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Abstract. We study the problem of checking for the existence of constrained pure
Nash equilibria in a subclass of polymatrix games defined on weighted directed
graphs. The payoff of a player is defined as the sum of nonnegative rational
weights on incoming edges from players who picked the same strategy augmented
by a fixed integer bonus for picking a given strategy. These games capture the
idea of coordination within a local neighbourhood in the absence of globally
common strategies. We study the decision problem of checking whether a given
set of strategy choices for a subset of the players is consistent with some pure
Nash equilibrium or, alternatively, with all pure Nash equilibria. We identify the
most natural tractable cases and show NP or coNP-completness of these problems
already for unweighted DAGs.
This paper has appeared in the Proceedings of AAAI 2017 conference [21].

1 Introduction

Identifying subclasses of games where equilibria is tractable is an important problem in
algorithmic analysis of multiplayer games. Pure Nash equilibria (NEs) may not exist in
games and checking whether a game has a pure NE is in general a hard problem. Even
for subclasses of games in which a pure NE is guaranteed to exists (for instance, potential
games) computing one remains PLS-hard [9]. Although, Nash’s theorem guarantees the
existence of mixed strategy NE in all finite games, computing one is still a hard problem.
Therefore, identifying restricted classes of games where equilibrium computation is
tractable and also precisely identifying the borderline between tractability and hardness
in such restricted classes is of obvious interest. In this paper, we study the borderline
of tractability in a natural subclass of games where the utilities of players are restricted
to be pairwise separable. These are called polymatrix games [14] and they form an
abstract model that is useful to analyse strategic behaviour of players in games formed
via pairwise interactions. In polymatrix games, the payoff for each player is the sum
of the payoffs he gets from individual two player games he plays against every other
player. Polymatrix games are well-studied in the literature. They include game classes
with good computational properties like the two-player zero-sum games. They also have
applications in areas such as artificial neural networks [16] and machine learning [8].

In terms of tractability, the restriction to pairwise interactions does not immediately
ensure the existence of efficient algorithms. Computing a mixed strategy Nash equi-
librium remains PPAD-complete [5] and checking for the existence of a pure NE is
NP-complete in general. This motivates the need to further analyse the type of pairwise
interactions that would ensure tractability. In this paper, we argue that another important



factor which influences tractability is the structure of the underlying interaction graph
and presence of individual preferences (that we call bonuses).

The main restriction that we impose on polymatrix games is that each pairwise
interaction forms a coordination game. Henceforth, we will refer to these games simply
as coordination games on graphs. Coordination games are often used in game theory to
model situations where players attain maximum payoff when they agree on a common
strategy. The game model that we study, extends coordination games to the network
setting where payoffs need not always be symmetric and players coordinate within a
certain local neighbourhood. The neighbourhood structure is specified by a finite directed
graph whose nodes correspond to the players. Each player chooses a colour from a set of
available colours. The payoff of a player is the sum of weights on the edges from players
who choose the same colour and a fixed bonus for picking that particular colour. This
game model is closely related to various well-studied classes of games. For instance,
coordination games on graphs are graphical games [15] and they are also related to
hedonic games [7, 4]. In hedonic games, the payoff of each player depends solely on the
set of players that selected the same strategy. The coalition formation property inherent
to coordination games on graphs make the game model relevant to cluster analysis. The
problem of clustering has been studied from a game theoretic perspective for instance in
[10, 17].

Coordination games on graphs constitute a game model which can be useful for
analysing the adoption of a product or service within a network of agents interacting with
each other in their local neighbourhoods. For example, consider the selection of a mobile
phone operator. The interaction between users can be represented by a coordination game
where the weight of the edge from i to j represents the total cost of calls from j to i.
Also, the bonus function can represent individual preferences of users over the providers.
Now suppose that mobile network operators allow free calls among its users. Then each
mobile phone user faces a strategic choice of picking an operator that maximises his
cost savings or, in the case of unweighted graphs, maximises the number of people he
can call for free. If players are allowed to freely switch their operator based on their
friends’ choices, then the stable market states correspond to pure Nash equilibria in this
game. One can observe similar interactions in peer-to-peer networks, social networks
and photo sharing platforms.

A similar game model based on undirected graphs was introduced in [1] and further
studied in [18]. The transition from undirected to directed graphs drastically changes the
status of the games. For instance, in the case of undirected graphs, coordination games
are potential games where as in the directed case, pure NE may not even exist. Moreover,
the problem of determining the existence of pure NEs is NP-complete for coordination
games on directed graphs [2]. However, pure NE always exists for several natural classes
of graphs [20].

