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Abstract. Agent programs are increasingly used as the core high-level decision-
making components within a range of autonomous systems and, as the deploy-
ment of such systems in safety-critical scenarios develops, the need for strong
and trustworthy verification becomes acute. Formal verification techniques such
as model-checking provide this high level of assurance yet they are typically both
complex and slow to deploy. In this paper we introduce, develop and evaluate
a program slicing technique that significantly improves the efficiency of such
verification, hence providing more effective routes to the assurance of safety, re-
liability, and ethics in autonomous systems.
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1 Introduction

The study of agent programming languages is becoming increasingly important not just
from an academic viewpoint but because agent programs now play a central role in
many autonomous systems. The need for transparency and explainability, in particular,
is leading to the development of hybrid agent architectures for autonomous systems
whereby a rational agent [26] provides the core high-level decision-making capabilities
within the autonomous systems architecture. This approach leads naturally to clarity,
flexibility and verifiability [15,12]. Specifically, a rational agent is not only able to take
independent decisions but has explicit notions of the motivations that lead it to select
one option over another. The predominant model of rational agency, and one that we
follow here, is that of BDI (‘Beliefs’, ‘Desires’, and ‘Intentions’) [7], in which the
agent’s assessments about the state of the world (and itself) are captured as beliefs,
the agent’s long-term motivations are captured as desires, while the agent’s immediate
motivations are captured as intentions [20].

There is a wide range of programming languages that use the idea of rational agency,
often the BDI approach, as their central model, for example AgentSpeak [21], Ja-
son [5], GOAL [16], GWENDOLEN [11]), and others [2,3]. As these become deployed
in increasingly sophisticated and complex scenarios, there is increased need for much
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greater assurance through verification and validation. Although the most common ap-
proach to software verification is through testing, [1], Winikoff et al. [23,25] show how
assurance of agent programs cannot feasibly be carried out using traditional software
testing, leading us to formal verification.

Formal verification is a mathematically well-founded process for proving that a
specification given in formal logic matches the system in question. For a specific logi-
cal property, φ, there are many different approaches to this [14,9,6], ranging from de-
ductive verification against a logical description of the system ψS (i.e., ` ψS ⇒ φ)
to the algorithmic verification of the property against a model of the system, MS (i.e.,
MS |= φ). The latter has been extremely successful in Computer Science and Artificial
Intelligence, primarily through the model checking approach [8]. This takes a descrip-
tion of the system in question, capturing all possible executions, and then checks the
logical property against this description (and, hence, against all possible executions).

If (rational) agents are to be used at the core of increasingly sophisticated au-
tonomous systems, it therefore seems natural to explore the model checking of these
agent programs. There have been several developments in this direction [19,17], with
the most well-developed being that of AJPF/MCAPL [12,15]. This verification ap-
proach has been used throughout a range of work tackling applications in autonomous
aircraft, spacecraft and road vehicles [22,18,10,12], where a (central) rational agent is
verified using model-checking in order to assess all high-level decision-making.

While very useful, such formal verification can be extremely slow, even for rela-
tively small programs [12]. Around a decade ago, there was initial work by Bordini
et al. [4] aiming to improve the efficiency of agent program model checking by using
slicing. The basic idea (see Figure 1) is that instead of model-checking a property φ
with respect to program π situated in environment E , we instead model-check a sliced
program π′. The sliced program is a simplified version of π where (some) parts of the
program that do not affect the truth of φ have been removed. This can result in a pro-
gram π′ that is smaller and substantively faster to model check. For example, Bordini
et al. [4] found a 61% reduction in run-time to check a particular property.

Program π
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Environment 

Analysis
and

Slicing

Sliced
Program π'
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Fig. 1: High-level view of the process



Slicing Agent Programs for more Efficient Verification 3

This paper advances the 2009 paper, updating the algorithm for the contemporary
verification framework and proposing a new, and improved, slicing method. We begin
by briefly introducing required background material, including reviewing the slicing
algorithm of Bordini et al. We then present the new slicing method, provide evaluation
results, and conclude with a brief discussion of future work (which includes a formal
proof of corectness).

2 Background

We briefly review required background, including the specific BDI language we use,
GWENDOLEN [11], the mapping from a BDI program to a graph structure, and the
slicing method proposed by Bordini et al [4].

