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Abstract. With integrating physical devices into digital world, Internet
of Things (IoT) have presented tremendous potential in various differ-
ent application domains such as smart cities, intelligent transportation,
smart home, healthcare and industrial automation. However, current IoT
solutions and usage scenarios are still very limited because of the diffi-
culty in sensing the context in continuously changing environments and
adaptation to the changes accordingly. The complex dynamic interac-
tions between system components and physical environments are a bit
challenging especially when there are other concerns such as scalabil-
ity and heterogeneity. To solve this problem, a novel adaptive service-
oriented paradigm is proposed to support IoT from a low-level viewpoint.
The paradigm can overcome some disadvantages of REST (Representa-
tional State Transfer) architecture style in the IoT. Two classical ex-
amples are illustrated using the proposed paradigm by adding an extra
constraint based on REST to improve system states verification and en-
hance the functionality in modelling physical processes.

1 Introduction

IoT are envisioned to integrate the physical world into computer-based systems.
Recent years, with the advanced technique development on sensors, networking
and data processing etc., IoT have illustrated great potential in various different
fields [12]. However, even after decades of research on system aspects of the IoT,
developing IoT based systems is still facing many challenges on the high level
system requirements like scalability, inter-operability and fault tolerance [19].
Moreover, most of current IoT applications are coping with data collecting and
processing without involving many complex physical behaviours, because current
IoT solutions and usage scenarios are still very limited in modeling complex
behaviours in continuously changing physical environment.

Context adaptation plays an important role in continuously changing physical
environment. Recent years, because of the rapid development of mobile comput-
ing and big data, there are plenty of context-sensitive data in the IoT systems,
therefore the context-awareness in IoT draws a lot of research attention. For
example, there are many investigation on context-awareness in models [25], ar-
chitectures [7] and middlewares [6]. On the other hand, adaptation is more dif-
ficult than context-awareness. It is usually solved by constructing the feedback



loop [2] at different abstracting level like architectures [5], behaviour models [4]
and frameworks [22].

REST (Representational State Transfer) is a widely used architecture style
and also popular in the IoT fields because of its low entry barrier and scalability
merits. However, the REST architecture style was particularly designed for dis-
tributed hypermedia systems and it sometimes does not fit IoT requirements. In
particular, it is difficult for REST to provide complex operations and high level
abstraction, while in the IoT systems, the physical behaviours usually need com-
plex behaviour models which REST cannot provide. Therefore two main issues
arise, i.e., system states verification and physical behaviours implementation,
which we will discuss in more details in the Section 2.

To address these two issues, we propose the Feedback-based Adaptive Service-
Oriented Paradigm (FASOP) which can apply at the programming language level
to support context adaptation in the IoT systems. Furthermore, the FASOP can
be used to add more constraints in order to use the REST style in the IoT
systems to overcome these two limitations.

The rest of the paper is organised as follow. Section 2 explains the motivation
of the proposed approach. Then the definition and description of the FASOP is
presented in Section 3. In Section 4, the FASOP is applied in the REST as an
extra constraint. Section 5 illustrates a simple implementation of the FASOP
and the two cases discussed before are implemented with the FASOP to express
the advantages in Section 6. Finally, Section 7 compares some related works and
Section 8 gives the conclusion and future work.

2 Motivation

The REST architecture style is one of the most successful architectures designed
for Web applications with the requirements including low entry barrier, extensi-
bility, distributed hypermedia, anarchic scalability and independent deployment
[11]. Many features of the REST architecture style can also benefit the IoT sys-
tem requirements like low entry barrier, decentralization, scalability, robustness
and easy deployment. For example, Guinard proposed the resource oriented ar-
chitecture for the web of things based on REST principles [13]. Furthermore,
many existing tools and techniques have supported the REST architecture style,
therefore it is easy to integrate with current web technologies. As a result, it has
been widely used in many IoT systems such as Intelligent Buildings [9], Smart
Homes [15], Smart Grids [17] and Smart Cities [20]. Among the 39 available IoT
platforms that are surveyed in [18], only 7 platforms do not have REST API.

However, using REST architecture style in the IoT systems may cause two
problems in the system states verification and physical behaviours implementa-
tion. Below we will use two examples to explain them respectively.

