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Abstract. We study a strategic game model on hypergraphs where players, mod-
elled by nodes, try to coordinate or anti-coordinate their choices within certain
groups of players, modelled by hyperedges. We show this model to be a strict
generalisation of symmetric additively separable hedonic games to the hyper-
graph setting and that such games always have a pure Nash equilibrium, which
can be computed in pseudo-polynomial time. Moreover, in the pure coordination
setting, we show that a strong equilibrium exists and can be computed in polyno-
mial time when the game possesses a certain acyclic structure.

This paper has appeared in the Proceedings of IJCAI 2017 conference [38].

1 Introduction

Coordination and anti-coordination are key concepts widely used in game theory to
model situations where players are rewarded for agreeing on a common (respectively,
different) action or strategy. Such strategic interaction can naturally arise in scenarios
as diverse as negotiating tax treaties (coordination), product selection among a group of
friends (coordination), miners drilling for resources (anti-coordination) or people trying
to gain new skills to stand out from the rest in a job market (anti-coordination). In this
paper, we propose a model called synchronisation games, which can be used to analyse
the strategic behaviour of players whose objective is to coordinate or anti-coordinate
their choice within certain groups of players. Moreover, these sets of possible choices
may differ between players and a player may want to synchronise with multiple groups
at the same time. For a coordinating group, a positive payoff is generated if all its
members chose the same strategy. For an anti-coordinating group, a positive payoff is
generated if at least one member chose a different strategy from the rest of the group.
An important aspect of synchronisation games is that the utility of players depend not
just on the groups that are formed by the strategic interaction, but also on the choice of
action that the members of the group decide to coordinate on. This property is useful
to model various natural constraints in a concise manner using this framework. As a
motivating example, consider a complex task allocation problem of planning a humani-
tarian relief operation. Various organisations can form coalitions to make the operation
more efficient and provide optimal help. In many cases, the expertise of an organisation
would be higher in certain geographical domains compared to others and there might
be regions and partners with whom the organisation cannot cooperate due to various
technical and ideological reasons. The local interaction structure and the payoff for
each organisation, therefore, depends on various parameters including expertise of the
organisation, possible partners, geographical location of the task as well as the specific



task that the organisation decides to execute along with its coordinating partners. Each
organisation’s skills can be best utilised if it coordinates with partners in the optimal ge-
ographical region, where, as a group they are able to exploit their combined expertise.

A natural framework to model and analyse the behaviour of agents in such a setting
would be to use hypergraphs to capture the local dependency relation. Each player cor-
responds to a vertex and each group to a hyperedge. Note that anti-coordination within
a group can be simulated using coordination by negating the original payoff and adding
to the payoff of each member of the group an equal share of the original payoff. Thus
coordination and anti-coordination behaviour within a group can be modelled by asso-
ciating a positive and negative weight, respectively, to the corresponding hyperedges.
These weights (assigned to hyperedges) provide a quantitative measure on how bene-
ficial it is for the players belonging to a particular hyperedge, to coordinate (positive
weight) or anti-coordinate (negative weight). In this setting, each player picks one el-
ement from a finite set of colours that each corresponds to a project (i.e. a possible
coalition).

Thus, synchronisation games on hypergraphs can be used to reason about distributed
coalition formation where players have preferences over members of the same coalition
given by a hypergraphical social network. Coalition formation also plays a central role
in game theory [22] and it is an active area of research in multi-agent systems. In many
social and economic situations, individual entities prefer to function as a group in order
to achieve certain objectives. Synchronisation games are examples of non-transferable
utility games. A natural assumption often made in such a setting is that a player’s utility
solely depends on members of the coalition that the player is part of and not on how
other players are distributed among the other coalitions. Such games are often referred
to as hedonic games [14]. Despite their apparent simplicity, hedonic games have found
numerous practical applications [7] (and [5] for a more recent survey).

