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Graphical Abstract

Primary neural cells were exogenously-labeled with high magnetite content polymeric
magnetic nanoparticles, prior to intra-construct incorporation within a 3-D collagen hydrogel.
Combining the use of hydrogel technology with MRI compatible iron oxide nanoparticles has
the potential to augment long-term survival of cell transplant populations, whilst offering the

capacity for non-invasive MRI-tracking of intra-construct cells in neural cell therapy.
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Cover figure (if required) —3-dimensional hydrogels facilitate a complex cellular

network of MNP-labeled cortical astrocytes (21 d).
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Executive summary

Delivery of transplant cells in protective and implantable materials can augment cell
survival, enhancing efficacy of neural cell transplant delivery into the host parenchyma.
e Mouldable hydrogel-based materials capable of supporting 3-D cell growth offer key
advantages as neuroprotective and immunomodulatory biomaterials.
e Methods to non-invasively track neural cell transplant populations in such matrices,
using imaging methods are poorly developed.

Exogenous MNP labeled astrocytic hydrogels offer a promising approach as 3-
dimensional implantable constructs.

e The macroporous nature of collagen hydrogels facilitated support of astrocyte growth
in a viable and complex cellular network over an extended time frame. Morphological
characterisation showed a significant difference in cell area, number and length ratio
of primary processes across 14 d (***p <0.001) with cellular viability consistent at ca.
82%.

e MNP accumulation in astrocytes proved effective in providing a hypointense signal at
24h, 14d and 37d in astrocytic hydrogels.

e Proliferation was significantly higher at 24 h post-construct vs. 7d and 14 d in both
non- and MNP-labeled cell hydrogels (¥*p <0.05). The influence of collagen on
proliferation profiles of encapsulated astrocytes predicts low dilution of MNP-label
with time, extending the utility of these particles as a contrast agent.

Hydrogel TEM facilitated study of astrocytic hydrogels.
e Astrocytic membrane was seen to be actively engaging with the collagen matrix.
e TEM confirmed the intracellular, peri-nuclear localisation of MNPs, seen as electron-
dense areas with a hollow core; features consistent with their magnetite matrix.

Conclusion
e The construct developed offers the potential for non-invasive tracking of neural
transplant populations delivered in encapsulating polymer matrices, over an extended
time frame.
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Abstract

Aim: (1) To develop a 3-dimensional neural cell construct for encapsulated delivery of
transplant cells; (2) develop hydrogels seeded with magnetic nanoparticle (MNP)-labeled
cells suitable for cell tracking by magnetic resonance imaging (MRI). Materials/Methods:
Astrocytes were exogenously labeled with MRI-compatible iron-oxide MNPs prior to intra-
construct incorporation within a 3-D collagen hydrogel. Results: A connective, complex
cellular network was clearly observable within the 3-D constructs, with high cellular
viability. MNP accumulation in astrocytes provided a hypointense MRI signal at 24h & 14
days. Conclusions: Our findings support the concept of developing a 3-D construct
possessing the dual advantages of (i) support of long-term cell survival of neural populations
with (ii) the potential for non-invasive MRI-tracking of intra-construct cells for

neuroregenerative applications.

Keywords: astrocytes; 3-D collagen hydrogel; magnetic resonance imaging;

transmission electron microscopy
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Introduction

Cell transplantation is a major therapeutic approach for regenerative medicine following
spinal cord injury (SCI). Results from early clinical transplantation trials demonstrate
functional regeneration within the spinal cord, associated with some restoration of sensory
and locomotor function [1, 2]. However, optimized neural cell transplantation depends on a
number of factors, of which two are key. The first is achieving high viability and
homogenous distribution following cell delivery into the host parenchyma. The second is the
ability to non-invasively track the transplant cell population in host tissue over time such that

the efficacy of cell therapy and bio-distribution can be monitored longitudinally.

The therapeutic efficacy of transplantation into the injury site is currently hampered by
hurdles confronting the cell delivery process [3, 4]. One of the major confounding factors is
the use of fine bore needles leading to clumping and shearing stress during delivery, causing
extensive cell death [4-6]. Uneven settling and clumping can further lead to inhomogeneous
cell distribution in lesion sites [3, 4], with variable repair. High levels of transplant cell death
leads to macrophage infiltration, creating a further hostile microenvironment with additional
cell loss [4]. These issues represent a critical translational barrier to neural cell therapy,
highlighting the need to develop advanced cell delivery methodologies. It has been suggested
that the technical difficulties associated with surgical delivery of transplant cells can be
attenuated by the use of a 3-dimensional protective cell matrix provided by hydrogels [7-
9]. These are highly hydrated networks of cross-linked polymers with their hydrophilic
properties facilitating high water content [10]. Their protein composition directs self-
assembly in vitro into a highly fibrous structure that resembles the mechano-elastic properties
of the in vivo neural microenvironment [11]. These biomaterials are implantable and
mouldable for ease of delivery to various lesion shapes [12, 13], and have limited effects on

cell viability [10]. Hydrogels have been shown to promote neurological recovery and spinal
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cord regeneration [14, 15] through incorporation of neurotrophic factors [16, 17, 18], offering
structural support for ingrowing axons [19], and delivery of cell transplant populations for
trophic support and recovery of a homeostatic environment [20, 21]. Cellular hydrogels offer
a two-fold benefit for cell therapy, in that the neuroprotective and neuro-immunomodulatory
mechanisms inherent to the incorporated cell population itself promote higher levels of
cellular viability in the host tissue. In turn, this facilitates regeneration in spared axons, with

the hydrogel construct acting as a bridge or scaffold across the lesion cavity [21].