2.1 Issue of System States Verification

To address the issue of system state verification, a scenario in the Smart Home is
used to explain how the REST style may cause a wrong system states verification.



The scenario is to turn on/off a lamp in a room. Assume there is a controller
for a lamp in the room, and it has two operations switchOn and switchOff. The
typical model and design with RESTful interface for this scenario could be as
Fig. 1. Based on the HTTP standards, if the response status code is ”200 OK”,
the operation successes, and if the response status code is ”5xx”, the operation
failed with service side error.

However, the problem is that even if the response of the status code ”200
OK” is obtained, the whole operation cannot guarantee to be successful. The
returned ”200 OK” only means the controller has been successfully triggered,
but the lamp may still be off for some unknown reasons, for example, due to the
network problem, so the returned status code cannot reflect the real situation.

This kind of problems can be fixed by other fault tolerance mechanisms in
middlewares, however, it makes the solution more complex with extra require-
ments on techniques and tools. Especially, some methodologies may break the
constraints in the REST style, and make it more difficult to model the system
states and behaviours.

This paper intends to provide a paradigm with feedback mechanism for better
system states verification in the IoT systems, so the services developed in the
IoT systems, especially in REST style, can be more accurate and reliable.

On

Off

switchOn switchOff

Function: switchOff()
URI: /room1/controller1/switchOff
Method: POST

Function: switchOn()
URI: /room1/controller1/switchOn
Method: POST

Fig. 1: Model and Design with RESTful interface to Turn On/Off a Lamp

2.2 Issue of Physical Behaviours Implementation

The second issue of physical behaviours implementation is a big problem for
developing REST style services in the IoT systems. More specifically, any imple-
mentation of continuously physical behaviours with REST style services can be
difficult, because the REST style services have limited operations (GET, POST,
PUT, DELETE) that cannot fully match the continuously changing physical
behaviours. Below we use a scenario of braking a car to explain the limitation.

Assume we need a braking service, which can brake a car based on current
conditions and decisions. This scenario cannot be modelled by a simple state



machine. The dynamic physical behaviours of the car can be expressed as follow:

ṡ =
ds

dt
= v, v̇ =

dv

dt
= a (1)

where s represents the passage within time t with the velocity v, and a is the
acceleration. From the REST style services development point of view, we need
the GET methods for three variables, s, v and a first, and a POST method to
call the brake service with parameters a and v and expected passing distance s.

However, it is impossible to ignore all disturbances and uncertainties in the
physical environments, so calling a simple brake service with parameters a and v
and expected passing distance s may cause unpredictable effects, that is, the real
passing distance s′ is far from s. Furthermore, it is very difficult to map the phys-
ical braking device to the braking service because quantitatively describing the
action is hard. To overcome the limitations of the open-loop controller, control
theory introduces feedback and a closed-loop controller that can use feedback to
control states or outputs of a dynamic system, and the Fig 2 indicates the phys-
ical behaviour. However, the traditional REST style services cannot perfectly
implement this model.
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Fig. 2: The Model for Braking Service

The paradigm proposed in this paper can also be used to enhance the func-
tionalities of the REST to support more complex operations in physical world
in a natural way, because it fits the mathematical form of calculus.

3 Feedback-based Adaptive Service-Oriented Paradigm

In the SOA based IoT systems, we distinguish three types of different services,
i.e., Virtual Service, Perceptive Service and Actuating Service. The three types
are evaluated by the interactive patterns from the service providers to the phys-
ical environment.

Virtual Service Most of traditional software services are virtual services with
no interaction with physical environment. Even in IoT systems like smart
home, most of services are still virtual services which can store temperature
data or convert temperature from one unit to another, for example.



Perceptive Service Perceptive Services are usually provided by sensors and
responsible for detecting the physical environment. The perception provided
from the perceptive service can be temperature, pressure or vision etc.

Actuating Service Actuating Services are expressed as services executing real
actions in the physical environment. For example, in smart home, turning
on/off a light or air condition are actuating services.

An interface I of a service SP , denoted by Is is defined by a signature and
a behavioral model. In the IoT, for any given Actuating Service, its interface
Iac can be specified by context, signature and behavioral model. Context defines
information depending on service requesters and service environment. Signature
corresponds to operation profiles provided by the actuating service. Behavioral
model is represented by Petri nets to describe the adaptive pattern.

