-financing portfolio
is

dY (t) = [r(t)Y (t) + π′(t)(b(t)− r(t)1)]dt+ π′(t)σ(t)dW (t), t ∈ [0, T ],

Y (0) = Y0 > 0.
(4.17)

Here π(t) := [π1(t), ..., πn]′, b(t) := [b1(t), ..., bn(t)]′, σ(t) := [σ1(t), ..., σn(t)]′,
and Y0 is the investor’s initial wealth. We assume that rank σ(t) = d, a.e.
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t ∈ [0, T ] a.s., which ensures that n ≥ d and [σ′(t)σ(t)]−1 exists. If we define
the processes θ(·) and Z(·) as

θ(t) := [σ′(t)σ(t)]−1σ′(t)[b(t)− r(t)1],

Z(t) := σ′(t)π(t), (4.18)

we can rewrite (4.17) as
dY (t) = [r(t)Y (t) + θ′(t)Z(t)]dt+ Z ′(t)dW (t), t ∈ [0, T ],

Y (0) = Y0 > 0,
(4.19)

which is the forward version of (4.1). The following definition of market
completeness is adapted from Yong (2006), whereas Corollary 1 follows from
Theorem 8. Let

Πp[0, T ] :=
{
π(·) ∈ L0

F(0, T ;Rn) : π′(·)(b(·)− r(·)1) ∈ LpF(Ω;L1(0, T ;R))

and σ′(·)π(·) ∈ LpF(Ω;L1(0, T ;Rd)
}
.

Definition 1. Let H ⊂ L0
FT (Ω,R) and Π ⊂ Π0[0, T ]. The market (4.16) is

(H,Π)-complete if for any ξ ∈ H there exists a solution pair (Y (·), Z(·)) to
(4.1), with the process Z(·) being such that π(·) as given by (4.18) belongs to
the set Π.

Corollary 1. If the coefficients r(·) and θ(·) satisfy the conditions of Theo-

rem 8, then the market (4.16) is (Lp
+

FT (Ω,R),Π1+)-complete, with p given by
(4.6).

The above corollary thus gives sufficient conditions for market complete-
ness when the coefficients are unbounded and satisfy weaker integrability
conditions as compared to Yong (2006). Note that by establishing the solv-
ability of the BSDE (4.1) we essentially also solve the pricing and hedging
problem, since Y (0) represents the price of the contingent claim ξ at time
zero, whereas Z(·) represents the hedging strategy.

4.2. Riccati BSDE and asset management

We now consider the optimal investment problem with power utility for
the market considered in the previous subsection. An explicit solution is

26



found by first showing the solvability of a certain Riccati BSDE with un-
bounded coefficients, and then combining ideas from Lim & Zhou (2002) and
Ferland & Waiter (2008). Thus, consider an investor with an initial capital
Y0, and the power utility

J(Z(·)) := −E[Y λ(T )], λ ∈ (0, 1).

The optimal investment problem is the following optimal control problem:
min
Z(·)∈A

J(Z(·)),

s.t. (4.19),

(4.20)

where A is a suitable admissible set of controls to be defined precisely after
the following two results.

Lemma 3. Let η := 2λ(1−λ)−1+1 and the processes r̂(·) and θ̂(·) be defined
as

r̂(t) := −ληr(t)− ληθ′(t)θ(t)

1− λ
,

θ̂(t) := − 2λ

1− λ
θ(t).

Let the processes r̂(·) and θ̂(·) satisfy the conditions of Theorem 8. Then the
equation 

dR(t) = R1(t)dt+R′2(t)dW (t), t ∈ [0, T ],

R1(t) := r̂(t)R(t) + θ̂′(t)R2(t),

R(T ) = 1,

(4.21)

has a unique solution pair R(·) ∈ L1+
F (Ω;C([0, T ];R)), R2(·) ∈ L1+

F (Ω;L2([0, T ];Rd)),
and R(t) > 0, ∀t ∈ [0, T ] a.s.. If r̂(t) < 0 a.e. t ∈ [0, t] a.s., then R(t) ≥ 1
∀t ∈ [0, T ] a.s..