Transplant cell tracking studies to date have shown a heavy reliance on carbocyanine dyes
[10, 20, 22]; DNA identification of Y-chromosome probes [4]; retrograde tracing (e.g. using
Fluorogold) [23]; radiolabelling or reporter protein expression [24, 25, 26]. Each has
limitations in respect of imaging, toxicity and rapid decay of label [4, 27, 28] but the biggest
obstacle is that the end point remains histological analysis, representing a major barrier to
translational use. Therefore, there is a critical need to develop a non-invasive approach for the
in vivo detection and tracking of cell transplant populations; widely shown to be achievable
through the use of MNP-based contrast agents in conjunction with MRI; an imaging
technique widely used in clinic. MNPs are a useful class of contrast agent as they result in a
strong negative signal, enhancing cellular contrast, which addresses the low sensitivity
associated with this imaging technique [29]. MRI of neural cell suspensions labeled with
superparamagnetic MNPs has been extensively undertaken (i.e. OPCs [30]; NSCs [24]; ESCs

[31, 32].

MRI of nanoparticle-labeled mesenchymal; bone-marrow and adipose-derived stem cells
encapsulated within hydrogels has also been attempted [33, 34, 35]. A key point to note here
is that the majority of neural transplantation studies, whether using dyes, genetic markers or
MRI, have used cells in suspension; the non-invasive imaging methods have not been

validated for neural cell - matrix constructs. Consequently, the concept of utilising MRI to
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non-invasively track a neural cell transplant population delivered within implantable
matrices is a greatly under-investigated area in this emerging field of regenerative
therapy. Here we have attempted to develop a viable solution to these challenges using the
transplant population of neonatal astrocytes (a major neural transplant population). These
cells restore locomotor function when delivered as a cell suspension [25, 36, 37, 38, 39, 40,
41], but have been neglected as a transplant population delivered within a protective hydrogel
environment. One study reported the transplantation of neonatal astrocytes encapsulated in
collagen into the hemi-sected spinal cord [20]. Although partial restoration of locomotor
function was reported, the utility of this cell: collagen construct was not developed further.
Indeed, astrocyte characterisation within a 3-dimensional construct has only recently begun to
be explored [10, 42, 43, 44, 45]. Notably, MNP-labeling of purified astrocytes results in
extensive particle uptake with generation of high MRI contrast and no adverse effects on cell
viability [46, 47]. Despite this, no study has investigated the feasibility of MNP-labeling of

astrocytes to facilitate their non-invasive tracking within a protective matrix.

In light of these knowledge gaps, the goals of this study were to: 1) develop a 3-dimensional
astrocyte construct with assessment of the safety of the protocols used, and 2) establish a

MNP-labeled astrocytic hydrogel that can facilitate non-invasive MR imaging.

Materials & methods

The care and use of animals were in accordance with the Animals (Scientific Procedures) Act

of 1986 (UK), and approved by the local ethics committee.

Astrocyte cell culture

Mixed glial cultures were established from disaggregated cerebral cortices of Sprague-

Dawley rats (postnatal day 1-3), as described previously [47]. Briefly, following seven days
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culture in D10 medium (Dulbecco’s modified Eagle’s medium, 2 mM glutaMAX-I, 1 mM
sodium pyruvate, 50 U/ml penicillin, 50 pg/ml streptomycin and 10% fetal bovine serum),
sequential overnight shakes facilitated astrocyte purification. Astrocytes were enzymatically
detached using TrypLE™ (Life Technologies), and plated on poly-D-lysine coated T175

flasks and maintained in D10 medium for 24 h to allow for cell adherence.

High magnetite concentration MNPs as a contrast agent using MRI

The MNPs utilised for labeling of cortical astrocytes are as previously characterized [47, 48].
Briefly, the MNPs have a poly (lactic acid)/poly (vinyl alcohol) (PLA/PV A) coating, with a
fluorescent BODIPY® 564/570-PLA coating and a high magnetite matrix loading [46.0 +
1.08 (w/w)]; having a hydrodynamic diameter of 278 + 1.62 nm and a negative charge (-
potential -14.4 = 0.34 mV). These particles were a kind gift; prepared by the Boris Polyak
Laboratory, Drexel University, Philadelphia, using published procedures [49]. Use of this
MNP, due to its enhanced magnetite concentration, has been proven to be most effective in
cellular uptake and long-term particle retention in cortical astrocytes as a monolayer culture
[47]. Moreover, for the purposes of non-invasively tracking a MNP-labeled transplant
population, a particle with such high magnetite concentration promises to generate a strong

MR contrast.