Related work. Synchronisation games are related to many well-studied types of games.
They strictly generalise symmetric additively separable hedonic games [7] to the hyper-
graphical setting. Since the payoff structure has a local dependency specified by hyper-
edges, they share certain features with graphical games [27] and their generalisation
action-graph games [25]. In particular, any synchronisation game can be translated into
an equivalent graphical game, but with a potential exponential blow-up in size. Synchro-
nisation games also extend polymatrix games [24] in the context of coordination and
anti-coordination behaviour. Polymatrix games form a natural subclass of games where
the utilities of players are restricted to be pairwise separable. Computational aspects
of polymatrix games are well-studied [13] and they include game classes with good
computational properties like two-player zero-sum games. Polymatrix games where the
pairwise interaction is restricted to two player coordination and anti-coordination games
have been studied in [11]. Polymatrix coordination games played on an undirected and
directed graph structure has been studied in [33], [36], [37], [2] and [3].

Synchronisation games extend these models to hypergraphs. [8] studies a restricted
version of anti-coordination games on graphs where each player has two strategies and
the strategy set for all the players is the same. The author shows how the properties of
equilibria depends on the structure of the underlying graph.



The coalition formation property which is inherent in our game model also makes it
relevant for cluster analysis. Clustering is the problem of organising a set of objects into
groups in a way as to have similar objects grouped together and dissimilar ones assigned
to different groups. Hypergraph clustering is a technique that uses high-order (rather
than pairwise) similarities to find the clusters. Clustering has been studied from a game
theoretic perspective [19,31]. In particular, [10] showed that using such an approach
outperformed the state-of-the-art techniques used for hypergraph clustering. [23] also
studied clustering games that are polymatrix games based on undirected graphs.

Our games are a subclass of hypergraphical games [30] where the underlying group
games are limited to coordination or anti-coordination ones only. Graphical potential
games and their strong connection to Markov random fields were studied in [6, 29].

As compared to classical centralised approaches to the team formation problem [1,
28] our game theoretic approach is distributed, i.e. each agent decides on its own which
team to join. Analysis of coalition formation games in the presence of hard constraints
on the number of coalitions that can be formed and preferences on coalitions given us-
ing a weighted undirected graph was investigated in [39]. In this context, we extend that
work in two directions. First, we introduce player-specific restrictions on the coalitions
that players can join. Second, using weighted hypergraph representation for the prefer-
ence relations on coalitions, allows us to represent synergies between groups of players,
which is not possible with undirected graphs.

Plan of the paper. We start with a background on strategic games, hedonic games,
and hypergraphs in Section 2. In Section 3, we define synchronisation games on hy-
pergraphs and a subclass of hedonic games, which generalises symmetric additively
separable hedonic games to the hypergraphical setting. We then show that any syn-
chronisation game can be associated with such a hedonic game so that their pure Nash
equilibria and Nash stable partitions, respectively, coincide. In Section 4, we show that
every synchronisation game has a pure Nash equilibrium (NE), which can be computed
in pseudo-polynomial time. Finally, we show in Section 5 that, in the pure coordination
setting, a strong equilibrium exists and can be computed in polynomial time when the
game possesses a certain acyclic structure. Due to space constraints some of the proofs
had to be omitted or replaced by sketches.

2 Background

Strategic games. Let N = {1,...,n} be the set of players. A strategic game G =
(S1,..-,5n, p1,---,pn) With n > 1 players, consists of a non-empty set S; of strate-
gies and a payoff function p; : S; x --- x S, — R, for each player i. We denote
S1 X -+- x S, by S, call each element s € S a joint strategy and abbreviate the se-
quence (s;);; to s_; and X#i S; to S_;. We also write (s;,s_;) instead of s. We
call a strategy s; of player i a best response to a joint strategy s_; if for all s, € S;,
Di(Si, 5—i) > pi(sh, 5-i).

A game is an exact potential game if there is a function ¢ : S — R such that
Vs_; € S_;, Vsi, s € Sy, (s}, s—;) — d(s,s—i) = pi(sh, s—i) — pi(s], 5-4).