2.1 BDI Programming Languages & Gwendolen

The common core of BDI languages is that an agent program is a collection of plans.
Each plan t : c ← s1; . . . ; sn comprises a trigger t (e.g. posting a sub-goal, denoted
+!g, or a change to the agent’s beliefs, denoted +b or −b), a context condition c that
indicates in which situation the plan is applicable, and a plan body. The plan body is a
sequence of steps si (or more generally a program). Steps include belief updates (adding
a belief +b or removing a belief −b), testing conditions (?c), posting sub-goals !g (but
+!g in GWENDOLEN), and actions a.

The core execution cycle is that when a trigger t′ is posted, all the relevant plans
(those whose triggers t unify with t′) are collected. A relevant plan is applicable if its
context condition currently holds. An applicable plan is selected, and that plan’s body
is executed. Execution is interleaved with processing of other incoming percepts/events
and with parallel execution of other plans, in response to other triggers. Details vary
between languages (e.g. see Winikoff [24]). We assume the common practice of con-
sidering relevant plans in sequential order.

Many BDI languages incorporate a failure handling mechanism where if a step fails
(e.g. an action’s preconditions are not met), the plan body it is a part of fails. Failure
handling then considers the trigger for that plan, and seeks to use alternative plans to
handle it. This is done by re-posting the trigger, and using other plans to handle it.

In the remainder of this paper we use the GWENDOLEN notation, where a plan is
written: “t : {c} ← s1, . . . , sn;”. Context conditions are logical combinations (“,” de-
notes conjunction, and “˜” denotes negation) of beliefs (“B”) and goals being pursued
(“G”). The notation perf(a) denotes performing an action, and *cmeans “wait for condi-
tion c”. Figure 2 shows a simple GWENDOLEN program implementing a cruise control,
taken from the GWENDOLEN distribution. Note that the annotation [achieve] indicates
an achievement goal, which can be explained in terms of the following3 “meta-plan”:
+!achieve(G) : {B G}. +!achieve(G) : {˜ B G} ← +!G; +!achieve(G), i.e. keep
trying +!G until G is believed.

It is important to note that although the presentation in this paper uses the GWEN-
DOLEN notation, the language features are very similar to those of other BDI languages,

3 An empty plan body is indicated by eliding the “←”.
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1:Reasoning Rules:
2can accelerate :− safe, ˜ driver accelerates, ˜ driver brakes;
3
4:Initial Goals:
5at speed limit [achieve]
6
7:Plans:
8+! at speed limit [achieve] : {B can accelerate}
9← perf(accelerate), wait;
10+! at speed limit [achieve] : {˜B safe} ← ∗safe;
11+! at speed limit [achieve] : {B driver accelerates}
12←∗˜driver accelerates;
13+! at speed limit [achieve] : {B driver brakes}
14←∗˜driver brakes;
15+at speed limit: {B can accelerate, B at speed limit}
16← perf(maintain speed);
17−at speed limit: {˜G at speed limit [achieve],
18˜B at speed limit} ← +! at speed limit[achieve];
19−safe: {˜B driver brakes, ˜B safe} ← perf(brake);
20+driver accelerates: {B safe, ˜B driver brakes,
21B driver accelerates} ← perf(accelerate);
22+driver brakes: {B driver brakes} ← perf(brake);

Fig. 2: GWENDOLEN program for cruise control.

and changing this paper to apply to another BDI language would require only two very
minor changes4.

An agent exists in an environment, which needs to be modelled for verification
purposes. Whereas Bordini et al. model the environment using a collection of plans
that connect each action to its post-conditions, we instead follow Dennis et al. [12] and
do not define a direct link between actions and their post-conditions. Instead, we define
a collection of possible exogenous belief updates that can occur. This representation is
more realistic, since often, in real domains, there is a delay between an action being
commenced, and the effects of that action manifesting. Additionally, the effects of an
action are not usually guaranteed. For example, performing an accelerate action does
not necessarily result in being at the speed limit, instead, at some future point the sensors
may indicate that the car has reached the speed limit. We define a set of exogenous belief
updates, B, for instance, for the cruise control example the set of relevant exogenous
belief updates is B = {at speed limit, safe,driver accelerates,driver brakes}. For
each b ∈ B a percept +b or −b can occur at any time.