Formation of collagen I hydrogel construct

Collagen I hydrogels (rat tail, high concentrate; Corning) were formulated to act as a 3-
dimensional substrate for the protective delivery of neural cells as a cell transplant
population. Collagen is a major protein and component of the extracellular matrix and has
been utilised extensively as a ‘functionalised scaffold’ [14, 16, 17] and 3-dimensional cellular
hydrogel [44, 45, 50]. Collagen hydrogels offer a biodegradable, homogenous, consistent

composition of a porous, fibrillary network that provides structure to encapsulated cells [50,
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51], allowing for ingrowth of neurites and facilitating guidance for axonal growth [52, 53].
The hydrogels were assembled using a published protocol [54]. Briefly, hydrogel
composition was 80% collagen I (diluted in 0.6% acetic acid to 2 mg/mL); 10% Modified
Eagle’s Medium (MEM) Alpha (10x) and 10% cell suspension in D10 (1 x 10° cells/gel) with
a final volume of 0.5 mL/gel, with NaOH (1M) used to obtain neutral pH. All components

were kept on ice during hydrogel construct.
Development of a MNP-labeled cell: collagen I hydrogel construct

Exogenous labeling of cortical astrocytes with MNPs utilised a magnetofection protocol, as
exposure to a magnetic field has shown enhanced levels of particle accumulation in these
neural cells [47]. Briefly, lyophilised particles were added to D10 at a concentration of 26.5
pg/mL and added to astrocyte monolayers cultured in T175 flasks (15 mL/flask), followed by
immediate exposure to a static magnetic field (FO) for 30 mins. Unlabeled cells (no particles)
were also exposed to a magnetic field. At 24 h post-particle addition, cells were PBS rinsed
(x2) to remove any free particles, enzymatically detached with TrypLE™; and the resulting
MNP-labeled/unlabeled cell suspension added to collagen solution. Particle-labeled and
unlabeled cell hydrogels were formed in a 24-well plate and allowed to set for 15 min at RT
to allow for gradual increase in temperature from ca. 2° C prior to incubating for 1 h at 37° C
(5% CO2/95% humidified air). D10 medium was added over the top of the hydrogels (3 full
medium changes over 90 mins to facilitate sufficient nutrient uptake). At 3 h post-construct,
hydrogels were transferred to a larger 6-well plate to facilitate free floating of the gel in D10
(4 mL/well) (Fig. 1 a & b), and maintained in D10 over the time course of the experiments,
with a 50% medium change every 2-3 days. At specific assay time-points (24 h; 7d; 14 d &
37 d), sample hydrogels were paraformaldehyde fixed (4% PFA; 3 h; RT). The cellular

characteristics of the hydrogels were visualised using z-stack fluorescence microscopy (Fig. I
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¢), with the utility of MNPs as a contrast agent for cell tracking visualised using MRI (Fig. I

d).

Preparing the hydrogels for MRI

To investigate the utility of the MNPs as a MRI contrast agent, PFA-fixed exogenous MNP-
labeled cell hydrogels were prepared for MRI. Due to the small size of the gel, it was
necessary to place them within a carrier tube (30 mL universal tube) for insertion into the MR
scanner. The hydrogels were sandwiched between layers of agarose within the tube to prevent
air pockets, which can generate imaging artefacts. A low-gelling temperature (<30° C)
agarose gel (A4108 — Sigma, UK) was used to prevent damage to the hydrogels. Briefly, a
1% w/v agarose solution with PBS buffer was dissolved at melting point (>65° C), allowed to
cool (~32° C), and 4 mL pipetted into the carrier tube and set at 4° C. The hydrogel was
placed on this bottom layer before being sandwiched by a further layer of cooled agarose gel

and stored upright at 4° C until imaging.

Preparing the hydrogels for Transmission Electron Microscopy (TEM)

To investigate subcellular features associated with particle uptake and trafficking, a novel
technical modification was developed to facilitate visualisation of MNP-labeled cortical
astrocytes within the hydrogel construct, utilising TEM. This entailed embedding the
hydrogels within Spurr resin [55]. Briefly, following glutaraldehyde fix and initial steeping in
osmium (2 h; RT), the hydrogels were rinsed in dH,O (6x), placed in 70% ethanol (EtOH; 4h
at RT), stored overnight in 80% EtOH (4° C) and taken through a modified series of EtOH
dehydration steps before embedding in Spurr resin; modifying the standard protocol for use
with collagen hydrogels. Following overnight storage in 80% EtOH, hydrogels were kept at 4
°C for a further period of 7 days during which time they were subject to an extended series of