A coalition is a non-empty subset K := {k1,...,k,} C N. Given a joint strategy
s we abbreviate the sequence (s, ..., Sk, ) of strategies to sk and S, X -+ x Si
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to Sk. We also write (s, s_x ) instead of s. If there is a strategy « such that s; = x
for all players ¢ € K, we also write (vx, s_f ) instead of s.

Given two joint strategies s’ and s and a coalition K, we say that s’ is a deviation
of the players in K from s if K = {i € N | s; # s.}. We denote this by s —x s
If in addition p;(s’) > pi(s) holds for all i € K, we say that the deviation s’ from s
is profitable. Further, we say that a coalition K can profitably deviate from s if there
exists a profitable deviation of the players in K from s. Next, we call a joint strategy s a
k-equilibrium, where k € {1,...,n}, if no coalition of at most k players can profitably
deviate from s. Using this definition, a (pure) Nash equilibrium (NE) is a 1-equilibrium
and a strong equilibrium (SE), see [4], is an n-equilibrium. We do not consider mixed
Nash equilibria in this paper.

An improvement path (of length 1) is a sequence of joint strategies s',s?, ..., s!
such that for all 1 < j < [ — 1 there is exactly one player, i, for which sitlis a
profitable deviation for player i from s7.

Hedonic games. For i € N, let N; denote the set of all coalitions that contain ¢,
ie. N; = {S C N | i € S}. A codalition structure is any partition, 7, of N into
disjoint coalitions. For a coalition structure m, we denote by 7;, the unique coalition in
7 that player ¢ belongs to. A hedonic game N is a pair (N, =) where N is the set of
players, and > (=1,...,7n) is a preference profile that specifies for every player
1 € N a complete, reflexive, and transitive preference relation >; on N;. Let 7 be a
coalition structure. We say that 7 is Nash stable if no player prefers to switch to a dif-
ferent (possibly empty) coalition in 7, i.e. for all ¢ € N we have 7; »=; S U {i}, where
S e mu{0}.

Hedonic coalition nets [16] provide a succinct and fully expressive representation
scheme for hedonic games. A hedonic coalition net , is a pair (N, R), where N is the
set of players and R = (Ry, ..., R,). Foreachi € N, R; encodes player i’s preference
as a set of rules of the form (¢, v) where ¢ is a propositional logic formula and v is a
real number. W.l.o.g. the only allowed formulae are conjunctions of literals and no R;
can have two different rules with the same formula. Specifically, each player : € N
corresponds to a propositional variable x; and every coalition S defines a valuation vg
such that vg(z;) = T if i € S and vg(x;) = L if i € S. The value of coalition S € N;
to player ¢ is then defined as p; () = >"¢(4 e ri vs e} V-

Hypergraphs. A hypergraph is a pair H = (V, E) consisting of a finite set of vertices
V' and a set I of non-empty subsets of V' called hyperedges. The arity of a hyperedge
is its size. A hypergraph is a graph when all its edges have arity at most two. A path in
H = (V, E) from vertex v to w is a sequence of hyperedges eq, . . ., ek such that v € e,
w € epand e; Nejpq # Ofori € {1,...,k — 1}. Two vertices are connected if there
is a path between these vertices. The reduction of a hypergraph H, denoted R(#H) is
defined as R(H) = (User f, F) where F' = {e € E | thereisno e’ € E withe C ¢'}.
H = (V' E') is a subhypergraph of H = (V,E) if E' C E and V' = Ucgre. Given
a set of vertices X C V, the hypergraph induced by X is H[X] = (V', E’) where
E'={enX|ee E}\ {0} and V' = U.cpre.

