
Incremental Verification of Parametric and
Reconfigurable Markov Chains

Paul Gainer, Ernst Moritz Hahn, and Sven Schewe

University of Liverpool, UK
{P.Gainer,E.M.Hahn,Sven.Schewe}@liverpool.ac.uk

Abstract. The analysis of parametrised systems is a growing field in
verification, but the analysis of parametrised probabilistic systems is still
in its infancy. This is partly because it is much harder: while there are
beautiful cut-off results for non-stochastic systems that allow to focus
only on small instances, there is little hope that such approaches extend
to the quantitative analysis of probabilistic systems, as the probabilities
depend on the size of a system. The unicorn would be an automatic trans-
formation of a parametrised system into a formula, which allows to plot,
say, the likelihood to reach a goal or the expected costs to do so, against
the parameters of a system. While such analysis exists for narrow classes
of systems, such as waiting queues, we aim both lower—stepwise explor-
ing the parameter space—and higher—considering general systems.
The novelty is to heavily exploit the similarity between instances of
parametrised systems. When the parameter grows, the system for the
smaller parameter is, broadly speaking, present in the larger system.
We use this observation to guide the elegant state-elimination method
for parametric Markov chains in such a way, that the model transfor-
mations will start with those parts of the system that are stable under
increasing the parameter. We argue that this can lead to a very cheap
iterative way to analyse parametric systems, show how this approach
extends to reconfigurable systems, and demonstrate on two benchmarks
that this approach scales.

1 Introduction

Probabilistic systems are everywhere, and their analysis can be quite challenging.
Challenges, however, come in many flavours. They range from theoretical ques-
tions, such as decidability and complexity, through algorithms design and tool
development, to the application of parametric systems. This paper is motivated
by the latter, but melds the different flavours together.

We take our motivation from the first author’s work on biologically inspired
synchronisation protocols [8,9]. This application leaning work faced the problem
of exploring a parameter space for a family of network coordination protocols,
where interacting nodes achieve consensus on their local clocks by imitating
the behaviour of fireflies [22]. Global clock synchronisation emerges from local
interactions between the nodes, whose behaviour is that of coupled limit-cycle

oscillators. The method used was the same that we have seen applied by several
practitioners from engineering and biology: adjust the parameters, produce a
model, and use a tool like ePMC/IscasMC [12], PRISM [20], or Storm [6] to
analyse it.

In the case of the synchronisation protocols, the parameters investigated were
typical of those considered when evaluating the emergence of synchronisation in
a network of connected nodes: the number of nodes forming the network, the
granularity of the model (discrete length of an oscillation cycle), the strength
of coupling between the oscillators, the likelihood of interactions between nodes
being inhibited by some external factor, for instance message loss in a communi-
cation medium, and the length of the refractory period, an initial period in the
oscillation cycle of a node where interactions with other nodes are ignored.

The reason to explore the parameter space can be manifold. Depending on
the application, one might simply want to obtain a feeling of how the parameters
impact on the behaviour. Another motivation is to see how the model behaves,
compare it with observations, and adjust it when it fails to comply. Regardless
of the reason to adjust the parameter, the changes often lead to very similar
models.

Now, if we want to analyse hundreds of similar models, then it becomes
paramount to re-use as much of the analysis as possible. With this in mind, we
have selected model checking techniques for safety and reachability properties
of Markov chains that build on repeated state elimination [11] as the backbone
of our verification technique. State elimination is a technique that successively
changes the model by removing states. It works like the transformation from
finite automata to regular expressions: a state is removed, and the new structure
has all successors of this state as (potentially new) successors of the predecessors
of this state, with the respectively adjusted probabilities (and, if applicable,
expected rewards).

If these models are changed in shape and size when playing with the param-
eters, then these changes tend to be smooth: small changes of the parameters
lead to small changes of the model. Moreover, the areas that change—and, con-
sequentially, the areas that do not change—are usually quite easy to predict,
be it by an automated analysis of the model or by the knowledge of the expert
playing with her model, who would know full well which parts do or do not
change when increasing a parameter. These insights inform the order in which
the states are eliminated.

