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Abstract

Dimensionality Reduction (DR) is a fundamental topic of pattern classifica-

tion and machine learning. For classification tasks, DR is typically employed

as a pre-processing step, succeeded by an independent classifier training stage.

However, such as independent operation of the two stages often limits the fi-

nal classification performance notably, as the generated subspace may not be

maximally beneficial or appropriate to the learning task at hand. This problem

is further accentuated for high-dimensional data classification in situations of

limited number of samples. To address this problem, we develop a novel joint

learning model for classification, referred to as two-layer mixture of factor an-

alyzers with joint factor loading (2L-MJFA). Specifically, the model adopts a

special two-layer mixture or a mixture of mixtures structure, where each com-

ponent represents each specific class as a mixture of factor analyzers (MFA).

Importantly, all the involved factor analyzers are intentionally designed so that

they share the same loading matrix. This, apart from operating as the DR
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matrix, it largely reduces the parameters and makes the proposed algorithm

very suitable to small dataset situations. Additionally, we propose a modified

expectation maximization algorithm to train the proposed model. A series of

simulation experiments demonstrates that what we propose significantly out-

performs other state-of-the-art algorithms on various benchmark datasets.

Keywords: Factor analyzer, Joint learning, Classification,

Dimensionality reduction
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1. Introduction

Dimensionality reduction (DR) is a very important topic of pattern recog-

nition and machine learning that has been studied intensely in the relevant

literature. Its objective is the finding of a subspace to effectively reduce the

computational time while improving the performance of the learning task [1].5

Traditionally, DR is performed as a pre-processing step to remove noise and

compact the representation. Subsequently, the reduced features can be fed to

various models for accurately learning a classification task. A typical example

of this workflow, includes a Gaussian mixture model (GMM) classifier applied

after a linear DR method, such as principal component analysis (PCA), lin-10

ear discriminant analysis (LDA), factor analyzer (FA) [2, 3], or a method from

the recently proposed [4, 5, 6, 7]. Besides linear methods, there are other DR

techniques that achieve nonlinear projections of the data [8, 9].

While the independent realization of DR and classification can be easily

implemented, it may notably diminish the final performance [10, 11] as the two15

tasks do not necessarily interact with each other, and the optimal subspace

obtained by the DR may not be maximally beneficial to the learning task. This

is particularly the case for the small sample size (S3) problem [12, 13], where

the data patterns are high-dimensional but of low cardinality. In such problems,

the subspace derived by the independent DR may even significantly deteriorate20

the classification performance.
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Motivated from the above issues, we propose within an FA framework, a

novel model referred to as the two-layer mixture of factor analyzers with joint

factor loading (2L-MJFA). This relies upon a mixture of mixtures structure, used

to better capture the complex properties of each class and realize efficiently the25

joint learning requirements. An important characteristic of 2L-MJFA, is that

all of its involved latent factors are designed to share the same loading matrix.

This has a dual purpose, in the sense that, on one hand it operates as the

driving DR structure, and on the other hand it significantly reduces the number

of parameters. The latter accelerates training while mitigates the negative effect30

caused by the limited number of per class samples.

Contrary to the independent approaches, the proposed 2L-MJFA is capable

of simultaneously learning the DR matrix as well as the optimal parameters of

the classification model. This model is implemented via a GMM for simplicity,

but it is straightforward to extend the two-layer mixture approach to the use35

of other models. Through joint learning, the method achieves efficient DR

that not only reduces the computational time for high dimensional data, but

more importantly it significantly benefits the final classification stage. Another

contribution, is that we also propose a modified expectation-maximization (EM)

algorithm that consists of two-layer loops, so that the joint learning is conducted40

very efficiently. The first layer loop is used to estimate the joint parameters

that fit the mixture among different classes, whereas the second one trains the

mixture components within each class. The 2L-MJFA is theoretically distinct

to other joint learning FA models, such as the FA mixture with common loading

(MCFA) [14], the mixture of MCFAs (mMCFA), and the mixture of probabilistic45

PCA (mPPCA) [15, 16]. Further details about these models are presented in the

following section. Our experiments show that the proposed method significantly

outperforms these existing methods in seven benchmark datasets.

The rest of this paper is organized as follows. Section 2 briefly reviews

related work and emphasizes the differences between our proposed approach50

and existing ones. The baseline model mixture of FAs (MFA) and the MCFA

are introduced as preliminaries in Section 3. In Section 4 we introduce the
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proposed 2L-MJFA model, while Section 5 explains how the model parameters

can be estimated by the modified EM algorithm. In Section 6 we present the

experimental setup and the classification results with the aid of seven datasets55

including a synthetic dataset and six real ones. Finally, Section 7 concludes

the work. The work presented here is an extension of [17], and is based on

redesigning and supplementing the experiments to support evaluations for S3

data cases, and further compare with existing methods with respect to their

technical details.60

2. Related work

There have been several joint learning FA based approaches [18, 19] related

to our proposed method. To illustrate the distinction, we present the different

alternative structures incorporated in various models in Fig.1. In particular, the

model MFA [2] is the base model for what we propose. It combines DR with65

clustering and utilizes a subspace metric to guide cluster separation. This work

is extended by MCFA [14] which assumes the factor loading of the MFA to be a

common matrix that can largely reduce the involved parameters. When MCFA

is used for classification, one straightforward way is to regard each class as one

