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Abstract   

 

Peritoneal fibrosis is a common complication of abdominal and pelvic surgery, and it 

can also be triggered by peritoneal dialysis resulting in treatment failure. In these 

settings, fibrosis is driven by activated myofibroblasts that are considered to be partly 

derived by mesothelial-to-mesenchymal transition (MMT). We hypothesised that if 

the molecular signature of MMT could be better defined, these insights could then be 

exploited to functionally block this pathological cellular transition. Using an antibody 

to HBME1, a protein present on mesothelial cell microvilli, and streptavidin nanobead 

technology, rat peritoneal mesothelial cells were purified and cultured. After exposing 

sorted cells to a well-known mediator of MMT, transforming growth factor β1 

(TGFβ1), RNA sequencing was undertaken to define the transcriptomes of 

mesothelial cells before and during early phase MMT. MMT was associated with 

dysregulation of transcripts encoding molecules involved in insulin-like growth factor 

(IGF) and bone morphogenetic factor (BMP) signalling. The application of either 

recombinant BMP4 or IGF binding protein 4 (IGFBP4) ameliorated TGFβ1-induced 

MMT in culture as evidenced by the retention of epithelial morphological and 

molecular phenotypes, and reduced migration. Furthermore, compared with control 

tissue, peritoneal tissue from peritoneal dialysis patients showed less prominent 

immunostaining for IGFBP4 and BMP4 on the peritoneal surface. In a mouse model 

of TGFβ1-induced peritoneal thickening, BMP4 immunostaining on the peritoneal 

surface was attenuated compared with healthy controls. Finally, genetic lineage 

tracing of mesothelial cells was used in mice with peritoneal injury. In this model, 

administration of BMP4 ameliorated the injury-induced shape change and migration 
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of mesothelial cells. Our findings demonstrate a distinctive MMT signature and 

highlight the therapeutic potential for BMP4, and possibly IGFBP4, to reduce MMT.  

 

Key words bone morphogenetic protein, insulin-like growth factor, peritoneum, 

mesothelium 
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Introduction  

 

Epithelia form sheets and tubules conferring physical integrity and physiological 

function. Epithelial-to-mesenchymal transition (EMT) occurs in normal development 

during gastrulation and neural crest migration. EMT is characterised by disrupted 

cell-cell adhesion and apical-basolateral polarity, cytoskeletal reorganisation, 

detachment from basement membranes, and generation of motile mesenchymal 

cells. The reverse process, mesenchymal-to-epithelial transition (MET), occurs 

during somitogenesis and nephrogenesis [1,2]. Mesothelial cells (MCs) are 

epithelial-like cells lining the coelomic cavities and the organs they contain. MCs 

have junctional complexes and apical-basolateral polarity, and adhere to a basement 

membrane. MCs secrete glycosaminoglycans and surfactant, permitting frictionless 

gliding of organs, and act as a barrier expressing inflammation-modulating cytokines. 

MCs in vivo not only express cytokeratins, characteristic of epithelia, but also 

vimentin, more typical of mesenchyme [3]. In normal development, some MCs 

undergo mesothelial-to-mesenchymal transition (MMT) to form vascular smooth 

muscle [4,5]. In development and cancer, snail, twist and slug transcription factors 

drive EMT [6,7]. MCs are not typical epithelia, so MMT and EMT biology may not be 

identical. 

 

Fibrosis is an aberrant response to injury and therapies to slow or reverse fibrosis 

are urgently needed. Alpha-smooth muscle actin (αSMA) expressing myofibroblasts 

drive fibrosis, and EMT is proposed to generate some of these cells [1,8]. In 

response to injury, MCs can undergo MMT [9-13]. For example, after injection of 

labelled MCs into the peritoneal cavity, they appear in the regenerating mesothelial 
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layer and in the sub-mesothelial layer [14]. Peritoneal fibrosis can be triggered by 

peritoneal dialysis, causing treatment failure, as well as surgery, causing adhesions. 

So, targeting MMT may prevent scarring. Mesothelial damage by peritoneal dialysis 

or surgery initiates production of pro-fibrotic mediators, notably transforming growth 

factor β1 (TGFβ1) [3]. We hypothesised that if the molecular signature of TGFβ1-

induced MMT could be defined, these insights could be exploited to ameliorate MMT.  
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Materials and Methods  

 

Animal experiments were undertaken according to ARRIVE guidelines and were 

approved by Review Boards of the Universities of Manchester and Liverpool, and by 

the Home Office.  

 

Isolation, purification and culture of rat MCs 

Omental tissue was dissected from adult 9-12 week old female Wistar rats weighing 

220-250g (Charles River, Cambridgeshire, UK). Tissue was dissociated in 0.25% 

trypsin-EDTA (Sigma-Aldrich, Dorset, UK) for 20 min at 37°C. Cells were incubated 

with HBME1 antibody (Dako, Cambridge, UK) 1:50 for 30 min in 3% BSA in PBS. 

Cells were washed and incubated for 30 min with biotinylated secondary antibody 

(1:100; Vector Laboratories, Peterborough, UK). Following further washes, 1.5x106 

cells were incubated with streptavidin-coated magnetic nanobeads (Biolegend, 

London, UK) for 15 min, then placed in a MojoSort™ magnet (Biolegend) for 5 min. 

Uncaptured cells were decanted and the remainder resuspended in culture media 

comprising DMEM, high glucose supplemented with 15% FCS, 4 mM L-glutamine 

(Sigma-Aldrich), 1% v/v penicillin/streptomycin and 0.4 µg/ml hydrocortisone (Sigma-

Aldrich). In other experiments, cells from trypsinized omentum underwent FACS 

sorting, as described [15]. Cells were processed as for magnetic bead sorting but 

HBME1 antibody was detected with IgM Alexa488 (1:1000; Thermo Fisher Scientific, 

Runcorn, UK). Cells were seeded at 5x104 per cm2 in multi-well plates. After 

comparing the two methods, subsequent experiments were performed using Mojo-

purification. After 48-72 h of culture following enrichment, cells were washed with 

HBSS and media changed every other day for up to 10-11 days. Cells were then 
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placed in low serum (5% FCS) media. Cells were exposed to 1 ng/ml TGFβ1 for 48h 

(R&D Systems, Abington, UK) and/or 50 ng/ml bone morphogenetic protein (BMP4; 

Biolegend) and/or 50 ng/ml insulin-like growth factor binding protein 4 (IGFBP4; 

Biolegend). 

 

 

RNA sequencing (RNA-seq) and quantitative polymerase chain reaction 

(QPCR) 

These are detailed in the Supplementary Information. For RNA-seq, differentially 

expressed transcripts were defined as those showing at least a 0.36 log2-fold 

increase or decrease versus controls, and a statistical significance of P<0.05 

corrected for multiple comparisons.  The transcriptome data set is deposited in the 

ArrayExpress repository (E-MTAB-5998).  

 

Immunostaining rat tissues, cell migration assay and ELISA 

Details are found in Supplementary Information 

 

TGFβ1-induced peritoneal fibrosis and peritoneal MC lineage tracing in mice.  

Two models of peritoneal injury were studied. The first analysed tissues collected 

from wild-type C57 BL6J mice that had received intraperitoneal adenovirus 

expressing TGFβ1. We previously described that this led to submesothelial fibrosis 

in vivo [16]. In a second model, we combined surgical abrasion of the peritoneum 

[17] with a MC lineage tracing strategy, similar to that described by Lua et al, [18] but 

using LacZ rather than GFP. Detailed protocols are found in Supplementary 

Information. 
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Human tissue analyses 

After informed patient consent and ethical approval (REC 06/Q1407/94), peritoneum 

was collected from individuals undergoing hernia repair (n=4) and from end-stage 

kidney disease patients who had undergone peritoneal dialysis (n=4). Tissues were 

fixed in 4% PFA for 24 h, and processed into paraffin blocks. Seven µm sections 

were permeabilised with 0.2% Triton in PBS, then incubated with primary antibodies 

to HBME1 (1:50; Dako), IGFBP4 (1:700; Abcam) or BMP4 (1:100; Abcam) overnight 

at 4˚C. Sections were incubated with Rabbit IgG Specific HRP/DAB (ABC) detection 

kit (Abcam). Images were obtained using a light microscope (Olympus) and image 

Pro Plus software (Media Cybernetics, Cambridge UK). 