4 Specifically, there is a minor change to the graph construction, noted in a later footnote, and
the definition of a belief link would change very slightly (replacing “*” with “?”).
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For verification, we define a simple language based on the property specification
language used in MCAPL/AJPF:

ψ ::= Bel a p | Des a p | Int a p | Does a p (1)
ϕ :: ψ | ϕ ∧ ϕ | φ ∨ ϕ | ¬ϕ | ϕ→ ϕ | �ϕ | �ϕ (2)

The full semantics of this language is given by Dennis et al. [12]. It is based on Propo-
sitional Linear Temporal Logic (PLTL) [13] defined over program traces where the
expressions in (2) are as standard in presentations of PLTL and Bel a p means that p
appears in the belief base of agent a, Des a p means that p appears in the goal base of
agent a, Int a p means that p appears in the goal base of agent a and also that a plan
has been selected to handle the goal, and Does a p means that agent a has executed
perf(p).

2.2 Mapping to a Graph Structure

We map each program clause of the form t : c ← s1, . . . , sn to a graph that has a
trigger node5 t, a context node c, and step nodes si (1 ≤ i ≤ n). We assume that
each node has a unique ID (which allows the occurrence of, for instance, a step such as
perf(accelerate) in multiple places in the program to be represented by multiple nodes
with unique identifiers, but the same name). We denote the name of a node as N̂ where
N is the node’s unique ID.

We then represent the plan’s structure by defining basic edges (denoted A → B)
from c to s1 and from each si to si+1. We also define numbered edges (denotedA n→ B)
from t to each plan’s context condition. The initial mapping is extended with triggering
edges (denoted A 99K B) from step si to trigger t where6 ŝi = t̂). Figure 3 shows the
graph plan structure corresponding to a simple program7. In the figure, the trigger node
is a rectangle, step nodes are ovals, and context nodes are hexagons. The dashed line
indicates a triggering edge, and the numbers are numbered edges (as explained above).

Space precludes a detailed discussion of the renaming required to handle multiple
agents. Briefly, each agent’s plans and beliefs are renamed apart.

2.3 Original Slicing Method

The approach of Bordini et al., which is inspired by a slicing algorithm for a concurrent
logic programming language [27], comprises three stages: (i) create a literal depen-
dence net (LDN); (ii) mark nodes relevant to checking the property of interest φ [4,
Algorithm 1, Page 1405]; and (iii) remove any plans that are not marked, yielding π′.
Building the LDN: The LDN takes, as a starting point, the basic mapping described in
the previous subsection. It modifies this by: (i) instead of linking each step to the next

5 There is one slight difference between our mapping and that used by Bordini et al: we do not
have a trigger node for each plan, instead we use a single common trigger node for plans that
share the same trigger.

6 For AgentSpeak we would need to adjust this slightly, since the trigger node for a sub-goal is
named +!g but the step is named !g.

7 The program was constructed to illustrate features of the graph representation.
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+!t

B p1

B q
2

skip

+p +!t a

1+! t : {B p} ← skip;
2+! t : {B q} ← +p, +!t, perf(a);

Fig. 3: Simple program and the corresponding graph

step (si → si+1), it instead has a link from the context condition directly to each step
(c→ si for each si, 1 ≤ i ≤ n); and (ii) it adds belief links, representing dependencies
via the belief base: there is a link from each belief update to any context condition (or
test) that depends on that belief8. Figure 4 shows the graph constructed for the same
simple example. As before, a dashed line is a triggering edge. A dotted edge denotes
a belief link. Observe that information about the order of steps, e.g. in the second plan
body, is not preserved.

+!t

B p
1

B q
2

skip

+p

a

+!t

Fig. 4: Simple graph showing original slicing method’s construction

Marking Nodes: Nodes are marked to indicate whether they affect the property φ being
verified. The marking process considers every plan. Let te be the node corresponding
to the trigger of the plan9. If the property of interest contains Bel ag p, then the plan is

8 Handling reasoning rules requires additional complexity.
9 We actually use the context condition, since we do not have a unique trigger node for each

plan.
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marked iff there is a node with name +p or −p that is reachable from te in the LDN.
For Des ag g the plan is marked iff there is a step node with name +!g reachable from
te, for Int ag g it is marked iff a trigger node with name +!g is reachable from te, and
for Does ag p it is marked iff a step node with name perf(p) is reachable from te. The
difference between Des ag p and Int ag p is that the latter requires a path to a trigger
node.