Acyclicity in hypergraphs. The notion of acyclicity has a natural definition in graphs
and it is an important concept. However, for hypergraphs, there is no canonical defi-
nition of acyclicity. Graph acyclicity has been extended to cover hypergraphs in var-



ious ways. In increasing order of generality, these are Berge acyclicity, y-acyclicity,
B-acyclicity and a-acyclicity [18]. Berge acyclicity is the most restrictive notion of
acyclicity in hypergraphs. A Berge cycle in a hypergraph H = (V, E) is a sequence
(e1,v1,..., €k, Uk, €pt1) With £ > 2 where e;-s are distinct hyperedges with e =
e1, v;-s are distinct vertices satisfying the condition: v; € e; N e;4+1. A hypergraph
is Berge acyclic if it does not contain a Berge cycle. It follows from the definition
of a Berge cycle that if a hypergraph H = (V, E) is Berge acyclic, then for ev-
ery pair of edges ej,ea € FE, |e; Ney| < 1. A 7-cycle is a sequence of the form
(e1,v1,..., €k, Uk, €pt1) With £ > 3 where e;-s are distinct hyperedges with e =
e1, v;-s are distinct vertices satisfying the following condition:

- foralli e {1,...,k—1},v; € e;Ne;y1 and no other e; (ie., v; € e; forall j < ¢
and 7 > 7+ 1).
- v €EepNey.

A hypergraph is y-acyclic if it does not contain a y-cycle. A 5-cycle is a sequence
(e1,v1,..., €k, Uk, €x+1) With k > 3, where e;-s are distinct hyperedges with e 1 =
e1, v;-s are distinct vertices satisfying the condition that for all ¢ € {1,...,k},v; €
e; M e;4+1 and no other e;. A hypergraph is 3-acyclic if it does not contain a 3-cycle.
Note that the difference between a S-cycle and a ~y-cycle concerns possibly the last
vertex in the cycle.

Two vertices v and v are neighbours in # = (V, E) if there is some e € E such
that {u,v} C e. A clique of a hypergraph is a subset of its vertices whose elements
are pairwise neighbours. A hypergraph is conformal if every clique is included in a
hyperedge. A hypergraph H has a simple cycle if there exists (v1, va, . .., vy ) such that
R(H[{vi |1 <i<k}]) ={{vi,vit1} | 1 <i < n}U{{vk,v1}}. A hypergraph is
a-acyclic if it is conformal and does not have a simple cycle. A rather strange property
of a-acyclicity is that it is possible for a hypergraph to be a-acyclic while having a a-
cyclic subhypergraph. The following result states that this does not occur for stronger
notions of acyclicity: Berge, v and 3.

Lemma 1. [18] Each subhypergraph of an acyclic hypergraph (Berge, v and [3) is
acyclic.

The relationship between the various notions of acyclicity is given by the following
result.

Lemma 2. [18] Berge acyclicity implies ~y-acyclicity implies B-acyclicity implies o-
acyclicity. None of the reverse implications hold.

Another important notion in the context of hypergraphs is that of a join tree. A
join tree for H = (V, E) (if it exists) is a rooted tree T = (Vr, er) where the vertices
Vr = Fandforallv € V,if v € e;Nes, then v is contained in all nodes of the (unique)
path connecting e; to e in 7. A join tree T of a hypergraph H has disjoint branches if
hyperedges of H belonging to different branches of 7~ are disjoint. The following result
shows that existence of a join tree with disjoint branches is a notion located between
~-acyclicity and S-acyclicity.

Lemma 3. [15] If a hypergraph is v-acyclic, it has a join tree with disjoint branches.
If a hypergraph has a join tree with disjoint branches, it is 5-acyclic.



3 Synchronisation Games

We now define the class of games that we study in this paper. Fix a finite set of colours
M. A weighted hypergraph is given by the tuple (H,w) where X = (V, E) is a hy-
pergraph over the vertices V' = {1,...,n} where foralle € E, |e|] > 2 and w is a
function that associates with each edge e € E and colour ¢ € M, an integer weight
w(e, c). A colour assignment function C' : V' — 2M assigns a finite non-empty set of
colours to each vertex in H. Given an n tuple of colours s = (cy,...,c,) Where for
alli € {1,...,n}, ¢; € C(i), and an edge e € E, we say that e is unicoloured with
colour cin s if ¢; = ¢ for all i € e. Given a weighted hypergraph (G, w) and a colour
assignment C, the associated strategic game G(H, M, w, C) is defined as follows: the
players are the vertices V' and the set of strategies of player ¢ € V is the set of colours
C(4). For a joint strategy s, the payoff function p;(s) = > c p.;c. W(e, s) where

_ 0 if e is not unicoloured in s

wle,s) = e L

w(e,c) if e is unicoloured with ¢ in s

We call such games synchronisation games (on hypergraphs). If all weights are positive
then we refer to them as coordination games (on hypergraphs).