 

Statistics  

Analysis for RNA sequencing data is outlined above. All other data sets were 

normally distributed, so presented as mean±SEM. Student’s t-tests or ANOVA with 

Tukey post hoc tests were used to compare groups. Analyses were performed with 

GraphPad Prism 6 (GraphPad Software).  
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Results 

 

MC enrichment  

In rat omentum sections, HBME1 was immunodetected in MCs (Figure1A) but 

adipose and connective tissue were negative. Primary cultures of omental cells that 

had been selected after binding to the HBME1 antibody either by FACS or magnetic 

bead sorting (Mojo) showed an enhanced cobblestone appearance versus unsorted 

cells (Figure 1B). Compared with unsorted cells, FACS or magnetic bead sorting 

each resulted in significant enrichment of cells expressing HBME1 (Figure 1B and C) 

or Wt1 (Figure 1B and D), a MC transcription factor [4,5]. Unsorted cells showed a 

mean value for the level of HBME1 immunostaining of approximately 27,000 

pixels/nucleus that rose significantly after either HBME1 FACS to 162,000 (P=0.022) 

or magnetic bead sorting to 192,000 (P=0.005). Wt1 was immunodetected in 

approximately half of all nuclei of unsorted cells, rising to 90% after HBME1 FACS 

sorting (P=0.022) and to 92% after HBME1 magnetic bead sorting (P=0.017).  

 

Induction of MMT in cell culture 

Mojo-sorted MCs were exposed to TGFβ1, a driver of both MMT and also peritoneal 

fibrosis [19,20]. After 48 h, untreated MCs maintained their cobblestone morphology 

(Figure 1E), whereas parallel cultures exposed to 1 ng/ml TGFβ1 progressively lost 

their epithelioid appearance and acquired an irregular elongated morphology (Figure 

1E). Primary cultures of sorted cells displayed positive immunostaining for ZO1, a 

tight junction protein, and vimentin, an intermediate filament protein (Figure 1F) as 

expressed by MCs in vivo [21,22]. Immunostaining for E-cadherin was barely 

detectable, whereas MCF7 breast epithelial cells showed prominent cell-cell junction 
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immunostaining (Supplementary Figure S1). Using immunohistochemistry, the 

mesothelial layer of rat omentum in vivo was negative for E-cadherin, while nearby 

pancreatic ductal cells were positive (Supplementary Figure S1). In TGFβ1-

exposured Mojo-sorted MCs: ZO1 became less prominent at cell-cell junctions, 

instead appearing in a cytoplasmic pattern; vimentin appeared more prominent; and 

αSMA, a smooth muscle contractile protein, appeared upregulated versus untreated 

cells (Figure 1F). Therefore, this protocol induced certain phenotypic changes 

considered typical of MMT [23,24]. 

 

Gene expression in purified MCs 

To define the transcriptome of purified MCs we undertook RNA-seq. The complete 

dataset are is available in the ArrayExpress repository (E-MTAB-5998). In MCs 

exposed to 1 ng/ml TGFβ1 for 48 h, 834 species of transcripts increased, and 487 

decreased, versus cells cultured without exogenous TGFβ1. Unsupervised 

hierarchical clustering clearly distinguished between the two groups (Figure 2A). The 

volcano plot in Figure 2B is annotated for changed ‘epithelial signature’ transcripts, 

with Table 1 showing a list of changed transcripts in this class. Among 

downregulated transcripts were: Cng, encoding the tight junction protein cingulin; 

Cldn2 and Cldn15, encoding tight junction claudins; Col4a3 and Col4a4, encoding 

epithelial basement membrane collagens; Itga3, Itga6, Itgb3 and Itgb4, encoding 

integrins; Krt13, Krt18, Krt19 and Krt23, encoding keratin intermediate filaments; 

Lamb2 and Lamb3, encoding laminin B2 and 3; Podxl, encoding silaomucin 

podocalyxin-like protein 1; Ppl, encoding the desmosomal protein periplakin; and 

Upk3b, encoding uroplakin 3B, a plasma membrane protein characteristic of 

mesothelia in vivo [25]. Control cells expressed high levels of transcripts for Wt1, and 
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for Msln encoding the glycosylphosphatidylinositol-anchored cell-surface protein 

mesothelin [26], but only low levels of Cdh1, encoding the cell-cell adhesion protein, 

E-cadherin. Moreover, levels of these three transcripts did not significantly change 

upon TGFβ1 exposure. Notably, Sfn levels rose after exposure to TGFβ1: the 

transcript encodes stratifin that has been linked to epithelial differentiation [27]. 

QPCR was undertaken (Figure 2C) for a subset of transcripts (Cdh1, Cng, Col4a3, 

Col4a4, Pdxl, Snai1, Tjp1, Upk3b, and Vim), with generally similar conclusions to the 

RNA-seq findings, although the fall in Tjp1 was not significant. Notably, Cdh1 

transcripts were detectable but very low in the RNA-seq and unchanged by TGFβ1 

(Table 1). E-cadherin, the encoded protein, was not detected in vivo was barely 

detected in cultured MCs (Supplementary Figure S1). 

 

A selection of ‘mesenchymal/extracellular matrix signature’ transcripts is shown in 

Table 2. TGFβ1 exposure led to an increase in transcripts for Acta2, encoding 

αSMA, and Vim, encoding vimentin. These fold increases, however, were exceeded 

by those for the following transcripts: Ncam1 and Vcam1, encoding neural and 

vascular cell adhesion molecules respectively; and Tnc and Tnn, encoding tenascin 

C and tenascin N respectively, both extracellular matrix glycoproteins. Table 3 lists 

transcripts previously implicated in classical EMT. A shown in Table 3, the following 

transcripts were upregulated: Tgfb1, 2 and 3; Snai1 and Snai2, encoding snail zinc 

finger proteins 1 and 2. We found that levels of Twist 1 and 2, encoding transcription 

factors considered key effectors of classical EMT [1,28], were not significantly 

altered by TGFβ1 (as shown in Table 3).  
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MMT is associated with altered transcripts of BMP and IGF pathway molecules 

RNA-seq (Figure 3A and Table 4) revealed that control MCs expressed high levels of 

Bmp4 transcripts but low levels of Bmp7. Bmp4 was markedly downregulated upon 

exposure to TGFβ1, whereas levels for Grem2, that encodes the BMP antagonist, 

gremlin 2 [29], increased markedly as did Bmp1, encoding an atypical BMP family 

member that is a secreted metalloprotease implicated in cartilage formation [30]. 

TGFβ1 exposure led to increases in Igf1 and Igf2, respectively encoding insulin-like 

growth factors I and II. Igfbp2, Igfbp4, Igfbp5 and Igfbp6 decreased. These encode 

IGFBPs that alter the interaction of IGFs with their cell surface receptors, usually 

decreasing IGF signalling [31]. We also detected marked increased levels of Pappa 

that encodes pregnancy-associated plasma protein A, a secreted metalloproteinase 

that cleaves IGFBPs, rendering them inactive [32]. Using QPCR, Bmp4 and Igfb4 

transcripts also fell (Figure 3B). As assessed by ELISA, TGFβ1 exposure was also 

associated with decreased concentrations of BMP4 and IGFBP4 proteins in media 

conditioned by MCs (Figure 3C).  

 

 

Exogenous BMP4 or IGFBP4 ameliorate TGFβ1-induced MMT in vitro 

We hypothesised that the diminished levels of BMP4 and IGFBP4 described above 

might modulate TGFβ1-induced MMT. We administered 50 ng/ml BMP4 or IGFBP4 

recombinant proteins to MC cultures. As assessed by gross morphology and 

immunostaining for ZO1, cingulin and αSMA, addition of either protein alone did not 

affect the phenotype of these cells (data not shown). In contrast, addition of either 

BMP4 or IGFBP4 to TGFβ1-exposed cells (Figure 4A) retained aspects of the 

epithelial phenotype and ameliorated the mesenchymal phenotype as assessed by: 
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preservation of a cobblestone appearance; a less prominent ZO1 cytoplasmic 

localisation; and reduction of αSMA immunostaining (Figure 4A), confirmed to be 

significant upon quantification (Figure 4B). In contrast, neither exogenous BMP4 nor 

IGFBP4 prevented the loss of cell-cell cingulin localisation following addition of 

TGFβ1 (Figure 4A). A key event during MMT is cell migration, so we studied this with 

a scratch assay in MC cultures (Figure 4C). Versus controls, MCs exposed to 1 

ng/ml TGFβ1 displayed significantly enhanced wound closure at 16 h, consistent 

with an increased migration. Addition of IGFBP4 or BMP4 significantly limited this 

effect (Figure 4D). 