Definition 1 (Context). We define the context as a typed relation [24], a set
of ordered pairs of (d, x) where d is a dimension, Td is the type of d and x : Td.
Let D denote the set of all possible dimensions, and T = Td|d ∈ D be the set of
types associated with the dimensions. A context c is a finite relation {f(d, x)|d ∈
D ∧ x : Td}. The degree of the context c is |dom c|.

Definition 2 (Signature). A Signature is a set of operation profiles. An op-
eration profile is the description of an operation containing the name of an op-
eration, with its argument types and its return type. For the actuating service
interface Iac, its signature is defined by a tuple < Oas, Ops, Γ >, where Oas is
a set of operation profiles provided by the actuating service and Ops is a set of
dependent operation profiles provided by other perceptive services. Γ is the func-
tion Γ : Oas → Ops. For any single operation profile oas ∈ Oas, it has a set
of callable operations from other perceptive services Ops′ ⊆ Ops and Ops′ 6= ∅,
which is defined as γ ∈ Γ : oas → Ops′ , Ops′ 6= ∅.

Definition 3 (Behavioral model). The behaviour in the service can be mod-
elled as a Petri net SN =< P, T, F, i, o >, where P and T are disjoint sets of
places and transitions. Places represent states that contain tokens with multiple
attributes, and transitions represent activities that can be guarded; transitions
are fired when all the tokens in the corresponding input places arrive. Places and
transitions are connected through arcs.

Definition 4 (Service Interface). A service interface is a tuple < CP, S,B >,
where: CP is a context profile, and S is a signature with its corresponding be-
haviour model B.

The behavioural model of FASOP is represented as a Petri net to indicate
the atomic operation in Actuating Services. As shown in the left side of Fig-
ure 3, before applying the paradigm, t1 is a transition provided by the Ac-
tuating Service and p1, p2 are pre-condition and post-conditions of t1 respec-
tively. From the process point of view, if the operation in t1 is a function call
< result : func(params...) >, then p1 is to map the function name func and
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Fig. 3: the Petri Net Behavioural Model for an Actuating Service

parameters (params...), and p2 is to check the return value result. However, if
the < result : func(params...) > has any action in physical environment, it is
nearly impossible to guarantee all post-conditions from the programming lan-
guage level, because the post-conditions of t1 may contain some physical effects
that cannot be detected by the Actuating Service itself.

In our approach, the proposed paradigm is a mechanism with feedback mech-
anism to solve this problem at the programming language level. Feedback control
is a central element of control theory, and the importance in self-adaptive sys-
tems has already been discussed in [2].

Among the three types of the services in IoT, the feedback loop can be
constructed by Actuating Services and Perceptive Services. A service signature
explicitly exposed by a Actuating Service is a set of operations that need to
declare reachable Perceptive Services with specific operations. For a single op-
eration profile, it is expressed as shown in Table 1. Then, any service call to
funcAS has to pass all required parameters including context information and
at least one extra service call as an available Perceptive Service. The behavioural
model is at the right side of the Figure 3. The service call at t1 is changed from
< result : func(params...) > to < result : func(params..., PS.funcPS, t) >,
which contains another function funcPS from another Perspective Service and
the latency time t which is the waiting time to get the feedback perceptions. In
this way, the verification for post-conditions is more reasonable, since the post-
conditions with physical properties can be verified through the perceptions of
the physical environment by the Perceptive Services. With this new paradigm,
the place p′2 can verify whether the operation func is operated successfully and
place p′4 can eventually check if the operation func has desired behaviours based
on the perceptions. In Figure 4, a sequence diagram shows the detailed processes
from the implementation perspective.
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env(context)

envChange

op(context,env(context),t)

result

sysComponent: actuation: perception:

Fig. 4: Sequence Diagram for calling a Actuating Service

Table 1: A Single Operation Format in Actuating Service
Operation Name funcAS

Parameters p1, p2, ..., pn
Available Operations PS1.op1, PS2.op1, PS2.op2, ..., PSi.opj