dehydration steps: 80% EtOH (24 h); 90 % EtOH (48 h - 100% refresh at 24 h); 100% EtOH
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(48 h - 100% refresh at 24 h; 100% DRY EtOH (4 h - 100% refresh); 100% DRY EtOH (48
h). To embed in Spurr resin, hydrogels were infiltrated in 3:1 100% DRY EtOH:Spurr resin
(24 h; RT), followed by 1:1 Spurr resin:100% DRY EtOH (4 h; RT); 3:1 resin:100% DRY
EtOH (4 h; RT) before being infiltrated in pure Spurr resin overnight. The following day,
hydrogels were infiltrated in fresh pure Spurr resin (8 h - 100% change every 2 h; RT) prior
to embedding in fresh pure Spurr resin. Resin was polymerised for 24 h at 60° C. Ultrathin
sections (100 nm) of the resin-embedded hydrogel were cut using a Reichert Ultracut E
Microtome with the sections collected on 200-mesh thin bar grids. Intracellular particle
uptake and trafficking were visualised from TEM micrographs taken from ultrathin sections

using a JEOL-100CX TEM operating at an accelerating voltage of 100 kV.

Cellular viability assays

Cellular viability was quantified by cell counts, live/dead assays and EdU as a measure of
proliferation. Cellular hydrogels (unlabeled and exogenous MNP-labeled) were subject to
such assays at defined time points (24 h; 7 d; 14 d). For live/dead assays, hydrogels were
incubated in a mixed solution of propidium iodide (5 uM), calcein (4 pM) and Hoechst
33342 (5 pg) in a final volume of 2 mL D10 medium per gel/well. Following 30 min
incubation at 37° C (5% C0O,/95% humidified air), the hydrogels were PFA fixed, followed
by PBS washes (x3) and fluorescence imaging for analysis. Click-iT® EdU (5-ethynyl-2"-
deoxyuridine) cell proliferation assay was used as a measure of proliferative capacity of
hydrogel-encapsulated astrocytes over time. Briefly, the protocol was as per manufacturer’s
instructions, with increases to volumes and incubation timings [56]. Specifically, 10 uM of
EdU in a final volume of 1 mL D10 was added over the hydrogel followed by incubation at
37° C for 18 h. The hydrogels were then PFA fixed, followed by 4 washes with 3% bovine
serum albumen (BSA). For permeabilisation, hydrogels were incubated in Triton-X 100

(0.5%) in PBS (40 min; RT). Permeabilisation was followed by 3% BSA wash (x4) prior to
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the reagent cocktail being distributed over the hydrogel (1 mL/gel). The hydrogels were then
incubated for 1 h at RT, protected from light, followed by 3% BSA wash (x2). Nuclei were
counterstained with Hoechst 33342 (5 pg/mL PBS), and hydrogels incubated, protected from
light (1 h; RT) prior to being washed in PBS (x4; 10 min/wash) to remove residual stain.

Hydrogels were imaged immediately.
Morphological characterisation of cellular hydrogels

Morphological/morphometric features of unlabeled and MNP-labeled GFAP' cells in
hydrogels were quantified — on a single cell basis - from z-stack fluorescence micrographs
taken over 14 d post-construct. A measure of the ramified nature (branch-like processes) of

GFAP" cells utilised the published formula: 4 x & x A/P* where A=cell area & P=cell

perimeter. The calculated value of 1 denotes a rounded cell morphology, with values <I
indicative of a ramified morphology [56]. Average cell area and number of primary processes
were quantified, with process length calculated as a length ratio based on the published
formula: L/D where L=process length (um) & D=distance from nucleus to the tip of the

process (um) [57].
Gel contraction

Formation of a cellular network causes gel contraction [11, 58]. To determine any adverse
effect of gel contraction on cellular viability, culture characteristics were assessed across the
time-frame of the experiment along with quantitative measures of the cell hydrogel across its

diameter and depth (mm), obtained using z-stack fluorescence microscopy.
Immunocytochemistry

For protein detection and labeling of cellular architecture within the hydrogels, unlabeled and

MNP-labeled cells were immunostained for glial fibrillary acidic protein (GFAP) with
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fluorescein (FITC) secondary to enable assessment of cell count, morphological
characteristics and intracellular localisation of particles. Protocols were based on published
procedures for immunolabeling of hydrogels [54]. Briefly, following PFA fix and PBS
washes, hydrogels were incubated in blocker (5% normal donkey serum and 0.5% Triton X-
100 in PBS; 1 h; RT) followed by incubation in primary antibody, polyclonal rabbit anti-
GFAP (Z0334; DakoCytomation, Ely, UK; 1:500 in blocker; 48 h at 4° C). Following PBS
washes (x3; 15 min/wash) hydrogels were incubated in blocker (1 h; RT) prior to incubation
in secondary antibody (FITC-labeled donkey anti-rabbit; 4 h; RT), protected from light.
Hydrogels were washed in PBS (x3; 10 min/wash). To counterstain for nuclei, Hoechst
33342 was added (5 pg/mL PBS) and hydrogels incubated, protected from light (1 h; RT). To

remove residual stain, hydrogels were PBS washed (x4; 10 min/wash) before being imaged.

