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Summary Statement: Although the sternohyoideus muscle shortens to generate small amounts 28 

of power, bluegill sunfish require large regions of axial musculature—operating at or near 29 

maximum power output—to power suction feeding.  30 
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Abstract  31 

 32 

Suction-feeding fish rapidly expand the mouth cavity to generate high-velocity fluid flows that 33 

accelerate food into the mouth. Such fast and forceful suction expansion poses a challenge, as 34 

muscle power is limited by muscle mass and the muscles in fish heads are relatively small. The 35 

largemouth bass powers expansion with its large body muscles, with negligible power produced 36 

by the head muscles (including the sternohyoideus). However, bluegill sunfish—with powerful 37 

strikes but different morphology and feeding behavior —may use a different balance of cranial 38 

and axial musculature to power feeding and different power outputs from these muscles. We 39 

estimated the power required for suction expansion in sunfish from measurements of intraoral 40 

pressure and rate of volume change, and measured muscle length and velocity. Unlike 41 

largemouth bass, the sternohyoideus did shorten to generate power, but it and other head muscles 42 

were too small to contribute more than 5-10% of peak expansion power in sunfish. We found no 43 

evidence of catapult-style power amplification. Instead, sunfish powered suction feeding by 44 

generating high power outputs (up to 438 W kg-1) from their axial muscles. These muscles 45 

shortened across the cranial half of the body as in bass, but at faster speeds that may be nearer 46 

the optimum for power production. Sunfish were able to generate strikes of the same absolute 47 

power as bass, but with 30-40% of the axial muscle mass. Thus, species may use the body and 48 

head muscles differently to meet the requirements of suction feeding, depending on their 49 

morphology and behavior.  50 
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Introduction 51 

 52 

Fish can capture food underwater by creating high-velocity fluid flows that rapidly suck nearby 53 

food and water into the mouth. These suction flows are generated as a fish quickly expands its 54 

mouth cavity, increasing volume and decreasing pressure in this space so that water—and ideally 55 

prey—are accelerated inside (reviewed in (Day et al., 2015)). To suction feed successfully, ray-56 

finned fishes (Actinopterygii) rely on a highly kinetic cranial skeleton that allows the mouth 57 

cavity to expand three-dimensionally (Alexander, 1967). Mouth cavity volume may be increased 58 

through elevation of the neurocranium (dorsal expansion), depression of the lower jaw and hyoid 59 

apparatus (ventral expansion), and abduction of the suspensorium and operculum (lateral 60 

expansion) (Liem, 1967; Liem, 1978; Van Wassenbergh et al., 2005; Van Wassenbergh et al., 61 

2009a). Any combination of these expansion systems may be used during suction feeding, which 62 

contributes to prey capture in most of the over 30,000 species of ray-finned fishes (reviewed in 63 

(Lauder, 1985; Wainwright et al., 2015; Westneat, 2006)). 64 

 65 

Expanding the mouth cavity during suction feeding requires not only a mobile skeleton, but also 66 

considerable muscle power and work. Mechanical power is the product of force and velocity, or 67 

in a fluid system like suction feeding, the product of the rate of volume change and the change in 68 

pressure (e.g., (Marsh et al., 1992)). The simultaneous rapid increase in volume and large 69 

decrease in pressure of the mouth cavity during suction expansion requires substantial power. 70 

However, vertebrate muscles can only generate a limited amount of power. The power produced 71 

by an actively shortening muscle depends on many factors, but its maximum capacity is 72 

ultimately limited by its mass: larger muscles generate more power than smaller muscles, all else 73 

being equal. Meeting the requirements of powerful feeding behaviors, therefore, may be 74 

particularly challenging, as the muscles of the head region are generally much less massive than 75 

those of the rest of the body. 76 

 77 

Researchers have long recognized that head muscles are likely too small to generate all the 78 

power required for suction expansion (Aerts et al., 1987; Alexander, 1970; Elshoud-Oldenhave, 79 

1979), and that additional power may come from the body muscles: the epaxials and hypaxials 80 

(Fig. 1A). The primary expansive muscles in the head region include three cranial muscles—81 
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levator arcus palatini, levator operculi, and dilator opercula—and a hypobranchial muscle, the 82 

sternohyoideus (hereafter referred to together as “cranial” muscles). All are oriented to generate 83 

lateral and ventral expansion (Fig. 1A) and are electrically active during suction expansion 84 

(reviewed in (Grubich, 2001; Lauder, 1985; Westneat, 2006)), although cranial muscle 85 

shortening has been measured in only a few instances (Camp et al., 2015; Carroll and 86 

Wainwright, 2006; Van Wassenbergh et al., 2007a). The epaxial muscles are often considered 87 

part of the feeding apparatus, as they are the only muscles that can elevate the neurocranium and 88 

are consistently active during suction feeding (Lauder, 1985). Hypaxial muscles are less well 89 

studied, but are generally active during feeding and can contribute to suction expansion by 90 

retracting the pectoral girdle, and in turn the hyoid apparatus (Camp and Brainerd, 2014; Van 91 

Wassenbergh et al., 2007a). These massive, fast-fiberd body muscles have the potential to 92 

generate substantial power, which can be directly applied to the feeding apparatus during suction 93 

expansion. 94 

 95 

Suction expansion has been shown to be powered almost exclusively by the axial muscles in one 96 

fish species, the largemouth bass (Camp et al., 2015). Bass have a large mouth opening (gape) 97 

and volume, fusiform body, and rely on a combination of suction and forward acceleration i.e., 98 

“ram”, to capture prey (Norton and Brainerd, 1993). In bass, large regions—extending just over 99 

half the body—of the epaxials and hypaxials shortened during suction expansion (Camp and 100 

Brainerd, 2014). Despite shortening more slowly than the predicted optimum velocity for power 101 

production, this large mass of musculature was capable of generating far more than the total 102 

power required for even the most powerful strikes (Camp et al., 2015). In contrast, the four 103 

cranial muscles together could not have generated more than 5% of the power for most strikes, 104 

due to their small mass. None of these muscles except the levator operculi even shortened during 105 

peak expansion power; instead they functioned to transmit axial muscle power and control mouth 106 

expansion kinematics. 107 

 108 

However, it remains unknown how other fishes—particularly those with different feeding 109 

behaviors and/or morphology than largemouth bass—use the cranial and axial muscles to power 110 

suction expansion.  Bluegill sunfish are another well-studied suction-feeding species that are 111 

closely related to largemouth bass (Near et al., 2004), but differ morphologically and in their 112 
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feeding kinematics. Where bass rely on ram, large volume changes and modestly low pressures 113 

in the buccal cavity (up to 20 kPa below ambient (Carroll and Wainwright, 2006)) to capture 114 

prey, sunfish use primarily suction with relatively little ram (Norton and Brainerd, 1993), very 115 

low buccal pressures (35-50 kPa below ambient (Higham et al., 2006a; Lauder, 1980)) and small, 116 

moderately rapid volume changes (Higham et al., 2006b). These kinematics suggest sunfish 117 

produce powerful strikes, and while it remains to be experimentally demonstrated, it is 118 

reasonable to expect that the axial muscles generate much of that power as they do in bass. Not 119 

only do sunfish have different feeding kinematics, but compared to the fusiform bass they also 120 

have shorter, deeper and more laterally compressed bodies and a smaller gape (Fig. 1B) (Smith 121 

et al., 2015; Werner, 1977). 122 

 123 

These differences make bluegill sunfish an interesting model for examining how cranial and 124 