component, as shown in Fig.1(a). Obviously, such a setting is quite basic and70

not adequately flexible, since data classes may have complex distributions and

modalities. Another popular variant that extends MCFA is mMCFA, shown in

Fig.1(b)), where the factor loadings Ai are different for each class. In general,

different loading matrices imply independent DR for different classes and this

may be physically impractical. More importantly, mMCFA could be problematic75

in S3 problems, as the limited number of samples cannot support accurate

learning of the loading matrices. To this end, a non-trivial model is proposed

here by sharing one loading matrix for all the classes. The mPPCA method

[15, 16] extends PCA to a mixture distribution model. As seen in Fig.1(d),

its graphical model is quite similar to MFA with the elements of the common80

covariance matrix D = σ2Ip assumed to be isotropic [20], where Ip is the p-
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(a) MCFA (b) mMCFA

(c) 2L-MJFA (d) mPPCA

Figure 1: Comparison of different models, where Y denotes observed data and A factor

loadings. (a) MCFA which is the fundamental MFA model with a common A. (b) Mixture

of MCFAs with each class consisting of a components mixture with individual local factor

loadings Ai. (c) The proposed 2L-MJFA with a global factor loading A shared between and

within classes in the 2-layer mixture model. (d) Mixture of probabilistic PCA which is similar

to MFA but with isotropic common covariance matrix.

dimensional identity matrix. For classification, each class is modeled as an

mPPCA model. This method is limited due to its poor flexibility and has many

redundant parameters for dealing with S3 problems.

We now analyse the parameter numbers in the different models, assuming85

p dimensions, q reduced dimensions from p, and m classes. Setting g mixture

components in each class, the covariance matrix of each component has N =

p(p+1)
2 parameters. Since mPPCA converts the diagonal covariance matrix into

an isotropic one as Σi = WiW
T
i + σ2Ip, where factor loading Wi ∈ Rp×q

contains q(q−1)
2 constraints, its total number of parameters is90

N1 = m

(
g + gp+ gpq − gq(q − 1)

2

)
If either p or q is large, the number of parameters may not even be manageable

with a diagonal covariance. To further reduce the parameters and accelerate

5



Table 1: Summary of the number of parameters for the main models.

Model: Number of parameters: Approximation:

mPPCA m[g + gp+ gpq − gq(q−1)
2 ] (mg +mq)p

mMCFA m[pq − q2 + p+ g(1 + q +
q(q+1)

2 )] (m+mq)p

2L-MJFA pq − q2 + p+m[g + gq +
gq(q+1)

2 ] (q + 1)p

training, the component covariance matrices of mMCFA has a factor-analytic

representation Σi = AΩiA
T + D, where D is a diagonal matrix and A con-

tains the factor loading for all the components [21]. From the orthogonality95

requirement, A has pq− q2 constraints. Hence, in mMCFA the total number of

parameters is reduced to

N2 = m

[
pq − q2 + p+ g

(
1 + q +

q(q + 1)

2

)]
.

Table 1 lists the associated parameter numbers for FA models. Since, p >> q

the order of the number of parameters can be approximated via the simpler form

shown in the rightmost table column. It can be seen that the proposed 2L-MJFA100

requires the least number of parameters, which ultimately make it more suitable

for dealing with S3 problems; this is also verified in the experimental results.

3. Preliminaries

As a linear model, FA decomposes a factor loading to cross a linear subspace

within the covariate vector space, making factors have lower dimension than the105

covariates. In the following, we will first introduce MFA [22], and then we will

review the fundamentals of its special case, that is MCFA [14]. Let Y ∈ Rn×p

denote n p-dimensional vectors of feature variables generated by a linear com-

bination of latent variables Z. The latent variable model MFA approximates

nonlinear manifolds via generating a local linear combination, relating an obser-110

vation pattern to a corresponding unobservable factor vector. MFA is a directed

generative model with probability πi, with i = 1, . . . , g being the component in-

dicator. The distribution of the difference between observations y1, . . . ,yn and

6



the g components (with means µi) can be defined as

yj − µi = WiZij + eij ,

g∑
i=1

πi = 1, (1)

Zij ∼ N (0, Iq), eij ∼ N (0,Di), j = 1, . . . , n.

Conventionally, Wi ∈ Rp×q is the loading matrix which contains the factor115

loadings. Zij is a q-dimensional vector representing the unobservable factor,

and Di a p× p diagonal matrix with the variances of the independent noise eij .

As a special case, the MCFA model further reduces the MFA parameters

by setting up a common component factor loading A ∈ Rp×q. Moreover, the

common loading can be considered as a transformation that reduces the p-120

dimensional space to a latent q-dimensional one. The new model is established

by rewriting Eq.(1) as

yj = AZij + eij ,

Zij ∼ N (ξi,Ωi), eij ∼ N (0,D) . (2)

By assuming additional constraints, we can obtain

µi = Aξi, σ2
i = AΩiA

T + D, Di = D, Wi = AKi. (3)

In the above, ξi is a q-dimensional vector and Ωi is a q × q positive definite

matrix. Differently from MFA, the independent noise variance matrix D is a125

global parameter instead of the local one Di. For an observed random sample

y1, . . . ,yn the MCFA model becomes a mixture of Gaussians with constrained

mean and covariance as defined in Eq.(3), and is given by

P (yj ;θi) =

g∑
i=1

πi

n∏
j=1

N (yj ;µi,σ
2
i )