Proof. Theorem 8 ensures the existence of a unique solution pair
R(·) ∈ L1+

F (Ω;C([0, T ];R)), R2(·) ∈ L1+
F (Ω;L2([0, T ];Rd)). Let M̂(·) denote
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the solution to the equation
dM̂(t) = −r̂(t)M̂(t)dt− θ̂′(t)M̂(t)dW (t), t ∈ [0, T ],

M̂(0) = 1,

(4.22)

and (R̂(·), R̂2(·)) be the unique solution pair of the equation
dR̂(t) = R̂′2(t)dW (t), t ∈ [0, T ],

R̂(T ) = M̂(T ).

Due to R̂(t) = E
[
M̂(T )|Ft

]
and (4.4), we have

R(t) = M̂(t)−1R̂(t) = M̂(t)−1E
[
M̂(T )|Ft

]
= E

[
e−

∫ T
t [r̂(s)+ 1

2
θ̂′(s)θ̂(s)]ds−

∫ T
t θ̂′(s)dW (s)

∣∣∣∣Ft

]
. (4.23)

Since the process θ̂(·) is assumed to satisfy (2.2), the following is a probability
measure:

P̂(A) :=

∫
A

N(T )dP(ω), ∀A ∈ F ,

where

N(t) := e
−1
2

∫ t
0 θ̂
′(s)θ̂(s)ds−

∫ t
0 θ̂(s)

′dW (s).

We can now write (4.23) as

R(t) = Ê
[
e−

∫ T
t [r̂(s)]ds

∣∣∣∣Ft

]
> 0, (4.24)

where Ê[ · ] is the expectation under the new probability measure P̂. It is
clear that R(t) > 0, ∀t ∈ [0, T ] a.s., and if r̂(t) < 0, a.e. t ∈ [0, t] a.s., then
R(t) ≥ 1, ∀t ∈ [0, T ] a.s..

Remark 1. The condition r̂(t) < 0 a.e. t ∈ [0, T ] a.s., is reasonable from
the applications point of view (e.g. the interest rate r(t) ≥ 0 a.e. t ∈ [0, T ]
a.s.), and thus we assume it for the remainder of this section to ensure that
R(t) ≥ 1, ∀t ∈ [0, T ] a.s..
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Lemma 4. Let the conditions of Lemma 3 hold. The processes Q(t) :=
R1/η(t) and Q2(t) := η−1Q1−η(t)R2(t) are a solution pair to the Riccati
BSDE:

dQ(t) = Q1(t)dt+Q′2(t)dW (t), t ∈ [0, T ],

Q1(t) := −λr(t)Q(t)− λ(Q2(t) + θ(t)Q(t))′(Q2(t) + θ(t)Q(t))

2(1− λ)Q(t)
,

Q(T ) = 1,

Q(t) > 0, ∀t ∈ [0, T ] a.s..

(4.25)

Proof. The differential of R(·) is

dR(t) =dQ(t)η

=

{
ηQ(t)η−1

[
−λr(t)Q(t)− λ(Q2(t) + θ(t)Q(t))′(Q2(t) + θ(t)Q(t))

2(1− λ)Q(t)

]

+
η(η − 1)

2
Q(t)η−2Q′2(t)Q2(t)

}
dt+ ηQ(t)η−1Q′2(t)dW (t)

=

{
− ληr(t)Q(t)η − λη

1− λ
Q(t)η−2

[
Q′2(t)Q2(t) + 2Q′2(t)Q(t)θ(t)

+ θ′(t)θ(t)Q(t)2
]

+
η(η − 1)

2
Q(t)η−2Q′2(t)Q2(t)

}
dt+ ηQ(t)η−1Q′2(t)dW (t)

=

[
−
(
ληr(t) +

ληθ′(t)θ(t)

1− λ

)
R(t)− 2λ

1− λ
θ′(t)R2(t)

]
dt+R′2(t)dW (t),

=R1(t)dt+R′2(t)dW (t),

which has a solution for R(T ) = 1, as shown in the previous lemma. 2
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The admissible set of controls A is defined as:

A := {Z(·) ∈ L0+
F (Ω;L2([0, T ];Rd))| Y (t) > 0 ∀t ∈ [0, T ] a.s., and

[λQ(·)Z(·)Y −1(·) +Q2(·)]Y (·)λ ∈ L2
F(0, T ;Rd)}.