axial muscles are used to power strikes in species that are behaviorally and morphologically 125 

distinct from largemouth bass. Sunfish could use a different mass of musculature by recruiting a 126 

larger or smaller region of the axial muscles for active shortening, and/or by generating positive 127 

power from more cranial muscles (including the sternohyoideus). They could also generate 128 

relatively more power per unit muscle than bass, for example, by shortening their muscles at a 129 

speed closer to the predicted optimum for power production (Carroll et al., 2009). Alternatively, 130 

sunfish may use elastic energy storage to amplify their muscle power: shortening muscles slowly 131 

before the strike to load energy into an elastic element, and then releasing it much more rapidly 132 

at a higher power. Such a “biological catapult” power amplification is typified by muscle 133 

activation and shortening preceding skeletal motion, and has been hypothesized in a suction-134 

feeding cichlid fish (Aerts et al., 1987) and demonstrated in the axial muscles of pipefish and 135 

seahorses (Van Wassenbergh et al., 2008; Van Wassenbergh et al., 2009b). Like bass, pipefish 136 

also rely almost exclusively on the axial muscles to power suction feeding, but in this species 137 

epaxial and hypaxial muscle power is amplified by loading energy into the long tendons that 138 

connect these muscles to the feeding apparatus (Van Wassenbergh et al., 2014; Van 139 

Wassenbergh et al., 2008). Power amplification cannot increase the total energy or work, so it 140 

still requires enough musculature to produce the necessary work of suction feeding. Our goal 141 

was to determine which of these strategies bluegill sunfish use to generate high-powered suction 142 

feeding: recruiting a large region of axial muscles for shortening, generating positive power from 143 
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more cranial muscles, producing higher mass-specific power outputs from their cranial and/or 144 

axial muscles, and catapult-style power amplification of cranial and/or axial muscles. 145 

 146 

To test these possibilities, we measured muscle shortening and expansion power to determine the 147 

roles of the cranial and axial muscles in powering suction feeding in bluegill sunfish. As the 148 

cranial and axial muscles are all known to be active during suction expansion in bluegill sunfish 149 

(Lauder and Lanyon, 1980; Lauder et al., 1986), we assumed that any muscle shortening was 150 

active and indicated power production. Muscle length changes throughout the epaxials and 151 

hypaxials were measured with fluoromicrometry, which uses biplanar X-ray video to measure 152 

the change in distance between radio-opaque, intramuscular markers (Camp et al., 2016). These 153 

X-ray videos were also combined with digital bone models to create accurate and precise skeletal 154 

animations of sunfish suction feeding with X-ray Reconstruction of Moving Morphology 155 

(XROMM) (Brainerd et al., 2010). From the XROMM animations, we measured the skeletal 156 

kinematics of expansion, whole-muscle length changes of the four non-axial muscles, and 157 

instantaneous volume changes of the buccal cavity (using a dynamic digital endocast (Camp et 158 

al., 2015)). Buccal volume dynamics were combined with pressure measurements from an 159 

intraoral pressure probe to estimate the power and work required for suction expansion. 160 

Measurements of mass for each muscle were taken post-mortem and used to estimate mass-161 

specific power and work production. These data allowed us to 1) estimate how powerful sunfish 162 

suction strikes are, 2) determine which cranial muscles and regions of the axial musculature 163 

shorten to generate power during suction feeding, and 3) test whether pre-shortening and elastic 164 

energy storage were used to amplify muscle power during suction expansion in bluegill sunfish. 165 

 166 

Materials and Methods 167 

Two bluegill sunfish (Lepomis macrochirus, Rafinesque 1819)—Bluegill 1 (standard length 170 168 

mm, total mass 164 g) and Bluegill 3 (standard length 167 mm and total mass 162 g)—were line-169 

caught in Providence, RI, USA, under a scientific collecting permit from the Rhode Island 170 

Department of Environmental Management. All experimental procedures were approved by the 171 

Brown University Institutional Animal Care and Use Committee. 172 

 173 
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Each fish was anesthetized and surgically implanted with bone and muscle markers and a 174 

cannula for a pressure probe. Implantation techniques followed previously reported methods 175 

(Camp and Brainerd, 2014; Camp et al., 2015) and are described briefly here. One to four radio-176 

opaque markers (tantalum spheres, 0.5 mm diameter) were implanted in the neurocranium, 177 

urohyal and the left-side cleithrum, operculum, suspensorium, lower jaw (dentary and articular), 178 

maxilla, and premaxilla (Fig. 1A). At least one marker was also implanted in the soft tissue of 179 

the esophagus to demarcate the back of the mouth cavity. Intramuscular markers (0.8 mm 180 

diameter) were implanted along the length of the epaxials (four markers) and hypaxials (three 181 

markers), within the muscle but close to the dorsal and ventral surfaces. An additional three 182 

markers implanted more deeply in the epaxials (Fig. 2A), together with three of the superficial 183 

epaxial markers, were used to define a dorso-ventral body plane. Lastly, a cannula to house the 184 

pressure probe was implanted in the ethmo-frontal region following established methods (Norton 185 

and Brainerd, 1993). Fish were given a pre-operative analgesic (Butorphanol) and a 186 

postoperative antibiotic (enrofloxacin), and recovered fully within three days—with no signs of 187 

stress or difficulty caused by any of the implants. 188 

 189 

Data Recording 190 

We filmed suction feeding strikes from each fish with high-speed biplanar X-ray video and 191 

simultaneously recorded intraoral pressure (Camp and Brainerd, 2014; Camp et al., 2015). Fish 192 

were trained to feed on live goldfish prey in narrow (7 x 25.5 x 103.5 cm) tanks, as this 193 

minimized the volume of water the X-rays passed through and gave the best quality images. 194 

Some individual bluegill were reluctant to feed on live prey, and non-elusive prey (pellets) 195 

yielded only low-motivation strikes, as judged by the magnitude of subambient pressure. We 196 

collected, trained, instrumented and recorded data from five individuals, but only two of these 197 

individuals, Bluegills 1 and 3, fed on live prey. Therefore, we report data from just two 198 

individuals here because the focus of this study is high-performance strikes. Raw data from the 199 

other three bluegills feeding on pellets are potentially available for further study (by 200 

communication with the authors). Metadata for all individuals, including number of strikes and 201 

food types, are viewable on XMA Portal (available at xmaportal.org, under study identifier 202 

BROWN48). 203 

 204 



 8 

Approximately dorsoventral and lateral view X-ray videos were generated at 200 mA and 105 205 

(dorsoventral view) or 65 (lateral view) kV with a custom-made biplanar system (Imaging 206 

Systems and Services, Painesville, OH, USA), and recorded at 500 frames s-1 with Phantom v10 207 

high-speed cameras (Vision Research, Wayne, NJ, USA). Images were also recorded of standard 208 

grids and a calibration object—two sheets of acrylic embedded with 32 steel markers—to 209 

remove distortion introduced by the X-ray machines and calibrate the 3D space imaged by both 210 

videos (Brainerd et al., 2010). Pressure was measured with a SPR-407 Mikro-tip pressure probe 211 

(Millar Instruments, Houston, TX, USA) inserted through the cannula, so it just protruded into 212 

the mouth cavity. Pressures were recorded at 1,000 Hz with PowerLab and LabChart 7.2.2 (AD 213 

