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Abstract PranCS is a tool for synthesizing protocol adapters and dis-
crete controllers. It exploits general search techniques such as simulated
annealing and genetic programming for homing in on correct solutions,
and evaluates the fitness of candidates by using model-checking results.
Our Proctocol and Controller Synthesis (PranCS) tool uses NuSMV as
a back-end for the individual model-checking tasks and a simple candid-
ate mutator to drive the search.
PranCS is also designed to explore the parameter space of the search
techniques it implements. In this paper, we use PranCS to study the
influence of turning various parameters in the synthesis process.

1 Introduction
Discrete Controller Synthesis (DCS) and Program Synthesis have similar goals:
they are automated techniques to infer a control strategy and an implementation,
respectively, that is correct by construction.

There are mild differences between these two classes of problems. DCS typ-
ically operates on the model of a plant. It seeks the automated construction of
a strategy to control the plant, such that its runs satisfy a set of given object-
ives [22, 2]. Similarly, program synthesis seeks to infer an implementation, often
of a reactive system, such that the runs of this system satisfy a given specific-
ation [21]. Program synthesis is particularly attractive for the construction of
protocols that govern the intricate interplay between different threads; we use
mutual exclusion and leader election as examples.

Apart from their numerous applications to manufacturing systems [22, 24,
19], DCS algorithms have been used to enforce fault-tolerance [11], deadlock
avoidance in multi-threaded programs [23], and correct resource management in
embedded systems [1, 3].

Foundations of DCS and program synthesis are similar to principles of model-
checking [8, 5]. Model-checking refers to automated techniques that determines
whether or not a system satisfies a number of specifications. Traditional DCS
algorithms are inspired by this approach. Given a model of the plant, they first
exhaustively compute an unsafe portion of the state-space to avoid for the desired
objectives to be satisfied, and then derive a strategy that avoids entering the
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unsafe region. Finally, a controller is built that restricts the behaviour of the
plant according to this strategy, so that it is guaranteed to always comply with
its specification. Just as for model-checking, symbolic approaches for solving DCS
problems have been successfully investigated [2, 10, 20, 4].

Techniques based on genetic programming [7, 12, 15, 16, 17, 14, 13], as well as
on simulated annealing [14, 13], have been tried for program synthesis. Instead of
performing an exhaustive search, these techniques proceed by using a measure
of the fitness—reflecting the question “How close am I to satisfying the spe-
cification? ”—to find a short path towards a solution. Among the generic search
techniques that look promising for this approach, we focus on genetic program-
ming [18] and simulated annealing [7, 12]. When applied to program synthesis,
both search techniques work by successively mutating candidate programs that
are deemed “good” by using some measure of their fitness. We obtain their fitness
for meeting the desired objectives by using a model-checker to measure the share
of objectives that are satisfied by the candidate program, cf. [16, 17, 14, 13].

Simulated annealing keeps one candidate solution, and a “cooling schedule”
describes the evolution of a “temperature”. In a sequence of iterations, the al-
gorithm mutates the current candidate and compares the fitness of the old and
new candidate. If the fitness increases, the new candidate is always maintained.
If it decreases, a random process decides if the new candidate replaces the old
one in the next iteration. The chances of the new candidate to replace the old
one then decrease with the gap in the fitness and increase with the temperature;
thus, a lower temperature makes the system “stiffer”.

Genetic programming maintains a population of candidate programs over a
number of iterations. In each iteration, new candidate programs are generated
by mutation or by mixing randomly selected candidates (“crossover”). At the end
of each iteration, the number of candidates under consideration is shrunken back
to the original number. A higher fitness makes it more likely for a candidate to
survive this step.

In Section 2, we describe the tool PranCS, which implements the simulated
annealing based approach proposed in [14, 13] as well as approaches based on
similar genetic programming from [16] and [17]. PranCS uses quantitative meas-
ures for partial compliance with a specification, which serve as a measure for
the fitness (or: quality) of a candidate solution. Furthering on the comparison of
simulated annealing with genetic programming [14, 13], we extend the quest for
the best general search technique in Section 3 by:

1. looking for good cooling schedules for simulated annealing; and
2. investigating the impact of the population size and crossover ratio for genetic

programming.