However, in many practical situations, finding just one pure Nash equilibrium may
not be enough. In fact, there can be exponentially many Nash equilibria, each with a
different payoff to each player (see Example 2). Ideally, we would like to ask for the
existence of a Nash equilibrium satisfying some given constraints. In this paper, we
focus on checking whether a partial strategy profile (i.e. strategy choices for a subset of
the players) is consistent with some pure Nash equilibrium or, alternatively, with all pure



Nash equilibria. We will refer to these as ∃NE and ∀NE decision problem, respectively.
We identify the most natural tractable cases and show NP or coNP-completness of these
problems already for unweighted DAGs.
Related work. The complexity of checking for the existence of pure Nash equilibria in
a game crucially depends on the representation of the game. Normal form representation
can be exponential in the number of players whereas graphical games and polymatrix
games provide a more concise representation of strategic form games. While checking
for the existence of pure Nash equilibria can be solved in LOGSPACE for games in
normal form, it is NP-complete for graphical games even when the payoff of each player
depends only on the strategy choices of at most three other players [12]. On the other
hand, it is solvable in polynomial time for graphical games whose dependency graph has
a bounded treewidth [12] or when each player has only two possible strategies [22]. For
polymatrix games, checking for the existence of a pure Nash equilibrium is NP-complete
even when all its individual 2-player games are win-loss ones [2].

Gilboa and Zelmel were the first to study in [11] the computational complexity of
decision problems for mixed Nash equilibria with additional constraints for two player
games in normal form. For many natural constraints the corresponding decision problems
were shown to be NP-hard. Further hardness results were shown in [6] and [3]. The
existence of constrained pure NE can be solved in LOGSPACE for normal form games
simply by checking every pure strategy profile. For graphical games the problem is
NP-hard even without any constraints, but because of the special structure of our games,
this result does not directly apply to our setting. On the other hand, constrained pure NE
can be found in polynomial time for graphical games played on graphs with a bounded
treewidth [13]. We are not aware of any prior work on this problem for polymatrix games.
Our paper is the first to identify several subclasses of polymatrix games for which the
existence problem of a constrainted Nash equilibrium is tractable.

2 Background

A strategic game G = (S1, . . . , Sn, p1, . . . , pn) with n > 1 players consists of a non-
empty set Si of strategies and a payoff function pi : S1×· · ·×Sn→ R, for each player
i ∈ {1, 2, . . . , n}. Let S := S1 × · · · × Sn and let us call each element s ∈ S a joint
strategy. Given a joint strategy s, we denote by s(i) the strategy of player i in s. We
abbreviate the sequence (s(j))j 6=i to s−i and occasionally write (s(i), s−i) instead of s.
We call a strategy s(i) of player i a best response to a joint strategy s−i of his opponents
if for all x ∈ Si, pi(s(i), s−i) ≥ pi(x, s−i). We do not consider mixed strategies in this
paper.

Given two joint strategies s′ and s, we say that s′ is a deviation of the player i from
s if s−i = s′−i and s(i) 6= s′(i). If in addition pi(s′) > pi(s), we say that the deviation
s′ from s is profitable for player i. We call a joint strategy s a (pure) Nash equilibrium
if no player can profitably deviate from s. For any given strategic game G, let NE(G)
denote the set of all (pure) Nash equilibria in G.

We now introduce the class of games we are interested in. Fix a finite set of colours
M . A weighted directed graph (G,w) is a structure whereG = (V,E) is a graph without
self loops over the vertices V = {1, . . . , n} and w is a function that associates with



each edge e ∈ E, a nonnegative rational weight we ∈ Q≥0. We say that a node j is a
successor of the node i, and i is a predecessor of j, if there is an edge i→ j in E. Let
Ni denote the set of all predecessors of node i in the graph G. By a colour assignment
we mean a function that assigns to each node of G a finite non-empty set of colours. A
bonus is a function β that to each node i and a colour c assigns an integer β(i, c).

Given a weighted graph (G,w), a colour assignment C : V → 2M \{∅} and a bonus
function β : V ×M → Z, a strategic game G(G,w,C, β) is defined as follows:

– the players are the nodes;
– the set of strategies of player (node) i is the set of colours C(i);
– the payoff function pi(s) :=

∑
j∈Ni: s(i)=s(j)

wj→i + β(i, s(i)).

So each node simultaneously chooses a colour and its payoff is the sum of the weights
of the edges from its neighbours that chose the same colour augmented by a bonus to the
node from choosing this colour. We call these games coordination games on directed
graphs, from now on just coordination games. When the weights of all the edges are 1,
we obtain a coordination game whose underlying graph is unweighted. In this case, we
simply drop the function w from the description of the game and the payoff function is
defined by pi(s) := |{j ∈ Ni | si = sj}|+ β(i, s(i)). Similarly if all the bonuses are 0,
we obtain a coordination game without bonuses. Likewise, to denote this game we omit
the function β. Note that positive integer weights or bonuses can be simulated by adding
unweighted edges to the graph. However, if these values are represented in binary, such
an operation can increase the size of the graph exponentially.

1 {a, b}

2 {a, c}3{b, c}

4 {a, b}

5 {a, c}

6{b, c}

7 {a}

8 {c}9{b}

Fig. 1. Unweighted coordination game with no NE.