Instruments, Colorado Springs, CO, USA), and the probe was calibrated before each day of 214 

filming. A single trigger started both X-ray video and pressure recording, and daily 215 

synchronization tests measured the timing offset (if any) between the onset of pressure and video 216 

recordings. A total of 11 recorded strikes (six from Bluegill 1, five from Bluegill 3) were 217 

analyzed. The associated X-ray video, pressure, and CT data (see below) are deposited and 218 

publicly available in the XMA Portal (available at xmaportal.org, under study identifier 219 

BROWN48). 220 

 221 

Computed tomography (CT) scans were taken of each fish post-mortem with a Bruker Skyscan 222 

1173 at a resolution of 0.13 mm pixel-1 and a slice thickness of 0.13 mm. From these scans, 223 

polygonal mesh models of each bone and its markers were generated in Horos (v2.1.2; Horos 224 

Project, horosproject.org), and edited in GeoMagic 2013 (Research Triangle Park, NC, USA). 225 

The position of each bone marker was then measured relative to the 3D bone models in Maya 226 

2016 (Autodesk, San Rafael, CA, USA) using custom scripts in the “XROMM Tools” package, 227 

available at xromm.org. 228 

 229 

XROMM 230 

Skeletal kinematics were reconstructed with marker-based XROMM, using XMALab ((Knorlein 231 

et al., 2016), software and instructions available at https://bitbucket.org/xromm/xmalab) and 232 

custom Maya scripts (available at https://bitbucket.org/xromm/xromm_mayatools). In XMALab, 233 

all markers were tracked in both X-ray videos to calculate their XYZ coordinates with a tracking 234 

precision of 0.065 mm or better across all bones and both individuals, measured as the mean 235 
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standard deviation of intraosseous marker distances (Brainerd et al., 2010). To improve contrast 236 

and ease of marker-tracking, X-ray videos were first filtered with an unsharp mask in Adobe 237 

Photoshop (CC 2017, Adobe Systems). For bones with at least three markers, XYZ coordinates 238 

were combined with marker positions relative to the 3D bone models to calculate rigid body 239 

transformations, which were filtered at 60 Hz low-pass Butterworth filter in XMALab and 240 

applied to the 3D bone models in Maya. The six epaxial markers of the body plane were treated 241 

as belonging to a single bone, and used to calculate the rigid body transformations of a polygonal 242 

mesh plane (Camp and Brainerd, 2014). Bones with only one or two markers were animated in 243 

Maya with scientific rotoscoping: hand-aligning a bone model to match the images of that bone 244 

in both X-ray views (Gatesy et al., 2010). Both techniques were used to create a single XROMM 245 

animation of all marked bones during each suction feeding strike (Fig. 2A, Movie S1). 246 

 247 

Skeletal kinematics 248 

From these XROMM animations, six-degree-of-freedom motions of the neurocranium, 249 

cleithrum, and urohyal were measured relative to the body plane. Motions of each bone were 250 

measured with a joint coordinate system (JCS), which calculated the relative motion between 251 

two anatomical coordinate systems (ACSs) placed at a joint, one attached to the body plane and 252 

one attached to the bone (Camp and Brainerd, 2014). Each JCS measured skeletal kinematics as 253 

a set of translations along, and Euler angle rotations about, X, Y, and Z axes, following the right-254 

hand rule and a ZYX order of rotation. For the neurocranium, the ACSs were placed at the 255 

craniovertebral joint, with the Z-axis oriented mediolaterally, the X-axis rostrocaudally, and the 256 

Y-axis orthogonal to both the X- and Z-axes (Fig. 3A). Thus, the X-axis described rostrocaudal 257 

translation and long-axis rotation (roll), the Y-axis described dorsoventral translation and 258 

mediolateral rotation (yaw), and the Z-axis described transverse translation and rotation in the 259 

sagittal plane (cranial elevation/depression). The ACSs of the cleithrum and urohyal had the 260 

same orientation, but were placed at the rostrodorsal edge of the cleithrum (near the cleithrum-261 

supracleithrum joint) and at the rostroventral protuberance of the urohyal, respectively (Fig. 3A). 262 

 263 

Dynamic endocast and volume calculation 264 

Volume changes of the buccal cavity were measured from the XROMM animations using a 265 

dynamic digital endocast, as described previously (Camp et al., 2015). Briefly, a polygonal mesh 266 
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endocast was built to fill the left side of the mouth cavity as defined by the animated bones (Fig. 267 

2C), with the vertices of the polygonal endocast linked to skeletal landmarks so the endocast 268 

deformed as the animated bones moved (Movie S2). The volume of this left-side endocast was 269 

calculated at each frame using a custom Maya script written by S. Gatesy (adapted from 270 

www.vfxoerflow.com), and doubled to give the volume of the whole buccal cavity, assuming 271 

bilateral symmetry. 272 

 273 

Muscle length changes 274 

Axial muscle length changes were measured from the biplanar X-ray videos using 275 

fluoromicrometry: measuring muscle length as the change in distance between intramuscular 276 

markers (Camp et al., 2016). Muscle markers were tracked and the XYZ coordinates calculated 277 

in XMALab; all further calculations were done in MATLAB (R2015a; The Mathworks, Natick, 278 

MA, USA). Marker coordinates were filtered at 60 Hz (low-pass Butterworth filter), and the 279 

distance between each pair of markers (i.e., length change) calculated to determine which regions 280 

of the epaxial and hypaxial muscles consistently shortened during suction feeding. The 281 

rostralmost region of each muscle was defined as the distance between the rostralmost muscle 282 

marker and a bone marker at the muscle attachment site on the neurocranium or cleithrum. 283 

Muscle shortening was measured for every region, and all regions that consistently shortened 284 

were included in the whole-muscle length of each axial muscle (Fig. S1). Based on this, whole-285 

muscle length of the epaxials was the distance from the neurocranium to the caudal edge of the 286 

first (spiny) dorsal fin (shaded region in Fig. 1A). Whole-muscle length of the hypaxial muscles 287 

extended from the ventral tip of the cleithrum to the rostral edge of the anal fin (shaded region in 288 

Fig. 1A). Note that these “whole-muscle” lengths only represent shortening across these 289 

superficial regions of the axial muscles measured by fluoromicrometry. They may not 290 

necessarily be representative of fiber length changes outside of the region of measurement. 291 

Cranial muscle lengths were measured from the XROMM animations by calculating the distance 292 

between each muscle’s bony attachment sites (Camp et al., 2015). For each muscle, virtual 293 

markers were placed on the animated bone models at the attachment points of representative 294 

fibers and the whole muscle length measured as the change in distance between these markers 295 

(Fig. 2B). Muscle length was normalized to its mean initial length prior to the onset of the strike 296 

(Li). For each muscle, whole muscle velocity was calculated at each time step as the change in 297 
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muscle length divided by the change in time, and expressed in Li s-1, with shortening indicated 298 

by positive velocities. 299 

 300 

Power and work calculations 301 

Following the methods of Camp et al. (Camp et al., 2015), instantaneous suction expansion 302 

power was estimated in MATLAB as the product of the rate of volume change (m3 s-1) and 303 

buccal cavity pressure (Pa). Buccal pressure was filtered (low-pass Butterworth, 60 Hz cutoff) 304 

resampled from 1,000 Hz to 500 Hz to match the frequency of the volume data, and expressed 305 

relative to the initial, ambient pressure prior to the strike. At each time step the current and 306 

subsequent pressure values were averaged and multiplied by -1, so that the product of 307 

subambient pressures and increasing volume rates resulted in positive power. The work of 308 

suction expansion was calculated as the integral (via the trapezoidal method) of the power-time 309 

curve for each strike.  310 

 311 

These work and power estimates have two main sources of error. First, they neglect the 312 

additional power and work required to overcome the drag and inertia of accelerating the feeding 313 

apparatus (Van Wassenbergh et al., 2015) and the inertia of shortening muscle masses. This 314 

omission is most likely to result in our values underestimating the actual work and power 315 

required to expand the mouth. Based on inverse dynamic models of suction feeding, which 316 

calculated the pressure-volume power as well as the power required to overcome drag and 317 

inertia, we expect this underestimate to be less 5-10% (Aerts et al., 1987; Muller et al., 1982; 318 