Z-stack fluorescence imaging

Hydrogels were transferred into a CELLview™ glass-bottom petri dish for imaging.
Quantification and subsequent analysis of culture characteristics, experimental outcomes and
cellular viability assessments were assessed from triple-merged (RGB fluorescence) z-stack
images (Fig. I ¢), acquired from four random fields at the centre and edges of the gel with
comparative counts taken from the base, middle and top layer of the hydrogel. These were
captured at 100-200x magnification using a Zeiss Axio Observer.Z1 microscope fitted with a
Zeiss AxioCam MR R3 digital camera and a pE-300 CoolLED fluorescence unit and utilising

the Blue Edition ZEN 2 software, version 2.0.

MR Imaging

The utility of MNPs as a suitable contrast agent for tracking a neural cell population was
assessed via MRI. MR imaging of the hydrogel constructs was conducted using a Bruker 9.4

T Avance III HD instrument (Bruker, Coventry, UK) utilising a 40 mm transmit/receive
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quadrature volume coil. High resolution three-dimensional T,  weighted images were
acquired with a FLASH sequence with the following parameters: field of view 25x25x4 mm,
matrix size 256x256x40, echo time (TE) 8 ms, repetition time (TR) 400 ms, averages 2, flip

angle 20°, scan time 2h 37min.
Dynamic time-lapse imaging

Particle inheritance in daughter cells of MNP-labeled dividing astrocytes within hydrogel
constructs was assessed from dynamic time-lapse images captured at a frequency of 1
frame/180 s over a period of at least 48 h. Images were captured from the transmitted light
(97 ms exposure) and BODIPY® 564/570 (500 ms exposure) fluorescence channels using an
Axio Zoom V16 microscope fitted with an AxioCam ICm1 camera and utilising Blue Edition

ZEN software, version 1.1.1.0.
Statistical analyses

Experimental data were analysed by one-way analysis of variance (ANOVA) with post-hoc
analysis carried out using Bonferroni’s multiple comparison test (MCT). All data are
expressed as mean + standard error of the mean (s.e.m) with ‘n’ referring to the number of
different experiments within each particular study, each derived from a different rat litter.
Analysis was conducted using Prism statistical analysis software, version 7 (GraphPad

Software Inc.).
Results

Astrocyte characteristics and viability within a 3-dimensional construct

At 24 h post-construct production, the majority of cells retained rounded morphologies
typically observed following enzymatic detachment, with a few cells beginning to elaborate
processes (Fig. 2 a). At 7 d, the majority of cells were processed within the construct, with an
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emergent cell network evident (Fig. 2 b). A highly connective, complex cellular network was
clearly observable at 14 d post-construct, with large networks of aligned “bundles” of
astrocytic processes present throughout the hydrogel. Astrocytes showed a small cell soma
and stellate morphology (Fig. 2 ¢). Cell clumping within the hydrogel was negligible (ca.
<1% - data not shown). For the cellular hydrogels developed here, the average cell counts per
unit area remained constant, although a significant decrease was noted following the initial
time-point (Fig. 2 d). Cellular viability remained consistently high throughout the time period
studied (ca. 82%); decreasing from 82 % at 24 h to 78 % at 7 d, before showing an increase
to 85% at 14 d (Fig. 2 e). The cellular hydrogels in this study showed significant contraction
with reduction in diameter over 14 d [***p < 0.001 (Fig. 2 f & g)], but not depth (data not
shown). Morphological measurements of cells grown within constructs showed no difference
between unlabeled and MNP-labeled cellular hydrogels (Fig. 3). Cortical astrocytes took on a
highly ramified nature over time (Fig. 3 @) with a significant increase seen in cell area (Fig. 3
b), number of- and average length ratio of- primary processes over 14 days post-construct

(Fig. 3 ¢ & d, respectively) (***p <0.001).

TEM to visualise intracellular MNP accumulation

At 24 h post-construct, high intracellular particle accumulation was noted in astrocytes (Fig.
4 a & b; b, arrows). It should be noted that exogenously labeled cells in monolayer culture
(Fig. 4 a) possessed distinct morphologies to those observed for cells encapsulated within the
hydrogel (Fig. 4 b). As with unlabeled cell hydrogels, a highly connective, cellular network
was evident with a high level of intracellular particle retention and peri-nuclear particle
localisation still evident at 14 d (Fig. 4 ¢). TEM facilitated study of astrocytic hydrogels. Cell
membranes were seen to be actively engaging with the collagen substrate (Fig. 4 d; arrow
heads). MNPs could be seen as electron dense areas, with a hollow core surrounded by a
dense ‘ring’; features consistent with the magnetite matrix composition of these particles
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(Fig. 4 d; arrows). TEM confirmed the intracellular, peri-nuclear localisation of MNPs at 15

d (Fig. 4 d).

Cellular viability of MNP-labeled astrocytic hydrogel

Cellular viability assays showed no significant difference over time between unlabeled and
MNP-labeled cell hydrogels (Fig. 2 d & e vs. Fig. 4 e & f). Quantification of cell number
revealed a similar pattern for both unlabeled and MNP-labeled cell hydrogels, although the
decrease in cell count noted after 24 h was not significant in MNP-labeled cells (Fig. 4 e).