Example 1. Consider the hypergraph H = (V, E) where V = {1,2,3,4,5} and E =
{61,62, 63,64} with e; = {1, 2,3},62 = {2,3,4},63 = {3,4} and e4 = {2,5} Let
the set of colours M = {e, e, e} be commonly available to all the players. Consider

two joint strategies: s = (o, e, 0 o o), drawn on the left below, and s’ = (e, 0,0 e 6),

drawn on the right.

Let the weight function be defined as follows: w(ey, ) = 5, w(es, x) = —2,w(e3, x) =
3 and w(eq,x) = 1 for x € {e, o, o}. The payoff profile for players playing s is then
(5,5,5,0,0) and for players playing s’, it is (0, —2,1,1,0).

We now make a direct connection between synchronisation games and the following
natural subclass of hedonic games. Let impartial hedonic coalition nets be hedonic
coalition nets that satisfy the following two conditions:

1. All literals are positive, i.e. = operator is not used.
2. For any two players ¢, j € N, if (¢,v) € R; and x; occurs in ¢, then (¢, v) € R;.

Note that symmetric additively separable hedonic games [7] can be represented by
impartial hedonic coalition nets where each rule has exactly two (positive) literals. At
the same time, the expressiveness of impartial hedonic coalition nets is incomparable
to additively separable hedonic games for which the preferences are separable but not
necessarily symmetric.



Theorem 1. Any synchronisation game G(H, M,w,C) can be translated into an im-
partial hedonic coalition net N' = (N, R), and vice versa, such that there is a one-to-
one correspondence between the set of Nash equilibria in G and the set of Nash stable
partitions in N.

Proof. Tt is straightforward to see that every impartial hedonic coalition net can be
represented by a synchronisation game. We simply set V' = N, M = N and the colour
assignment C(i) = M, i.e. there is no restriction on the colours that can be picked by
any of the players. At the same time for every rule (¢, ), where ¢ = x;, A... Ax;, we
add a hyperedge e = {i1,. .., } to E with weight w(e, ¢) = r for every ¢ € M.
Translating a synchronisation game into an impartial hedonic coalition net is less
straightforward. We define W to be the value W = °__ p maxcear [w(e, ¢)|, which is
an upper bound on the absolute value of the payoff any player can get in G. The set of
players of N will be N = V U M where players in M will simulate the colours in G.
For every pair of players i € V and ¢ € C(i) we add the rule (x; A z.,2W + 1) to N
for both R; and R.. This ensures that player ¢ will be in a coalition with at least one of
the players c such that ¢ € C(i), because that gives him payoff of at least W + 1 and
otherwise his payoff is at most W. Moreover, for every c1,co € M such that ¢; # ¢
we add the rule (2, AZc,, —|V |- (2W +1)—1) to A to both R, and R..,. This ensures
that no two players simulating colours are in the same coalition, because otherwise the
most such a player could get is —1 and he would be better off in a singleton coalition. It
is straightforward to see that any Nash equilibrium in G induces a Nash stable partition
in NV, and vice versa. O

Theorem 1 tells us that any method for solving general hedonic coalition nets can
be applied to synchronisation games after the translation defined in its proof is used.
However, the problem with this translation is that it does not preserve nice properties
of the underlying hypergraph, e.g. it introduces a clique of size M. As a consequence,
the results for hedonic games with bounded treewidth such as [32] can only be applied
to very restricted subclasses of synchronisation games.