When, say, the increase of a parameter allows for re-using all elimination steps
but the last two or three, then repeating the analysis is quite cheap. Luckily, this
is typically the case in structured models, e.g. those who take a chain-, ring-,
or tree-like shape that can be inductively defined. As a running example of
a structured model we consider the Zeroconf protocol [3] for the autonomous
configuration of multiple hosts in a network with unique IP addresses (Figure
1). A host that joins the network selects an address uniformly at random from a
available addresses. If the network consists of h hosts, then the probability that
the selected address is already in use is q = h

a .

2

iok k k−1 . . . 1 err
1− q q p p p p

1− p
1− p

1− p

(a)

iok k+1 k k−1 . . . 1 err
1− q q p p p p p

1− p
1− p

1− p

1− p

(b)

Fig. 1: The Zeroconf Protocol for n = k (a) and n = k + 1 (b).

The protocol then checks n times if the selected address is already in use by
sending a request to the network. If the address is fresh (which happens with a
probability of 1− q), none of these tests will fail, and the address will be classed
as new. If the address is already in use (which happens with a probability of q),
then each test is faulty: collisions go undetected with some likelihood p due to
message loss and time-outs. When a collision is detected (which happens with
a likelihood of 1− p in each attempt, provided that a collision exists), then the
host restarts the process. If a collision has gone undetected after n attempts,
then the host will incorrectly assume that its address is unique.

While the family of Zeroconf protocols is also parameterised in the transition
probabilities, we are mostly interested in their parametrisation in the structure
of the model. Figures 1a and 1b show the models for n = k and n = k + 1,
respectively, successive checks after each selection of an IP. These two models
are quite similar: they structurally differ only in the introduction of a single state,
and the transitions that come with this additional state. If we are interested in
calculating the function that represents the probability of reaching the state
err in both models, where this function is given in terms of individual rational
functions that label the transitions, then the structural similarities allow us to
re-use the intermediate terms obtained from the evaluation for n = k when
evaluating for n = k + 1.

The structure of the paper is as follows. We begin by comparing our work to
similar approaches in Section 2. In Section 3, we introduce the novel algorithms
for the analysis of reconfigured models. We then evaluate our approach on two
different types of parametric models which are discussed in Section 4. Section 5
concludes the paper and outlines future work.

3

2 Related Work

Our work builds on previous results in the area of parametric Markov model
checking and incremental runtime verification of stochastic systems.

Daws [4] considered Markov chains, which are parametric in the transition
probabilities, but not in their graph structure. He introduced an algorithm to
calculate the function that represents the probability of reaching a set of target
states for all well-defined evaluations for a parametric Markov chain. For this, he
interprets the Markov chain under consideration as a finite automaton, in which
transitions are labelled with symbols that correspond to rational numbers or
variables. He then uses state elimination [13] to obtain a regular expression for
the language of the automaton. Evaluating these regular expressions into rational
functions yields the probability of reaching the target states. One limiting factor
of this approach is that the complete regular expression has to be stored in
memory.

Hahn et al. introduced [11] and implemented [10] a simplification and refine-
ment of Daws’ algorithm. Instead of using regular expressions, they store rational
functions directly. This has the advantage that possible simplifications of these
functions, such as cancellation of common factors, can be applied on the fly. This
allows memory to be saved. It also provides a more concise representation of the
values computed to the user. They have also extended the scope of the approach
from reachability, to additionally handle accumulated reward properties. Several
works from RWTH Aachen have followed up on solution methods for parametric
Markov chains [5,14,23]. This type of parametric model checking has been used
in [2] to build a model-repair framework for stochastic systems and in [15,16,17]
to reason about the robustness of robot controllers against sensor errors.