Given10 φ = �(Does car accelerate → Bel car safe), in the example above, the
nodes of interest are those corresponding to the action perf(accelerate) or to a belief
update that affects safe (but since this is updated exogenously, it does not appear in any
plan). Therefore, the plans that are marked are those that have a path from their context
condition to a perf(accelerate) node.

3 Improved Slicing Method

The slicing algorithm proposed by Bordini et al. [4] has a number of “missed opportu-
nities” where it does not take into account information that is available. These include:

1. the ordering of execution, e.g. the sequence of steps, is not exploited, nor is the
order of the plans, or to make use of knowledge about failure handling;

2. the initial goals are ignored, which means that even if a node cannot be reached in
achieving these goals, it is still considered; and

3. the structure of φ is not considered: the algorithm for marking plans [4, Algorithm
1, Page 1405] considers only the presence of sub-formulae of the form Bel ag b,
Des ag b, Int ag g and Does ag a (and atomic b), the logical structure of φ is not
considered.

To illustrate where the original slicing algorithm misses out on useful distinctions
consider a program that includes one plan with body “?p; perf(a)”11 where the action
a is of interest (i.e. φ includes Does ag a), and a second plan with body “−p”. Now,
the second plan is clearly important: its execution may prevent the first plan from pro-
gressing beyond its first step. However, it is possible that the second plan will never
be executed before the first plan. The original slicing method does not take this into
account.

Our proposed slicing process addresses the first two of these missed opportunities.
Firstly, it constructs a dependency graph based on the language’s semantics, including
modelling failure handling, and handling GWENDOLEN language features. This allows
sequencing information to be exploited in the slicing analysis. Secondly, we distinguish
between parts of the agent program that are unreachable, and hence simply removed,
and parts that are reachable, but can be compressed and simplified without affecting the
verification outcome. Our analysis is therefore more fine-grained in that it allows parts
of a plan to be removed. This turns out to provide a substantial efficiency gain.

The slicing process comprises four steps: constructing the dependency graph (Sec-
tion 3.2), removing nodes that are not reachable (Section 3.3), marking nodes that are
10 The ‘�’ is the standard temporal operator meaning “at all points in the future”.
11 Where ?p tests whether p holds, failing if it does not. This differs from the GWENDOLEN

construct ∗p which suspends the plan until p becomes true.
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incompressible (Section 3.4), and compressing nodes that are unmarked (Section 3.5).
However, before we begin the process, we need to deal with certain language features,
which we do by transforming them away.

3.1 Transforming the Program

A number of language features pose challenges, as the earlier slicing algorithm is not
clear how they should be dealt with. Specifically, the earlier paper does not explain
how the algorithm deals with these constructs, and how to deal with them is not ob-
vious. For instance, the example program used by Bordini et al. included use of the
.dropDesires built-in action, but it is not clear how this is handled in the LDN.
First feature: achievement goals. As noted earlier, an achievement goal in GWEN-
DOLEN can be explained in terms of a “meta plan”. For each achievement goal G
we introduce meta-plans with trigger +!achieve(G), and replace +!G[achieve] with
+!achieve(G).
Second feature: context conditions that test goals. In GWENDOLEN a context condition
can include not only tests of whether certain beliefs are held (“B p”), but also tests of
whether a goal is held by the agent (“G g”). This poses a challenge, because the slicing
analysis needs to know about the steps that can affect the truth of a context condition,
but whereas changes that affect belief conditions are explicit, whether a goal is held
by the agent is affected by the goal being posted or achieved, and this is not always
explicit.

We therefore need to transform the program to make goal status changes explicit.
We do this using beliefs, goal G, associated with each goal G, this mechanism requires
us to associate changes to this belief both with the explicit posting of new goals and with
the implicit removal of goals. This is achieved as follows. First, when a goal is posted,
we also update the corresponding belief, i.e. we replace any +!G with +goal G,+!G.
Next, whenever a goal is dropped, we add an explicit−goal G. A goal is dropped when
any one of its plans concludes, so given a goal that is tested for, we add to each of its
plans a final step −goal G. Note that a special case is when a plan for G ends with a
recursive sub-goal +!G: in this case the belief goal G is not modified. Another special
case is achievement goals, for which the goal is dropped only in the first meta-plan, and
where we replace +!G[achieve] with +goal G,+!achieve(G). Finally, we replace the
condition G G with B goal G.