=

g∑
i=1

πi

n∏
j=1

N (yj ; Aξi,AΩiA
T + D), (4)

where θi = {πi,A, ξi,Ωi,D)}gi are the model parameters. Each component can

be modeled through a Gaussian distribution N (yj ;µi,σ
2
i ). Given the mixture130

of g components, with ωij denoting the binary component indicator that are
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one if and only if the jth object belongs to the ith component, the posterior can

be expressed with Bayes theorem as

P (ωi | yj ;θ) = τi(yj ;θi) =
πiN (yj ;θi)∑g
h=1 πhN (yj ;θh)

. (5)

Since the latent variables Zi1, . . . ,Zin, are distributed independently as in Eq.(2),

the probability density function is P (Zij | ωij) = N (Zij | ξi,Ωi).135

For the training stage, the model parameters can be determined via maximum-

likelihood using the EM algorithm [23, 24]. The likelihood an log-likelihood of

the model are given by

L(y) =
n∏
j=1

g∑
i=1

P (yj | Zij ,ωij)P (Zij | ωij)P (ωij),

logL(θ) =
g∑
i=1

n∑
j=1

ωij

{
log πi + logN (yj ; Auij ,D) (6)

+ logN (Zij ; ξi,Ωi)
}
.

Therefore, the parameters θ can be optimized by maximizing the expected log-

likelihood Eτi [logL(θ)]. The detailed algorithm can be found in [25].140

4. Two-layer mixture of factor analyzers with joint factor loading

Let us consider the construction of a 2L-MJFA with two hidden layer factors,

with these factors sharing a common factor loading. For classification, the

observation data are known as Y = [Y1; . . . ;Ym], where Yl = [yl1; . . . ; ylln ], and

l = 1, . . . ,m indicates all the data of the lth class. In our model, the 1st layer145

defines a normal mixture of factor analyzers with common loading, where each

component represents a class, as

ylj = AUl
j + elj , j = 1, . . . , ln,

m∑
l=1

ln = n.

In the above, ln denotes the nth observation belonging to lth class, and Ul
j

denotes the hidden variables. A ∈ Rp×q is the joint factor loading to fit all

classes of observations, which can also be considered to be the transformation150
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matrix that projects each pattern to a q-dimensional latent space. elj denotes

the Gaussian noise term for the lth class.

The 2nd layer of 2L-MJFA representing each class, consists of an unspecified

number of mixtures. The key point here is that the joint factor loading A is

also used as a common loading that is shared across all the components in each155

class. Then all the observations can be generated by a joint learning model with

latent variables Zij ∼ N (ξi,σ
2
i ) of all classes.

For the observation vectors ylj belonging to each class l, the model can then

be described as

ylj = A

g∑
i=1

Zlij + elj ,

where j = 1, . . . , ln, and i = 1, . . . , g. ln denotes the nth observation belonging160

to lth class, and elj the random noise distributed independently under N (0,D),

where D is diagonal. This novel setting implies that each specific class is as-

sumed to be an MCFA model, whereas a joint factor loading exists for all the

MCFAs across all data classes. Specifically, the model shares a joint factor load-

ing for all the classes and this is potentially beneficial to both feature extraction165

and classification, especially in S3 situations.

We now calculate the total number of parameters involved in 2L-MJFA. Since

we share a single loading matrix across all the components, the total number of

parameters is

N3 = pq − q2 + p+mg

[
1 + q +

q(q + 1)

2

]
,

where pq − q2 is the number of parameters in A, and p the parameters of the170

diagonal matrix D. The mMCFA offers a great reduction in the parameters

of the loading A for each component. Compared with mMCFA, the proposed

model significantly reduces the parameter number by (m− 1)(pq − q2 + p).

5. Optimization via a modified EM algorithm

The proposed 2L-MJFA model is composed of two layers of mixture of Gaus-175

sians. The overall distribution for the mixture of mixtures is the joint distribu-
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tion of their components given as

P (ylj ;θ) =

m∑
l=1

πl

ln∏
j=1

P (ylj ;θ), (7)

where θ = {πi,A, ξli,Ω
l
i,D}. Actually, the 2nd layer of each class is an MCFA

model, which can be easily written as the multivariate Gaussian distribution

of Eq.(4). For inference, the conditional expectation of the component indica-180

tors ωlij with i = 1, . . . , g and l = 1, . . . ,m, can be regarded as the posterior

probability Pθ{ωlij = 1 | ylj}, implying that ylj belongs to the ith component

of class l. With the above definitions, we obtain the conditional distribution

P (ylj | Ul
ij) = N (ylj | AUl

ij ,θ). The posterior over all components can then be

obtained as185

Eθ{ωli | ylj} = Prθ{ωlij = 1 | ylj} = τ li (y
l
j ;θ), (8)

where

τ li (y
l
j ;θ) =

πlP (ylj ;θ)∑m
h=1 πhP (ylj ;θ)

.

Maximum likelihood learning of 2L-MJFA can be conducted with a modified

EM algorithm. Within the modified EM framework, the global log-likelihood

function of the model is given by

logLl(θ) =

m∑
l=1

g∑
i=1

n∑
j=1

ωlij

{
log πl + log φ(ylj ; AUl

ij ,D)

+ log φ(Ul
ij ; ξ

l
ij ,Ω

l
ij)
}
, (9)

where190

φ(ylj ;θ) =

g∑
i=1

πliN (ylj ;θ).