Our paper borrows some ideas from the work of Kwiatkowska et al. [21].
Their work considers MDPs that are labelled with parametric transition proba-
bilities. The authors do not aim to compute a closed-form function that repre-
sents properties of a model, but rather at accelerating the computation of results
for individual instantiations of parameter values. Rather than state elimination,
they use value iteration and other methods to evaluate the model for certain
parameter values. In doing so, they can for instance, re-use computations for
different instantiations of parameters that only depend on the graph structure
of the model that remains unchanged for different instantiations.

We also take inspiration from Forejt et al. [7], where the role of parameters
is different. Forejt et al. describe a policy iteration-based technique to evaluate
parametric MDPs. While they also considered parameters in [7] that can influ-
ence the model structure, they would exploit similarities to inform the search for
the policy when moving from one parameter value to the next. The repeatedly
called model checking of Markov chains, on the other hand, is not parametric.
Our approach is therefore completely orthogonal, as we focus on the analysis of
Markov chains. In more detail, Forejt et al. [7] would use an incremental approach
to find a good starting point for a policy iteration approach for MDPs. The in-
tuition there is that an optimal policy is likely to be good—if not optimal—on
the shared part of an MDP that grows with a parameter. This approach has

4

the potential to find the policy in less steps, as less noise disturbs the search
in smaller MDPs, but its main promise is to provide an excellent oracle for a
starting policy. Moreover, in the lucky instances where the policy is stable, it can
also happen that there is a part of the Markov chain, obtained by using a policy
that builds on a smaller parameter, that is outside of the cone of influence of the
changes to the model. In this case, not only the policy, but also its evaluation is
stable under the parameter change.

3 Algorithms

We first describe the state elimination method of Hahn [11] for parametric
Markov Chains (PMCs), and then introduce an algorithm that substantially re-
duces the cost of recomputation of the parametric reachability probability for a
reconfigured PMC. First we give some general definitions. Given a function f we
denote the domain of f by Dom(f). We use the notation f⊕f ′ = f �Dom(f)\Dom(f ′)

∪f ′ to denote the overriding union of f and f ′. Let V = {v1, . . . , vn} denote a
set of variables over R. A polynomial g over V is a sum of monomials

g(v1, . . . , vn) =
∑

i1,...,in

ai1 , . . . ,in v
i1
1 . . . vinn ,

where each ij ∈ N and each ai1 , . . . ,in ∈ R. A rational function f over a set of

variables V is a fraction f(v1, . . . , vn) = f1(v1,...,vn)
f2(v1,...,vn)

of two polynomials f1, f2
over V . We denote the set of rational functions from V to R by FV .

Definition 1. A parametric Markov chain (PMC) is a tuple D = (S, s0,P, V),
where S is a finite set of states, s0 is the initial state, V = {v1, . . . , vn} is a
finite set of parameters, and P is the probability matrix P : S × S → FV .

A path ω of a PMC D = (S, s0,P, V) is a non-empty finite, or infinite,
sequence s0, s1, s2, . . . where si ∈ S and P(si, si+1) > 0 for i > 0. We denote the
ith state of ω by ω[i], the set of all paths starting at state s by Paths(s), and the
set of all finite paths starting in s by Pathsf (s). For a finite path ωf ∈ Pathsf (s)
the cylinder set of ωf is the set of all infinite paths in Paths(s) that share the
prefix ωf . The probability of taking a finite path s0, s1, . . . , sn ∈ Pathsf (s0) is
given by

∏n
i=1 P(si−1, si). This measure over finite paths can be extended to a

probability measure Prs over the set of infinite paths Paths(s), where the smallest
σ-algebra over Paths(s) is the smallest set containing all cylinder sets for paths
in Pathsf (s). For a detailed description of the construction of the probability
measure we refer the reader to [18].

Definition 2. Given a PMC D = (S, s0,P, V), the underlying graph of D is
given by GD = (S, E) where E = {(s, s′) | P(s, s′) > 0}.

Given a state s, we denote the set of all immediate predecessors and successors
of s in the underlying graph of D by preD(s) and postD(s), respectively, and we
define the neighbourhood of s as Neigh(s) = s ∪ preD(s) ∪ postD(s). We write
reachD(s, s′) if s′ is reachable from s in the underlying graph of D.