The code below shows the transformed program for the example (showing only the
parts that were changed). The changes are: (i) the achievement goal has been realised
by adding a meta-plan and removing “[achieve]” (not shown); and (ii) the condition G
at speed limit has been replaced with B goal at speed limit, and that belief about a
goal is updated in the first plan (where it is dropped) and in the last plan (where the
goal is adopted). An additional change (not shown) is that the reasoning rule (line 2 of
Figure 2) is handled by unfolding it: this replaces can accelerate with its definition of
“safe, ˜ driver accelerates, ˜ driver brakes”.

1+! achieve at speed limit:{B at speed limit} ←−goal at speed limit.
2+! achieve at speed limit : {˜B at speed limit}
3← +! at speed limit, +!achieve at speed limit;
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4−at speed limit : {˜B goal at speed limit, ˜B at speed limit}
5← +goal at speed limit, +! achieve at speed limit;

Third feature: explicitly dropping goals. Explicit goal dropping (“−!G”) is not used
in the example. We deal with this not by transforming the program, but by having an
additional case for generating belief links when constructing the graph (see end of Sec-
tion 3.2).

3.2 Constructing the Dependency Graph

We define the dependency graph as follows. We start with the initial mapping of the
program presented in Section 2.2. We then define a control link (denoted A ⇒ B) as
existing between two nodes under any of the conditions below12.

1. As previously, we have A ⇒ B from a step A to the relevant trigger node B
(formally: A⇒ B if A 99K B).

2. Rather than linking a context condition to all steps in the plan body, we link the
steps of the plan body in sequence. Additionally, we correctly capture sub-goals by
not having a link from posting a sub-goal to the next step. Instead, the link to the
next step is from where the sub-goal is achieved (i.e. the last step of each plan that
achieves it).
Specifically, this means that we have A ⇒ B when there is a basic edge A →
B from a context node or from a step other than a sub-goal (formally: A ⇒
B if A→B ∧ (context(A) ∨ (step(A) ∧ ¬subgoal(A))) ).
In the case where A′→B and A′ is a sub-goal, then instead of having a control link
fromA′ toB, we find the plans that are triggered byA′, and have links from the last
step of each such plan toB. In other words, we also haveA⇒ B ifA is the last step
of a plan that is triggered by +!G, andB is the next step after the posting of the goal
G. (formally:A⇒ B if step(A)∧(¬subgoal(A))∧ last(A)∧getCaller(A,D)∧
next(D,B), where getCaller(A,D) is true when D is the identifier of a step that
has the same name as the trigger node of the plan containing A, and next(D,B) is
true when B is the next step after D, taking account of control-flow returning from
the end of a plan13)

3. We capture plan order by linking from the trigger goal to only the first plan’s context
condition. Specifically A ⇒ B when there is a basic edge numbered 1 from a
trigger to the first context condition. (formally: A⇒ B if A 1→ B).

4. We capture failures, including in plans other than the first, by having failure links.
We link each context condition that can fail (i.e. excluding a plan condition that is
“true”) to the next plan’s context condition (if there is one). We also link each
step in a plan body to the next plan’s context condition, unless the plan step is one
that cannot fail. Formally: A⇒ B if ∃C,G : ((context(A) ∧ Â 6= “true” ∧G n→
A) ∨ (step(A) ∧ canFail(A) ∧ getContext(A,C) ∧G n→ C)) ∧G n+1→ B

12 We assume predicates context(N), step(N), subgoal(N), as well as last(N) (true iff N is
the last step in a plan), getContext(A,C ) (true iff C is the context condition of the plan in
which A appears), and canFail(A) (true iff the step A can fail).