The requirement of Y (·) being positive prevents bankruptcy, whereas the
second requirement on the admissible set is a technical one implied by the
method we use to solve the optimal investment problem.

Lemma 5. Let the processes r(·) and θ(·) be defined as

r(t) :=
1

1− λ
r(t) +

2 + 3λ

2(1− λ)2
θ′(t)θ(t),

θ(t) :=
1

1− λ
θ(t),

and be such that r(·) ∈ L1
F(Ω;L1([0, T ];R)), θ(·) ∈ L2

F(Ω;L2([0, T ];Rd)). Let
r(·) satisfy (2.8) and θ(·) satisfy (2.2) for some constants α > 0 and β > 1,

respectively, such that αβ
2

= 4(β
2

+ 2αβ−α). If the assumptions of Lemma
3 hold, then [(Q2(·) + θ(·)Q(·))](1− λ)−1Q−1(·)Y (·) ∈ A.

Proof. If we choose Z(t) = [(Q2(t) + θ(t)Q(t))](1− λ)−1Q−1(t)Y (t), then
(4.19) becomes
dY (t) =

[
r(t) + θ′(t) (Q2(t)+θ(t)Q(t))

(1−λ)Q(t)

]
Y (t)dt+

(Q′2(t)+θ
′(t)Q(t))

(1−λ)Q(t)
Y (t)dW (t), t ∈ [0, T ],

Y (0) = Y0.

(4.26)
We first show that this linear equation, the coefficients of which depend on
the solution pair (Q(·), Q2(·)), has a solution Y (t) > 0, ∀t ∈ [0, T ] a.s.. Let
µ ∈ (0, 1), and consider the equation

 dX(t) = r(t)X(t)dt+ θ
′
(t)X(t)dW (t), t ∈ [0, T ]

X(0) = Y (0)Q(0)−µ.

(4.27)

The process

X(t) := e
∫ t
0 [r(s)−

1
2
θ
′
(s)θ(s)]ds+

∫ t
0 θ
′
(s)dW (s), t ∈ [0, T ]. (4.28)
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is a solution to (4.27) if it has enough integrability. It is sufficient for this

purpose to show that θ
′
(·)X(·) is a square integrable process. Thus, from

Theorem 3, it follows that

E
[∫ T

0

X(t)2θ
′
(t)θ(t)dt

]
≤ E

[
sup
t∈[0,T ]

X(t)2
∫ T

0

θ
′
(t)θ(t)dt

]

≤ 1

2

(
E

[
sup
t∈[0,T ]

X(t)4

]
+ E

[∫ T

0

θ
′
(t)θ(t)dt

]2)
<∞.

In order to show that (4.28) is the unique solution to (4.27), let us assume
that X(·) is another solution to (4.27). By Itô’s formula we obtain

dX(t)−1X(t) = [−r(t) + θ′(t)θ(t)]M(t)−1M(t)dt− θ′(t)M(t)−1M(t)dW (t)

+M(t)−1[r(t)M(t)dt+ θ′(t)M(t)dW (t)]

−θ′(t)θ(t)M(t)−1M(t)dt = 0. (4.29)

Hence we have 
dM(t)−1M(t) = 0, t ∈ [0, T ],

M(0)−1M(0) = 1,

which gives M(t)−1M(t) = 1, i.e. M(t) = M(t), for all t ∈ [0, T ], a.s.. By
applying Itô’s formula to Y (t) := X(t)Q(t)µ, it can be shown that it satisfies
(4.26). Moreover, since both X(·) and Q(·) are positive, so is Y (·). The proof
of the uniqueness of Y (·) can be shown in a similar way to the uniqueness of
X(·).