Van Wassenbergh et al., 2015). Second, our power estimates are based on a single measurement 319 

of pressure, which does not capture the spatial variation of intraoral pressure (Muller et al., 320 

1982). A computational fluid dynamics (CFD) model of a bluegill sunfish performing a single, 321 

low-power suction strike found that using a single pressure value (the mean pressure in the 322 

buccal cavity) resulted in an overestimate of peak instantaneous suction power (4.5 instead of 3 323 

mW) (Van Wassenbergh, 2015). However, it is unclear if this can be extrapolated to the higher-324 

power strikes used in this study, or how the assumptions of this CFD model—for example, 325 

modelling the buccal cavity as a radially symmetric, expanding cone—may also influence peak 326 

power calculations. Therefore, it is difficult to determine the likely magnitude or direction of 327 

error resulting from the use of a single pressure measurement to estimate power in this study. 328 
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 329 

For each fish, the four cranial muscles (including the sternohyoideus) and two axial muscles 330 

were dissected out post-mortem, unilaterally, and weighed on a digital scale. Only the regions of 331 

the epaxials and hypaxials that consistently shortened during suction feeding (Fig. 1A, and see 332 

“Muscle Length” section for detailed description) were included in the mass measurements. 333 

Unilateral masses were doubled to calculated the bilateral mass of each muscle (Table 1). 334 

Suction expansion power and work were divided by the total axial muscle mass involved in 335 

shortening to estimate the axial mass-specific power and work output of each strike. Similarly, 336 

the cranial mass-specific power and work outputs were estimated by dividing the power and 337 

work of suction expansion by the total cranial muscle mass (the summed bilateral mass of all 338 

four muscles). 339 

 340 

Results 341 

Measurements of buccal cavity volume change and pressure were used to estimate the power and 342 

work required for suction feeding strikes. To determine the role of each cranial (including the 343 

sternohyoideus) and axial muscle in generating that power and work, we measured muscle mass, 344 

length, and instantaneous velocity. Muscles can only generate power by actively shortening. As 345 

all cranial and axial muscles studied here are known to be active during suction feeding in 346 

sunfish (Lauder and Lanyon, 1980), we used measurements of muscle shortening to infer which 347 

cranial muscles and regions of axial muscles generated power during suction expansion. Both 348 

individuals studied showed broadly similar patterns but variable magnitudes in their kinematics, 349 

muscle shortening, and buccal cavity expansion, so we report individual means and standard 350 

errors (N = 6 strikes for Bluegill 1; N = 5 for Bluegill 3) below and in Tables 2-3 and S1. 351 

 352 

Axial muscle function 353 

Large regions of the epaxial and hypaxial muscles shortened during suction feeding to elevate 354 

the neurocranium and retract the pectoral girdle, respectively. Relative to the body plane, the 355 

neurocranium elevated (positive Z-axis rotation) by a mean peak of 11.9 ± 1.6˚ in Bluegill 1 and 356 

13.7 ± 2.1 in Bluegill 3, while rotations about the other axes were generally smaller and highly 357 

variable (Fig. 3B; Table S1). The cleithrum retracted (negative Z-axis rotation) relative to the 358 

body plane by a mean peak of -7.1 ± 0.7˚ in Bluegill 1 and -4.6 ± 1.0˚ in Bluegill 3, and showed 359 
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a tendency for small rotations about the other two axes (Fig. 3B). Neither bone had substantial 360 

translations (Table S1). Neurocranium elevation and pectoral girdle retraction were the result of 361 

epaxial and hypaxial (respectively) muscle shortening. In both muscles, shortening extended 362 

over halfway down the body (shaded region in Fig. 1A; see also Fig. S1). Across this entire, 363 

superficial muscle region where shortening was measured (defined as the whole-muscle length), 364 

maximum longitudinal shortening of the epaxial muscle mass reached a mean of 3.9 ± 0.5% 365 

(Bluegill 1) and 4.4 ± 0.5% (Bluegill 3) of initial length and maximum hypaxial shortening 366 

reached a mean of 6.8 ± 0.6% (Bluegill 1) and 5.5 ± 0.9% (Bluegill 3) of initial length (Fig. 4, 367 

Table 1). Mean epaxial muscle shortening velocity during the period of peak power output (i.e., 368 

when expansion power was within 25% of its maximum) was 2.2 ± 0.3 Li s-1 (Bluegill 1) and 1.9 369 

± 0.5 Li s-1 (Bluegill 3). For the hypaxials, mean shortening velocity during peak power was 3.4 370 

± 0.2 Li s-1 (Bluegill 1) and 2.1 ± 0.6 Li s-1 (Bluegill 3). 371 

 372 

Cranial muscle function 373 

The largest of the head muscles examined in this study, the sternohyoideus, consistently 374 

shortened and contributed to retraction and depression of the urohyal. Relative to the body plane, 375 

the urohyal translated caudally (negative X-axis) and ventrally (negative Y-axis), with little 376 

medio-lateral translation or rotation (Z-axis) of this mid-sagittal bone (Fig. 3C; Table S1). While 377 

the sternohyoid is not the only muscle that can contribute to urohyal translation, sternohyoid 378 

muscle shortening usually coincided with urohyal retraction (Fig. 5). Over its whole length, the 379 

sternohyoideus shortened by a mean of 12 ± 1% in Bluegill 1 and 4.3 ± 1.2% in Bluegill 3 (Fig. 380 

4, Table 1), and had a mean shortening velocity of 4.4 ± 0.5 Li s-1 (Bluegill 1) and 1.4 ± 0.7 Li s-1 381 

(Bluegill 3) during peak power. Of the remaining cranial muscles, only the levator operculi 382 

consistently shortened during peak expansion power, with a mean maximum strain of 6.9 ± 1.1% 383 

(Bluegill 1) and 7.3 ± 0.9% (Bluegill 3) and mean shortening velocity of 3.2 ± 1.0 Li s-1 (Bluegill 384 

1) and 3.3 ± 0.6 Li s-1 (Bluegill 3) during peak power. The dilator operculi and the levator arcus 385 

palatini muscles maintained a fairly constant length—or even lengthened—during peak 386 

expansion power, and only started to shorten after peak expansion power occurred (Fig. 4). 387 

 388 

Suction expansion power and work 389 
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The mouth expansion generated by these muscle strains and skeletal kinematics resulted in 390 

subambient pressures and rapid volume changes in the buccal cavity, and generally required 391 

substantial power. Subambient pressures varied across strikes, with peak values from -12 to -38 392 

kPa, while the rate of mouth volume change reached a mean maximum of 387 (± 58) cm3 s-1 in 393 

Bluegill 1 and 351 (± 75) cm3 s-1 in Bluegill 3 (Table 2). Peak expansion power occurred about 5-394 

10 ms before peak gape (Fig. 5, Table 2). The magnitude of peak power ranged from 0.55 to 18 395 