5

Algorithm 1 State Elimination

1: procedure StateElimination(D, se)
2: requires: A PMC D and se, a state to eliminate in D.
3: for all (s1, s2) ∈ preD(se)× postD(se) do
4: P(s1, s2)← P(s1, s2) + P(s1, se) 1

1−P(se,se)
P(se, s2)

5: end for
6: Eliminate(D, se) // remove se and incident transitions from D
7: return D
8: end procedure

3.1 State Elimination

The algorithm of Hahn [11] proceeds as follows, where the input is a PMC
D = (S, s0,P, V) and a set of target states T ⊂ S. Initially, preprocessing is
applied and without loss of generality all outgoing transitions from states in T
are removed and a new state st is introduced such that P(t, st) = 1 for all t ∈ T .
All states s, where s is unreachable from the initial state or T is unreachable from
s, are then removed along with all incident transitions. A state se in S \ {s0, st}
is then chosen for elimination and Algorithm 1 is applied. Firstly, for every pair
(s1, s2) ∈ preD(se)× postD(se), the existing probability P(s1, s2) is incremented
by the probability of reaching s2 from s1 via se. The state and any incident
transitions are then eliminated from D. This procedure is repeated until only
s0 and st remain, and the probability of reaching T from s0 is then given by
P(s0, st).

3.2 Reconfiguration

Recall that we are interested in the re-use of information when recalculating
reachability for a reconfigured PMC. We can do this by choosing the order in
which we eliminate states in the original PMC. The general idea is that, if the
set of states where structural changes might occur is known a priori, then we
can apply state elimination to all other states first. We say that states where
structural changes might occur are volatile states.

Definition 3. A volatile parametric Markov chain (VPMC) is a tuple D =
(S, s0,P, V,Vol) where (S, s0,P, V) is a PMC and Vol ⊆ S is a set of volatile
states for D.

Given a VPMC D = (S, s0,P, V,Vol), we can define an elimination ordering
for D as a bijection ≺D: S → {1, . . . , |S|} that defines an ordering for the
elimination of states in S, such that ≺D(s) < ≺D(s′) holds for all s ∈ S\Vol, s′ ∈
Vol, where ≺D(s) < ≺D(s′) indicates that s is eliminated before s′. Observe that
a volatile state in D is only eliminated after all non-volatile states.

Definition 4. A reconfiguration for a VPMC D = (S, s0,P, V,Vol) is a PMC
DR = (SR, s0,PR, V), where SR is a set of states with SR ∩ S 6= {s0}, s0 and

6

V are the initial state and the finite set of parameters for D. The reconfigured
probability matrix PR is a total function PR : SR × SR → FV such that, for all
s, s′ ∈ SR where P(s, s′) is defined, P(s, s′) 6= PR(s, s′) implies s, s′ ∈ Vol.

S

SR

Vol ConRec Int

Fig. 2: Venn diagram showing the consis-
tent, reconfigured, and introduced states
for a VPMC D and reconfiguration DR.

Given a VPMC D and a reconfigu-
ration DR for D we say that a state s
in S is consistent in DR if s is also in
SR, and the set of all predecessors and
successors of s remains unchanged
in DR (that is preD(s) = preDR(s),
postD(s) = postDR(s), P(s1, s) =
PR(s1, s) for every s1 ∈ preD(s), and
P(s, s2) = PR(s, s2) for every s2 ∈
postD(s)). We say that a state s in S
is reconfigured in DR if s is also in SR
and s is not consistent. Finally, we say
that a state s in SR is introduced in
DR if s is neither consistent nor re-
configured. We denote the sets of all
consistent, reconfigured, and introduced states by Con(D,DR),Rec(D,DR), and
Int(D,DR), respectively. Figure 2 shows the consistent, reconfigured, and intro-
duced states for D and DR.