2 Overview of PranCS

PranCS implements several generic search algorithms that can be used for solving
DCS problems as well as for synthesising programs.
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2.1 Representing Candidates

The representation of candidates depends on the kind of problems to solve.
Candidate programs are represented as abstract syntax trees according to the
grammar of the sought implementation. They feature conditional and iteration
statements, assignments to one variable taken among a given set, and expressions
involving such variables. Candidates for DCS only involve a series of assignments
to a given subset of Boolean variables involved in the system (called “control-
lables”).

2.2 Structure of PranCS
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Figure 1. Overview of PranCS.

The structure of PranCS is shown in
Figure 1. Via the user interface, the
user can select a search technique,
and enter the problem to solve along
with values for relevant parameters
of the selected algorithm. For pro-
gram synthesis, the user enters the
number, size, and type of variables
that candidate implementations may
use, and whether thay may involve
complex conditional statements (“if”
and “while” statements). DCS prob-
lems are manually entered as a series
of assignments to state variables in-
volving expressions expressed on state
and input variables; the user also lists
the subset of input variables that are “controllable”. In both cases, the user also
provides the specification as a list of objectives.
Generator. The Generator uses the parameters provided to either generate new
candidates or to update them when required during the search.
Translator & NuSMV. We use NuSMV [6] as a model-checker. Every candidate
is translated into the modelling language of NuSMV using a method suggested
by Clark and Jacob [7]. (We detail this translation for programs and plants in [14]
and [13] respectively, and give an example program translation in Appendix A.)
The resulting model is then model-checked against the desired properties. The
result forms the basis of a fitness function for the selected search technique.
Fitness Measure. To design a fitness measure for candidates, we make the hy-
pothesis that the share of objectives that are satisfied so far by a candidate is a
good indication of its suitability w.r.t. the desired specification. We additionally
observe that weaker properties that can be mechanically derived are useful to
identify good candidates worth selecting for the generation of further potential
solutions. For example, if a property shall hold on all paths, it is better if it holds
on some path, and even better if it holds almost surely.
Search Technique. The fitness measure obtained for a candidate is used as a
fitness function for the selected search technique. If a candidate is evaluated as
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correct, we return (and display) it to the user. Otherwise, depending on the
search technique selected and the old and new fitness measure/s, the current
candidate or population is updated, and one or more candidates are sent for
change to the Generator. The process is re-started if no solution has been found
in a predefined number of steps (genetic programming) or when the cooling
schedule expires (simulated annealing).

2.3 Selecting and Tuning Search Techniques

In terms of search techniques, PranCS implements the following methods: ge-
netic programming, and simulated annealing. Katz and Peled [17] extend genetic
programming by considering the fitness as a pair of “safety-fitness” and “liveness-
fitness”, where the latter is only used for equal values of “safety-fitness”. Building
upon this idea, we define two flavours for both simulated annealing and genetic
programming: rigid (where the classic fitness function is used) and safety-first,
which uses the two-step fitness approach as above. Further, genetic programming
can be used with or without crossovers between candidates [14, 13].

Figure 2. Graphical User Interface. PranCS allows
the user to fine-tune each search technique by means
of dedicated parameters.