 

Exploration of BMP4 in two mouse models of peritoneal fibrosis 

In a mouse model of peritoneal fibrosis induced by intraperitoneal TGFβ1-expressing 

adenovirus, there was an attenuation of BMP4 immunostaining of the surface of the 

peritoneum (Figure 5A). Next, we ‘genetically labelled’ peritoneal MCs by activation 

of the LacZ allele induced by activating Wt1 promoter-driven Cre recombinase. Here, 

labelled cells and their progeny express a reporter that can be detected using the X-

gal reaction. As noted by Lua et al. Wt1 promoter-driven Cre recombinase activation 

occurs in a subset of MCs, so only the fates of the labelled population can be tracked 

[18]. Mice underwent surgery to induce adhesion formation and a subset were 

administered BMP4. In whole mount preparations, we found elongated blue cells in 

zones immediately adjacent to the nascent scar whereas, in injured mice exposed to 

exogenous BMP4, clusters of cuboidal cells were noted (Figure 5B, upper frames). 

On histology, cells expressing the reporter were noted under the peritoneal surface 

after injury whereas, after administration of BMP4, labelled cells were present on the 
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peritoneal surface (Figure 5B, lower frames). These observations suggest that BMP4 

helps restore ‘healthy’ mesothelial morphology following injury in vivo. 

 

Altered patterns of BMP4 and IGFBP4 in human peritoneal dialysis tissue 

Mesothelium was identified in control and peritoneal dialysis exposed human 

peritoneal tissue sections, as determined by HBME1 immunostaining (Figure 6). 

Control peritoneal tissue, from otherwise healthy patients undergoing incidental 

hernia surgical repair, showed positive immunostaining for both IGFBP4 and BMP4 

on the peritoneal surface. This pattern was attenuated in tissue harvested from 

peritoneal dialysis patients (Figure 6). Scattered cells below the mesothelial layer 

showed positive staining for IGFBP4, which may represent retention of some 

mesothelial characteristics in cells undergoing MMT [10] . 
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Discussion 

 

Previous studies investigating peritoneal MCs generally analysed cultures obtained 

solely by enzymatic digestion of omentum [23,33,34]. A few studies have enriched 

for MCs using procedures such as positive selection for HBME1 using FACS [15], 

removal of CD45-positive cells [35], or sorting for glycoprotein M6a (GpM6a) 

expressing cells using magnetic beads [18]. We found similar levels of MC 

enrichment by FACS or magnetic bead sorting: both use positive sorting with 

HBME1 antibody against a microvillus protein characteristic of MCs and produced 

populations in which around 90% of cells were Wt1+. Magnetic bead sorting offers a 

convenient method which bypasses the need to access cell sorting facilities. 

Whether sorting using both HBME1 plus another specific MCs marker, such as 

mesothelin or GpM6a, generates a greater enrichment could be addressed in future 

studies.  

 

Using RNA sequencing, we identified numerous ‘epithelial marker’ RNAs in purified 

rat MCs, including transcripts encoding ZO1, mesothelin, uroplakin 3B, and 

podoplanin, similar to previous reports. Purified MCs also expressed high transcript 

levels for several keratins, for Wt1, and for Msln encoding the cell-surface protein 

mesothelin [26]. MCs appear to share certain molecules, including Wt1 and 

podocalyxin-like protein 1, with podocytes, specialised epithelia within kidney 

glomeruli. As for podocytes, the molecular signature of MCs has certain similarities 

to generic mesenchymal cells; for example, both epithelia contain abundant vimentin 

[36]. Thus, MCs are ‘epithelial-like’ rather than exactly like ‘classic’ epithelia.  
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The expression of the cell-cell junction protein, E-cadherin and its downregulation 

during EMT reflecting the destabilization of adherens junctions, has been considered 

a hallmark of EMT and has been noted in some MMT studies [23,35,37]. In our 

study, however, RNA sequencing of HBME1-sorted rat MCs revealed very low reads 

for Cdh1, the transcript encoding E-cadherin; moreover, there was no significant 

change after TGFβ1 exposure. Furthermore, E-cadherin was not detected in rat 

omentum using immunohistochemistry. Notably, literature already points to a 

heterogeneity of E-cadherin expression by MCs studied in different contexts. Cells 

harvested from human omentum, or collected from dialysis effluent, expressed E-

cadherin [35] but MCs covering the liver [38] or the body wall [18] of mice did not 

express E-cadherin in vivo, nor did human ovarian MCs [39].  

 

Given the heterogeneity of MCs, depending on their source, there are unlikely to be 

exactly the same changes in gene expression as they undergo MMT. Ruiz-Carpio et 

al, [35] analysed human peritoneal cells that had undergone, or were undergoing, 

MMT. MMT was associated with increased levels of transcripts for THBS1, VCAN 

and ITGA11, while BMP4 and THBD were downregulated. Inspection of our RNA 

sequencing data (ArrayExpress repository E-MTAB-5998 and Tables in this paper) 

revealed similar significant changes. On the other hand, they noted markedly 

increased levels of IL33 and IL6, whereas we found that the former transcript was 

expressed but unchanged after TGFβ1, and the latter was not expressed. Moreover, 

Ruiz-Carpio et al. also noted marked decreased levels of transcripts for AQP1, 

MUC16 and VTN. In our arrays, the former two transcripts were expressed but 

unchanged by TGFβ1 while the latter was not expressed. Moreover, because MCs 

are not typical epithelia, MMT molecular profiles are unlikely to be exactly the same 
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as for EMT. In our RNA-seq study, Snai1, Snai2 and Zeb2 were all significantly 

upregulated in TGFβ1-induced MMT, and all three molecules tend to increase in 

typical EMT. Conversely, we did not detect TGFβ1-induced changes in either Cdh2, 

encoding the cell-cell junction protein N-cadherin, or in Twist1 and Twist2, encoding 

transcription factors: all three have been implicated in typical EMT. Collectively, 

these observations support the idea that that there are unlikely to be exactly the 

same changes in gene expression in all forms of EMT or MMT. 

 

In the current study, Sox9 transcripts, encoding sex-determining region Y-box 9, 

were significantly upregulated in MMT. This transcription factor has been implicated 

in fibrosis [40] and likely synergizes with SNAIL1 or SNAIL2 to drive EMT [41,42]. 

The role of Sox9 in regulating MMT and peritoneal fibrosis warrants further 

investigation. Wt1 is a transcription factor that regulates the balance between EMT 

and MET in development [43,44]. In the current study, purified MCs expressed high 

levels of Wt1 but these showed no significant change in response to TGFβ1. Another 

group, analysing pleural MCs, detected MMT when Wt1 was experimentally 

downregulated [45]. Thus, downregulation of Wt1 can be associated with MMT but 

appears not essential for TGFβ1-induced MMT in our current study. 

 

We also found that TGFβ1 exposure led to an upregulation of transcripts encoding 

tenascins C and N. Tenascin C is an extracellular matrix protein that has been found 

to inhibit cellular adhesion to fibronectin and recently proposed to be a potential 

biomarker in peritoneal dialysis associated with poor membrane function [46]. 

Tenascin N is a member of the tenascin family previously associated with neurite 

outgrowth and appears not to have been previously highlighted in MMT so is worthy 
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of further investigations. Upregulation of neural cell adhesion molecule 1 (NCAM-1) 

has been reported to promote the formation of focal adhesions in mesothelial-

derived tumours [47], but a possible functional role in MMT is yet to be elucidated. 

Vascular cell adhesion molecule 1 (VCAM-1), important for leucocyte adhesion, was 

also induced by TGFβ1 and previously reported to be upregulated in MCs exposed 

to advanced glycation end products [48,49], and the soluble form was reported to 

inhibit MMT  [50].  

 

We hypothesised that if the molecular signature of MMT could be better defined, 

these insights could then be exploited to functionally block this pathological cellular 

transition. We discovered that, in response to TGFβ1, MCs showed robust down-

regulation of BMP4. Apart from BMP1 which is a metalloprotease, BMPs are growth 

factors belonging to the TGFβ superfamily that are secreted and bind to dimers of 

BMP receptors I and II, eliciting intracellular signalling via SMAD phosphorylation. 

BMP4 is required for gastrulation and for lung, heart and kidney development [51]. 

We reasoned that the TGFβ1-induced depletion of BMP4 might itself modulate MMT. 