Differently from the alternating expectation – conditional maximization algo-

rithm (AECM) [21], the M-step of the modified EM algorithm is turned into

two layer loops. The outer loop is used to update the global parameters A and

D, and the other parameters within each specific class are updated in the inner

10



loop. The training of the above two layers alternate, so that a local optimum195

could be finally achieved. The overall EM training procedure is summarized in

Algorithm 1, and specifics for each stage are explained in the following subsec-

tions.

Algorithm 1: EM learning for 2L-MJFA.

Input : Training data Y = [Y1; . . . ;Ym],Y ∈ Rn×p.

Output : Optimal values of parameters θ.

Initialization: Set θ = {π,A, ξ,Ω,D}, and evaluate the initial value of

the log-likelihood.

Repeat

E-step :
Exploit the current parameter values to approximate the posterior

expectations with Eqs.(10,11): E(Z | ylj ,ωlij) and

E(ZZT | ylj ,ωlij).

for l = 1 to m do

M-step :
Update A and D.

Re-estimate the parameters A,D using the current

responsibilities with Eqs.(13,14), by solving a set of liner

equations: ∂Q(θ;θ(k))
∂A = 0, ∂Q(θ;θ(k))

∂D = 0.

Update {π, ξ,Ω}.

for i = 1 to g do

Re-estimate the parameters πli, ξ
l
i,Ω

l
i by solving the

equations π
(k+1)
i = 1

nl

∑ln
j=1 τ

(k)
ij , ∂Q(θ;θ(k))

∂ξi
= 0 and

∂Q(θ;θ(k))
∂Ωi

= 0 for each class.

Until Convergence

5.1. E-step

In this step, Eq.(5) is used to compute the posterior over the latent vari-200

ables. Given the current setting of the model parameters, the expectations of
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the hidden variables E(Z | ylj ,ω
l
ij) and E(ZZT | ylj ,ω

l
ij) are easily verified

as the following derivations for all the data points j = 1, . . . , ln and mixture

components i = 1, . . . , g can be produced as

E(Z | ylj ,ωlij) = ξli + γTi yij , (10)

and205

E(ZZT | ylj ,ωlij) = (Iq − γTi A)Ωl
ij + E(Z | ylj ,ωlij)E(Z | ylj ,ωlij)T , (11)

where

yij = ylj −Aξli,

γi = (AΩl
iA

T + D)−1AΩi.

For the iteration of each class, Q(θ;θ(k)) denotes the conditional expectation

of Eq.(7) as

Q(θ;θ(k)) = P (Z(k) | y(k);θ), (12)

given the observed data y and θ(k). Denoting the posterior τ
(k)
ij = τ li (y

l
j ;θ

(k)),

we can transform Eq.(12) as210

Q(θ;θ(k)) =
g∑
i=1

ln∑
j=1

τ
(k)
ij

{
[log πli + Eθ(k) [logN (ylj ; AZlij ,D)|ylj ,ωlij = 1]

+Eθ(k) [logN (Zlij ; ξ
l
i,Ω

l
i)|yj ,ωlij = 1]

}
.

5.2. M-step

In subsequent step, the updated estimates of the global parameters can be

obtained by taking the partial derivatives of expectation log-likelihood function

for each parameter. The joint factor loading is updated as

A(k+1) =

(
m∑
l=1

g∑
i=1

A
(k)
li(1)

)(
m∑
l=1

g∑
i=1

A
(k)
li(2)

)−1
, (13)
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Algorithm 2: Classification procedure for 2L-MJFA.

Input: A training set with m classes [Y1; . . . ; Ym] and a test set

T ∈ RN×P .

Training phase :

Initialize the global parameters A,D based on all the training data.

Divide each Yl, for l = 1, . . . ,m into g components randomly and

then initialize the local parameters πi, ξi,Ωi.

Repeat

for l = 1 to m do
Estimate the probability of data generated by each component

in Eq.(7) and the posterior probability Pθ{ωlij = 1|Tj}, for

j = 1, . . . , N that Tj belongs to the ith component by each

class in Eq.(8).

for i = 1 to g do
Use the alternate EM algorithm, and update local

parameters by calculating the expectation of log-likelihood

in Eq.(12) of each class.

Compute the log-likelihood value Ll(θ) using Eq.(9).

Until Ll(θ)(new) − Ll(θ) < threshold value

Testing phase :

Compute the posterior probabilities τl(Tj ;θ) of each class with test

data.

Assign each test data point Tj to the l class for which

τl(Tj ;θ) ≥ τh(Tj ;θ) for h = 1, . . . ,m with h 6= l.

13



where215

A
(k)
li(1) =

ln∑
j=1

τ
(k)
ij

{
yljE(k)(Z | ylj ,ω

l(k)
ij )

}
,

A
(k)
li(2) =

ln∑
j=1

τ
(k)
ij

{
E(k)(ZZ′ | ylj ,ω

l(k)
ij )

}
.

The updated estimates of the common diagonal covariance matrix can then be

written as

D(k+1) =
1

n
diag

[ m∑
l=1

ln∑
j=1

τ
(k)
ij (D

(k)
1 + D

(k)
2 )
]
, (14)

where

D
(k)
1 = D(k)(Ip − β(k)),

D
(k)
2 = β(k)T (y

(k)
ij )(y

(k)
ij )Tβ(k),

β(k) =
(
A(k)Ω(k)A(k)T + D(k)

)−1
D(k).