4 Extending REST for the IoT based on FASOP

In [10], an example of using REST-based architecture server to control a robot
is presented. The author concluded that REST sometimes is inconvenient com-
pared to other RPC style web services because it does not have any function-
alities like callbacks to support complex modelling with the states. The key
problem is that keeping all required information in a single request to model
physical behaviour while keeping stateless interactions is difficult. In physical
environment, most of the continuously physical behaviours are modelled based
on differential equations so it needs at least two states to express a continuous
physical behaviour. Therefore at least two states in the response are needed to
model the physical behaviours in any single request. With the FASOP, any sin-
gle service call to an Actuating Service actually becomes a transaction, so all
required information can be wrapped up to model physical behaviours within
one request. This paradigm can be simply converted to an extra constraint for
the REST and the new constraint is expressed as follow:

– Any operation from the Actuating Services has to operate in a complete
feedback loop containing the perception to physical environment and the
response need to have at least two states of the requested entity.

The high-level model we use for IoT systems is based on [16], which is defined
as a tuple RS = 〈R, I,B, η, C,D,∼, OPS,RETS〉, where R is a set of resources;
I is a set of resource identifiers;B ⊆ I is a finite set of root identifiers; η : I → R is
a naming function, mapping identifiers to resources. C is a set of client identifiers
and D is a set of data values, with an equivalence relation ∼⊆ (D×D); OPS is
a finite set of methods; and RETS is a finite set of return codes. The detailed



model is similar as the model provided by [21], where the only difference is for
modelling services for actuators.

Resource identifiers are modelled as URIs, represented as the following scheme:

URI = scheme : [//host[: port]][/]path[?query][#fragment]

The descriptions of a service can be obtained by sending a GET to a partic-
ular resource via URI. Most of the service calls are at protocol level via message
delivery and the main difference is on the Actuating Service calling. The re-
quest to an Actuating Service needs to contain at least one available Perspective
Service operation.

5 Implementation Methods

In this section, we will use Java web service to express a simple implementation
of this paradigm.

Based on the former definition in section3, the services in the IoT systems are
concluded as: Virtual Service, Perceptive Service and Actuating Service. Since
Virtual Service is just normal web service, we develop two extra interfaces: Per-
ceptiveService and ActuatingService. To hide many network details, we assume
all the services can remotely call another service from a different device based
on RPC framework or Actor model [1]. Fig 5 indicates a basic example of these
two interfaces.

<<Interface>>

PerceptiveService

getPhysicalContext() : PhysicalContext
init() : void
stop() : void
run() : void

<<Interface>>

ActuatingService

getPhysicalContext() : PhysicalContext
addPerceptiveService(PerceptiveService) : void
containPerceptiveService(PerceptiveService) : boolean
removePerceptiveService(PerceptiveService) : void
getAllPerceptiveServices() : List<PerceptiveService>
init() : void
stop() : void
run() : void

Fig. 5: The Basic Class Diagram of the two Physical Interfaces

The main purpose of the interface design is to do type checking in the devel-
opment. By using annotation in Java, we can restrict the developer to include at
least one PerceptiveService as a parameter in any Actuating Service annotated
by @WithFeedback. However, the type checking at this level needs to remotely
call a method, if you want to use the JAX RS (Java API for RESTful Web
Services)[14] standard to develop REST style services, the parameters are all
String type for the services mapped from the URI, thus you cannot do type
checking to confirm the PerceptiveService as a parameter. In this case, you need
to check the PerceptiveService in the function of the service.



The implementation is only a lightweight version of the FASOP implementa-
tion, because we need to extend the HTTP or CoAP (Constrained Application
Protocol) to fully support the FASOP, which is considered as a part of future
work.

6 Case Studies

In this section, we use the two examples in the motivation section to illustrate
the advantages of the FASOP.