Algorithm 2 computes the parametric reachability probability of some target
state in a VPMC D = (S, s0,P, V,Vol) for a given elimination ordering for D.
Observe that we compute the reachability probability with respect to a single
target state. The reachability of a set of target states can be computed by first
removing all outgoing transitions from existing target states, and then introduc-
ing a new target state to which a transition is taken from any existing target
state with probability 1. We introduce a new initial state to the model, from
which a transition is taken to the original initial state with probability 1. The
algorithm computes a partial probability matrix P′, initialised as a zero matrix,
that stores the probability of reaching s2 from s1 via any eliminated non-volatile
state, where s1, s2 are either volatile states, the initial state, or the target state.
It also computes an elimination map mVol

D , a function mapping tuples of the form
(se, s1, s2), where se is an eliminated volatile state and s1, s2 are either volatile
states, the initial state, or the target state, to the value computed during state
elimination for the probability of reaching s2 from s1 via se. We are only in-
terested in transitions between volatile states, the initial state, or the target
state, since all non-volatile states in any reconfiguration of D will be eliminated
first. Computed values for transitions to or from these states therefore serve no
purpose once they have been eliminated.

Given a reconfiguration DR = (SR, s0,PR, V) for D, an elimination ordering
for D, and the partial probability matrix and mapping computed using Algo-
rithm 2, Algorithm 3 computes the parametric reachability probability for DR

as follows. Firstly the set of all non-volatile states of D and incident transitions
are removed from DR, though state elimination itself does not occur. A set of

7

Algorithm 2 Parametric Reachability Probability for VPMCs

1: procedure ParametricReachability(D, ≺D, st)
2: requires: a target state st ∈ S, and for all s ∈ S it holds reachD(s0, s) and

reachD(s, st).
3: E ← S \ {s0, st} // states to be eliminated from D
4: P′ ← 0|S|,|S| // partial probability matrix
5: mVol

D ← ∅ // elimination map
6: while E 6= ∅ do
7: se ← arg min ≺D�E
8: for all (s1, s2) ∈ preD(se)× postD(se) do
9: p = P(s1, se) 1

1−P(se,se)
P(se, s2)

10: if s1 ∈ Vol ∪ {s0, st} and s2 ∈ Vol ∪ {s0, st} then
11: if se 6∈ Vol then
12: P′(s1, s2)← P′(s1, s2) + p
13: else
14: mVol

D ← mVol
D ⊕ {(se, s1, s2) 7→ p}

15: end if
16: end if
17: P(s1, s2)← P(s1, s2) + p
18: end for
19: Eliminate(D, se) // remove se and incident transitions from D
20: E ← E \ {se}
21: end while
22: return (P(s0, st),P

′,mVol
D)

23: end procedure

infected states is then initialised to be the set of all states that are reconfigured
in DR. Then, for every other remaining state that is not introduced in DR, if
that state or its neighbours are not infected we treat this state as a non-volatile
state. That is, we update P′ with the corresponding values in mVol

D and remove
the state and its incident transitions without performing state elimination. If
the state, or one of its neighbours, is infected then the probability matrix is
updated such that all transitions to and from that state are augmented with the
corresponding values in P′. These entries are then removed from the mapping.
Subsequently, state elimination (Algorithm 1) is applied, and the infected area
is expanded to include the immediate neighbourhood of the eliminated state.
Finally, state elimination is applied to the set of all remaining introduced states
in DR.

Example 1. Consider again the Zeroconf models from Figures 1a and 1b. Let
Zk = (S, s0,P, V,Vol) be a VPMC for n = k, such that S = {1, . . . , k} ∪
{s0, i, err}, V = {p, q}, and Vol = {i, k}. We are interested in the parametric
reachability probability of the state err. Note that preprocessing removes the
state ok from Zk since reachZk

(ok, err) does not hold. Now define ≺Zk
= {1 7→

1, 2 7→ 2, . . . , k 7→ k, i 7→ k + 1} to be an elimination ordering for Zk. State
elimination then proceeds according to ≺Zk

, and after the first k− 1 states have

8

Algorithm 3 Parametric Reachability Probability for reconfigured VMPC

1: procedure ReconfiguredParametricReachability(D, DR, ≺D, P′, mVol
D , st)

2: requires: absorbing target state st such that st ∈ S and st ∈ SR, for all s ∈ S it
holds reachDR(s0, s) and reachDR(s, st), and for all s′ ∈ SR it holds reachDR(s0, s

′)
and reachDR(s′, st).