Example 1. Consider the unweighted directed graph and the colour assignment depicted
in Figure 1. Take the joint strategy s that consists of the underlined strategies. Then the
payoffs are as follows: 0 for the nodes 1, 7, 8, and 9; 1 for the nodes 2, 4, 5, and 6; 2 for
the node 3. Note that s is not a Nash equilibrium. For instance, node 1 can profitably
deviate to colour a. In fact the coordination game associated with this graph does not
have a Nash equilibrium. Note that for nodes 7, 8 and 9 the only option is to select the
unique strategy in its strategy set. The best response for nodes 4, 5 and 6 is to always
select the same strategy as nodes 1, 2 and 3, respectively. Therefore, to show that the



game does not have a Nash equilibrium, it suffices to consider the strategies of nodes 1,
2 and 3. We denote this by the triple (s1, s2, s3). Below we list all such joint strategies
and we underline a strategy that is not a best response to the choice of other players:
(a, a, b), (a, a, c), (a, c, b), (a, c, c), (b, a, b), (b, a, c), (b, c, b) and (b, c, c). ut

Let Q ⊆ V be a nonempty subset of all the nodes of a given graph G. A query is a
function q : Q→M which satisfies the following property: for all i ∈ Q, q(i) ∈ C(i).
We say that a query q is consistent with a strategy profile s iff q = s|Q, i.e. q(i) = s(i)
for all i ∈ Q. We call a query q : Q → M monochromatic if for all i, j ∈ Q,
q(i) = q(j) and otherwise we call the query polychromatic. A query q is said to be
singleton if |Q| = 1. Obviously every singleton query is also a monochromatic one. In
this paper, we study the following decision questions.
Given a graph G = (V,E), weights w, colour assignment C, bonus function β, and
query q.
∃NE problem: In G(G,w,C, β), is there a Nash equilibrium that is consistent with q?

∀NE problem: In G(G,w,C, β), is every Nash equilibrium consistent with q?

Formally, ∃NE problem asks if there exists s ∈ NE(G) such that q = s|Q, while the ∀NE
problem asks whether for all s ∈ NE(G) it is the case that q = s|Q. Note that ∀NE is
not a complement of ∃NE. Actually, any non-singleton ∀NE query can be reduced to a
series of singleton ∀NE queries q|{i} for every player i ∈ Q. Note that trivially ∃NE ∈
NP and ∀NE ∈ coNP, because checking whether a joint strategy is a Nash equilibrium
and is consistent with q can be done in polynomial time.

Given a directed graph G and a set of nodes K, we denote by G[K] the subgraph
of G induced by K. A (directed) graph G = (V,E) is a complete graph if for all
i, j ∈ V such that i 6= j, we have i → j ∈ E. That is from every node there is an
edge to every other node. Given the set of colours M , we say that a directed graph G is
colour complete (with respect to a colour assignment C) if for every colour c ∈M each
component of G[Vc] is a complete graph, where Vc = {i ∈ V | c ∈ C(i)}. In particular,
every complete graph is colour complete, but not vice versa (see Figure 2).

{a}{a, b}{b}

Fig. 2. A graph which is colour complete, but is not a complete graph (a clique).

Table 1 summarises our results in terms of the number of arithmetic operations
needed. We use binary representation for all values in w and β. The size of the input
game graph is |G| = O(nm+ e), where n is the number of nodes in a graph, m is the
number of colours and e is the number of edges. Note that the graph classes that we
study can occur naturally in practice: two colours can model duopoly markets, simple
cycles are used in Token ring architectures, and unweighted DAGs with out-degree ≤ 1
can model indirect elections. All details of the proofs that had to be omitted due to the
page limit constraints can be found in the full version of this paper [19].



Graph Class ∃NE ∀NE

two colours and monochromatic query O(|G|) O(|G|)
two colours and polychromatic query NP-comp. O(|G|)

DAGs with three colours and singleton query NP-comp. coNP-comp.
simple cycles O(|G|) O(m · |G|)

DAGs with out-degree ≤ 1 O(|G|2.5) O(|G|2.5)
colour complete graphs no bonuses O(nm ·m!) O(nm ·m!)

Table 1. Summary of the results. The last two classes are unweighted; a simple reduction from the
PARTITION problem and its complement, shows NP and coNP hardness of their ∃NE and ∀NE
problems, respectively, in the weighted case.

3 Graphs with Two or Three Colours

We start by studying coordination games with two colours and monochromatic queries.
To fix the notation, let G = (V,E) and the colour set be M = {0, 1}. Let q be a
monochromatic query. Without loss of generality, we can assume q(i) = 0 for all i ∈ Q,
because otherwise we can rename the colours.

Algorithm 1: Algorithm for ∃NE on arbitrary graphs with two colours and
monochromatic queries.

Input: A coordination game G((V,E), w, C, β) and monochromatic query q : Q→M .
Output: YES if there exists a Nash equilibrium consistent with q and NO otherwise.