Indeed, recombinant BMP4 partially prevented TGFβ1-induced MMT, as evidenced 

by retention of membranous ZO1 localisation, lack of αSMA induction and reduced 

cell migration in vitro. Moreover, we found that BMP4 immunostaining on peritoneal 

surfaces was attenuated versus healthy controls in human peritoneal dialysis tissue 

and in a mouse model of TGFβ1-induced peritoneal fibrosis. Finally, genetic lineage 

tracing of MCs was used in mice with peritoneal injury. Here, BMP4 administration 

ameliorated injury-induced shape change and migration of cells expressing the 

reporter gene. We interpret these results as showing that genetically labelled MCs, 

and/or their progeny, move under the surface of the injured mesothelium, as also 
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concluded by Lua et al. when they examined a model of chlorhexidine gluconate 

(CG)-induced fibrosis [18]. Our findings demonstrate a distinctive MMT signature and 

highlight the therapeutic potential for BMP4 to reduce MMT. Future experiments will 

be needed, however, to determine whether BMP4 ameliorates the degree of scarring 

in vivo. Although this is a novel finding with regard to MMT, application of BMP4 was 

shown to reduce retinal epithelial cell EMT in a similar manner [52]. BMP7 has been 

shown to ameliorate MMT in previous studies, and BMP7 and BMP4 signal though 

similar pathways [53]. Our RNA sequencing data showed that Bmp4 was highly 

expressed in rat MCs whereas Bmp7 reads were low; moreover only Bmp4 was 

significantly downregulated upon exposure to exogenous TGFβ1 (Bmp4 average 

reads of 3434 reducing to 1428 with exposure to TGFβ1 (P=5.09E-24); and average 

Bmp7 reads at baseline of 80, and 39 upon exposure to exogenous TGFβ1 

(P=0.108). Therefore, of these two BMP molecules, it is BMP4 that is the key 

endogenous factor in our model. In parallel with the downregulation of BMP4 in MCs 

undergoing MMT, there was an increase in transcripts encoding gremlin-2, a 

member of the BMP-antagonist gremlin family [29,54]. Notably, it has been reported 

that adenovirus-mediated upregulation of gremlin1 promotes peritoneal fibrosis in 

mice [55]. We speculate that BMP4 signalling via phosphorylation of Smad1/5/8 

opposes TGFβ1 mediated phosphorylation of Smad2/3 signalling [53]. Thus, the two 

signalling pathways may keep the balance of homeostasis in the mesothelium.  

 

Our transcriptome analyses also revealed that transcripts encoding growth factors 

IGF1 and IGF2 were up-regulated during MMT. In parallel, levels of transcripts 

encoding of IGFBP4 and IGFBP5 were markedly downregulated. These changes are 

predicted to lead to an increase in IGF signalling activity as IGFBPs lengthen the 
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half-life of circulating IGF-I due to their higher affinity to IGF ligands than the 

receptors [31]. We showed that recombinant IGFBP4, like BMP4, ameliorated 

TGFβ1-induced MMT in vitro. Furthermore, immunostaining for IGFBP4 of peritoneal 

tissues harvested from peritoneal dialysis patients was less prominent in the 

mesothelial layer with some evidence of expression in cells of the submesothelium 

that might represent migrated MCs or their progeny. Studies show that IGF signalling 

interacts at several levels with various components of the TGFβ signalling pathway 

[56]. In future, it will be important to determine whether similar interactions may be 

regulating IGF-induced MMT in the peritoneum.  

 

Blocking downstream TGFβ1 signalling pathways may be another way to attenuate 

MMT including targeting Smad-dependent pathways [57] and Smad-independent 

such as Akt/mTOR [57], c-Jun N-terminal kinase (JNK)[57], Wnt/β-catenin [58], 

integrin-linked kinase/glycogen synthase kinase-3β (ILK/GSK-3β) [59], extracellular 

signal-regulated kinase/nuclear factor kappa B (ERK/NF-κB) [33], and mitogen-

activated protein kinase (MAPK) [60]. Another approach, however, based on the 

findings from the current study, would be to focus on introducing BMP4 and IGFBP4 

to prevent MMT and peritoneal fibrosis. Importantly, evidence suggests MMT occurs 

in diverse peritoneal pathologies including surgical adhesions [61], endometriosis 

[62] and peritoneal metastasis [63]. Interestingly, in a rat model of surgical 

adhesions, IGFBP4 administration ameliorated peritoneal scarring [64], although a 

link to MMT was not explored. Future studies are required to elucidate whether 

therapeutically manipulating BMP4 or IGFBP4 signalling could ameliorate the 

severity of these conditions. 
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Tables 

Table 1. Epithelial signature transcripts 

Gene 
Symbol 

Encoded molecule Control 
mean 
reads 

TGFβ1 
mean 
reads 

log2Fold 
Change 
(paired) 

FDR 

Down-regulated genes 

Cgn Cingulin 1559 560 -1.507 2.03E-26 

Podxl Podocalyxin-like 6607 3107 -1.163 1.09E-11 

Cldn15 Claudin 15 9166 5886 -0.654 1.14E-09 

Cldn2 Claudin 2 1427 781 -0.797 4.41E-08 

Col4a3 Collagen 2C type IV 488 248 -1.186 2.38E-07 

Upk3b Uroplakin 3B 20429 14864 -0.467 3.73E-06 

Col4a4 Collagen 2C_type_IV 2C_alpha_4 11887 5809 -1.265 4.03E-06 

Krt23 Keratin_23 135 48 -1.388 5.08E-06 

Krt13 Keratin_13 426 217 -1.250 6.08E-06 

Tjp1 Tight_junction_protein_1 (ZO-1) 15384 11569 -0.416 3.38E-05 

Itgb3 
 

Integrin_subunit_beta_3 
 

689 396 0.682 9.00E-05 
 

Ppl Periplakin 5588 2588 -1.160 0.000133 

Itga6 
 

Integrin_subunit_alpha_6 1325 
 

774 
 

-0.842 
 

0.000297 
 

Lamb2 Laminin_subunit_beta_2 6366 4755 -0.423 0.001374 

Itgb4 
 

Integrin_subunit_beta_4 
 

1367 
 

975 
 

-0.500 
 

0.001535 
 

Krt19 Keratin_19 463 216 -1.581 0.00259 

Krt18 Keratin_18 350 232 -0.727 0.002744 

Lamb3 Llaminin_subunit_beta_3 35 13 -1.399 0.007653 

Cldn1 Claudin_1 5787 4347 -0.445 0.015106 

Krtap17-1 Keratin_associated_protein_17-1 12 2 -2.480 0.033379 

Lyve1 Lymphatic_vessel_endothelial_hyaluronan_receptor_1 1279 233 -1.514 0.036201 

Unaltered genes 

Cdh1 Cadherin_1 20 26 0.673 0.441269 

Wt1 Wilms_tumor_1 10613 10041 -0.091 0.588825 

Msln Mesothelin 63897 62175 -0.046 0.8759 

Up-regulated genes 

Sfn Stratifin 66 472 2.802 1.53E-33 

Lamc2 Laminin_subunit_gamma_2 180 245 0.450 0.014634 

Selected ‘epithelial’ transcripts, with mean number of reads in control and TGFβ1 exposed 
MCs, along with log2fold change and P values corrected for false discovery rate (FDR).  
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Table 2. Mesenchymal/Extracellular matrix transcripts 
Gene 
Symbol 

Encoded molecule Control 
mean 
reads 

TGFβ1 
mean 
reads 

log2Fold 
Change 
(paired) 