W across all measured strikes (Fig. 6). When expressed as power per unit axial (i.e., summed 396 

hypaxial and epaxial) muscle mass, the resulting mass-specific peak powers ranged from 14 to 397 

438 W kg-1 (mean 277 ± 51 W kg-1 for Bluegill 1 and 133 ± 54 W kg-1 for Bluegill 3) (Fig. 6). 398 

When the peak expansion powers were expressed as power per unit cranial (including the 399 

sternohyoideus) muscle mass, mass-specific powers ranged from 192 to 9,691 W kg-1 (mean 400 

6,126 ± 1,127 W kg-1 for Bluegill 1 and 1,832 ± 740 W kg-1 for Bluegill 3) (Fig. 6). 401 

 402 

The work required for each mouth expansion event was estimated as the area under the power-403 

time curve, and expressed per unit axial muscle mass and per unit cranial muscle mass (Figs. 7-404 

8). The axial mass-specific expansion work had a range of 0.24 to 5.6 J kg-1 (Fig. 8B) and a 405 

mean of 3.3 ± 0.7 J kg-1 for Bluegill 1 and 1.9 ± 0.6 J kg-1 for Bluegill 3 (Table 2). Cranial mass-406 

specific expansion work ranged from 3.4 to 124 J kg-1, with a mean of 73 (± 14.6) J kg-1 for 407 

Bluegill 1 and 26.1 (± 8.5) J kg-1 for Bluegill 3 (Table 2). For comparison, we also calculated the 408 

absolute and axial mass-specific expansion work of largemouth bass using previously collected 409 

data (Camp et al., 2015). The absolute expansion work ranged from 0.015 to 0.48 J across all 410 

recorded strikes from the three bass (Fig. 8A). Mean axial mass-specific work was 0.36 (±0.08), 411 

2.5 (±0.4), and 0.85 (±0.01) for Bass 1 (n = 10 strikes), Bass2 (n = 9 strikes) and Bass3 (n=10 412 

strikes), respectively (Fig. 8B).  413 

 414 

Discussion 415 

Bluegill sunfish generated large subambient pressures and rapid volume changes in the buccal 416 

cavity to produce powerful strikes. Buccal pressures were similar to those reported previously 417 

(Carroll and Wainwright, 2009; Higham et al., 2006a) and the mean peak rate of volume change 418 

was about 1.5 times more than previously reported for similarly-sized sunfish (Higham et al., 419 

2006b). Of the four head muscles examined, the sternohyoideus and levator operculi muscles 420 
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consistently shortened during peak expansion power. However, these muscles were too small to 421 

directly generate meaningful amounts of power, and we found no evidence of power 422 

amplification through elastic energy storage in these or any other muscle. Instead, sunfish relied 423 

on high power outputs from their axial muscles. These muscles shortened across the same region 424 

as largemouth bass—from the head to over halfway down the body (Camp and Brainerd, 425 

2014)—but with substantially higher estimated muscle mass-specific power outputs of up to 300-426 

438 W kg-1 (Fig. 6). Both species generated absolute peak expansion powers of 10-15 W during 427 

suction feeding (Fig. 6, (Camp et al., 2015)), but the sunfish in this study produced these strikes 428 

with less than half the axial muscle mass of the larger bass individuals from our prior study 429 

(Camp et al., 2015). Sunfish axial muscles also shortened at faster velocities than those of bass 430 

and may have been nearer the optimum for power production (Carroll et al., 2009), which likely 431 

contributed to the higher power output of these muscles. We conclude that bluegill sunfish rely 432 

on high power outputs from the axial muscles to generate fast and forceful suction feeding 433 

strikes. 434 

 435 

Cranial muscle function 436 

In bluegill sunfish, two cranial muscles—the sternohyoideus and levator operculi—consistently 437 

shortened during peak expansion power (Fig. 4). Although muscle power was not measured 438 

directly, we infer that muscle shortening indicates power production because these muscles are 439 

known to be active during suction expansion (Lauder and Lanyon, 1980; Lauder et al., 1986). 440 

Additionally, the skeletal motions produced by these shortening muscles occur against inertial 441 

and hydrodynamic resistance and therefore require power. The levator operculi shortened by 442 

about 7% in both individuals, presumably elevating (i.e., dorsally rotating in a parasagittal plane) 443 

the operculum. This motion may not directly expand the mouth, but can be transmitted through 444 

the opercular linkage, a set of bones and ligaments, to contribute to lower jaw depression 445 

(Ballintijn, 1969; Liem, 1980). In largemouth bass, the levator operculi’s shortening holds the 446 

operculum in place relative to the body—against resistance from the suspensorium—and allows 447 

epaxial-powered neurocranium elevation to be transmitted through this linkage to the lower jaw 448 

(Camp and Brainerd, 2015). Thus, even when cranial muscles are generating power, they can 449 

still function to transmit axial muscle power. As in largemouth bass, the levator operculi 450 

shortened relatively quickly and reached a mean peak velocity of about 3 lengths (Li) s-1,  which 451 
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actually exceeds the optimum velocities for power production (~1.6 muscle lengths s-1) 452 

calculated for the sternohyoideus muscle of sunfish  (Carroll et al., 2009). The levator operculi of 453 

bluegill sunfish may have a similar role to that of bass during suction feeding (Camp and 454 

Brainerd, 2015), but further study of the opercular kinematics is needed to confirm this. 455 

 456 

The sternohyoideus muscle shortened to retract the urohyal and hyoid apparatus (Fig. 5E), as 457 

predicted by Lauder and Lanyon (Lauder and Lanyon, 1980). However, in contrast to these 458 

authors’ hypothesized function, the hypaxial muscles also shortened at the same time to retract 459 

the cleithrum (Fig. 5D). As these muscles are in series (Fig. 1A) and both active during suction 460 

feeding, it was proposed that the hypaxials produce only force to hold the pectoral girdle 461 

immobile and provide a stable attachment site for the sternohyoideus to shorten against (Lauder 462 

and Lanyon, 1980). In largemouth bass and clariid catfishes, the only other species where both 463 

muscle lengths have been measured, the opposite occurred: the hypaxials shortened while the 464 

sternohyoideus maintained a relatively constant length or was stretched as it transmitted hypaxial 465 

power to the hyoid (Camp and Brainerd, 2014; Van Wassenbergh et al., 2005; Van Wassenbergh 466 

et al., 2007b). Our data from bluegill sunfish are the first empirical evidence of both muscles 467 

shortening during peak expansion power to generate positive power for hyoid retraction and 468 

depression. The sternohyoideus muscle in Bluegill 1 shortened relatively quickly, with mean 469 

peak velocities of about 4 Li s-1, exceeding the optimum velocity for power production (~1.6 470 

muscle lengths s-1) calculated for this muscle in similarly sized sunfish (Carroll et al., 2009), 471 

although in Bluegill 3 it shortened more slowly (1.4 Li s-1).  472 

 473 

Cranial muscle power and work 474 

While the sternohyoideus and levator operculi did shorten during peak expansion power, the 475 

power output from these small muscles would have been negligible compared to that required for 476 

most suction strikes. These and the other cranial muscles together would have needed power 477 

outputs of up to 9,691 W kg-1 to directly power suction expansion by themselves (Fig. 6), which 478 

far exceeds the maximum recorded from or any vertebrate muscle (1,121 W kg-1 (Askew and 479 