1 for i ∈ V do
2 if 0 6∈ C(i) or β(i, 1) >

∑
j∈Ni

wj→i + β(i, 0) then s(i) = 1 else s(i) = 0

3 S := {i | s(i) = 1}
4 while S 6= ∅ do
5 remove any element from S and assign it to i
6 for {j ∈ V | i→ j ∈ E} do
7 if s(j) = 0 and 1 ∈ C(j) and pj((1, s−j)) > pj(s) then
8 s(j) = 1
9 add j to S

10 if ∀i∈Q s(i) = 0 return YES else return NO

Theorem 1. The ∃NE problem for coordination games with two colours and monochro-
matic queries can be solved in O(|G|) time using Algorithm 1.

Proof. We show that Algorithm 1 solves the ∃NE problem and that its running time
is O(|G|). Let � be a partial order on all joint strategies s : V → M defined as
follows: s � s′ iff for all i ∈ V , s(i) ≤ s′(i). Let s0 denote the value of s once



line 3 is reached. The colouring s0 may not be a Nash equilibrium, so Algorithm 1
tries to correct this with the minimum number of switches from 0 to 1. Note that for
any colouring s we have s0 � s. Note that lines 3-9 of Algorithm 1 can be seen as a
function F : (V → M) → (V → M) from the initial colouring, in this case s0, to
a new colouring, F (s0). Note that F is monotonic according to �, i.e. if s � s′ then
F (s) � F (s′). This is simply because the more colour 1 is used initially, the more
players would like to switch to it. Also, any Nash equilibrium is a fixed point of F ,
because no player would like to switch at line 7. We now need the following lemma.

Lemma 1. For every joint strategy s, F (s) is a Nash equilibrium.

Proof. Every node with colour 1 in F (s) is added to the set S at most once: either at the
beginning (lines 1-2), because it is the only available colour for this node or strategy 1 is
its best choice even if all its neighbours choose strategy 0, or when this node switches
from 0 to 1. If a node does not have a predecessor with colour 1, it cannot possibly
have an incentive to switch to 1, because this would give him reward 0. Every time a
predecessor of a node switches to 1, we consider that node in line 7 and whether it is
beneficial for this node to switch to 1. If at no point it is, then colour 0 has to be this
player’s best response in F (s). Also, no player can have an incentive to switch back
from 1 to 0 because the payoff for choosing 1 is weakly increasing for every player after
each strategy update. ut

Now, if Algorithm 1 returns YES, then the correctness follows from Lemma 1.
Since in this case, F (s0) is consistent with q and by Lemma 1 it is a Nash equilibrium.
Conversely, if Algorithm 1 returns NO then there exists i ∈ Q such that F (s0)(i) = 1.
Suppose there is a Nash equilibrium s′ consistent with q. Then s0 � s′ and F (s0) �
F (s′) = s′, but s′(i) = q(i) = 0; a contradiction.

To analyse its computational complexity, note that each node can be added to the set
S at most once, because the colour of each node changes at most once and so each edge
is considered at most once as well. Moreover, we can compute pj((1, s−j)) and pj(s) in
constant time, by storing for each node the sum of weights of edges from neighbours
with colour 1. Every time the colour of a node j changes in line 8, for any neighbour
i of j we add the weight of the edge leading from j to i to the stored value for node i;
we need to make such an update O(e) times in total. Thus the total complexity of this
algorithm is O(n+ e). ut

Similarly, Algorithm 2 below solves the ∀NE problem for monochromatic queries.

Algorithm 2: Algorithm for ∀NE on graphs with two colours and monochromatic
queries.

Input: A coordination game G((V,E), w, C, β) and monochromatic query
q : Q→M .

Output: YES if all Nash equilibria are consistent with q and NO otherwise.
1 Lines 1-9 of Algorithm 1 where every 0 is replaced by 1 and every 1 by 0.
2 if ∀i∈Q s(i) = 0 return YES else return NO

Theorem 2. The ∀NE problem for coordination games with two colours and monochro-
matic queries can be solved in O(|G|) time using Algorithm 2.



In fact, any polychromatic ∀NE query can be reduced to two monochromatic ones
and so we get the following.

Corollary 1. The ∀NE problem for coordination games with two colours and polychro-
matic queries can be solved in O(|G|) time.

However, we will show that even answering singleton ∀NE queries for unweighted
DAGs is coNP-hard in the presence of three colours and no bonuses. We first analyse the
following gadget.

X1

{>,⊥}

X2

{>,⊥}

· · · Xk

{>,⊥} {x}

Y

{>,⊥}

k − 1

Fig. 3. Gadget D(X1, . . . , Xk, x;Y ) where x ∈ {>,⊥}. Note that one edge has weight k − 1.
{?}

T

{>,⊥} {⊥}
F

{>,⊥} {?}
Φ

{>,⊥}

U{>, ?}

W{⊥, ?}

X{⊥, ?} Y {⊥, ?}

{?}

Z

{⊥, ?}

2

2

Fig. 4. Gadget used in the coNP-hardness proof of ∀NE. Edges with weight 2 can be simulated by
unweighted ones.