FDR 

Up-regulated genes 

Ncam1 Neural_cell_adhesion_molecule_1 3953 12859 1.697 5.70E-86 

Vcam1 Vascular_cell_adhesion_molecule_1 228 1520 2.655 1.76E-54 

Tnc Tenascin_C 2051 23742 3.411 1.10E-24 

Myh10 Myosin 2C_heavy_chain_10 2C_non-muscle 11788 18601 0.657 8.78E-24 

Tnn Tenascin_N 36 1107 4.501 8.21E-21 

Col4a1 Collagen 2C_type_IV 2C_alpha_1 77636 135323 0.846 5.64E-19 

Itga8 Integrin_subunit_alpha_8 3040 7398 1.261 4.60E-18 

Vcl Vinculin 5691 9826 0.776 8.38E-16 

Fscn1 Fascin_actin-bundling_protein_1 1041 2146 1.043 5.51E-13 

Col4a2 Collagen 2C_type_IV 2C_alpha_2 46061 67902 0.587 2.61E-12 

Col5a1 Collagen 2C_type_V 2C_alpha_1 32014 53822 0.714 2.27E-11 

Nexn Nexilin_(F_actin_binding_protein) 168 474 1.521 2.76E-11 

Msn Moesin 15597 24472 0.649 2.60E-10 

Col1a1 Collagen 2C_type_I 2C_alpha_1 394092 603398 0.614 6.44E-10 

Tns1 Tensin_1 10590 14483 0.456 9.23E-10 

Vim Vimentin 44279 68467 0.607 5.02E-09 

Myh11 Myosin 2C_heavy_chain_11 2C_smooth_muscle 302 797 1.225 8.56E-08 

Tagln Transgelin 12509 47656 1.871 1.13E-07 

Itga11 Iintegrin_subunit_alpha_11 457 1006 0.987 6.25E-07 

Col5a2 Collagen 2C_type_V%2C_alpha_2 82389 108911 0.401 3.98E-06 

Itgb1 Integrin_subunit_beta_1 78702 105859 0.415 1.32E-05 

Acta1 Actin 2C_alpha_1 2C_skeletal_muscle 5 41 2.685 3.50E-05 

Itga5 Integrin_subunit_alpha_5 4444 6242 0.497 0.000182 

Vcan Versican 4112 7823 1.073 0.000438 

Itgae Integrin_subunit_alpha_E 147 228 0.629 0.00048 

Itgb6 Integrin_subunit_beta_6 10 32 1.673 0.001715 

Col3a1 Collagen 2C_type_III 2C_alpha_1 378113 468616 0.303 0.001948 

Des Desmin 5410 6856 0.347 0.002501 

Acta2 Actin 2C_alpha_2 2C_smooth_muscle 2C_aorta (α-
sma) 

5648 22466 1.970 0.003539 

Cib2 Calcium_and_integrin_binding_family_member_2 235 337 0.514 0.006403 

Itgav Integrin_subunit_alpha_V 3648 4592 0.351 0.013587 

Itga10 Integrin_subunit_alpha_10 3 14 2.126 0.01948 

Itgbl1 Integrin_subunit_beta_like_1 5767 7379 0.389 0.021021 

Itga1 Integrin_subunit_alpha_1 794 1035 0.382 0.03803 

Unaltered genes 

F13a1 Coagulation_factor_XIII_A1_chain 3158 818 -1.105 0.125258 

Cdh2 Cadherin_2 4330 4467.3 0.014 0.979014 

Down-regulated genes 

S100a4 S100_calcium-binding_protein_A4 (FSP1) 10232 6267 -0.730 1.33E-11 
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Selected ‘mesenchymal’ and extracellular matrix molecule transcripts, with mean number of 
reads in control and TGFβ1 exposed MCs, along with log2 fold change and P values 
corrected for false discovery rate (FDR).  
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Table 3. Transcription and growth factors previously implicated in EMT and/or MMT 
 
Gene 
Symbol 

Encoded molecule Control 
mean 
reads 

TGFβ1 
mean 
reads 

log2Fold 
Change 
(paired) 

FDR 

Up-regulated genes 

Postn Periostin 907 12663 3.933 4.53E-37 

Tgfb2 Transforming_growth_factor 2C_beta_2 1168 2590 1.123 1.17E-23 

Wisp1 WNT1_inducible_signaling_pathway_protein_1 2311 3982 0.803 8.75E-17 

Mmp2 Matrix_metallopeptidase_2 8079 13357 0.694 9.05E-16 

Timp1 TIMP_metallopeptidase_inhibitor_1 6227 10470 0.710 7.29E-13 

Wnt5a Wingless-type_MMTV_integration_site_family 2C_member_5A 1322 2643 0.966 9.07E-13 

Snai1 Snail_family_transcriptional_repressor_1 733 1275 0.757 2.66E-11 

Tgfb1i1 Transforming_growth_factor_beta_1_induced_transcript_1 1173 2006 0.794 1.61E-08 

Wnt2 Wingless-type_MMTV_integration_site_family_member_2 261 442 0.737 8.48E-08 

Tgfb1 Transforming_growth_factor 2C_beta_1 798 1285 0.677 4.76E-07 

Fndc3b Fibronectin_type_III_domain_containing_3B 4264 5293 0.311 7.17E-06 

Sparc Secreted_protein_acidic_and_cysteine_rich 266980 341541 0.355 3.83E-05 

Sox9 SRY_box_9 14 92 2.186 4.35E-05 

Tgfb3 Transforming_growth_factor 2C_beta_3 8046 11071 0.440 7.64E-05 

Snai2 Snail_family_transcriptional_repressor_2 125 232 0.866 7.85E-05 

Wnt11 Wingless-type_MMTV_integration_site_family 2C_member_11 290 462 0.771 0.00019 

Thbs1 Thrombospondin_1 8482 27041 1.534 0.000224 

Mmp19 Matrix_metallopeptidase_19 1735 2187 0.327 0.000827 

Zeb2 Zinc_finger_E-box_binding_homeobox_2 1129 1412 0.314 0.000898 

Cemip Cell_migration-inducing_hyaluronan_binding_protein 11610 28004 1.630 0.004018 

Plat Plasminogen_activator 2C_tissue_type 9468 11604 0.304 0.015156 

Serpin
e1 

Serpin_family_E_member_1 25951 84335 1.824 0.032918 

Unaltered genes 

Twist1 Twist_family_bHLH_transcription_factor_1 246 349 0.488 0.067817 

Ctnnb1 Catenin_beta_1 7810 8552 0.131 0.139767 

Twist2 Twist_family_bHLH_transcription_factor_2 65 95 0.534 0.17583 

Ctnna1 Catenin_alpha_1 7268 7430 0.033 0.979014 

Down-regulated genes 

Thbd Thrombomodulin 3755 1352 -1.451 1.37E-33 

Timp4 Tissue_inhibitor_of_metalloproteinase_4 263 118 -1.109 3.41E-08 

Wnt2b Wingless-type_MMTV_integration_site_family 2C_member_2B 6478 4378 -0.606 5.05E-08 

Fgf1 Fibroblast_growth_factor_1 11522 6146 -1.101 0.000169 

Timp2 TIMP_metallopeptidase_inhibitor_2 40410 30888 -0.375 0.000923 

Zeb1 Zinc_finger_E-box_binding_homeobox_1 836 686 -0.288 0.035739 

 
Selected transcripts for growth factors and transcription factors previously implicated in EMT 
and/or MMT. Table contains mean number of reads in control and TGFβ1 exposed MCs 
along with log2 fold change and P values corrected for false discovery rate (FDR). 
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Table 4. Transcripts implicated in BMP and IGF signalling 

 
Gene 
Symbol 

Encoded molecule Control 
mean 
reads 

TGFβ1 
mean 
reads 

log2Fold 
Change 
(paired) 

FDR 

Up-regulated genes 

Igf1 Insulin-like_growth_factor_1 4217 8274 0.953 1.52E-29 

Pappa Pregnancy-associated_plasma_protein_A 127 414 1.642 2.06E-22 

Bmp1 Bone_morphogenetic_protein_1 4437 6267 0.499 1.51E-11 

Grem2 Gremlin_2 2C_DAN_family_BMP_antagonist 535 1340 1.297 1.07E-11 

Igfbp7 Insulin-like_growth_factor_binding_protein_7 28855 34731 0.269 0.000225 

Igf2 Insulin-like_growth_factor_2 62 118 1.437 0.000761 

Unaltered genes 

Bmp7 
 

Bone_morphogenetic_protein_7 80 
 

39 
 

-0.929 
 

0.108664 
 

Down-regulated genes 

Igfbp4 Insulin-like_growth_factor_binding_protein_4 14736 3884 -1.951 3.62E-50 

Bmp4 Bone_morphogenetic_protein_4 3434 1428 -1.370 5.09E-24 

Igfbp6 Insulin-like_growth_factor_binding_protein_6 9830 6109 -0.673 2.20E-12 

Igfbp5 Insulin-like_growth_factor_binding_protein_5 22768 9320 -1.454 4.32E-07 

Igfbp2 Insulin-like_growth_factor_binding_protein_2 41556 29962 -0.502 2.27E-05 

 
Selected novel transcripts from BMP and IGF signalling pathways implicated in MMT. Table 
contains mean number of reads in control and TGFβ1 exposed MCs, along with log2 fold 
change.  

 
 
 
 
 
List of supplementary files: 

1. Supplementary materials and methods. 
2. Supplementary figure 1. 
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Figure legends 

Figure 1. Mesothelial cell enrichment using HBME1 as a surface marker.  A. 