6.1 Turn on/off a Lamp in the Smart Home

For the scenario in the Smart Home to turn on/off a lamp in a room, the issue
is that the response status code cannot express the correct system status. To
solve this problem, we use the FASOP to modify the original approach and the
changes are as follow:
Function: switchOn() → switchOn(PerspectiveService,t)
URI: /room1/controller1/switchOn
→ /room1/controller1/switchOn/?perceptiveservice=lightsensor&time=1s
Method: POST
The implementation details are expressed in Fig 6. In this implementation, the
successful status code correctly reflects a guaranteed successful confirmation.

public class LampService implement ActuatingService{
  
@POST
@Path( /room1/controller1/switchOn/{perceptiveservice}\{time} )
public String switchOn(@PathParam( perceptiveservice ) String p,@PathParam( time ) String time){

if(!PerceptiveServices.containskey(p)){
switchOn();
return  No PerceptiveService Found, Switched On ;

} else { switchOn();
Thread.sleep(Integer.parseInt(time)*1000);
String state = PerceptiveServices.get(p).getResponse();
if(state.equals( On )){

return  Switched On, Successfully ;
} else{   return  Failed ;  }  }  }

  
}

Fig. 6: Implementation Sample of using FASOP to turn on a Lamp

6.2 Brake an AutoDriving Car

Compared to the traditional REST style development, the FASOP can help to
transfer the physical behaviour model to software development in a more natural



way. Below we use the example introduced in Section 2 to explain how the
FASOP can help to transfer physical behaviour model to software development.

Based on the Equation 1, in a very short time ∆t = t′ − t, we have the
following form of the equation:

ṡ =
ds

dt
=
s′ − s
t′ − t

= v, v̇ =
dv

dt
=
v′ − v
t′ − t

= a =
s′ − s

(t′ − t)2

With the traditional REST style service development, it is very difficult to
quantitatively evaluate and analyze acceleration. However, the FASOP can fit
the closed-feedback model, thus the exact acceleration value can be easily eval-
uated via the distance and time. Furthermore, we can continuously change the
acceleration via braking physically and all effect can be evaluated though the
service in real-time. The function of this braking service can be as follow:
Function: braking(PerspectiveService,t)
URI: /car/brake/braking/?perceptiveservice=distancesensor&time=1ms
Method: POST
In any moment, with this braking service, we can also predict the future pass-
ing distance sf during the time period tf . The predication can be based on:

s = v ∗ t− a∗t2
2 if the acceleration keeps the same.

7 Related Works

There are many researches on the development of the IoT systems to support
context-awareness and adaptation. In [23], a platform is developed as Con-
textServ to simplify the development of context-aware Web services adopting
high-level modelling language. In [3], a design for adaptation approach is pro-
posed to support the development, deployment and execution of systems in dy-
namic environments by exploiting service refinement and re-configuration tech-
niques. In [22], the MAPE-K feedback loop is used to support a synchronization
and adaptation mechanism for real world process as a process-based framework.
It uses a different perspective from combining processes’ virtual world and real
world effects to build self-adaptive IoT systems. The work can achieve a high
level of autonomy and resilience against failures for physical world process. In
[8], the authors provide the methodology of using model-based service oriented
architecture with service composition to support self-adaptation. The work is
solid and also provides fault tolerance mechanism. In [4], the service adaptation
is achieved using service composition for automatic reconfiguration based on the
rich interface specifications. Following this idea, they used the Discrete Time
Markov Chains in a language to describe the impact of adaptation tactics and
the assumption about the environment.

Our approach is a paradigm that can be used in the current service based
technologies, especially for a widely used style of REST. Because of the special
constraints of the REST style, the REST style services are not very suitable
for context-adaptation in the IoT system. Compared to others’ work, we used a



different perspective of designing the Feedback-based Adaptive Service-Oriented
Paradigm to support context-adaptation in service development, especially for
REST style service development which rarely supported the context-adaptation.
Furthermore, we proved that this paradigm can overcome two issues in using
REST style services in the IoT systems.

8 Conclusion and Future Work

The two issued caused by using the REST style services in the IoT systems are
from the lack of developing the complex behaviour models in the REST style.
To overcome the problem, we proposed the Feedback-based Adaptive Service-
Oriented Paradigm to provide the context-adaptation ability at low level for
service development, therefore the REST style services can implement complex
behaviour processes based on the context-adaptation.

The implementation in this paper is a simplified version to use the current
web technologies. To fully implement the FASOP in the REST style, we plan to
develop a protocol by extending the HTTP or CoAP (Constrained Application
Protocol) based on REST model. In addition, in the future we will also develop
and deploy this paradigm in some real IoT systems.
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