13 Formally: next(A,B) ≡ ∃D : A→B ∨ (last(A) ∧ getCaller(A,D) ∧ next(D,B)) and
getCaller(A,D) ≡ getContext(A,C) ∧G

n→ C ∧ step(D) ∧ Ĝ = D̂.
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In addition to control links, we also define belief links (denoted A ⇒B B) between A
and B if A updates a belief that can affect the truth of a context condition or test/wait
B, where B contains the belief that A updates. While this definition does not cater
for reasoning rules, we have: A ⇒B B if step(A) ∧ (context(B) ∨ (step(B) ∧ B̂ =

∗C)) ∧ contains(B̂, getBelief(Â)) where getBelief (+b) = getBelief (−b) = b, and
contains(φ, b) is true iff φ contains b.

Finally, as mentioned earlier, we need to also add belief links that relate to explicitly
dropping a goal (“−!G”). Semantically, dropping a goal explicitly is problematic. This
is because it creates a situation where the execution of a plan can be aborted at any
point. Consider the simple program below. Suppose that +!g1 is being pursued. At any
point in the execution of the first, or the second plan, a percept may update b, resulting in
g1 being dropped, and its plan aborted. This means that there is a dependency between
−!g1 and every node that follows on from the body of a plan to handle +!g1. We
therefore define that there is also a belief link from−!g to any nodeN such that +!g ⇒∗
N , where N is a step, +!g is a trigger node, and⇒∗ denotes the transitive closure of
⇒.

1+! g1← +! g2.
2+! g2← s1, s2.
3+b←−!g1.

We exclude belief links if there is no possibility that A can influence B. In other
words, if B cannot occur after A, then we suppress the belief link from A to B. This
makes sense because, in this situation, even thoughA can change b, which occurs in the
condition of B, the change cannot occur before b is checked, and therefore there is no
dependency. The definition of when B cannot occur after A is somewhat complex, and
omitted due to space reasons. Roughly speaking, B and A must have the same initial
goal or exogenous event (otherwise they occur in parallel), and there cannot be a control
edge path from A to B.

Figure 5 shows the graph for the same simple program. The numbers on edges refer
to the numbered items in Section 3.2, with 2’ denoting the second case of the second
numbered item.

+!t B p3
skip2

B q
4

a2'

+p2 +!t2

1

Fig. 5: Simple graph showing new slicing method’s construction
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3.3 Removing Unreachable Nodes

We analyse the graph to remove unreachable nodes. A node is reachable if there is
a control link path to it from either the initial goal, or from an exogenous update. If
neither of these is the case, then the node cannot be reached, and will never play a
role in execution. It can therefore safely be removed from the graph. Note that since
there is a control link path from each context condition to each step in its plan, if a step
node is unreachable, that means that the whole plan is unreachable, and can be deleted,
although a well-constructed program is unlikely to have unreachable plans.

3.4 Marking the Graph

Next, we mark nodes that play an essential role in determining the outcome of verifica-
tion of the desired property φ. These are nodes that must be retained. Other atomic step
nodes that remain unmarked are reachable, but can be compressed (i.e. replaced by a
null-action “skip”). There are two ways in which a node can play an essential role, and
hence be incompressible.

Firstly, a node A can directly affect the truth of φ (denoted directlyAffects(A, φ)).
For example, if φ includes the atomic property Bel a b then both +b and−b are marked
as directly affecting φ. Similarly, following Bordini et al., we define the same cases for
desire, intention, and performing actions (see Section 2.3).

Secondly, a node can indirectly affect the truth of φ by changing a belief that can
affect the subsequent execution. In order for this change to matter, it must occur be-
fore a subsequent node that directly affects φ. Changing a belief that affects subse-
quent execution corresponds to the notion of belief link, defined above, so this sec-
ond case can be defined as indirectlyAffects(A, φ) ≡ ∃B,C : A ⇒B B ∧ B ⇒∗
C ∧ directlyAffects(C, φ) where B ⇒ C ≡ B ⇒ C ∨ B ⇒B C and⇒∗ is the usual
“path of length 0 or more” operator. Note that in this case both A and B are marked: A
can affect φ by changing a condition that affects the execution of B, and B can affect φ
by allowing execution to take more than one possible path, depending on the condition
modified by A.

We then propagate markings. The basic idea is that an unmarked step should be
marked if it triggers a plan that can lead to a marked node. Formally we mark node A
when step(A) ∧ trigger(B) ∧ Â = B̂ ∧B ⇒∗ C ∧marked(C).