For each class l, the updated estimates π
(k+1)
i , ξ

(k+1)
i and Ω

(k+1)
i can be

obtained by calculating the equations ∂Q(θ;θ(k))
∂ξi

= 0, ∂Q(θ;θ(k))
∂Ωi

= 0. Specifically,220

it is easy to verify that π
(k+1)
i = 1

nl

∑ln
j=1 τ

(k)
ij , for i = 1, . . . g, where nl denotes

the number of observations in lthclass. The local parameter updates can be

obtained via the following

ξ
(k+1)
i = ξ

(k)
i +

∑ln
j=1 τ

(k)
ij ϕ

(k)∑ln
j=1 τ

(k)
ij

,

Ω
(k+1)
i =

∑ln
j=1 τ

(k)
ij ϕ

(k)ϕ(k)T∑ln
j=1 τ

(k)
ij

+ (Iq −ϕ(k))Ω
(k)
i ,

ϕ(k) = γ
(k)T

i y
(k)
ij .

Algorithm 2 summarizes the overall classification procedure.

6. Experiments and Results225

To demonstrate the effectiveness of our proposed algorithm, we conduct

extensive experiments on a variety of datasets. We compare our two-layer mix-

14



ture approach with three other competitive methods. Specifically, we compare

it with mMCFA, mixture of PPCA (mPPCA), and the independent learning ap-

proaches of PCA followed by GMM (PCA-GMM), and LDA followed by GMM230

(LDA-GMM)1. Unlike hard assignment methods (e.g. k-means), GMM is a soft

assignment method which gives the probability that the data points are assigned

to each class, rather than just giving a definitive class membership [26]. Ob-

taining a probability is beneficial as it provides confidence for the results. The

used datasets include a synthetic one, an ordinary one, and five S3 datasets. We235

report the error rate (ERR) of the classification in terms of different reduced di-

mensionalities for the various algorithms on the test data. All the experimented

methods are implemented in the MATLAB platform.

6.1. Synthetic dataset

To illustrate the advantage of the joint learning in the proposed model, we240

generate a synthetic data to visualize the obtained subspaces for PCA, MCFA

and the 2L-MJFA. The synthetic dataset consists of 82 classes of 32−dimensional

samples. For each class, the first two dimensions are randomly generated by a

multivariate normal distribution with means and covariance set to

µ1 = (3.2875, 3.4905)T , µ2 = (2.9185, 2.9732)T ,

Σ1 =

 23.2368 19.2956

19.2956 19.8985

 , Σ2 =

 5.0030 0.8919

0.8919 4.4236

 .

The other 30-dimensions are generated as random Gaussian noise.245

The obtained 2-dimensional subspaces are visualized in Fig.2. The top-left of

the figure shows the ground truth samples without the additional 30-dimensional

noisy features. It can be clearly seen that the class denoted by label 1 consists

of two modalities. The proposed 2L-MJFA shows to perform better than the

other two, as its subspace demonstrates a much better separability than PCA250

and MCFA. The mPPCA does not map all the data in a subspace, since the

1PCA or LDA are firstly used to perform DR and then a GMM is used for the classification.
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Figure 2: Visualization of DR for 2L-MJFA, MCFA, and PCA on simulated data, where (1)

is the ground truth. Different patterns represent different classes, and different shapes within

the same grey scale indicate different class modalities.

approach is used to classification by building an mPPCA model of each class,

which means that the patterns for different classes are mapped into different

subspaces. Also, LDA can generate subspaces up to m− 1 dimensions, which is

one dimension for the current dataset.255

6.2. User knowledge data

The employed User Knowledge dataset describes students’ knowledge status

about the subject of Electrical DC Machines [27]. This dataset consists of 403

training samples and 206 test samples. Each sample is of 40 dimensions with

5 being attribute information, plus 35 random noisy features. The class labels260

correspond to four student knowledge levels. We compare the 2L-MJFA and

other mixture joint learning methods against different reduced dimensionalities

ranging from 1 to 20.

We report the comparative results in Table 2. We can see that the mixture

joint learning methods 2L-MJFA and mMCFA provide the lowest error rates.265
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Table 2: Error rate comparison for various dimensions, for the User Knowledge dataset.

Dimension: 1 3 5 10 15 20

2L-MJFA 0.1214 0.0689 0.0414 0.0620 0.0620 0.0620

mMCFA 0.2276 0.0552 0.0896 0.0758 0.1517 0.2827

mPPCA 0.3172 0.2897 0.2690 0.1931 0.1586 0.0897

PCA-GMM 0.6621 0.2483 0.2345 0.1214 0.1931 0.2966

LDA-GMM 0.4000 0.3724 - - - -
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Figure 3: Error rate comparison for the User Knowledge dataset.

In particular, when the dimensionality is reduced to 5 (the actual dimension),

2L-MJFA yields the best performance with the error rate being 0.0414. This

is significantly lower than mMCFA, mPPCA and PCA-GMM. LDA-GMM just

allows to reduce dimensionality to 1 − 3, since this dataset has m = 4 classes.