Fluorescence microscopy of rat omentum, showing all nuclei stained with DAPI, the 

mesothelial cell apical surface immunostained for HBME1, followed by merged 

overlay image. Scale bars are 50 µm. B. Phase contrast and immunofluorescence 

images of primary cultures of unsorted, HBME1-FACS sorted and HBME1-magnetic 

bead (Mojo) sorted cells; note the prominent cobblestone phenotype of the sorted 

cells. Scale bars are 200 µm.  Relative to unsorted cells, both FACS and Mojo sorted 

cells give an impression of marked enrichment for HBME1. Note the presence of 

both Wt1+ (Arrowhead) and Wt1- (Arrow) nuclei in the unsorted population stained 

with DAPI. Scale bars are 50 µm C. Relative to unsorted cells, HBME1 enrichment 

was confirmed by measuring the pixels of positive immunostaining normalised to 

DAPI nuclei in FACS sorted (P=0.022) and Mojo sorted cells (P=0.005; n=6; 

mean±SEM). D. The percentage of Wt1+ nuclei was significantly increased following 

either FACS (P=0.02) or Mojo sorting (P=0.017; n=3; mean±SEM). E. Cells were 

maintained for 48 h in either basal media alone, or media supplemented with 1 ng/ml 

TGFβ1. Note the disruption of the cobblestone phenotype under TGFβ1 treatment, 

with cells becoming elongated. Scale bars are 50 µm. F. Fluorescence microscopy of 

cells at 48 h demonstrating that exposure to TGFβ1 was associated with disruption 

of reticular cell-cell junctional ZO1 pattern with more prominent cytoplasmic 

immunostaining for vimentin and αSMA. Nuclei stained with DAPI. Scale bars are 50 

µm.   
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Figure 2. Transcriptome analyses of HBME1-sorted rat mesothelial cells. A. 

Unsupervised hierarchical clustering by transcript expression. Rows are expression 

levels denoted as the z-score, displayed in a high-low (red-blue) colour scale, 

numeric scale indicates z-transformation. Note that levels of numerous transcripts 

are increased or decreased after 48 h of exposure to 1 ng/ml TGFβ1. ‘Cntrl’ are the 

five vehicle-only exposed samples. ‘TGF’ are the five parallel cultures exposed to 

TGFβ1. B. Selected RNA-seq data displayed as a volcano plot with the image 

annotated for ‘epithelial signature’ transcripts. C. QPCR for Cdh1, Col4a3, Col4a4, 

Cng, Pdxl, Snai1, Tjp1, Upk3b, and Vim (n=3; mean±SEM). 

 

Figure 3. MMT is associated with dysregulation of BMP4 and IGF pathways. A. 

Volcano plot annotated with transcripts encoding molecules implicated in BMP and 

IGF signalling. B. Confirmation of decreased levels of Bmp4 (P=0.024, n=3; 

mean±SEM), and Igfbp4 (P=0.012, n=3; mean±SEM) as assessed by QPCR. C. As 

determined by ELISA, concentrations of BMP4 (P=0.023, n=5; mean±SEM) and 

IGFBP4 (P=0.019, n=5; mean±SEM) were decreased in media conditioned by cells 

exposed to 1 ng/ml TGFβ1.  

 

Figure 4. Application of BMP4 or IGFBP4 to TGFβ1-exposed rat mesothelial 

cells. A. Cells were maintained for 48 h in either basal media alone (Control), media 

supplemented with 1 ng/ml TGFβ1, or the latter supplemented with either 50 ng/ml of 

BMP4 (TGFβ1+BMP4) or 50 ng/ml IGFBP4 (TGFβ1+IGFBP4). Cells were imaged by 

phase contrast (top row) or, as shown in subsequent rows, by immunofluorescence 

for ZO1, cingulin and αSMA with all nuclei counterstained with DAPI (blue). Note that 

exposure to either BMP4 or IGFBP4: partially preserved the cobblestone pattern of 
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the monolayer; ameliorated cytoplasmic localisation of ZO1; and reduced αSMA. In 

contrast, neither factor rescued the TGFβ1-induced disruption of cingulin. Scale bars 

are 50 µm. B. Quantification of αSMA by immunofluorescence, showing a 

significantly (P=0.0005, n=5; mean±SEM) increased immunostaining in TGFβ1-

treated versus control cells. There was a significant reduction of αSMA expression in 

cells co-treated with TGFβ1+BMP4 (P=0.019) or TGFβ1+IGFBP4 (P=0.036). C. 

Phase contrast images showing mesothelial cell migration into a wound over 16 

hours under different conditions. Scale bars are 200 µm. D. Quantification of 

mesothelial cell migration under different conditions (n=6; mean±SEM). Note that 

TGFβ1 exposure was associated with more extensive migration versus control 

(P=0.010 n=6), and that this effect was abrogated when either BMP4 (P=0.012) or 

IGFBP4 (P=0.005) was added with TGFβ1.  

 

Figure 5. BMP4 in murine models of peritoneal fibrosis. A. Immunostaining for 

cytokeratin in the peritoneum of mice showed diminished mesothelial-specific 

expression in response to TGFβ1 adenovirus (AD) compared with control (AdDL) 

showing nuclei stained with DAPI. In response to TGFβ1 overexpression, the 

peritoneum was extensively thickened, as shown by Massons trichrome, with near 

complete loss of surface BMP4 immunostaining. Scale bars are 100 µm. B. 

Following surgical injury, the peritoneum of Wt1-lineage tracing mice was stained 

with XGal. Cells expressing the LacZ reporter gene appear blue and represent the 

fates of subsets of mesothelial cells and/or their progeny. The top two frames show 

whole mounts, looking down on the peritoneal surface. Injured mice that received 

vehicle alone (left frame) had elongated and spindle-shaped labelled cells whereas 

cobblestone-like cell clusters were seen in similarly-injured mice that had received 
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BMP4 (right frame). Scale bars are 100µm. The lower two frames show histology of 

peritoneum, with eosin (pink) counterstaining: the peritoneal surface is at the top. 

Injured mice receiving vehicle alone (left frame) showed labelled cells (arrows) below 

the surface (arrowheads) of the peritoneum. In injured mice that had received BMP4 

(right frame), labelled cells (arrows) were noted on the surface of the peritoneum. 

Scale bars are 20µm. Representative images from n=3 in each group. 

 

Figure 6. Human fibrotic tissue displays altered patterns of BMP4 and IGFBP4. 

Human control peritoneum or thickened peritoneum samples from peritoneal dialysis 

patients were immunostained for HBME1 to identify mesothelium. Control 

peritoneum displayed prominent mesothelial IGFBP4 and BMP4 immunostaining 

which was attenuated in peritoneal dialysis samples. In the peritoneal dialysis 

samples, scattered IGFBP4+ cells were noted below the peritoneal surface. Scale 

bar is 100 µm. 
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Supplementary Methods 

 

RNA sequencing (RNA-seq) and quantitative polymerase chain reaction 

(QPCR) 

For RNA-seq, paired samples (n=5) from control and TGFβ1-exposed MCs were 

collected in RNA protect (Thermo Fisher Scientific) and RNA extracted using the 

RNeasy Plus Mini Kit (Qiagen, Manchester UK). Libraries were generated with the 

TruSeq Stranded mRNA Library Prep Kit and sequenced paired-end on the Illumina 

HiSeq4000 platform with an average of 33 million reads per sample (ArrayExpress 

repository E-MTAB-5998). Sequences were tested by FastQC v0.11.5 using various 

metrics (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequence 

adapters were removed and reads were quality trimmed using Trimmomatic v0.36 

(PMID: 24695404). The reads were mapped against the reference rat genome, rn6 

using STAR v2.4.2 (PMID: 23104886). Counts per gene were calculated with HTSeq 

v0.6.1 (PMID: 25260700) using annotation from Ensembl v6.0.85. Normalisation and 

differential expression was calculated with DESeq2 v1.10.1, R v3.2.3 (PMID: 

25516281). Differentially expressed transcripts were defined as those showing at 

least a 0.36 log 2 fold increase or decrease versus controls, and a statistical 

significance of P<0.05 corrected for multiple comparisons.  For QPCR, cDNA was 

synthesised using the TaqMan Reverse Transcription Reagent kit (Thermo Fisher 

Scientific). QPCR was performed using the RotorGene 6000 (Qiagen) with 2X 

SensiFAST SYBRGreen No-ROX (Bioline), cDNA template and rat specific primers 

(Primerdesign, Eastleigh, UK; Supplementary Material). Data was normalised to the 

housekeeping transcript Gapdh and analysed by the ∆∆CT method. Note that, as 

assessed by RNA-seq, Gapdh levels showed no significant difference between 
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control and TGFβ1-exposed MCs. The following forward and reverse primers were 

used:  