3.5 Compressing the Graph

Having marked the nodes that can affect φ, directly or indirectly, we can now simplify
the program by “compressing” nodes that have not been marked. This is done via the
following transformations, which are justified on semantic grounds. Note that since
GWENDOLEN does not support disjunctions in context conditions, or the test step ?c,
the 3rd transformation cannot be done, and the 4th can only be done when

∨
ci ≡ true,

in which case no test is needed.

1. If a step is unmarked then replace it with the no-effect step “skip”. Justification: If
the step is unmarked, then its execution does not affect the verification property φ,
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nor does it affect the future path of execution in a way that may affect φ. It therefore
can be safely replaced with a “do nothing” step.

2. Replace “S , skip” or “skip , S” with just “S”. This is a basic semantic equivalence,
as long as the environment is numerically ahistorical, i.e. the result of performing
an action does not depend on the number of actions performed. For example, con-
sider an environment that includes a counter that is incremented each time an action
a is performed. In this scenario, the result of executing a; a is different to that of
executing a. As long as the counter can play a role in the eventual truth of φ, we
cannot compress or remove instances of a. Note that in verification one approach is
to define an environment that at each point simply returns a nondeterministic subset
of possible percepts [12]. This environment satisfies the assumption.

3. Any two adjacent plans which have bodies that are simply a single “skip” can be
combined: +!g : c1 ← skip. +!g : c2 ← skip ⇒ +!g : c1 ∨ c2 ← skip. This
clearly preserves the execution semantics.

4. When a sub-goal has only relevant plans of the form “+!g : ci ← skip” then the
plans can be deleted, and the sub-goal +!g replaced with a simple test ?(

∨
ci)

(if
∨
ci is just “true” then +!g can be replaced with “skip”). Again, this clearly

preserves the semantics.
5. A plan triggered by an exogenous update that has a plan body that is just “skip” can

be deleted, since, semantically, this has no effect: responding to an event by doing
nothing is equivalent to ignoring the event.

Note that we only remove plans with empty (“skip”) plan bodies if there are no other
plans to handle that trigger. This differs from Bordini et al. The reason is that when
considering failure handling, the presence of these plans can make a difference. For
example, in Figure 6, if the context condition (lines 7 and 16) fails, then there is no al-
ternative plan to attempt. In GWENDOLEN’s semantics the failure to find any applicable
plan forces the program into a tight loop in which perception is no longer polled14. The
plans in lines 18-20 prevent this tight loop occurring.

Finally, note that while, for analysis purposes, we expand achievement goals using a
meta-plan, when generating the final GWENDOLEN program we remove the meta-plans
and go back to using achievement goals.

4 Evaluation

The previous section has presented the definitions of a new slicing analysis. Although
this paper does not present a formal proof of correctness, we have explained along
the way why the slicing algorithm works. In other words, we have given a sketch of
correctness by construction. Further work includes a formal statement of correctness,
along with a proof.

We have written software that takes a representation of a transformed GWENDOLEN
program, and implements the slicing method described in the previous section. Specif-
ically, the program transformation (Section 3.1) is done manually, but the graph gener-
ation, reachability analysis, and marking are all automated. The final compression step
14 This feature of the language is not common in BDI languages and it is possible that Bordini et

al. had not come across such behaviour when they were designing their algorithm
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(Section 3.5) is performed manually. The software also implements the original slicing
analysis of Bordini et al., for comparison purposes. It is important to appreciate that
the parts of the process that have been implemented are the complex parts of the analy-
sis, whereas the manual parts are simple local and compositional steps. It is also worth
noting that the implementation was done by transliterating the formal definitions given
earlier into Prolog. This means that it is easy to see that the implementation correctly
captures these definitions. However, the implementation is not efficient. Developing an
efficient implementation is future work.

We applied the slicing method to two programs from the GWENDOLEN distribution.
Both programs have been verified. The first was selected initially since it is simpler than
other verified GWENDOLEN programs, so was a good starting point. The second was
selected as a representative larger, and more complex, program. There are not many
verified GWENDOLEN programs, and slicing and timing more programs is future work.