Proposition 1. For any Nash equilibrium s in D(X1, . . . , Xk, x;Y ) from Figure 3: (a)
s(Y ) = x iff ∃i s(Xi) = x and (b) s(Y ) = ¬x iff ∀i s(Xi) = ¬x.

Using this gadget we are able to show the following.

Theorem 3. The ∀NE problem for singleton queries is coNP-complete for unweighted
DAGs with three colours and no bonuses.

Proof. [sketch] We reduce from the tautology problem for formulae in 3-DNF form.
Assume we are given a formula

φ = (a1 ∧ b1 ∧ c1) ∨ (a2 ∧ b2 ∧ c2) ∨ . . . ∨ (ak ∧ bk ∧ ck)



with k clauses and n propositional variables x1, . . . , xn, where each ai, bi, ci is a literal
equal to xj or ¬xj for some j. We will construct a coordination game Gφ of sizeO(n+k)
such that a particular singleton ∀NE query is true for Gφ iff φ is a tautology.

First for every propositional variable xi there are four nodes Xi, ¬Xi, Li, Li in
Gφ, each with two possible colours > or ⊥. We connect these four nodes using gadgets
D(Xi,¬Xi,>;Li) and D(Xi,¬Xi,⊥;Li). This makes sure that in any Nash equilib-
rium, s, we have s(Li) = > and s(Li) = ⊥ iff Xi and ¬Xi are assigned different
colours. Next, for every clause (ai ∧ bi ∧ ci) in φ we add to the game graph Gφ node Ci.
We use gadget D(ai, bi, ci,⊥;Ci) to connect literals with clauses, where we identify
each xi with Xi and each ¬xi with ¬Xi. Note that Proposition 1 implies that the colour
of Ci is > iff all nodes ai, bi, ci are assigned >. We add two nodes T and F to gather
colours > and ⊥ from the Li and Li nodes. Also, we add an additional node Φ to gather
the values of all the clauses. We connect these using gadgets D(L1, . . . , Ln,⊥;T ),
D(L1, . . . , Ln,>;F ), and D(C1, . . . , Ck,>;Φ).

We need to express that for every Nash equilibrium s: s(T ) = > and s(F ) = ⊥
implies s(Φ) = >. We use the gadget from Figure 4. It includes three nodes T, F, Φ that
we already defined in Gφ. We claim that ∀NE query q(Z) = ? is true for Gφ iff Φ is a
tautology. ut

On the other hand, we show that answering polychromatic ∃NE queries is NP-hard
for unweighted DAGs even with two colours and no bonuses. The construction is similar
to the one in the proof of Theorem 3.

Theorem 4. The ∃NE problem is NP-complete for unweighted DAGs with two colours
and no bonuses.

Building on this we can show the following when there are three colours to choose
from.

Corollary 2. The ∃NE problem for singleton queries is NP-complete for unweighted
DAGs with three colours and no bonuses.

Note that we can also show NP/coNP-hardness for DAGs with out-degree at most
two, because we can make arbitrary number of copies of any given node, e.g. to make
three copies i1, i2, i3 of node i we can add nodes i′, i1, i2, i3 and edges i→ i1, i→ i′,
i′ → i2, i′ → i3.

4 Simple Cycles

We consider here coordination games whose underlying graph is a simple cycle. To
fix the notation, suppose that V = {0, 1, . . . , n − 1} and the underlying graph is
0→ 1→ · · · → n− 1→ 0. We assume that the counting is done in cyclic order within
{0, . . . , n− 1} using the increment operation i⊕ 1 and the decrement operation i	 1.
In particular, (n− 1)⊕ 1 = 0 and 0	 1 = n− 1.

For i ∈ V , let Zi(w) = {c ∈ C(i) | β(i, c) + w ≥ β(i, c′) for all c′ ∈ C(i)}
denote the set of colours available to player i with the bonus at most w below the
maximum one available to i. For every i ∈ V , define Ai := Zi(0), i.e. all colours



with the maximum bonus, Bi := Zi(wi	1→i − 1), and Ci := Zi(wi	1→i). Obviously
∅ 6= Ai ⊆ Bi ⊆ Ci ⊆ C(i) for every i. It is quite easy to see that in any Nash
equilibrium, player i can only select a colour from Ci. Let us fix a query q : Q→M . In
this section, without loss of generality, we assume that 0 ∈ Q.

Algorithm 3: ∃NE on a simple cycle
Input: A simple cycle on nodes {0, . . . , n− 1}, sets Ai, Bi, Ci for i ∈ V , a query

q : Q→M .
Output: YES if there exists a Nash equilibrium consistent with q and NO otherwise.