4 Nash Equilibrium

In this section we study the existence and computational complexity of finding an NE
in synchronisation games. We start with the following crucial fact.

Lemma 4. Every synchronisation game G(H, M, w, C) is an exact potential game.

Proof. We will show that ¢(s) = 3 . W(e, s) is an exact potential function.
Assume that some player ¢ switches its colour in s, which results in a strategy profile
s’. Note that the value of w does not change for hyperedges that player ¢ is not part of.
This is because nothing changes for them when the strategy profile switches from s to
s'. Asaresult ¢(s") — ¢(s) = D cpice Wle,s") —W(e,s) = pi(s’) — pi(s). O

Note that in any local maximum of the potential function ¢, no player has an incen-
tive to deviate and so it has to be a Nash equilibrium. Let W = maxccp cec |w(e, ¢)|.
Note that the absolute value of ¢ is bounded by |E| - W and ¢(s) is always an integer,
which implies the following.



Corollary 1. Every synchronisation game has an NE and any strategy improvement
path has length O(|E| - W).

Checking whether any player can improve his payoff by unilateral switching of his
colour can be done in O(|V'|-[M|-3 . |e]). This and Corollary 1 implies that simply
following any strategy improvement path gives us a pseudo-polynomial O(|E| - W -
V|- M| -3 .cp le|) algorithm for computing an NE.

Recall that the complexity class PLS [26] captures the computational problem of
finding a local maximum of a polynomially computable function with polynomially
bounded neighbourhood. As PLS C P would imply that NP = co-NP, it is considered
unlikely that a polynomial algorithm exists for any PLS-hard problem. The fact that
synchronisation games can encode symmetric additively separable hedonic games and
finding a Nash stable partition in them is PLS-hard shows PLS-hardness of finding
an NE in synchronisation games. However, this encoding requires as many colours as
there are number of players in the game. We strengthen this result by directly showing
PLS-hardness already for two colours.

Theorem 2. Finding a Nash equilibrium in a synchronisation game in which there are
only two colours to choose from is a PLS-complete problem.

Proof (sketch). Checking if there is a profitable deviation for some player in a given
joint strategy profile s can be done in polynomial time. This shows that the problem of
finding a local maximum of ¢ is in PLS. To prove PLS-hardness, we reduce from the
Local Max-Cut problem [35]. O

Despite this lower bound, our preliminary experimental tests showed that a simple
strategy improvement path following algorithm, i.e. applying any profitable deviation
in any order, performs very well in practice. E.g. it can find within a minute an NE
in a random synchronisation game with |V| = 1000, |E| = 10000, |M| = 10, and
W = 10° when run on 1.7 GHz Intel Core i5 CPU with 4 GB of RAM.

We also consider now the problem of finding an NE with social welfare (the sum of
all players’ payoffs) > L, where L is an arbitrary constant, and show the following.

Theorem 3. Checking whether a synchronisation game has an NE with social welfare
at least L is NP-complete.

Proof (sketch). A straightforward reduction from the K'-colouring problem for hyper-
graphs. a

Many NP-complete problems on undirected graphs can be solved in polynomial
time when restricted to the class of graphs with a bounded treewidth [34]. Hypertree-
width defined in [21] is a similar measure for hypergraphs. For any given constant k
checking whether a hypergraph has a hypertree-width at most & is feasible in polyno-
mial time. The class of graphs with k-bounded hypertree-width strictly generalise the
notion of hypergraphs acyclicity as the class of hypergraphs with hypertree width 1 is
exactly the class of a-acyclic hypergraphs.

One can show tractability of finding an NE in synchronisation games played on
hypergraphs with a bounded hypertree-width, but with the following additional restric-
tion. We say that a synchronisation game G has the small neighborhood property if



every player’s payoff in G depends only on actions of O(log(|V'|+|E|)/ log |M|) other
players.

Theorem 4. [follows from Theorem 5.3 in [20]] A Nash equilibrium can be found in
polynomial time for all synchronisation games that have the small neighbourhood prop-
erty and are played on hypergraphs with a bounded hypertree-width.