Cellular viability remained consistent at ca. 82% across the time-frame (Fig. 4 /).

Utility of high magnetite concentration MNPs as a contrast agent

In respect of their utility as a contrast agent for MRI within the MNP-labeled cell hydrogels,
the levels of MNP accumulation in astrocytes proved effective in providing a hypointense
signal at 24 h and 14 d (Fig. 4 g - j). Across the time-frame, a clear distinction could be made
between the hypointense signal recorded from MNP-labeled cell hydrogels versus that of

unlabeled astrocytic hydrogels (compare Fig. 4 g & i vs. h & j).

Proliferation profile of encapsulated astrocytes

Dividing astrocytes were clearly observed within the hydrogels (Fig. 5 a). Proliferation was
significantly higher at the initial time-point but remained consistently low thereafter,
indicating a relatively quiescent population (Fig. 5 b). Use of dynamic time-lapse imaging
enabled visualisation of cell division in real time within these hydrogels (Fig. 5 ¢ — h; see

Supplementary Video), with particles inherited by the daughter cells (Fig. 5 h,; arrows).

Utility of MNPs for non-invasive cell tracking over extended time period
At the later time point of 37 d, a clear distinction in contrast between unlabeled and MNP-
labeled cell hydrogels could still be detected (Fig. 6 a; MNP-labeled vs. b; unlabeled),

although less than that recorded at earlier time points (Fig. 6 a vs. Fig. 4 g & i). Hypointense
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‘spots’ were observed throughout the gel (Fig. 6 a) suggesting either localised particle
clumping within the gel or particle retention within localised foci of cells. The latter
possibility was corroborated by confocal fluorescence microscopy (Fig. 6 ¢) offering clear
evidence of intracellular particle retention, and peri-nuclear localisation of particles at this
extended time-point (Fig. 6 ¢; arrows). Microscopic observations at 37 d (Fig. 6 d) were

indicative of high cellular viability.

Discussion

Protective neural cell delivery systems offer a viable solution to the technical issues faced
during transplantation for neuroregenerative therapy. It is now widely accepted that cells
removed from their in vivo environment display atypical morphologies when cultured on 2-
dimensional ‘hard’ substrates [57]. Accordingly, development of 3-dimensional constructs is
a rapidly emergent field for therapeutic cell transplantation. We report a robust protocol to
generate a protective delivery system for MNP-labeled astrocytes, with potential for imaging
of intra-construct cells. We believe the fusion of the astrocyte- MNP- hydrogel elements
offers an advanced therapeutic approach in the form of (1) a 3-dimensional, protective
hydrogel matrix, containing (2) an MNP-labeled astrocyte population which (3) has the

potential to be tracked non-invasively using MRI.

Several technical considerations needed to be accounted for in facilitating the development of
a viable 3-dimensional neural cell construct. The novel technical development of embedding
the hydrogels within a resin carrier allowed effective use of TEM to study morphologies,
membrane features and intracellular particle localisation in these soft matrices. Within these
hydrogels, a high level of membrane interaction with the collagen matrix was evident. From
this it could be speculated that this mechanism is related to remodelling and (re)adapting of

the environment by cells [11, 58]. Astrocytes in the free-floating gels in this study showed a
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small cell soma and stellate morphology with a complex, connective network of threadlike
processes, as reported previously [42]. This in contrast to cortical astrocytes grown within
anchored gels, which have been reported to be predominantly bipolar in shape and aligned to
the tension exerted upon the gel [59, 60]. Further, astrocytes grown on hard substrates such as
glass or culture plastics exhibit two distinct phenotypes: a type 1 flat, membranous
unbranched morphology, and a type 2 with small soma and highly branched, more complex
morphology. This extensive variability in astrocyte phenotype highlights the profound
influence of substrate mechano-elastic properties on cellular behaviours. We consider this
new ultrastructural imaging approach for soft polymer materials to be of key importance in

understanding cell characteristics within a 3-dimensional matrix environment.

A major challenge in clinical cell therapy is lowered regenerative efficacy due to the
presence/delivery of dead and dying transplant cells [3-5]. Consequently, the safety of our
protocols was of paramount concern. Due to its macroporous nature, cellular remodelling of
the collagen fibrillar matrix contracts the hydrogel, with the extent of contraction directly
related to both cell density and polymer concentration. Rapid contraction occurs within 12 h
but contraction rates decrease thereafter [61]; a phenomenon observed in the astrocytic
hydrogels in this study. However, in line with other reports, the high cellular viability
observed in these hydrogels suggests that gel contraction had no adverse effects on cell
survival [10]. A drop in average cell number following 24 h post-construct was noted within
the hydrogels, although cellular viability remained consistent over the time period studied. In
turn, a higher proliferation rate was reported at 24 h which decreased significantly thereafter.
This, combined with the low level of cell death occurring over the time-frame, may account
for the initial drop in cell number and the consistent cellular viability observed within the

hydrogels. Indeed, cellular viability over an extended time-frame suggests effective
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availability of oxygen and nutrients to, and efficient removal of metabolic waste products

from, the cellular hydrogels [62, 63].