1 Let X0 = {q(0)}.
2 for i = 0 to n− 1 do
3 if Xi 6⊆ Bi⊕1 then
4 Xi⊕1 = (Xi ∩ Ci⊕1) ∪Ai⊕1

5 else
6 Xi⊕1 = Xi

7 if i⊕ 1 ∈ Q then
8 if q(i⊕ 1) 6∈ Xi⊕1 then
9 return NO

10 else
11 Xi⊕1 = {q(i⊕ 1)}

12 return YES

Algorithm 4: ∀NE on a simple cycle
Input: A simple cycle on nodes {0, . . . , n− 1}, sets Ai, Bi, Ci for i ∈ V , a query

q : Q→M .
Output: YES if all NEs are consistent with q and NO otherwise.

1 for c ∈M do
2 if Algorithm 3 for q′ := {0→ c} returns NO then
3 continue with the next c

4 else
5 Consider Xi computed by Algorithm 3 for q′:
6 if exists i ∈ Q such that Xi 6= {q(i)} then
7 return NO

8 return YES

Theorem 5. The ∃NE problem for simple cycles can be solved in O(|G|) time.

Proof. [sketch] We argue that given a simple cycle over the nodes V = {0, . . . , n− 1}
and a query q : Q → M , the output of Algorithm 3 is YES iff there exists a Nash



equilibrium s∗ which is consistent with q. Suppose there exists a Nash equilibrium
s∗ which is consistent with q. We can argue by induction on V that on termination of
Algorithm 3, for all i ∈ V , we have s∗(i) ∈ Xi.

Conversely, suppose the output of Algorithm 3 is YES. From the definition, this
implies that for all i ∈ V , Xi 6= ∅ and for all j ∈ Q: q(j) ∈ Xj (in fact, Xj = {q(j)}).
We define a Nash equilibrium s∗ as follows. First, let s∗(0) = q(0). Next we assign
values to s∗(i) starting at i = n− 1 and going down to i = 1 as described below.

– If i ∈ Q then s∗(i) = q(i).
– If i 6∈ Q and Xi ⊆ Bi⊕1 then by Algorithm 3 we have Xi = Xi⊕1. Let s∗(i) =
s∗(i⊕ 1).

– Assume i 6∈ Q and Xi 6⊆ Bi⊕1. If s∗(i ⊕ 1) ∈ Xi ∩ Ci⊕1 set s∗(i) = s∗(i ⊕ 1).
Otherwise s∗(i⊕ 1) ∈ Ai⊕1 and we set s∗(i) to any element in Xi \Bi⊕1.

Now one can show that s∗, as defined above, is a NE. ut
Algorithm 4 reduces the ∀NE problem to m ∃NE queries. For for unweighted simple

cycles ∀NE can solved efficiently using an adaptation of Algorithm 3.

Theorem 6. The ∀NE problem for simple cycles (unweighted simple cycles) can be
solved in O(m|G|) time (respectively, O(|G|) time).

5 Colour Complete Graphs

We show that ∃NE and ∀NE problems can be solved in polynomial time for coordination
games G((V,E), C) played on unweighted colour complete graphs with n nodes and a
fixed number of colours, m, and no bonuses.

Theorem 7. The ∃NE and ∀NE problems for unweighted colour complete graphs and
no bonuses can be solved in O(nm ·m!) time.

Proof. We claim that the set of total orders on the set of colours induces a set of
joint strategies which contains the whole set NE(G). Specifically, every total order
� on M will be mapped to a joint strategy SP(�) as follows: assign to each player
the highest colour available to him according to the total order �. Formally, for all
players i: SP(�)(i) = max� C(i). For any Nash equilibrium s let us define a relation
�s⊆M ×M : x �s y iff there exists player i such that {x, y} ⊆ C(i) and s(i) = x.

Lemma 2. The relation �s is acyclic, i.e. for all k ≥ 2 there is no sequence of colours
x1, . . . , xk such that x1 �s x2 �s . . . �s xk �s x1.

Note Lemma 2 may fail when bonuses are introduced into the game. We also need
the following folk result.

Lemma 3. Any acyclic binary relation on a finite set can be extended to a total order.

For the relation �s let �∗s be a total order from Lemma 3 such that �s ⊆ �∗s .

Lemma 4. For any Nash equilibrium s, SP(�∗s) = s.



Proof. Suppose that SP(�∗s)(i) 6= s(i) for some player i. This means s(i) 6= max�∗
s
C(i),

so there exists x ∈ C(i) such that x �∗s s(i) and x 6= s(i). However, {x, s(i)} ⊆ C(i)
implies that s(i) � x and so also s(i) �∗s x should hold; a contradiction with the fact
that �∗s , as a total order, is antisymmetric. ut

From Lemma 2 and Lemma 4 we know that for every Nash equilibrium s, there
exists at least one total order on M that induces it. Therefore, for ∃NE problem (∀NE
problem) it suffices to check for all possible total orders � on M , whether the induced
joint strategy SP(�), is a Nash equilibrium and if so, whether any (respectively, all) of
them is consistent with q. There are m! total orders on M . Checking whether an induced
strategy profile is a Nash equilibrium consistent with q takes O(nm) time. This gives
O(nm ·m!) in total. ut

Note that in the following coordination game on a colour complete graph there is a
one-to-one correspondence between the set of total orders on colours and the set of all
Nash equilibria, and so it has exponentially many different NEs.