Depending on the se-
lected search technique,
the tool allows the user
to input parameters that
control the dynamics of
the synthesis process.
These parameters de-
termine the likelihood of
finding a correct pro-
gram in each iteration
and the expected run-
ning time for each itera-
tion, and thus heavily in-
fluence the overall search
speed. For the genetic
programming approach,
the parameters include
the population size, the
number of selected can-
didates, the number of iterations, and the crossover ratio. For simulated anneal-
ing, the user chooses the initial temperature and the cooling schedule. Figure 2
shows the graphical user interface of PranCS.
Parameters for Simulated Annealing. In simulated annealing (SA), the intu-
ition is that, at the beginning of the search phase, the temperature is high, and
it cools down as time goes by. The higher the temperature, the higher is the like-
lihood that a new candidate solution with inferior fitness replaces the previous
solution. While this allows for escaping local minima, it can also happen that
the candidates develop into an undesirable direction. For this reason, simulated
annealing does not continue for ever, but is re-started at the end of the cooling
schedule. Consequently, there is a sweet-spot in just how long a cooling sched-
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ule should be and when it becomes preferable to re-start, but this sweet-spot is
difficult to find. We report our experiments with PranCS for tuning the cooling
schedule in Section 3.1.
Parameters for Genetic Programming. For Genetic Programming (GP), the
parameters are the initial population size, the crossover vs mutation ratio, and
the fitness measure used to select the individuals. The population size affects the
algorithm in two ways: a larger population size could provide better diversity
and reduce the number of iterations required or, for a fixed number of iterations,
increase the likelihood of finding a solution. However, it also increases the time
spent for each individual iteration. The crossover ratio describes the amount of
new candidates that are generated by mating. Crossovers allow for the appear-
ance of solutions that synthesise the best traits of good candidates, and a high
crossover ratio promises to make this more likely. This requires, however, a high
degree of diversity in the population, where these traits need to draw from dif-
ferent parts of the program tree, and it comes to the cost of creating diversity
through a reduction of the number of mutations applied in each iteration. We
investigate how the population size and crossover ratio affect the performance
of these algorithms in Sections 3.2 and 3.3.

3 Exploration of the Parameter Space
Besides serving as a synthesis tool, PranCS provides the user with the ability to
compare various search techniques. In [14] and [13], we have carried out experi-
ments by applying our algorithms to generate correct solutions on benchmarks
comprising mutual exclusion, leader election, and DCS problems of growing size
and complexity. With parameter values borrowed from [17, 16], we could already
accelerate synthesis significantly using simulated annealing compared to genetic
programming (by 1.5 to 2 orders of magnitude).

In this paper, our aim is to further explore the performance impact of the
parameters for each search technique. We thus reuse the same scalable bench-
marks as in [14, 13]: program synthesis problems consist of mutual exclusion
(“2 or 3 shared bits”) and leader election (“3 or 4 nodes”); DCS problems com-
pute controllers enforcing mutual exclusions and progress between 1 to 6 tasks
modelled as automata (“1 through 6-Tasks”).

In all Tables, execution times are in seconds; t is the mean execution time of
single executions (succeeding or failing), and columns T extrapolate t based on
the success rate obtained in 100 single executions (columns “%”).

3.1 Exploring Cooling Schedules for Simulated Annealing

In order to test if the hypothesis from [9] that simulated annealing does most of
its work during the middle stages—while being in a good temperature range—
holds for our application, we have developed the tool to allow for “cooling sched-
ules” that do not cool at all, but use a constant temperature. In order to be
comparable to the default strategy, we use up to 25,001 iterations in each at-
tempt.

We have run 100 attempts to create a correct candidate using various con-
stant temperatures, and inferred expected overall running times T based on the
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3 nodes 4 nodes 2 shared bits 3 shared bits
θ t % T t % T t % T t % T

0.7 316 0 ∞ 521 0 ∞ 147 0 ∞ 155 0 ∞
400 285 0 ∞ 493 0 ∞ 143 0 ∞ 148 0 ∞
4,000 196 11 1,781 368 10 3,680 129 3 4,300 121 4 3,025
7,000 97 14 692 314 13 2,415 77 12 641 81 11 252
10,000 73 21 347 138 18 766 15 22 68 17 24 70
13,000 78 22 354 146 19 768 16 23 69 18 24 75
16,000 83 20 415 150 17 882 17 21 80 19 22 86
20,000 87 19 457 153 15 1,020 21 20 105 23 22 104
25,000 94 17 494 167 13 1,284 23 19 121 25 21 191
30,000 108 15 720 184 11 1,672 28 18 155 30 19 157
40,000 117 15 780 193 11 1,754 31 16 193 34 17 200
50,000 129 13 992 201 10 2,010 37 15 246 41 16 256
100,000 193 12 1,608 287 9 3,188 52 11 472 58 13 446

Table 1. Impact of search temperature (θ) for Program Synthesis with Safety-first
simulated annealing

success rates and average execution time of single executions t. We first report the
results for program synthesis and DCS problems in Tables 1 and 2 respectively.
The findings support the hypothesis that some temperatures are much better
suited than others: low temperatures provide a very small chance of succeeding,
and the chances also go down at the high temperature end.