Marsh, 2001)). Even assuming the relatively high muscle mass-specific power output of 438 W 480 

kg-1 inferred for the axial muscles, the sternohyoideus muscle could not have generated more 481 

than 1 W of power or 5-10% of the peak power required for the most powerful strikes. Put 482 
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another way, including the sternohyoideus muscle mass—by far the largest of the four cranial 483 

muscles examined—with the axial muscles would only lower the maximum power output 484 

estimated for the axial muscles from 438 to 422 W kg -1. The muscles of the head likely make 485 

important contributions to suction feeding kinematics (see above), but are not a major source of 486 

direct muscle power for bluegill sunfish.   487 

 488 

Additionally, we found no evidence that the bluegill sunfish’s cranial muscle power was 489 

amplified by elastic energy storage prior to suction expansion. Such power amplification 490 

mechanisms are usually associated with muscle shortening and activation prior to skeletal motion 491 

(Astley and Roberts, 2012; Van Wassenbergh et al., 2008), but we did not observe any muscle 492 

shortening prior to suction expansion in sunfish (Fig. 4, Table 1), even during the most powerful 493 

strike (Fig. 5), nor have the cranial muscles been reported to activate prior to suction expansion 494 

in bluegill sunfish (Lauder and Lanyon, 1980; Lauder et al., 1986). Moreover, such elastic 495 

energy storage would still require the cranial muscles to generate the work for suction expansion. 496 

We estimated that the cranial muscles have the potential to generate about 25 J kg-1 of work 497 

under the conditions observed in suction feeding (Fig. 7A), but most suction strikes would have 498 

required at least 40-60 J kg-1 of work from these muscles (Fig. 7B). These work estimates follow 499 

the work capacity calculations of Peplowski and Marsh (Peplowski and Marsh, 1997), and 500 

assume a maximum isometric muscle stress of 30 N cm-2 , a 50% decrease in force due to force-501 

velocity effects during rapid shortening, and that the muscles shorten by 15% of their initial 502 

length (the maximum shortening measured in this study (Fig. 4)). The small mass of the cranial 503 

muscles in bluegill sunfish limits the work and power they can contribute to suction feeding 504 

strikes. 505 

 506 

Axial muscle power and work 507 

As the cranial muscles could generate relatively little power or work, we conclude that bluegill 508 

sunfish relied almost exclusively on the large axial muscles to generate powerful suction feeding 509 

strikes. Despite their different (i.e., shorter and deeper) body shape, sunfish shortened epaxial 510 

and hypaxial muscles over the same region as bass: from the muscles’ cranial attachment sites on 511 

the neurocranium and pectoral girdle to the caudal edge of the first dorsal fin and the rostral edge 512 

of the anal fin, respectively (Fig. 1A). It is interesting that the magnitude of shortening was not 513 
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distributed evenly across the axial muscle of sunfish (Fig. S1), as in bass (Camp and Brainerd, 514 

2014), but the functional implications of this remain unclear. Muscle activity has only been 515 

measured and confirmed via electromyography in the most rostral portion of these muscles 516 

during suction feeding in sunfish (Lauder and Lanyon, 1980), but we presume these regions 517 

actively shortened. Axial muscle shortening contributes directly to dorsoventral expansion of the 518 

buccal cavity by elevating the neurocranium and retracting the pectoral girdle (Fig. 3) against 519 

suction pressure and inertial forces (Van Wassenbergh et al., 2015). These skeletal motions also 520 

allow axial muscle power to be transmitted to the rest of the skull, via musculoskeletal linkages, 521 

to generate the full, three-dimensional expansion of the buccal cavity. These results further 522 

emphasize the role hypaxial muscles and pectoral girdle retraction can play in powering suction 523 

feeding and expanding the mouth cavity. While the potential for contribution of epaxial muscles 524 

to suction feeding has been recognized (e.g., (Carroll and Wainwright, 2009; Lauder and 525 

Lanyon, 1980), the role of hypaxial muscles has received less attention (e.g., (Carroll and 526 

Wainwright, 2009)).  527 

 528 

Bluegill sunfish relied on high power-outputs from their axial muscles—rather than recruiting a 529 

larger region of axial muscles or generating power from more cranial muscles—to meet the 530 

mechanical demands of suction feeding. The sunfish in this study generated similar absolute 531 

peak expansion powers (up to 18 W) as the largemouth bass (up to 15 W) from our previous 532 

study, even though the sunfish were shorter (standard length of ~170 mm compared to ~300 mm 533 

for bass) and had a total mass of shortening axial muscle only 30-40% of the axial muscle mass 534 

of bass (Table 2, (Camp et al., 2015)). Therefore, the most powerful bass strike needed only 141 535 

W kg-1 of axial muscle power output (Camp et al., 2015), while the axial muscle of sunfish was 536 

estimated to generate 438 W kg -1 for most powerful strike (Fig. 6). High instantaneous power 537 

outputs are not unexpected for these white-, fast-fibered muscles, which fish also use for 538 

powerful escape behaviors, i.e., C-starts (Frith and Blake, 1995; Rome et al., 1988). Even the 539 

highest muscle power output estimated here (438 W kg-1) is within the maximum measured from 540 

fish axial muscle with in vitro work loops (Altringham et al., 1993) and other vertebrate muscles 541 

(Askew and Marsh, 2001; Curtin et al., 2005). As it is unlikely that we captured the maximum 542 

suction feeding performance of bluegill sunfish, especially given our relatively small sample size 543 

(e.g., (Astley et al., 2013)), the maximum power outputs of these muscles could be even higher. 544 
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However, our axial mass-specific power outputs should be interpreted with some caution, as they 545 

are based on expansion power estimates with their own sources of error (see Materials and 546 

Methods), and not direct measurements of muscle power production. For most strikes, our 547 

estimated axial muscle mass-specific power outputs are at or below the maximum power output 548 

of 300 W kg-1 (Fig. 6) previously estimated for bluegill sunfish (Carroll and Wainwright, 2009). 549 

 550 

The shortening velocities measured from the axial muscles are consistent with these muscles 551 

operating at or near their maximum power production. The epaxials and hypaxials shortened at 552 

2-3 initial lengths (Li) s-1 during peak expansion power (Table 1), approaching the optimum 553 

velocity (Vopt) of power production of 3.3 or 4 Li s-1 for “myotomal” and epaxial muscle (Fig. 554 

4B), respectively, of similarly sized bluegill sunfish (Carroll et al., 2009). The axial muscles of 555 

largemouth bass shortened much more slowly (0.5-1.6 Li s-1), both compared to sunfish and to 556 

the Vopt of 4 Li s-1 measured for this species (Carroll et al., 2009; Coughlin and Carroll, 2006). 557 

We hypothesize that sunfish may achieve higher mass-specific power outputs from their axial 558 

muscles, compared to bass, by shortening these muscles at speeds near the optimum for power 559 

production. However, shortening velocity is just one component of muscle power, and 560 

measurements of muscle activation, force production, and fiber length dynamics are need are 561 

needed to better understand power production in these muscles.  562 

 563 

Additionally, our measurements of longitudinal axial muscle shortening velocity may not be 564 

representative of fiber-level strains across the entire volume of the hypaxials and epaxials. Whole 565 

muscle velocity was measured across superficial regions near the midsagittal plane. In reality, 566 

the magnitude and velocity of shortening may vary throughout these muscles as a result of the 567 

complex fiber orientation of the axial muscles (Alexander, 1969; Gemballa and Vogel, 2002), 568 

and/or the distance from the neutral axis of cranial/pectoral rotation. For example, during 569 

swimming the muscle fibers furthest from the neutral axis of bending (i.e., the vertebral column) 570 

would be expected to shorten more quickly than those closest to the neutral axis, if the body 571 

bends like a simple homogenous beam (Shadwick et al., 1998), and yet muscle fiber orientations 572 

act to homogenize fiber-level strain during swimming (Azizi and Brainerd, 2007; Rome and 573 