Example 2. Let the set of colours M be {1, . . . ,m} and consider a clique consisting of
(m− 1)m/2 players. For every x, y ∈M such that x < y there is exactly one player in
this clique whose available colours are x and y only. It is easy to see that for the total
order � defined as m � m− 1 � . . . � 1 the number of players choosing colour m in
SP(�) is m− 1, which is the maximum possible. It can be verified that in SP(�), all
the players who picked colour x receive a payoff of x− 2, each colour gives a different
payoff and no player can improve his payoff. It follows that SP(�) is a Nash equilibrium.
If we consider any other total order on M , it will result in a permutation of this sequence
of payoffs. Because all of these numbers are different, no two joint strategies induced by
two different total orders are the same.

6 Directed Acyclic Graphs

In Section 3 we showed that the ∃NE and ∀NE problems are NP and coNP complete
respectively even for unweighted DAGs with out-degree at most two and no bonuses.
We now show that if the out-degree of each node in an unweighted DAG is at most 1
(there are no constraints on the in-degree of nodes) then these problems can be solved
efficiently.

Theorem 8. Algorithm 5 solves the ∃NE problem for unweighted DAGs with out-degree
at most one in O(|G|2.5) time.

Proof. [sketch] For each node, i, we compute the set, X(i), of colours that can possibly
be assigned to i in any Nash equilibrium. Such a set is trivial to compute for source nodes
in G, and for the other nodes it can be computed by constructing a suitable bipartite
graph based on the sets precomputed for all its neighbours and running a matching
algorithm. In lines 7-10 we remove colours that are dominated by others. We need the
following lemma.

Lemma 5. If Algorithm 5 returns YES, then for all i ∈ V , for all c ∈ X(i), there exists
a Nash equilibrium s∗ such that s∗i = c and for all j 6= i, s∗j ∈ X(j).



Algorithm 5: Algorithm for ∃NE on unweighted DAGs with out-degree ≤ 1.
Input: A coordination game G((V,E), C, β) and query q : Q→M
Output: YES if there exists a Nash equilibrium consistent with q and NO otherwise.

1 Topologically sort V into a sequence (i1, . . . , in).
2 for j := 1 . . . n do
3 X(ij) := ∅
4 Y := {X(k) | k → ij ∈ E}
5 for c ∈ C(ij) do
6 S := {Z ∈ Y | c ∈ Z}; C′ := C \ {c}; Y ′ := Y \ S;
7 if exists c′ ∈ C′ such that |S|+ β(ij , c)− β(ij , c′) < 0 then
8 continue with the next c

9 while exists c′ ∈ C′ such that |S|+ β(ij , c)− β(ij , c′) ≥ |Y ′| do
10 C′ := C′ \ {c′}; Y ′ := Y ′ \ {Z ∈ Y ′ | c′ ∈ Z}
11 Construct the following bipartite graph

G′ := (V ′ = (Y ′, {{c′} × {1, . . . , |S|+
β(ij , c)− β(ij , c′)} | c′ ∈ C′}), E′)
where Z → (c′, x) ∈ E′ iff c′ ∈ Z

if the maximum bipartite matching in G′ has size |Y ′| then
12 add c to X(ij)

13 if ij ∈ Q then
14 if q(ij) 6∈ X(ij) return NO else X(ij) := {q(ij)}

15 return YES

Now, if Algorithm 5 returns YES, then from the definition, for all i ∈ V , Ai 6= ∅ and for
all j ∈ P , Aj = {q(j)}. By Lemma 5 it follows that there exists a Nash equilibrium s∗

which is consistent with q.

Conversely, suppose there exists a Nash equilibrium s∗ which is consistent with q.
Let θ = (i1, . . . , in) be the topological ordering of V chosen in line 1 of Algorithm
5. We argue that for all j ∈ {1, . . . , n}, s∗(ij) ∈ X(ij). The claim follows easily for
i1. Consider a node im and suppose for all j < m, s∗(ij) ∈ X(ij). For c ∈ C, let
Nim(s∗, c) = {ik ∈ Nim | s∗(ik) = c}. Since s∗ is a Nash equilibrium, s∗(im) is a best
response to the choices made by all nodes ik ∈ Nim . This implies that for all c 6= s∗im ,
|Nim(s∗, c)|+ β(ij , c) ≤ |Nim(s∗, s∗im)|+ β(ij , s

∗
im
). Note that |S| ≥ |Nim(s∗, s∗im)|

and so c is not discarded in line 8. Also, it guarantees the existence of a matching of size
|Y ′| at line 12 and thus s∗(im) ∈ X(im).