MNPs previously validated for astrocyte labeling were utilised in these gels due to the high
level of uptake, accumulation and long-term retention [47]. The growth of the cell
populations is of critical importance for cell tracking, as high proliferative capacity - a feature
previously observed in both unlabeled and MNP-labeled astrocyte monolayer cultures [47] -
results in label dilution [64, 65]. Within all hydrogels, proliferation overall remained
consistently low across the time period studied indicating a relatively quiescent population.
Two factors may account for this. Extracellular matrix proteins within collagen I are known
to regulate the proliferative capacity of cells [11], and gel contraction can downregulate
extracellular signal regulated kinase which arrests cells in Gy phase of the cell cycle [60].
These alterations are relevant as studies report that only 35% of cell-cycle-arrested astrocytes,
return to the cell cycle [66]. This low proliferative capacity would predict low dilution of
MNP-label, thereby extending the utility of these particles as a contrast agent for non-

invasive cell tracking using MRI. This requires confirmation in in vivo studies.

TEM showed clear evidence of intracellular particle accumulation and peri-nuclear
localisation- a prominent feature in these astrocytic hydrogels. This particle accumulation
proved highly efficient in providing a hypointense signal at 24 h through 14 d to 37 d post-
construct. Regarding the fate of MNPs in the gel, exocytosis may play a role in particle
release, with either vesicle or lysosome secretion factoring in particle trafficking from the cell
[67]; although, the observed decrease in levels of free particles from 48 h onwards suggests
continued cellular particle uptake from within the gel. Cell division results in particle dilution
with subsequent inheritance of the particles by daughter cells [64, 65]; particle loss may
occur during cell division. However, in these hydrogels proliferative capacity was

significantly reduced from day 7 onwards, suggesting a higher level of particle retention over
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time. A reasonable proposition therefore, for the lowered hypointensity observed at 37 d and
one which we cannot rule out, is the possibility of ‘washout’ of extracellular MNPs from the
gel into the media, which, given the macroporous nature of the collagen gel may be a
possibility. Even so, while lower hypointensity overall was recorded at this extended time-
point, hypointense ‘spots’ were observed suggesting localised particle retention in cells. This
possibility was corroborated by fluorescence microscopy, thus verifying the construct’s

continued utility over an extended time frame.

The ‘proof of concept’ presented here substantiates the notion that the developed construct
offers the potential for tracking of neural transplant populations, delivered in encapsulating
polymer matrices, over an extended time frame. Future work will extend the findings from
this study to a range of neural transplant populations with the testing of cell tracking capacity
in live animal models of neurological injury, such as spinal cord transection models. Such
studies will need to take account of hydrogel breakdown properties in host neural tissue,
along with the unique proliferative and differentiation behaviours of individual transplant

populations and their labeling capacity using nanoparticle platforms.
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Figure 1. Schematic of experimental protocol showing formation of a MINP-labeled cell
hydrogel. Hydrogel constructs visualised using z-stack fluorescence microscopy and

Magnetic Resonance Imaging.
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Nanoparticle-labeled cell hydrogels were formed by (a) exogenously labeling cortical
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astrocytes with MNPs utilising a magnetofection protocol [static magnetic field (FO); 30 mins
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application]. Labeled cells (b) were trypsinized and added to a Collagen I solution, resulting
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in formation of a MNP-labeled cell hydrogel in a well plate. After 1 h, medium was added

— —
o N

over the hydrogel and at 3 h post-construct, the hydrogel was carefully transferred to a larger
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well to allow it to free-float in medium. Free-floating facilitated homogenous cellular

NN
w N

distribution throughout the hydrogel. Following construct, the hydrogels were visualised
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[S2 NN

using (¢) z-stack fluorescence microscopy and (d) MRI. MNP: magnetic nanoparticle; MRI:
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magnetic resonance imaging
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Figure 1. Schematic of experimental protocol showing formation of a MNP-labeled cell

hydrogel. Hydrogel constructs visualised using z-stack fluorescence microscopy and

Magnetic Resonance Imaging
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Figure 2. 3-dimensional cell hydrogels facilitate a complex cellular network of cortical

astrocytes

Representative z-stack fluorescence images (a — ¢) showing an emergent complex, connective
non MNP-labeled astrocyte network over 14 d. Note the rounded morphology (a) at 24 h
following addition of cells to the collagen solution. Note the small minority of cells that are
beginning to show process elaboration (arrow). At 7 d (b), cells show elongated processes
and the emergence of a connective network (arrow). At 14 d (c), a highly connective,
complex cellular network is evident throughout the hydrogel. Bar charts displaying (d)
average cell count (*p <0.05; 24 h vs. 7 d & 14 d) and (e) cellular viability (as measured by
live/dead assays) of cellular hydrogels over 14 d post-construct. Photographs (f) of gel
contraction in cellular hydrogels over 14 d post-construct. Graph (g) showing hydrogel
contraction (diameter) over 14 d. Differences indicated in terms of average cell count vs. 24
h; in terms of gel contraction vs 0 h (*p <0.05; **p <0.01; ***p <0.001), and vs each time
point (*p <0.05; **p <0.01; ***p <0.001) (Cells immunostained for GFAP; FITC secondary

antibodies). Scale = (a - ¢) 50 um. n = 3.
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Figure 2. 3-dimensional cell hydrogels facilitate a complex cellular network of cortical

astrocytes
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Figure 3. Morphological characterisation of unlabeled and MNP-labeled GFAP" cells in