We now show that the process [(Q2(·) + θ(·)Q(·))](1− λ)−1Q−1(·)Y (·) is
square integrable:

E
[∫ T

0

[λQ(t)U(t) +Q2(t)]
′[λQ(t)U(t) +Q2(t)]Y (t)2λdt

]

≤ E

[∫ T

0

sup
t∈[0,T ]

Y (t)2λ[λQ(t)U(t) +Q2(t)]
′[λQ(t)U(t) +Q2(t)]dt

]
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= E

[
sup
t∈[0,T ]

Y (t)2λ
∫ T

0

[λQ(t)U(t) +Q2(t)]
′[λQ(t)U(t) +Q2(t)]dt

]

≤ 1

2
E

[
sup
t∈[0,T ]

Y (t)4λ

]
+

1

2
E
{∫ T

0

[λQ(t)U(t) +Q2(t)]
′[λQ(t)U(t) +Q2(t)]dt

}2

.

For the first term on the right hand side, let Y (t) = X(t)Q(t)µ for any
µ = 1

1−λ ∈ (0, 1), we obtain:

E

[
sup
t∈[0,T ]

Y (t)4λ

]
= E

[
sup
t∈[0,T ]

X(t)4λQ(t)4µλ

]
= E

[
sup
t∈[0,T ]

X(t)4λR(t)
4µλ
η

]

≤ E

[
sup
t∈[0,T ]

X(t)4λ · sup
t∈[0,T ]

R(t)
4λ
1+λ

]
≤ 1

2
E

[
sup
t∈[0,T ]

X(t)8 + sup
t∈[0,T ]

R(t)8

]
<∞.

For the second term on the right hand side we have:

E
{∫ T

0

[λQ(t)U(t) +Q2(t)]
′[λQ(t)U(t) +Q2(t)]dt

}2

= E
{∫ T

0

[
1 +

2λ

1− λ
+

λ2

(1− λ)2

]
Q′2(t)Q2(t)

+

[
2λ

1− λ
+

2λ2

(1− λ)2

]
Q′2(t)θ(t)Q(t) +

λ2

(1− λ)2
θ′(t)θ(t)Q(t)2dt

}2

≤ 3k21 E
[∫ T

0

Q′2(t)Q2(t)dt

]2
+ 3k22 E

[∫ T

0

Q′2(t)Q(t)θ(t)dt

]2

+ 3k23 E
[∫ T

0

θ′(t)θ(t)Q(t)2dt

]2

≤ 3k21
η4

E
[∫ T

0

R′2(t)R2(t)dt

]2
+

3k23
4

E
[∫ T

0

[
(θ′(t)θ(t))2 +R(t)

4
η

]
dt

]2
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+
3k22
4η2

E
[∫ T

0

[
R′2(t)R(t) +

1

2
(θ′(t)θ(t))2 +

1

2
R(t)

4
η

]
dt

]2

≤ c1 E
[∫ T

0

R′2(t)R2(t)dt

]2
+c2 E

[∫ T

0

1

2
(θ′(t)θ(t))2dt

]2
+c3 E

[∫ T

0

R(t)
4
η dt

]2

≤ c1 E
[∫ T

0

R′2(t)R2(t)dt

]2
+c2 E

[∫ T

0

1

2
(θ′(t)θ(t))2dt

]2
+c3T

2 E

[
sup
t∈[0,T ]

R(t)8dt

]
<∞,

where k1 = 1 + 2λ
1−λ + λ2

(1−λ)2 , k2 = 2λ
1−λ + 2λ2

(1−λ)2 k3 = λ2

(1−λ)2 and c1 =
3k21
η4

+
9k22
4η2

,

c2 =
9k22
4η2

+ 6k23, c3 =
3k23
2

+
9k22
16η2

. 2

Our next result gives the solution to the optimal investment problem
(4.20) in an explicit closed-form. The optimal trading strategy turns out to
be a linear function of wealth (see equation (4.30)), which is in accordance
with the case of the market with bounded coefficients of Ferland and Waiter
(2008), which it generalises, and immediately ensures the positivity of the
wealth process Y (·).