Sosnicki, 1991). While our velocity measurements may therefore not be representative of the 574 

entire muscle, the high powers measured for the entire musculature (near or even above their 575 
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measured maximum of 300 W kg-1 (Carroll et al., 2009)) would seem to support the idea that 576 

fibers throughout the axials muscles are shortening at velocities near optimal for power 577 

production.  578 

 579 

It is also possible that some kind of elastic energy storage mechanism is used to amplify axial 580 

muscle power, particularly during the most powerful strikes. The estimated work of suction 581 

expansion was well within the expected work capacity of the axial muscles: requiring outputs of 582 

no more than 6 J kg-1 (Figs. 7-8), so these muscles could be using mechanisms to amplify the rate 583 

of energy production, i.e., power. While we found no evidence of catapult-style power 584 

amplification (such as active muscle shortening prior to suction expansion and axial muscles 585 

with long tendons, as in pipefishes (Van Wassenbergh et al., 2014; Van Wassenbergh et al., 586 

2008)), it is possible these muscles may be using a subtler mechanism. For example, energy 587 

generated at the beginning of shortening could be stored in connective tissues or myoseptal 588 

tendons and then released later in the contraction to amplify peak power. However, further 589 

measurements of axial fiber activation and lengths—rather than the whole-muscle lengths 590 

recorded here—and force outputs are needed to test this. 591 

 592 

In contrast to the high mass-specific muscle power-output (Fig. 6), the mechanical work required 593 

for these bluegill sunfish strikes was more similar to that of the largemouth bass from our 594 

previous study (Fig. 8). The absolute work of suction expansion—the product of pressure and 595 

volume or the integral of the power-time curve—in sunfish strikes was similar or less than that of 596 

bass (Fig. 8A). The maximum work recorded from a sunfish strike (0.25 J) was about half the 597 

maximum observed in the bass (0.50 J), although there was considerable overlap in the range of 598 

expansion work for both species (Fig. 8A). As the absolute peak expansion power was similar 599 

between sunfish and bass, this difference in expansion work may reflect a greater duration of 600 

suction expansion in bass. For example, in the sunfish strike shown in Fig. 5, positive power is 601 

generated over about 30 ms, while in the bass strike shown in Fig. 3 of (Camp et al., 2015) 602 

positive power occurs over about 60 ms. The bluegill sunfish strikes measured in this study had 603 

similar or slightly higher mass-specific work outputs for the axial muscles than those of the 604 

largemouth bass measured previously (Fig. 8B): average axial mass-specific work was 0.36-2.5 J 605 

(depending on individual) in largemouth bass compared to 1.8 and 3.4 J in Bluegill 1 and 3, 606 
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respectively (Fig. 7, Table 2). Thus, the axial muscles of sunfish had to generate only somewhat 607 

higher work outputs, but much higher power outputs than bass to generate suction expansion. 608 

Conversely, the slower axial muscle shortening velocities measured in bass may be related to 609 

slower mouth expansion, and the need for these muscles to generate work but not particularly 610 

high power-outputs. 611 

 612 

Concluding remarks 613 

Our results show that bluegill sunfish rely on high power outputs from their axial muscles to 614 

meet the challenge of powerful feeding as a small-mouthed, deep-bodied, suction-reliant species. 615 

Largemouth bass strikes also required power from the axial muscles, but in sunfish large regions 616 

of axial musculature had to operate at or near maximum power output to produce the most 617 

powerful suction strikes observed. While this supports the presence of axial-powered feeding in a 618 

broader range of fishes beyond those with bass-like body shapes, it also highlights how the use 619 

of axial power may vary with body shape as well as feeding behavior. Together with previous 620 

studies, these results demonstrate that we must take feeding functions into account in order to 621 

understand the morphology, physiology, and evolution of these body muscles in fishes. While 622 

the axial muscles can generate the power for suction expansion, it is the cranial muscles and 623 

skeleton that generate the three-dimensional motion and anterior-to-posterior progression of 624 

suction expansion. These functions are no less important than power generation, and may be 625 

achieved with or without muscle shortening during peak expansion power. For example, the 626 

sternohyoideus muscle shortens to generate power in bluegill sunfish, but maintains a constant 627 

length in bass to transmit hypaxial muscle power. A major challenge remains to understand how 628 

the muscles of the head, together with the complex cranial skeleton, transmit axial muscle power 629 

and control suction feeding kinematics. 630 
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Tables 823 
 824 
Table 1. Mean (s.e.m) timing and magnitude of peak muscle strain (% initial length (Li), positive 825 
values indicate shortening), velocity during the period of peak power (positive values indicate 826 
shortening) and bilateral muscle mass for each individual. 827 

Muscle Variable Bluegill 1 

(N = 6) 

Bluegill 3 

(N = 5) 

Epaxials Strain (%)   3.9 (0.5)   4.4 (0.9) 

 Timea of peak strain (ms)    4.3 (1.5) 10.8 (2.2) 

 Velocity (Li s-1)   2.2 (0.3)    1.9 (0.5) 

 Mass (g) 26.4 26.2            

Hypaxials Strain (%)   6.8 (0.6)   5.5 (0.9) 

 Timea of peak strain (ms)    8.7 (2.0) 12.0 (6.1) 

 Velocity (Li s-1)   3.4 (0.2)   2.1 (0.6) 

 Mass (g) 14.8 13.1 

Levator Arcus 

Palatini 

Strain (%) 10.1 (0.9)   5.7 (1.2) 

Timea of peak strain (ms)  39.7 (7.1) 39.6 (5.0) 

 Velocity (Li s-1)   1.4 (0.7)  -0.45 (0.5) 

 Mass (g)   0.20   0.22 

Dilator Operculi Strain (%)   8.5 (1.1) 10.6 (2.2) 

 Timea of peak strain (ms)  41.3 (6.5) 44.0 (4.3) 

 Velocity (Li s-1)   2.1 (0.8)  -1.9 (1.1) 

 Mass (g)   0.10   0.10 

Levator Operculi Strain (%)   6.9 (1.1)   7.3 (0.9) 

 Timea of peak strain (ms)  10.3 (1.8)   7.6 (2.3) 

 Velocity (Li s-1)   3.2 (1.0)   3.3 (0.6) 

 Mass (g)   0.06   0.10 

Sternohyoideus Strain (%) 12.0 (1.0)   4.4 (1.2) 

 Timea of peak strain (ms) 11.3 (1.3)  -3.6 (12.7) 

 Velocity (Li s-1)   4.4 (0.5)   1.4 (0.7) 

 Mass (g)   1.5   2.4 
aTime relative to the time of peak gape 
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Table 2. Mean (s.e.m) timing and magnitude of peak pressure, volume, power, and work of 829 
suction feeding strikes, along with body and summed, bilateral muscle masses. 830 

 Variable Bluegill 1 

(N = 6) 

Bluegill 3 

(N = 5) 

Pressure Pressure (kPa) -32.2 (2.2) -17.2 (4.6) 

 Timea of min. pressure (ms)  -1.7 (2.3) -10.8 (1.9) 

Volume Volume (cm3)   18.3 (1.0)   18.4 (1.0) 