Applying the slicing method to the cruise control example results in the sliced pro-
gram shown in the bottom part of Figure 6. The middle part of the figure shows the
plans resulting from applying the old slicing method. Comparing the two slicing meth-
ods, we observe: (1) That the original slicing method appears to be overly eager to slice
away plans that are essential to the execution (e.g. the first meta-plan that terminates
the recursion is sliced away [not shown in the Figure]); and (2) That when the original
slicing method retains a plan, it retains the whole plan, whereas the improved method
can simplify the plan (e.g. removing the wait comparing lines 8-9 with line 17).

Property φ = �(Does car accelerate → Bel car safe) was verified using AJPF15

against the original GWENDOLEN program, the program sliced using the Bordini et al.
method, and the program sliced using the new method. The original program (which, as
shown in Figure 2, has 9 plans) took 12.388 seconds to verify (user+sys time), whereas
the sliced programs took respectively 5.116 and 5.26 seconds to verify. As shown in
Figure 6, the original slicing method slices away 6 plans, keeping 3, whereas the new
slicing method keeps 6 plans, but is able to slice away parts of the plans’ bodies.

We also manually analysed a larger program which manages the physical config-
uration of a collection of autonomous Low Earth Orbit (LEO) satellites [12, Section
4]. The LEO program, which has 35 plans, is in the GWENDOLEN distribution, and
the property that we verified is theorem 18, which states that “if the planning process
succeeds then either the agent eventually believes it is maintaining the position or it
believes it has a broken thruster”. For this program and property, slicing using the old
method (yielding a program with 24 plans) makes no difference to model checking per-
formance. However, the new method (also yielding a program with 24 plans) is able
to reduce the execution from around 38 minutes (117554 states) to around 27 minutes
(67670 states). The reason why the new method does substantially better is that it is
able to remove parts of plans, which the old method is not able to do. For this program,
this considerably reduces the search space for the model checker.

15 On a 3.2 GHz Intel Core i5 iMac with 16 GB RAM running OSX 10.10.3.
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1:Reasoning Rules:
2can accelerate :− safe, ˜ driver accelerates, ˜ driver brakes;
3:Initial Goals:
4at speed limit [achieve]
5
6:Plans: // Bordini slicing
7+! at speed limit [achieve] : {B can accelerate} ←
8perf(accelerate),
9wait;
10−at speed limit: {˜G at speed limit [achieve],
11˜B at speed limit} ← +! at speed limit[achieve];
12+driver accelerates: {B safe, ˜B driver brakes,
13B driver accelerates} ← perf(accelerate);
14
15:Plans: // New slicing
16+! at speed limit [achieve] : {B can accelerate} ←
17perf(accelerate);
18+! at speed limit [achieve] : {˜B safe}; //← skip
19+! at speed limit [achieve] : {B driver accelerates} ;
20+! at speed limit [achieve] : {B driver brakes} ;
21−at speed limit: {˜G at speed limit [achieve],
22˜B at speed limit} ← +! at speed limit[achieve];
23+driver accelerates: {B safe, ˜B driver brakes,
24B driver accelerates} ← perf(accelerate);

Fig. 6: Sliced GWENDOLEN program

5 Discussion

We have extended the work of Bordini et al. [4] by updating it for the GWENDOLEN
framework, defining a graph that reflects the execution semantics of the language (in-
cluding failure handling), and using a more precise slicing method that is able to sim-
plify plan bodies. We emphasise that this paper provides a full and precise formalisation
of the method, and that we have implemented the complex parts of the process. By con-
trast, Bordini et al. do not actually define the precise construction of the LDN, instead
they refer to Zhao et al. Additionally, they did not implement the method, performing
their slicing entirely by hand.

Future work includes:

1. Defining the belief link constraint “can influence”, and extending to properly handle
reasoning rules, which requires revising the definition of contains to account for
indirect effects via reasoning rules;

2. Exploiting the logical structure of φ, for instance, consider φ = �(Does ag a →
Bel ag b), i.e. whenever ag does a it must believe b. The original slicing algorithm
considers any step that modifies b to be relevant, but the belief b is only relevant
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when action a is done. So for instance, in the (special but not unusual) case where
a only occurs as the first step of a plan whose context condition checks b, then no
other plan is relevant to model checking φ;

3. Further evaluation, including investigating what characteristics of particular agent
programs make them more or less likely to benefit from slicing, and implementing
the transformation and compression steps;

4. Implementing an efficient algorithm16, and analysing its complexity; and
5. Completing the proof of correctness.
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