While the values for low temperatures are broadly what we had expected,
the high end performed better than we had thought. This might be because
some small guidance is maintained even for infinite temperature, as a change
that is decreasing the fitness is taken with an (almost) 50% chance in this case,
while increases are always selected. However, the figures for high temperatures
are much worse than the figures for the good temperature range of 10,000 to
16,000.

In the majority of cases, the best results have been obtained at a temperature
of 10,000. Notably, these results are better than the running time for the cooling
schedule that uses a linear decline in the temperature as used and reported in [14,
13]. They indicate that it seems likely that the last third of the improvement
cycles in this cooling schedule had little avail, especially for smaller problems.

A robust temperature sweet-spot clearly exists for our scalable benchmarks,
suggesting that the quest for robust and generic good cooling schedules is worth
pursuing.

3.2 Impact of Population Size for Genetic Programming

One of the important parameters of genetic programming is the initial population
size; another parameter worth tuning is the number of candidates η selected for
mating at each iteration of the algorithm. In order to investigate their effects
on our synthesis approach and evaluate the actual cost of large population sizes,
we defined several setups with various values for the population size |P | and
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1-Task 2-Tasks 3-Tasks 4-Tasks 5-Tasks 6-Tasks
θ t % T t % T t % T t % T t % T t % T

0.7 163 0 ∞ 177 0 ∞ 192 0 ∞ 332 0 ∞ 298 0 ∞ 613 0 ∞
400 93 0 ∞ 99 0 ∞ 163 0 ∞ 167 0 ∞ 153 0 ∞ 598 0 ∞
4,000 54 7 771 58 6 966 88 6 1,466 98 3 3,266 98 4 2,450 278 3 9,266
7,000 39 12 325 47 9 522 45 9 500 65 6 1,083 79 6 1,316 125 5 2,500
10,000 18 19 94 29 14 207 26 11 236 39 9 433 61 9 677 99 8 1,237
13,000 22 20 110 33 15 220 31 11 281 43 11 390 67 10 670 115 9 1,277
16,000 29 19 152 39 13 300 37 10 370 58 9 644 73 8 912 127 9 1,411
20,000 37 17 217 47 11 427 42 10 420 67 9 744 81 6 1,350 134 7 1,914
25,000 43 15 286 56 10 560 47 9 522 81 7 1,157 89 6 1,483 152 6 2,533
30,000 49 15 326 67 10 670 56 8 700 89 6 1,483 102 4 2,550 159 6 2,650
40,000 53 13 407 75 9 833 63 9 700 95 6 1,583 116 3 3,866 168 6 2,800
50,000 59 12 491 82 7 1,171 79 7 1,128 103 5 2,060 128 4 3,200 192 5 3,840
100,000 72 11 654 94 7 1,342 98 7 1,400 118 4 2,950 178 3 5,933 253 4 6,325
Table 2. Impact of search temperature (θ) for DCS with Safety-first simulated anneal-
ing

Rigid GP Safety-first GP
w/o crossover with crossover w/o crossover with crossover

|P | η t % T t % T t % T t % T

150
5 583 7 8,328 589 9 6,544 113 31 364 115 33 348
7 583 7 8,328 589 9 6,544 113 31 364 115 33 348
9 584 7 8,342 588 9 6,533 113 31 364 114 33 345

250
5 1,024 12 8,533 1,057 15 7,046 230 46 500 245 49 500
7 1,024 12 8,533 1,057 15 7,046 230 46 500 245 49 500
9 1,024 12 8,533 1,057 15 7,046 231 46 502 245 49 500

350
5 1,435 15 9,566 1,451 18 8,061 325 63 515 367 67 547
7 1,435 15 9,566 1,451 18 8,061 325 63 515 366 67 546
9 1,435 15 9,566 1,451 19 7,636 325 64 507 367 67 547

Table 3. Impact of population size (|P |) for Program Synthesis (2 shared bits mutual
exclusion only)

amount of mating candidates η. We then performed 100 executions of our GP-
based algorithms with each of these setups for the 2 shared bits mutual exclusion
and 2-Tasks problems.