5’-GACATGCCGCCTGGAGAAAC-3’ and 5’-AGCCCAGGATGCCCTTTAGT-3’ for 

Gapdh, 5’-ATTTCTCTGCCTCTTCCAAACTT-3’ and 5’-

CCGTCTTAATCAGGAGTGTTCTT-3’ for Vimentin, 5’-

CGCTTCAGCCTTCCTCTCAT-3’ and 5’-GCTCCTCTGTGAGTCGTTGT-3’ for Podxl, 

5’-AACCCGAAACTGATGCTATGG-3’ and 5’-CCTTGGAATGTATGTGGAGAGAA-3’ 

for Zo1, 5’-CTCTATCCAGATTGATGATGAACGG-3’ and 5’-

CTTCTTCCTCAGGCTGTCCAG-3’for Cgn, 5’-CCAAGCGTAGTCCCAAGCA-3’ and 

5’-GCCACGATCCAATCATTCCAG-3’ for Bmp4, 5’-AACACCCTCCCTCTCAATGTG-

3’ and 5’-GAGGACCTGAGGAATGACCTAC-3’ for Igfbp4, 5’-

GCCAGGATGTTCCCCAATG-3’ and 5’-CGAAAGTGACCGTGCTGTAT-3’ for Wt1, 

5’-GCTGCCAGGACCAGTGATT-3’ and 5’-TGACCATAGGAGTCTCCAGGT-3’ for 

Col4a3, 5-‘AACTCGCAGCCAGCACAC-3’ and 5’-

CAGAAGATTCTCATGGACAGTTGG-3’ for Col4a4, 5-

‘ATGACACCATCTGGCTAGTGG-3’ and 5’-ATCTTAGCAGCGGTCTGTGG-3’ for 

Up3b and CATGAGTGTCCCCCGGTATC-3’ AND 5’-CAGTATCAGCCGCTTTCAGA 

for Cdh1.   

Immunostaining rat tissues 

Cells were cultured on glass chamber slides (ThermoFisher). PFA-fixed cultures 

were incubated for 30 min at room temperature with primary antibodies to: α-smooth 

muscle actin (α-SMA 1:400; Sigma Aldrich); cingulin (1:100; Thermofisher); E-

cadherin (ab76055 Abcam 1:50 or BD610181 BD Biosciences 1:250) ; HBME1 

(1:50; Dako); vimentin (1:100; Sigma Aldrich); Wilms tumour 1 (Wt1; 1:100; 

Heidelberg, Germany); or zonula occludens 1 (ZO1; 1:50; Thermofisher). For E-
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cadherin, cultured human epithelial breast cancer cells (MCF7; ATCC, Teddington, 

UK) were used as a positive control.  Primary antibodies were diluted in 3% BSA 

blocking buffer or 3% BSA supplemented with 0.1% Triton (Sigma-Aldrich), as 

indicated. Cells were exposed to secondary antibodies conjugated to Alexa488 or 

Alexa568 (1:400; Thermo Fisher Scientific) for 30 min and mounted in VectaShield 

media containing DAPI (Vector Laboratories, Cambridgeshire, UK). Fluorescence 

was visualised using a BX51 upright microscope (Olympus) and captured using a 

Coolsnap ES2 camera (Photometrics). To quantify fluorescence, at least four fields 

of view per well were analysed and percentage area of staining was calculated with 

Fiji software. Because of the punctate appearance of HBME1 immunostaining in 

cultured MCs, positive pixels (raw integrated density) of HBME1 immunostaining was 

factored for the number of DAPI positive nuclei in each field of view. For analysis of 

Wt1 immunostaining cells, the percentage of positive nuclei was determined in 

Image J. For rat omentum and pancreas immunohistochemistry, 15 µm frozen 

sections were fixed in 4% PFA and immunostained with primary antibodies against 

HBME1, cytokeratin (C1801, Sigma) or E-cadherin for 48 h at 4˚C and processed for 

immunostaining as for cultured cells. Tissue sections were imaged by confocal 

microscopy (Leica TCS SP5 AOBS). 

 

Cell migration assay  

A cell culture scratch assay was used [52]. MC monolayers were cultured in media 

containing 5% FCS overnight before a scratch was created across the well’s centre 

using a 200µl pipette tip. Live cell imaging was performed in a humidified chamber at 

37°C and 5% CO2. Images were obtained every 20 min over 18 h for at least three 

fields of view per well with at least three wells per condition using an AS MDW live 
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cell imaging system (Leica) and imaging software Micromanager MM Studio 1.4.20 

at x10 magnification.  

 

ELISA 

Concentrations of rat BMP4 (CUSABIO, Hubei province, China) and rat IGFBP4 (US 

Biological, Salem, USA) in culture supernatants were assessed by ELISA according 

to manufacturers’ protocol. Briefly, 100 µl of supernatant was tested in duplicate and 

optical density values were used to interpolate values from each standard curve. . 

The lower limit of detection for the BMP4 ELISA was 1.95 pg/ml and for the IGFBP4 

ELISA was 156 pg/ml. 

 

TGFβ1-induced peritoneal fibrosis and peritoneal MC lineage tracing in mice  

Male C57/BL6J mice aged 8 weeks (Charles River, Harlow, UK) were maintained in 

SPF conditions with food and water available ad libitum. Following acclimatisation, 

mice received a single intraperitoneal injection of 1.5 × 108 pfu of a first-generation 

adenovirus expressing the active form of TGFβ1 (AdTGFβ1; kind gift of P. Margetts, 

McMaster University, Hamilton, Canada) in 100 µl of PBS (n = 5) as previously 

described [16]. Control mice received 1.5 × 108 pfu of a control adenovirus (AdDL) 

that lacked transgene expression (n = 5). After 7 days, the entire anterior abdominal 

wall was resected and the upper portion of tissue was PFA fixed, processed and 7 

µm sections collected. Sections were stained with Masson's trichrome or 

immunostained with primary antibody for pan-cytokeratin (C1801, Sigma). Next, we 

combined physical injury to the peritoneum by surgical abrasion of adjacent serosa 

followed by close apposition, as we previously described [17] with a mesothelial 

lineage tracing strategy, similar to that described by Lua et al.  but using LacZ rather 
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than GFP, with induced peritoneal injury [18]. Compound mutant mice 

Wt1tm2(cre/ERT2)Wtp/+;B6.129S4-Gt(ROSA)26Sortm1Sor/  [66, 67], aged 6-8 weeks were 

administered tamoxifen (Sigma) dissolved in corn oil (10 mg/ml; Sigma) at 1 mg/10 g 

body weight by oral gavage on 5 consecutive days, followed by 2 weeks washout 

according to published protocols [67]. Peritoneal adhesion formation was induced by 

local physical injury under surgery as we previously described [68]. At surgery and at 

day 1, 3 and 5 thereafter, mouse BMP4 (recombinant carrier-free, BioLegend) 

reconstituted in 10 mM citric acid was injected intraperitoneally at 300 ng/g body 

weight using medical-grade saline (50 ng/µl, 0.1% BSA; n=3), while control animals 

received vehicle saline alone (containing 0.1% BSA and citric acid; n=3). One week 

after BMP4 or vehicle control administration, caecum-peritoneal wall adhesions and 

surrounding tissue was collected. Tissue was fixed in 2% PFA/ 0.2% glutaraldehyde, 

followed by whole mount XGal staining according to published protocols [67]. Images 

were captured using a Leica DFC420C camera attached to a Leica MZ16F 

dissection microscope. Regions containing XGal-positive cells in the adhesion zone 

were dissected and processed into Eosin-stained paraffin sections. Images were 

captured using a Leitz DM RB microscope with a Leica DFC 450C camera. 