From the results, LDA does not provide an optimized subspace for test data.270

To better illustrate the performance, we also plot the results in Fig.3, where it

can be seen that 2L-MJFA outperforms the other algorithms in most cases.

6.3. Small sample size datasets

In this subsection, we compare the proposed 2L-MJFA with the various other

algorithms across five S3 datasets.275

Experimental Setup. We evaluate the performance of the various algorithms

by using a 5-fold cross validation on the five S3 datasets, which are WDBC,

WPBC, ULC, LSVT and BT. To make the problems more challenging, we

17



Table 3: Summary of S3 datasets.

Dataset: Training samples: Test samples: Dimensions: Classes:

WDBC 114 455 60 2

WPBC 38 156 33 2

ULC 77 273 148 3

LSVT 56 42 309 2

BT 81 24 39 6

intentionally use one of the five partitions as the training set, while the remaining

four partitions as the testing set. The average error rate on the test sets is then280

reported for varying mixture numbers and reduced dimensionalities. Table 3

summarizes the statistics of these five S3 datasets. As seen in the table, the

number of dimensions are sometimes larger than the number of training samples

(e.g., in ULC and LSVT).

6.3.1. Breast cancer Wisconsin dataset285

This dataset contains two subsets, the Wisconsin diagnostic breast cancer

(WDBC) and the Wisconsin prognostic breast cancer (WPBC) [28, 29]. WDBC

contains 569 instances which are divided into the two diagnostic predictions of

benign and malignant. The 60 attributes consist of 30 real-valued input features

and 30 additional Gaussian noise features. WPBC contains 194 instances, which290

record two classes of patients, that is being recurrent or not post-surgical.

Wisconsin diagnostic breast cancer (WDBC). Table 4 shows the error rate com-

parison from reducing the dimensions from 10 to 30 and setting each class to

g = 2 to 5 mixture components for different subspaces (DIM). For LDA-GMM,

the dimensionality is just allowed to reduce to 1, because there are 2 classes in295

these two datasets. We can find that the error rate of 2L-MJFA decreases as

the number of mixture components increases. For clarity, we also plot the re-

sults in Fig.4, where it can be observed that 2L-MJFA achieves the significantly

lowest error rate 0.0404 when the dimension is reduced to 30 and the number of

components is set to 5. The best result of the competitors is just 0.0279 given300

by LDA-GMM.
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Table 4: Error rate comparison for the WDBC dataset.

WDBC

DIM g 2L-MJFA mMCFA mPPCA PCA-GMM LDA-GMM

1

2 0.1023±0.02 0.0703±0.02 0.2846±0.03 0.0935 ±0.03 0.0350±0.01

3 0.1010±0.01 0.0686±0.02 0.2509±0.03 0.0935±0.03 0.0282±0.01

4 0.1022±0.01 0.0703±0.03 0.2778±0.04 0.0935±0.03 0.0334±0.01

5 0.1076±0.01 0.0705±0.02 0.2759±0.01 0.0935±0.03 0.0334±0.01

10

2 0.0746±0.02 0.0742±0.01 0.3202±0.01 0.1502±0.12 -

3 0.0707±0.02 0.0861±0.02 0.3019±0.02 0.1528±0.15 -

4 0.0716±0.02 0.0817±0.02 0.2465±0.05 0.1571±0.12 -

5 0.0441±0.03 0.0842±0.02 0.2065±0.03 0.1600±0.11 -

15

2 0.0698±0.02 0.0707±0.01 0.3212±0.03 0.2182±0.15 -

3 0.0689±0.02 0.0830±0.01 0.3041±0.03 0.2050±0.10 -

4 0.0716±0.03 0.0922±0.02 0.3295±0.04 0.2114±0.11 -

5 0.0737±0.03 0.0963±0.03 0.2917±0.03 0.2147±0.09 -

20

2 0.0755±0.02 0.0703±0.02 0.3448±0.05 0.2406±0.12 -

3 0.0755±0.03 0.0707±0.01 0.3348±0.06 0.2343±0.08 -

4 0.0645±0.02 0.0914±0.04 0.3005±0.06 0.2536±0.08 -

5 0.0641±0.01 0.0833±0.03 0.2956±0.02 0.2749±0.09 -

25

2 0.0680±0.02 0.0707±0.01 0.3405±0.02 0.2481±0.11 -

3 0.0597±0.03 0.0712±0.02 0.3199±0.07 0.2775±0.06 -

4 0.0505±0.01 0.0776±0.02 0.3097±0.04 0.3189±0.07 -

5 0.0479±0.04 0.0782±0.02 0.2917±0.02 0.3633±0.02 -

30

2 0.0417±0.02 0.0707±0.01 0.3110±0.03 0.2938±0.07 -

3 0.0483±0.01 0.0743±0.02 0.2935±0.02 0.3229±0.09 -

4 0.0422±0.01 0.0738±0.02 0.3053±0.02 0.3628±0.02 -

5 0.0404±0.04 0.0681±0.01 0.2987±0.02 0.3606±0.03 -

Wisconsin prognostic breast cancer (WPBC). The results for this comparison

are shown in Table 5 and Fig.5. We can clearly observe that the 2L-MJFA again

achieves the overall best performance. In particular, the 2L-MJFA achieves the

lowest error rate 0.1493 when the dimension is reduced to 25; this is significantly305

lower than the error of 0.1702 from MCFA.