3-dimensional cell hydrogels
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Bar charts displaying the (a) rounded/ramified nature of cells; (b) average cell area; (c)
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average number of primary processes and (d) average length ratio of primary processes of
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unlabeled and MNP-labeled cell hydrogels over 14 d post-construct (***p <0.001; 24 h vs. 14
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d).
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Figure 3. Morphological characterisation of unlabeled and MNP-labeled GFAP" cells in

3-dimensional cell hydrogels
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Figure 4. High magnetite concentration MNPs offer utility for non-invasive tracking of

cells over time

Representative fluorescence triple-merged micrograph (a) of cortical astrocytes on plastic
substrate prior to enzymatic detachment and addition to collagen solution. Z-stack
fluorescence image (b) of the same cells at 24 h post-hydrogel-construct. Note the difference
in cellular morphology. Note the high level of intracellular particle accumulation and co-
localisation of particles with cells at this early time point [(b) arrows]. Representative
orthogonal z-stack fluorescence micrograph (¢) showing a highly connective, MNP-labeled,
cellular network within a MNP-labeled cell hydrogel at 14 d. Representative TEM
micrograph (d) of a MNP-labeled cell hydrogel at 15 d post-construct. Note the high level of
intracellular particle retention and the peri-nuclear localisation of the particles [(d) arrows] at
this time-point. Note also the collagen fibrils of the hydrogel [(d) arrow heads]. Bar charts
displaying (e) average cell count and (f) cellular viability (as measured by live/dead assays)
of MNP-labeled cell hydrogels over 14 d post-construct (*p <0.05; 24 h vs. 7 d). T, -
weighted MR images of (g) MNP-labeled and (h) unlabeled cell hydrogels at 24 h post-
construct, and (i) MNP-labeled and (j) unlabeled cell hydrogels at 14 d (arrows). Note the
hypointense signal recorded from the MNP-labeled cell hydrogels (g & i) at both time points,
which is not seen in unlabeled cell hydrogels (h & j). [Scale (a - ¢) 50 um; (d5 um, inset 0.25
um); (g — j) 5 mm] n = 3. Nu: nucleus; MNP: magnetic nanoparticle; MR: magnetic

resonance; TEM: transmission electron microscopy
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cells over time
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Figure 5. Unlabeled and MNP-labeled cell hydrogels exhibit a low proliferation profile

Double-merged fluorescence image (a) of dividing astrocytes within a cellular hydrogel at 14

O NOYLULT &~ WIN —

d post-construct. Bar graph (b) displaying EdU labeling (%) of proliferating cortical

= O
o

astrocytes in unlabeled and MNP-labeled cell hydrogels over 14 d post-construct.
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Proliferation was significantly higher at 24 h post-construct vs 7 d and 14 d in both unlabeled

— —
> w

and MNP-labeled cell hydrogels. Representative sequential still images (¢ - h) taken from
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dynamic time-lapse imaging (see Electronic Supplementary Material) showing a MNP-

— —
o N

labeled cortical astrocyte undergoing division at 7 d post-hydrogel-construct. Daughter cells
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(h) exhibit a symmetrical profile of particle inheritance (arrows). (*p <0.05) (Scale = 50 um)
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n = 3. MNP: magnetic nanoparticle
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Figure 5. Unlabeled and MNP-labeled cell hydrogels exhibit a low proliferation profile
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Figure 6. MRI shows hypointense signal from MNP-labeled cell hydrogels over an

extended time period.
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MR image (a) showing a hypointense signal from the MNP-labeled cell hydrogel at 37 d
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post-construct, versus (b) the hyperintense signal recorded from the unlabeled cell hydrogel
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at the same time-point (a & b; arrows). Confocal fluorescence micrograph (¢) showing a high
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level of intracellular particle retention and peri-nuclear localisation of particles at 37 d post-
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construct [(¢) arrows]. Representative z-stack fluorescence micrograph (d) of a MNP-labeled
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o N

cell hydrogel at 37 d post-construct [Scale = (a & b) 5 mm; (c) 100 um, (d) 50 um] n = 3.
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MNP: magnetic nanoparticle; MRI: magnetic resonance imaging
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Figure 6. MRI shows hypointense signal from MNP-labeled cell hydrogels over an

extended time period.
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Cover figure (if required) —3-dimensional hydrogels facilitate a complex cellular
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network of MNP-labeled cortical astrocytes (21 d).
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