We claim that if the Hopcroft-Karp algorithm is used for each matching at line 11,
then Algorithm 5 runs in O(|G|2.5). First, for each node k, X(k) is in Y at most once
and so is matched at most once for each colour. We claim that the worst case running
time is for |Y | = |V |. Now, due to lines 9-10 we have |S|+ β(ij , c)− β(ij , c′) ≤ |Y ′|
=O(n), so G′ at line 11 hasO(nm) nodes andO(n ·nm) edges thus its matching takes
O(
√
nm · n2m) time. ut

Similarly Algorithm 6 solves the ∀NE problem.



Algorithm 6: Algorithm for ∀NE on unweighted DAGs with out-degree ≤ 1.
Input: A coordination game G((V,E), C, β) and query q : Q→M .
Output: YES if all Nash equilibria are consistent with q and NO otherwise.

1 Topologically sort V into a sequence (i1, . . . , in).
2 for j := 1 . . . n do
3 X(ij) := the set of colours player ij can play in any Nash equilibrium (lines

3-12 of Algorithm 5)
4 if ij ∈ Q and X(ij) 6= {q(ij)} then
5 return NO

6 return YES

Theorem 9. Algorithm 6 solves the ∀NE problem for DAGs with out-degree at most one
in O(|G|2.5) time.

7 Conclusions

We presented coordination games on directed graphs, a natural subclass of polymatrix
games. We focused on checking whether a given partial colouring of a subset of the
nodes is consistent with some pure Nash equilibrium or, alternatively, with all pure
Nash equilibria. We showed these problems to be NP-complete and coNP-complete,
respectively, in general. However, we also identified several natural cases when these
decision problems are tractable.

In the case of weighted DAGs with out-degree at most one and colour complete
graphs with no bonuses a simple reduction from the PARTITION problem and its comple-
ment, shows NP and coNP-hardness of their ∃NE and ∀NE problems, respectively. This
does not exclude the possibility that pseudo-polynomial algorithms exist for these prob-
lems. We conjecture that even for unweighted colour complete graphs these problems
are NP/coNP-hard in the presence of bonuses or when the set of colours, M , is not fixed.

There are several ways our results can be extended further. One is to study other
constraints, e.g. uniqueness of Nash equilibrium or checking maximum payoff for a
given player. Another is to look at different solution concepts, e.g. strong equilibria. And
yet another is to look for more classes of graphs that can be analysed in polynomial time.
Given that these decision problems are already computationally hard for DAGs with
three colours, the possibilities for such new classes are rather limited.

Finally, we only focused on pure Nash equilibria in this paper, which may not exist
for general graphs. On the other hand, mixed Nash equilibria always exist due to Nash’s
theorem. It would be interesting to know whether the complexity of finding one is
PPAD-complete problem just like it is for general polymatrix games [5].
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3. Vittorio Bilò and Marios Mavronicolas. The Complexity of Decision Problems about Nash
Equilibria in Win -Lose Games. In Proc. of SAGT’12, volume 7615 of LNCS, pages 37–48,
2012.

4. A. Bogomolnaia and M. Jackson. The stability of hedonic coalition structures. Games and
Economic Behavior, 38(2):201–230, 2002.

5. Yang Cai and Constantinos Daskalakis. On minmax theorems for multiplayer games. In
Proceedings of the SODA’11, pages 217–234, 2011.

6. Vincent Conitzer and Tuomas Sandholm. New complexity results about Nash equilibria.
Games and Economic Behavior, 63(2):621–641, 2008.

7. J.H. Dreze and J. Greenberg. Hedonic coalitions: Optimality and stability. Econometrica,
48(4):987–1003, 1980.

8. Aykut Erdem and Marcello Pelillo. Graph transduction as a noncooperative game. Neural
Computation, 24(3):700–723, 2012.

9. Alex Fabrikant, Christos Papadimitriou, and Kunal Talwar. The complexity of pure Nash
equilibria. In In Proc. of 36th STOC, pages 604–612. ACM, 2004.

10. Moran Feldman, Liane Lewin-Eytan, and Joseph Seffi Naor. Hedonic clustering games. In
Proc. of the ACM symposium on Parallelism in algorithms and architectures, pages 267–276,
2012.

11. Itzhak Gilboa and Eitan Zemel. Nash and correlated equilibria: Some complexity considera-
tions. Games and Economic Behavior, 1(1):80–93, 1989.

12. Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. Pure Nash equilibria: Hard and
easy games. Journal of Artificial Intelligence Research, 24:357–406, 2005.

13. Gianluigi Greco and Francesco Scarcello. On the complexity of constrained Nash equilibria
in graphical games. Theoretical Computer Science, 410(38-40):3901–3924, September 2009.

14. E.B. Janovskaya. Equilibrium points in polymatrix games. Litovskii Matematicheskii Sbornik,
8:381–384, 1968.

15. M. Kearns, M. Littman, and S. Singh. Graphical models for game theory. In Proc. of UAI’01,
pages 253–260, 2001.

16. Douglas A. Miller and Steven W. Zucker. Copositive-plus lemke algorithm solves polymatrix
games. Operations Research Letters, 10(5):285–290, 1991.
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