We show the results in Tables 3 and 4. As expected, increasing the size
of the initial population also dramatically increases the cost of finding a good
solution. Broadly speaking, increasing the population size reduces the number of
iterations and increases the success rate, but it also increases the computation
time required at each individual iteration. Smaller population sizes appear to
benefit individual running times more than they harm success rates.

The impact of η on performance appears very limited on the range we have
investigated.
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Rigid GP Safety-first GP
w/o crossover with crossover w/o crossover with crossover

|P | η t % T t % T t % T t % T

150
5 463 3 15,433 484 4 12,100 132 13 1,015 138 15 920
7 463 3 15,433 485 4 12,125 132 13 1,015 139 15 926
9 464 3 15,466 485 4 12,125 131 13 1,007 139 14 992

250
5 943 5 18,860 969 7 13,842 241 18 1,338 218 19 1,147
7 943 5 18,860 969 7 13,842 241 18 1,338 218 19 1,147
9 943 5 18,860 969 7 13,842 242 18 1,344 218 19 1,147

350
5 1,517 9 16,855 1,557 10 15,570 403 24 1,679 340 24 1,416
7 1,517 9 16,855 1,557 10 15,570 403 24 1,679 340 24 1,416
9 1,518 9 16,866 1,557 10 15,570 403 24 1,679 340 24 1,416

Table 4. Impact of population size (|P |) for DCS (2-Tasks only)

3.3 Impact of Crossover Ratio for Genetic Programming

Finally, we have also studied the effect of changing the share between crossover
and mutation in genetic programming.

We report our results in Tables 5 and 6. Interestingly, the running time
per instance increased with the share of crossovers, which might point to a
production of more complex candidate solutions. Regarding expected running
times, the results also indicate the existence of a sweet-spot for the crossover
ratio at around 20% for both Rigid and Safety-first variants of the algorithm.

4 Conclusion
Together with our extensive exploration of the parameter space, the evaluation
of PranCS indicates that simulated annealing is faster than genetic program-
ming (we report some synthesis times with the best parameters observed us-
ing simulated annealing in Table 7), and that some temperature ranges are
more useful than others. Additional information about the tool can be found at:
https://cgi.csc.liv.ac.uk/~idresshu/index2.html.

In order to integrate this result into the cooling schedule we plan to use an
adaptive cooling schedule, in which the decrements of the temperature depends
on the improvement of the fitness.
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Appendix A Pseud-code to NuSMV Translation Example
To evaluate the fitness of the produced program, it is first translated into the
language of the model checker NuSMV [6]. We have used the translation method
suggested by Clark and Jacob [7]. In this translation, the program is converted
into very simple statements, similar to assembly language. To simplify the trans-
lation, the program lines are first labeled, and this label is then used as a pointer
that represents the program counter (PC). From this intermediate language, the
NuSMV model is built by creating (case) and (next) statements that use the
PC. Figure 3 shows the translation of a mutual exclusion algorithm.
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1: process me
2: while (true) do
3: noncritical section
4: while (turn==me) do
5: skip
6: end while
7: critical section
8: turn=other
9: end while
‘me’ and ‘other’ denote (different)
variable valuations, in this example
implemented as boolean variables.
In other instances, they might be
have a different (finite) datatype.

1: MODULE p(turn)
2: VAR
3: pc: {11, 12, 14,15};
4: ASSIGN
5: init(pc) := 11;
6: next(pc) := case
7: (pc=11) : {11, 12};
8: (pc=12)&(turn=me) : 14;
9: (pc=14) : 15;

10: (pc=15) : 11;
11: TRUE: pc;
12: esac;
13: next(turn):= case
14: (pc=15): other;
15: TRUE :turn;
16: esac;

Figure 3. Translation example – source pseudo-code (left) and target NuSMV (right)
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