6.3.2. Urban land cover dataset (ULC)

The ULC dataset contains nine types of urban land cover from high resolu-

tion aerial imagery [30, 31]. In this experiment, for simplicity, we only extract

three types of experimental data, that is building, concrete, and grass. The310
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Figure 4: Error rate comparison for the WDBC dataset.
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Figure 5: Error rate comparison for the WPBC dataset.
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Table 5: Error rate comparison for the WPBC dataset.

WPBC

DIM g 2L-MJFA mMCFA mPPCA PCA-GMM LDA-GMM

1

2 0.2498±0.03 0.2943±0.10 0.3351±0.07 0.25644±0.03 0.2479±0.05

3 0.2621±0.03 0.3045±0.14 0.2869±0.11 0.25644±0.03 0.2166±0.02

4 0.2459±0.02 0.3947±0.12 0.2631±0.03 0.25644±0.03 0.2166±0.04

5 0.2604±0.03 0.2887±0.13 0.2730±0.03 0.25644±0.03 0.1860±0.03

5

2 0.1896±0.01 0.2319±0.06 0.1859±0.03 0.2935±0.07 -

3 0.1946±0.02 0.2219±0.04 0.1855±0.01 0.2318±0.04 -

4 0.1854±0.02 0.2269±0.04 0.1751±0.02 0.2055±0.05 -

5 0.1854±0.03 0.2220±0.03 0.2250±0.03 0.1956±0.05 -

10

2 0.1793±0.02 0.1906±0.02 0.1929±0.04 0.1957±0.05 -

3 0.1649±0.02 0.1904±0.02 0.2007±0.03 0.1700±0.02 -

4 0.1544±0.01 0.2625±0.07 0.2009±0.02 0.1802±0.04 -

5 0.1802±0.02 0.2528±0.04 0.2000±0.02 0.1853±0.02 -

15

2 0.1700±0.03 0.2060±0.02 0.2010±0.04 0.1856±0.02 -

3 0.1647±0.02 0.2477±0.02 0.1804±0.03 0.1961±0.02 -

4 0.1647±0.02 0.2370±0.02 0.1752±0.02 0.1960±0.02 -

5 0.1699±0.02 0.2320±0.00 0.1750±0.04 0.2011±0.01 -

20

2 0.1700±0.01 0.2268±0.01 0.1959±0.04 0.1957±0.03 -

3 0.1544±0.02 0.2423±0.01 0.1856±0.01 0.2007±0.02 -

4 0.1493±0.02 0.2265±0.02 0.1702±0.02 0.2009±0.03 -

5 0.1545±0.02 0.2319±0.02 0.2000±0.03 0.2267±0.01 -

25

2 0.1648±0.01 0.2687±0.06 0.2063±0.01 0.2163±0.02 -

3 0.1493±0.02 0.2531±0.04 0.1855±0.01 0.2214±0.06 -

4 0.1493±0.02 0.2370±0.01 0.1907±0.02 0.2370±0.01 -

5 0.1545±0.02 0.2370±0.01 0.1806±0.02 0.2370±0.01 -

number of components g are assumed to be between 2 and 5.

Table 6 reports the results across different dimensionalities ranging from 10

to 30 (1 to 2 for LDA-GMM). The best result of 0.1392 is achieved by 2L-MJFA

model, for 30 dimensions and 5 components. The other methods perform worse,

especially as the numbers of components and dimensions increase. mMCFA315

achieves better than the remaining methods. The errors are also summarized

in Fig.6.
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Table 6: Error rate comparison for the ULC dataset.

ULC

DIM g 2L-MJFA mMCFA mPPCA PCA-GMM LDA-GMM

2 2 0.5108 0.1209 0.5128 0.3301 0.6557

10

2 0.1319 0.1355 0.4945 0.2491 -

3 0.1282 0.1282 0.1832 0.2015 -

4 0.1355 0.1502 0.3736 0.2564 -

5 0.1245 0.1319 0.2418 0.2418 -

15

2 0.1172 0.3077 0.3846 0.3700 -

3 0.1172 0.2234 0.3773 0.3846 -

4 0.1392 0.2381 0.2418 0.3773 -

5 0.1099 0.1722 0.3223 0.4139 -

20

2 0.1209 0.4725 0.3773 0.3883 -

3 0.1209 0.3919 0.3443 0.4139 -

4 0.1245 0.3883 0.3883 0.3956 -

5 0.1172 0.3004 0.3516 0.4396 -

25

2 0.1172 0.4579 0.3114 0.4066 -

3 0.1392 0.3150 0.2454 0.4176 -

4 0.1319 0.3810 0.3480 0.4066 -

5 0.1319 0.4029 0.2930 0.4432 -

30

2 0.1245 0.4286 0.4249 0.4432 -

3 0.1209 0.2454 0.3443 0.4396 -

4 0.1429 0.3883 0.2527 0.4505 -

5 0.1392 0.3883 0.3077 0.4945 -

6.3.3. LSVT voice rehabilitation dataset (LSVT)

The LSVT contains 98 instances with 309 attributes and is used for evalu-

ating whether a phonation considered acceptable or not after voice rehabilita-320

tion [32]. The results of Table 7 are reported for different dimensions between

5 and 20 (1 for LDA-GMM). It can be seen, that mMCFA and mPPCA achieve

their best performance when the dimensionality is reduced to 10. When the di-

mensions increase, the performance of different algorithms deteriorates quickly

due to a more pronounced S3 problem. The proposed 2L-MJFA model again325

achieves the lowest error rate of 0.1792 (when the dimension is set to 20). Fig.7

summarizes these errors.
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Figure 6: Error rate comparison for the ULC dataset.