 Timea of peak volume (ms)   12.7 (1.6)   14.4 (2.7) 

 Volume rate (cm3 s-1) 386.5 (58.2) 351.2 (74.9) 

 Timea of peak volume rate (ms)   -5.3 (2.6)   -5.2 (2.2) 

Power Power (W)  11.4 (2.1)    5.2 (2.1) 

 Timea of peak power (ms)   -4.3 (2.6)   -9.2 (1.4) 

Work Work (J)    0.14 (0.03)    0.07 (0.02) 

Mass Total body (g) 164 162 

 All cranial muscles (g)     1.86     2.84 

 All axial muscles (g)   41.1   39.12 
aTime relative to time of peak gape 
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Figures 832 

 833 

Figure 1. Muscles of the feeding apparatus and the muscles of suction expansion in the 834 

bluegill sunfish. (A)The regions of the axial muscles that consistently shortened during suction 835 

feeding are colored solid red, with decreasing color intensity indicating generally decreasing 836 

shortening until ultimately regions without shortening are colorless (white). (B) Whole body 837 

shape of bluegill sunfish and largemouth bass. 838 

 839 
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 841 

Figure 2. Sample XROMM animation and measurements of suction expansion. (A) Right 842 

medial-view X-ray image with animated bone models superimposed (neurocranium, urohyal and 843 

left-side bones only). Intramuscular markers for fluoromicrometry and the body plane are visible 844 

along the dorsal and ventral edge of the epaxial and hypaxial muscles, respectively. The location 845 

of the pressure transducer is indicated by the red sphere. Left lateral view of animated bone 846 

models with (B) muscle length measurements (red lines) of the levator arcus palatini (LAP), 847 

dilator operculi (DO), levator operculi (LO) and sternohyoideus (SH) muscles, and (C) the 848 

dynamic digital endocast (green and yellow) used to measure volume. 849 
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 852 

Figure 3. Rotations of the neurocranium and cleithrum and translations of the urohyal, 853 

relative to the body plane. (A) For each bone, rotations were measured about each axis of the 854 

joint coordinate systems. Euler angles were calculated with a ZYX rotation order, with polarity 855 

determined by the right-hand rule with thumb pointed toward the arrow head for each axis. Bone 856 

models (in yellow) are shown along with the body plane (blue rectangle). Rotations (B) or 857 

translations (C) are shown from each strike (thin colored lines), as well as the mean rotation or 858 

translation (thick black lines) at each time step. Clockwise roll of the neurocranium and 859 

cleithrum are defined from a frontal view, and negative long-axis rotation of the cleithrum is 860 

clockwise in dorsal view. Means are calculated across both individuals and all strikes (N = 11 861 

strikes). 862 



 32 

 863 

Figure 4. Normalized muscle length and velocity during suction feeding. For both panels, 864 

traces from individual strikes (grey lines) are shown with the values during peak (within 25% of 865 

maximum) expansion power highlighted (red lines). (A) Length of each muscle normalized to its 866 

mean initial muscle length (Li), with Li values listed for Bluegill 1 and Bluegill 3, respectively. 867 

Decreasing values indicate shortening. The mean length at each time point (across all strikes and 868 

both individuals, N = 11 strikes) is also shown for each muscle (black lines). (B) Instantaneous 869 
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velocity of each muscle, with the optimum velocity for power production of the sternohyoideus 870 

(Vopt sterno, dashed line) and the axial muscles (Vopt axial, solid bar), which spans the Vopt measured 871 

for epaxial and “myotomal” muscles (Carroll et al., 2009). Note that for velocity, positive values 872 

indicate shortening. 873 
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 876 

Figure 5: Expansion power, muscle length, and skeletal kinematics from the most powerful 877 

sunfish strike recorded (Bluegill 1). Power (A) is estimated from the product of buccal pressure 878 

(B) and rate of bilateral mouth volume change (note that absolute volume is shown in B). Whole-879 

muscle lengths of the epaxial (C), hypaxial (D), and sternohyoideus (E) are shown in mm, and 880 

not relative to initial lengths. Neurocranium elevation (C) cleithrum retraction (D), and urohyal 881 

retraction (E) are measured relative to the body plane, and again magnitudes are not relative to 882 

initial values. The grey bar indicates the period of power production. Note that the onset of 883 
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muscle shortening and corresponding skeletal motion are generally coincident, indicating an 884 

absence of muscle shortening prior to power production. 885 
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 888 

Figure 6. Suction expansion power for each strike from (A) Bluegill 1 and (B) Bluegill 3. 889 

The absolute magnitude of power (W) estimated for expansion is shown in black on the left Y-890 

axis, graphed as a function of time. The two right Y-axes express these same power magnitudes 891 

as mass-specific power (W kg-1) by dividing the estimated expansion power by the total mass of 892 

the axial muscles (blue axis) or by the total mass of the four cranial muscles (red axis) of each 893 

individual. These mass-specific powers represent the estimated power outputs the axial or cranial 894 

muscles would have to generate, assuming they were the sole source of power for suction 895 

expansion. 896 
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 899 

Figure 7. Estimated muscle work capacity and mass-specific work of expansion during 900 

sunfish suction feeding. (A) Vertebrate muscle length tension curve (redrawn from Peplowski 901 

and Marsh, 1997 and assuming a maximum isometric force of 30 N cm-2). Theoretical work 902 

capacity (J kg-1) of the muscle was calculated as the area under the curve, divided by the density 903 

of vertebrate muscle (1.06 x 109 kg cm-3 (Mendez and Keys, 1960)), and finally divided by 100 904 

to convert from N cm kg-1 to N m kg-1 so that the final value is in J kg-1. Assuming the muscle 905 

shortens infinitely slowly and with 115% strain, i.e., from 175% of its optimal length (Lo) to 60% 906 

of its optimal length, it could produce 190 J kg-1 of work (grey shaded area). A more realistic 907 

estimate of maximum work capacity is shown by the black shaded region (25 J kg-1), which 908 

assumes only a 15% strain (based on in vivo shortening measured in this study) and that the rapid 909 

muscle shortening required for powerful feeding will result in a 50% reduction in force due to 910 

force-velocity effects (Peplowski and Marsh, 1997). (B) The estimated mass-specific work of 911 

suction expansion, calculated as the area under the power-time curve for each strike, divided by 912 

the mass of the axial muscles (blue, left-side boxplots) or by the mass of the cranial muscles (red, 913 

right-side boxplots). Each boxplot shows the mean (red line), the 25-75% percentile (box edges), 914 

and extreme values (whiskers) of mass-specific work required for each individual (N = 6 strikes 915 

for Bluegill 1, N = 5 strikes for Bluegill 3), assuming only the axial (left hand bars) or cranial 916 

(right hand bars) muscles produce the work of suction. 917 
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 920 

Figure 8: Estimated expansion work in bluegill sunfish (from this study) and largemouth 921 

bass (data from Camp et al., 2015). (A) Absolute magnitude of suction expansion work during 922 

feeding strikes. (B) The same suction expansion work, expressed per unit axial muscle mass, i.e., 923 

the summed mass of the hypaxial and epaxial muscles. In both panels, for each individual the 924 

expansion work is shown for each strike (grey filled circles) along with the mean expansion 925 

work (filled black circle) and standard error (black lines) for that individual. The number of 926 

strikes, from which means and standard errors were calculated, are listed beneath each 927 

individual. Bluegill mean axial mass-specific work is the same as that shown in Fig. 7, but 928 

included here for comparison with largemouth bass. 929 
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