5 Strong Equilibrium

Unlike in the case of Nash equilibria, strong equilibria may not always exist even in
coordination games on graphs [33]. The following example shows that coordination
games on hypergraphs which are a-acyclic need not always have a strong equilibrium.

Fig. 1: Game with no strong equilibria

Example 2. Consider the hypergraph H which arises from the graph and the colour
assignment depicted in Figure 1 along with the hyperedge e = {1, 2, 3, 4}. The weights
on the hyperedges are depicted in Figure 1 and the weights are the same for all the
colours. Let w(e, x) = 1 for all . Due to the presence of the hyperedge e, the resulting
hypergraph is a-acyclic. We now argue that the coordination game whose underlying
graph is H does not have a strong equilibrium.

It can be verified that there are only two (pure) Nash equilibia in this game, the joint
strategies s = (a, ¢, ¢,c) and t = (b, b, ¢, ¢). In the joint strategy s, the coalition {1, 2}
can profitably deviate to b. While in ¢, the coaltion {1, 3} can profitably deviate to a.
Therefore it follows that this game does not have a strong equilibrium.

We now show that strong equilibria are guaranteed to exist in coordination games
when the underlying hypergraph satisfies certain acyclicity condition. Given a set K C
V,let Ex ={e € E|en K # (}. A deviation s —x s’ is simple if the hypergraph
‘H[EK] is connected and all nodes in K deviate to the same colour. The following
lemma says that if a joint strategy is not a strong equilibrium, then there is a simple
deviation.

Lemma 5. For coordination games, if s —y s’ is a profitable deviation for coalition
K, then there exists a simple deviation which is profitable.



Theorem 5. Every coordination game in which the underlying hypergraph H = (V, E)
is Berge acyclic has a strong equilibrium which can be computed in O(|V|) time.

Proof (sketch). Let H be a hypergraph that is Berge acyclic. We give a two pass al-
gorithm that processes the nodes of the hypergraph and computes a strong equilibrium.
The processing order is determined by a topological sort of the graph which we derive
using the following process:

— Initially hypergraph H' = H, ie., (V', E') = (V, E).
— Repeat until the H' is reduced to one edge:
e Lete € F' be an edge which has a common vertex with one other edge. Since
H’ is Berge acyclic, such an edge is guaranteed to exists if |E| > 2. Update
H’ to the induced subhypergraph H[E’ \ {e}]. By Proposition 1, H’ remains
Berge acyclic.

Let & = ey, eq,..., e, be the order in which the edges are removed in the above
process and ey, is the last edge remaining in #’. Based on this ordering, we can as-
sociate with each edge e € E’, anode v € e which is the parent of e. We can then
construct a tree 7" whose vertices are edges in H based on the ordering 6 and argue
that we can synthesise a strong equilibrium in the game by implementing a backward
induction procedure on the tree 7. Since the parent of each edge is a unique vertex and
the procedure processes each edge twice, we get the running time of O(|V|). O

The above result can be extended to hypergraphs that have join trees with disjoint
branches. For the strong equilibrium defined by the procedure to be a valid joint strategy,
the assumption of having disjoint branches is crucial.

Theorem 6. Every coordination game in which the underlying hypergraph H has a
Jjoin tree with disjoint paths has a strong equilibrium that can be computed in time
polynomial in the size of H.

Recall that the notion of a join tree with disjoint branches falls in between that of
~-acyclicity and S-acyclicity. There are S-acyclic hypergraphs which do not have a join
tree with disjoint branches. The next result shows that strong equilibrium is guaranteed
to exists in games whose underlying hypergraph is $-acyclic. However, the procedure
given below to compute such an equilibrium does not run in polynomial time.

Theorem 7. Every coordination game in which the underlying hypergraph H = (V, E)
is 3-acyclic has a strong equilibrium.