Theorem 9. Let the conditions of Lemma 5 hold. The optimal investment
problem (4.20) has a unique solution given by

Z∗(t) =
(Q2(t) + θ(t)Q(t))

(1− λ)Q(t)
Y (t). (4.30)

The corresponding optimal cost is J(Z∗(·)) = −Q(0)Y λ(0).

Proof. From the previous lemma, we know that Z∗(·) ∈ A. The differen-
tial of Q(·)Y λ(·) is:

dQ(t)Y (t)λ =Q1(t)Y (t)λdt+Q′2(t)Y (t)λdW (t) + λY (t)λ−1Q′2(t)Z(t)dt

+Q(t)[λr(t)Y (t)λ + λY (t)λ−1θ′(t)Z(t)

+
1

2
λ(λ− 1)Y (t)λ−2Z ′(t)Z(t)]dt+ λQ(t)Y (t)λ−1Z ′(t)dW (t)
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=

{
Q1(t)Y (t)λ + λr(t)Q(t)Y (t)λ + Y (t)λ

[
λQ′2(t)U(t)

+ λQ(t)θ′(t)U(t) +
λ(λ− 1)

2
Q(t)U ′(t)U(t)

]}
dt

+
[
Q′2(t)Y (t)λ + λQ(t)Y (t)λU ′(t)

]
dW (t),

where U(t) := Z(t)/Y (t). After integration and taking the expectation,
this becomes:

− E
[
Y (T )λ

]
= −Q(0)Y λ(0)− E

∫ T

0

[Q1(t)Y (t)λ + λr(t)Q(t)Y (t)λ]dt

− E
∫ T

0

Y (t)λ

[
(λQ′2(t) + λθ′(t)Q(t))U(t) +

λ(λ− 1)

2
Q(t)U ′(t)U(t)

]
dt.

By the completion of squares method, we obtain:

−E
[
Y (T )λ

]
= −Q(0)Y λ(0)

− E
∫ T

0

Y (t)λ
[
Q1(t) + λr(t)Q(t) +

λ(Q2(t) + θ(t)Q(t))′(Q2(t) + θ(t)Q(t))

2(1− λ)Q(t)

]
dt

+
λ(1− λ)

2
E
∫ T

0

Y (t)λQ(t)

[
U(t)− Q(t)−1(Q2(t) + θ(t)Q(t))

1− λ

]′
·
[
U(t)− Q(t)−1(Q2(t) + θ(t)Q(t))

1− λ

]
dt

=−Q(0)Y λ(0) +
λ(1− λ)

2
E
∫ T

0

Y (t)λQ(t)

[
U(t)− (Q2(t) + θ(t)Q(t))

(1− λ)Q(t)

]′

·
[
U(t)− (Q2(t) + θ(t)Q(t))

(1− λ)Q(t)

]
dt ≥ −Q(0)Y λ(0),
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with equality if and only if U(t) = Q2(t)+θ(t)Q(t)
(1−λ)Q(t)

, a.e. t ∈ [0, T ] a.s. . 2

5. Conclusions

We have given several integrability results for the exponential process
with unbounded coefficients under the Kazamaki type conditions. While us-
ing this weaker condition as compared to a Novikov type condition of Yong,
we obtained the same integrability in most cases. These results were then ap-
plied to the solvability of linear and Riccati BSDEs, which in turn were used
to solve the problems of market completeness (and also of pricing and hedg-
ing) and asset management with power utility. We expect that our results
will be useful in solving related problems, such as the problem of optimal con-
sumption, the mean-variance asset management, the linear-quadratic control
problem, the risk-sensitive control problem, the bond pricing problem, all in
the setting of unbounded coefficients, through our results on linear and Ric-
cati BSDEs.
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