 

 

 

 

 

 

 

 

Page 44 of 52

http://mc.manuscriptcentral.com/jpath

The Journal of Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Supplementary figure 

 

Supplementary Figure S1. E-cadherin immunostaining of rat omental 

mesothelial cells. A. Serial rat omental sections were immunostained for HBME1 

and Pan cytokeratin to identify the mesothelium and E-cadherin. Note the absence of 

E-cadherin immunostaining of the omental mesothelium. Sections of nearby rat 

pancreas used as a positive control were devoid of HBME1 but showed both 

cytokeratin and intense junctional E-cadherin immunostaining. B. Confluent 

monolayers of cultured sorted rat mesothelial cells showed little positive 

immunostaining for E-cadherin (Arrow indicates possible weak junctional staining). In 

contrast, cultured human epithelial breast cancer cells, MCF7, displayed prominent 

junctional E-cadherin staining. No primary acted as a negative control for tissue 

sections and cell cultures and nuclei were stained with DAPI. Scale bars are 100µm. 

C. Unsorted and Mojo-sorted MCs displayed comparable CT values for E-cadherin.  
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Figure 1. Mesothelial cell enrichment using HBME1 as a surface marker.  A. Fluorescence microscopy of rat 
omentum, showing all nuclei stained with DAPI, the mesothelial cell apical surface immunostained for 

HBME1, followed by merged overlay image. Scale bars are 50 µm. B. Phase contrast and 
immunofluorescence images of primary cultures of unsorted, HBME1-FACS sorted and HBME1-magnetic 

bead (Mojo) sorted cells; note the prominent cobblestone phenotype of the sorted cells. Scale bars are 200 
µm.  Relative to unsorted cells, both FACS and Mojo sorted cells give an impression of marked enrichment 

for HBME1. Note the presence of both Wt1+ (Arrowhead) and Wt1- (Arrow) nuclei in the unsorted 
population stained with DAPI. Scale bars are 50 µm C. Relative to unsorted cells, HBME1 enrichment was 

confirmed by measuring the pixels of positive immunostaining normalised to DAPI nuclei in FACS sorted 
(P=0.022) and Mojo sorted cells (P=0.005; n=6; mean±SEM). D. The percentage of Wt1+ nuclei was 

significantly increased following either FACS (P=0.02) or Mojo sorting (P=0.017; n=3; mean±SEM). E. Cells 
were maintained for 48 h in either basal media alone, or media supplemented with 1 ng/ml TGFβ1. Note the 
disruption of the cobblestone phenotype under TGFβ1 treatment, with cells becoming elongated. Scale bars 

are 50 µm. F. Fluorescence microscopy of cells at 48 h demonstrating that exposure to TGFβ1 was 
associated with disruption of reticular cell-cell junctional ZO1 pattern with more prominent cytoplasmic 
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immunostaining for vimentin and αSMA. Nuclei stained with DAPI. Scale bars are 50 µm.    
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Figure 2. Transcriptome analyses of HBME1-sorted rat mesothelial cells. A. Unsupervised hierarchical 
clustering by transcript expression. Rows are expression levels denoted as the z-score, displayed in a high-

low (red-blue) colour scale, numeric scale indicates z-transformation. Note that levels of numerous 

transcripts are increased or decreased after 48 h of exposure to 1 ng/ml TGFβ1. ‘Cntrl’ are the five vehicle-
only exposed samples. ‘TGF’ are the five parallel cultures exposed to TGFβ1. B. Selected RNA-seq data 

displayed as a volcano plot with the image annotated for ‘epithelial signature’ transcripts. C. QPCR for Cdh1, 
Col4a3, Col4a4, Cng, Pdxl, Snai1, Tjp1, Upk3b, and Vim (n=3; mean±SEM).  
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Figure 3. MMT is associated with dysregulation of BMP4 and IGF pathways. A. Volcano plot annotated with 
transcripts encoding molecules implicated in BMP and IGF signalling. B. Confirmation of decreased levels of 
Bmp4 (P=0.024, n=3; mean±SEM), and Igfbp4 (P=0.012, n=3; mean±SEM) as assessed by QPCR. C. As 

determined by ELISA, concentrations of BMP4 (P=0.023, n=5; mean±SEM) and IGFBP4 (P=0.019, n=5; 
mean±SEM) were decreased in media conditioned by cells exposed to 1 ng/ml TGFβ1.  
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Figure 4. Application of BMP4 or IGFBP4 to TGFβ1-exposed rat mesothelial cells. A. Cells were maintained 
for 48 h in either basal media alone (Control), media supplemented with 1 ng/ml TGFβ1, or the latter 

supplemented with either 50 ng/ml of BMP4 (TGFβ1+BMP4) or 50 ng/ml IGFBP4 (TGFβ1+IGFBP4). Cells 

were imaged by phase contrast (top row) or, as shown in subsequent rows, by immunofluorescence for ZO1, 
cingulin and αSMA with all nuclei counterstained with DAPI (blue). Note that exposure to either BMP4 or 

IGFBP4: partially preserved the cobblestone pattern of the monolayer; ameliorated cytoplasmic localisation 
of ZO1; and reduced αSMA. In contrast, neither factor rescued the TGFβ1-induced disruption of cingulin. 

Scale bars are 50 µm. B. Quantification of αSMA by immunofluorescence, showing a significantly (P=0.0005, 
n=5; mean±SEM) increased immunostaining in TGFβ1-treated versus control cells. There was a significant 

reduction of αSMA expression in cells co-treated with TGFβ1+BMP4 (P=0.019) or TGFβ1+IGFBP4 (P=0.036). 
C. Phase contrast images showing mesothelial cell migration into a wound over 16 hours under different 

conditions. Scale bars are 200 µm. D. Quantification of mesothelial cell migration under different conditions 
(n=6; mean±SEM). Note that TGFβ1 exposure was associated with more extensive migration versus control 
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(P=0.010 n=6), and that this effect was abrogated when either BMP4 (P=0.012) or IGFBP4 (P=0.005) was 
added with TGFβ1.  
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Figure 5. BMP4 in murine models of peritoneal fibrosis. A. Immunostaining for cytokeratin in the peritoneum 
of mice showed diminished mesothelial-specific expression in response to TGFβ1 adenovirus (AD) compared 
with control (AdDL) showing nuclei stained with DAPI. In response to TGFβ1 overexpression, the peritoneum 

was extensively thickened, as shown by Massons trichrome, with near complete loss of surface BMP4 
immunostaining. Scale bars are 100 µm. B. Following surgical injury, the peritoneum of Wt1-lineage tracing 
mice was stained with XGal. Cells expressing the LacZ reporter gene appear blue and represent the fates of 
subsets of mesothelial cells and/or their progeny. The top two frames show whole mounts, looking down on 

the peritoneal surface. Injured mice that received vehicle alone (left frame) had elongated and spindle-
shaped labelled cells whereas cobblestone-like cell clusters were seen in similarly-injured mice that had 

received BMP4 (right frame). Scale bars are 100µm. The lower two frames show histology of peritoneum, 
with eosin (pink) counterstaining: the peritoneal surface is at the top. Injured mice receiving vehicle alone 
(left frame) showed labelled cells (arrows) below the surface (arrowheads) of the peritoneum. In injured 

mice that had received BMP4 (right frame), labelled cells (arrows) were noted on the surface of the 

Page 52 of 52

http://mc.manuscriptcentral.com/jpath

The Journal of Pathology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

peritoneum. Scale bars are 20µm. Representative images from n=3 in each group.  
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Figure 6. Human fibrotic tissue displays altered patterns of BMP4 and IGFBP4. Human control peritoneum or 
thickened peritoneum samples from peritoneal dialysis patients were immunostained for HBME1 to identify 
mesothelium. Control peritoneum displayed prominent mesothelial IGFBP4 and BMP4 immunostaining which 

was attenuated in peritoneal dialysis samples. In the peritoneal dialysis samples, scattered IGFBP4+ cells 
were noted below the peritoneal surface. Scale bar is 100 µm.  
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Supplementary Figure S1. E-cadherin immunostaining of rat omental mesothelial cells. A. Serial rat omental 
sections were immunostained for HBME1 and Pan cytokeratin to identify the mesothelium and E-cadherin. 

Note the absence of E-cadherin immunostaining of the omental mesothelium. Sections of nearby rat 

pancreas used as a positive control were devoid of HBME1 but showed both cytokeratin and intense 
junctional E-cadherin immunostaining. B. Confluent monolayers of cultured sorted rat mesothelial cells 

showed little positive immunostaining for E-cadherin (Arrow indicates possible weak junctional staining). In 
contrast, cultured human epithelial breast cancer cells, MCF7, displayed prominent junctional E-cadherin 

staining. No primary acted as a negative control for tissue sections and cell cultures and nuclei were stained 
with DAPI. Scale bars are 100µm. C. Unsorted and Mojo-sorted MCs displayed comparable CT values for E-

cadherin.  
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