Proof (sketch). We first make use of the result from [9] that proves equivalence of
B-acyclic graphs in terms of an elimination order of (-leaves. This elimination or-
der, provides us with an ordering of nodes of the hypergraph H = (V, E). Let § =
V1,2, . .., v be this ordering. We define an exponential sized game tree T' = (Vip, E)
with vy, as the root. Since H is S-acyclic, it ensures a certain restriction on the interac-
tion of players. For instance, if there are distinct vertices vy, va, v3 such that vy, vy are
part of a hyperedge and v, vs are part of a hyperedge, then the only possible interaction
between v; and vs is through a hyperedge consisting of all three vertices. This induces



an independence on the best response actions computed inductively by backward in-
duction on the subgames of T". We can then argue that the joint strategy computed using
backward induction can be translated into a strong equilibrium in 7. a

Finally, checking if a hypergraph is acyclic (Berge, v and 3) can be done in poly-
nomial time. Given a hypergraph, it is also possible to check if it has a join tree with
disjoint branches and construct such a tree (if it exists) in polynomial time [12].

Theorem 8. Given a coordination game G(H, M, w, C') along with a joint strategy s,
checking if s is a strong equilibrium is in P.

Proof (sketch). We can argue that for a fixed colour ¢ € C, it is possible to check
in polynomial time the existence of a maximal coalition (in terms of set inclusion) K
which can profitably deviate to c. By Lemma 5, we can enumerate all the colours in M
and verify if s is a strong equilibrium. Let # = (V, E') and fix a coalition K of vertices
that can possibly deviate to a colour c. Let B/ = {e € E | 3distinct nodes u,w €
K withu,w € e} and H' = (V’, E’) be the hypergraph induced by E’. For v € K,
let Yy = D ccm mree W(6, (¢, 5-0)) and y7 = 3 W(e, (ck,5-k)). If K has
a profitable deviation to ¢ from the joint strategy s, then the following holds: for all
v € K,py(ck,s5_K) =yt +y2 > py(s). This holds iff y> > p,(s) —y! and we denote
this inequality by (x). Now starting with the set V, = {v € V | ¢ € C(v) and s,, # ¢}
we can successively eliminate nodes and converge to the maximal K for which (%)
holds. ad

Given a coordination game G(H, M, w, C), checking whether it has a strong equi-
librium is NP-hard even when # is a graph [33]. Along with Theorem 8 we get the
following corollary:

Corollary 2. Checking whether a given coordination game G(H, M, w, C) has a strong
equilibrium is NP-complete.

6 Conclusions

In this paper, we defined the synchronisation game model where players try to coor-
dinate or anti-coordinate among certain groups of players. We showed that this model
corresponds to a natural subclass of hedonic games and it strictly generalises sym-
metric additively separable hedonic games. As a consequence, any tool that is capable
of analysing hedonic games can also be used to analyse synchronisation games (after
the appropriate conversion). However, since the payoffs of players in a synchronisation
game depends not only on the eventual group structure that arises but also on the chosen
colour, this framework can be used to model complex constraints in a more natural and
concise manner. As illustrated in the paper, it is also possible to directly exploit specific
structural properties to reason about synchronisation games which are lost during the
translation to hedonic games.

Our results can be summarised as follows. We proved that every synchronisation
game has a pure NE and argued that finding one is tractable in several natural cases



and, as preliminarily experimental results suggests, potentially also in practice. More-
over, we showed that strong equilibria exist in synchronisation games when played on
B-acyclic hypergraphs with non-negative weights and can be found in polynomial time
when the hypergraph has a join tree with disjoint paths. We believe our model is of inter-
est because it is general enough to capture many natural strategic reasoning situations,
while guaranteeing the existence of equilibria and tractability of their computation in
many situations.

As future work, it would be interesting to analyse the behaviour of the local search
algorithm for finding an NE in synchronisation games using smoothed analysis as it
was done for the the Local Max-Cut problem in [17]. Another interesting problem is
showing that finding a strong equilibrium is also tractable for 3-acyclic hypergraphs.
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