Table 7: Error rate comparison for the LSVT dataset.

LSVT

DIM 2L-MJFA mMCFA mPPCA PCA-GMM LDA-GMM

1 0.3171±0.07 0.2897±0.12 0.3731±0.07 0.4019pm0.06 0.4246±0.04

5 0.2143±0.08 0.2103±0.10 0.2143±0.04 0.2659±0.07 -

10 0.2023±0.06 0.1980±0.07 0.1964±0.06 0.2698±0.03 -

15 0.1984±0.06 0.2421±0.06 0.2183±0.06 0.2857±0.05 -

20 0.1792±0.06 0.2659±0.05 0.2857±0.03 0.2857±0.06 -

6.3.4. Breast tissue dataset (BT)

This dataset [33] contains 106 objects described by 9 features. For each ob-

ject, a group of features are selected from excised breast tissue samples using330

electrical impedance measurement. Six major diagnostic classes are involved

that consist of 4 normal breast tissues: connective, glandular, Fibro-adenoma

and adipose tissue, as well as 2 pathological tissues, that is: mastopathy and

carcinoma. We augment the features to 39 dimensions with random Gaussian

noise, in order to accentuate the S3 effect. We report the results across differ-335

ent dimensionalities ranging from 2 to 9 (2 to 5 for LDA-GMM) and different
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Figure 7: Error rate comparison for the LSVT dataset.

Table 8: Error rate comparison for the BT dataset.
BT

g DIM 2L-MJFA mMCFA mPPCA PCA-GMM LDA-GMM

2

2 0.2468±0.05 0.3902±0.07 0.6692±0.03 0.6517±0.14 0.5576±0.11

4 0.1897±0.01 0.4257±0.05 0.7261±0.03 0.6255±0.12 0.5350±0.09

6 0.1970±0.02 0.4533±0.05 0.6510±0.09 0.6159±0.13 -

9 0.2073±0.04 0.4902±0.06 0.6418±0.02 0.5899±0.09 -

3

2 0.2540±0.02 0.3900±0.06 0.6892±0.02 0.6032±0.15 0.5479±0.08

4 0.2359±0.02 0.4164±0.02 0.6713±0.03 0.6076±0.10 0.5053±0.09

6 0.2371±0.01 0.4615±0.04 0.6442±0.06 0.6088±0.08 -

9 0.2085±0.04 0.5457±0.04 0.6088±0.07 0.6573±0.06 -

4

2 0.2530±0.05 0.3616±0.07 0.6986±0.05 0.6043±0.15 0.5279±0.09

4 0.2528±0.05 0.4164±0.02 0.6345±0.04 0.6182±0.09 0.5550±0.06

6 0.2560±0.03 0.4995±0.02 0.6219±0.06 0.6585±0.06 -

9 0.2254±0.02 0.5553±0.05 0.6618±0.04 0.6964±0.03 -

5

2 0.2528±0.03 0.3892±0.06 0.6870±0.03 0.6149±0.12 0.5252±0.08

4 0.2454±0.03 0.4459±0.04 0.6310±0.03 0.5887±0.09 0.4961±0.08

6 0.2454±0.01 0.5362±0.04 0.6406±0.02 0.6973±0.07 -

9 0.2169±0.04 0.5553±0.05 0.6406±0.02 0.6677±0.05 -

component number between 2 and 5. It is worth noting, that there are at most

21 samples for each class, which is less than the 39 dimensions.

Table 8 reports the results, where the proposed method outperforms the oth-

ers. The performance difference is more prominent as the number of components340

and dimensions increases. Fig.8 summarizes some errors.

7. Conclusions and future work

In this paper, we have presented a novel joint learning model, referred to

as 2L-MJFA, for classification. The model is very different from previous ap-

24



Dimension

2 4 6 9

E
rr

o
r 

ra
te

0

0.2

0.4

0.6

0.8

g=2

Dimension

2 4 6 9

E
rr

o
r 

ra
te

0

0.2

0.4

0.6

0.8

g=3

Dimension

2 4 6 9

E
rr

o
r 

ra
te

0

0.2

0.4

0.6

0.8

g=4

Dimension

2 4 6 9

E
rr

o
r 

ra
te

0

0.2

0.4

0.6

0.8

g = 5

2LMJFA

MMCFA

MPPCA

PCA-GMM

Figure 8: Error rate comparison for the BT dataset.

proaches, where dimensionality reduction is usually independent from the sub-345

sequent classification procedure. Specifically, it is based on a two-layer mixture

or a mixture of mixtures structure, with each component that represents each

specific class serving as another mixture model of factor analyzers designed to

share the same loading matrix. The latter has a dual role with respect to being

considered a dimensionality reduction matrix, and being capable for reducing350

the model parameters, making therefore the proposed algorithm very suitable

for S3 problems. We have also described a modified EM algorithm to train the

proposed model. A series of experiments has demonstrated that 2L-MJFA sig-

nificantly outperforms three competitive algorithms on seven datasets. Future

work includes exploring the possibility of determining the number of components355

and the dimensionality automatically via Bayesian learning type methodologies.
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