3: M ← (Vol ∩ SR) ∪ {s0, st}
4: Elim← Con(D,DR) \M
5: Eliminate(DR,Elim) // remove all se ∈ Elim and incident transitions from D
6: Elim← Vol ∩ SR

7: Infected← Rec(D,DR)
8: PR(s0, st) = P′(s0, st)
9: while Elim 6= ∅ do

10: se ← arg min ≺D�Elim
11: if Infected ∩ Neigh(se) = ∅ then
12: for all (s′e, s1, s2) ∈ Dom(mVol

D �{se}×M2) do

13: P′(s1, s2)← P′(s1, s2) + mVol
D (s′e, s1, s2)

14: end for
15: Eliminate(DR, se) // remove se and incident transitions from DR

16: else
17: for all {(s1, s2) ∈ SR × SR | s1 = se or s2 = se} do
18: PR(s1, s2)← PR(s1, s2) + P′(s1, s2)
19: P′(s1, s2)← 0
20: end for
21: DR ← StateElimination(DR, se)
22: Infected← Infected ∪ Neigh(se)
23: end if
24: Elim← Elim \ {se}
25: end while
26: for all se ∈ Int(D,DR) do
27: DR ← StateElimination(DR, se)
28: end for
29: return PR(s0, st)
30: end procedure

been eliminated we have

P′(k, err) = pk, P′(k, i) =

k−1∑
j=1

(pj − pj+1).

Eliminating the remaining volatile states k and i then yields

mVol
Zk

= {(k, i, err) 7→ qpk, (k, i, i) 7→ q(1− pk), (i, s0, err) 7→ qpk

1− q(1− pk)
}.

Now let Zk+1 = (SR, s0,PR, V) be a reconfiguration for Zk such that SR =
S∪{k+1}. We then have Con(Zk, Zk+1) = {1 . . . k−1}∪{s0, err}, Rec(Zk, Zk+1) =

9

i

s0

k+1 err
q pk+1

1− pk+1

s0 k+1 err
q pk+1

q(1− pk+1)

s0 err

qpk+1

1−q(1−pk+1)

(a) (b) (c)

Fig. 3: Zk+1 after the elimination of states k (a), i (b), and k + 1 (c).

{k, i}, and Int(Zk, Zk+1) = {k+1}. First, all states 1, . . . , k−1 and their incident
transitions are simply eliminated from Zk+1, and the infected set is initialised to
be {k, i}. Since k is already infected we update the probability matrix as follows,

PR(k, err)← PR(k, err) + P′(k, err)

← 0 + pk = pk,

PR(k, i)← PR(k, i)+P′(k, i)

← (1−p)+
k−1∑
j=1

(pj−pj+1)=

k−1∑
j=0

(pj−pj+1) = 1−pk.

State elimination is then applied to state k and the corresponding entries in P′

are set to zero. The state of the model after this step is shown in Figure 3a.
State i is also infected, but this time there are no corresponding non-zero values
in P′. State elimination is then applied to state i resulting in the model shown
in Figure 3b. Finally, state elimination is applied to the single introduced state
k+ 1, resulting in the model shown in Figure 3c, and the algorithm terminates.

3.3 Correctness

The correctness of the approach follows as an easy corollary from the correctness
of Hahn’s general state elimination approach [11]. We outline the simple induc-
tive argument, starting with the first parameter under consideration—which
serves as the induction basis—and then look at incrementing the parameter
value—which serves as the induction step.

For the induction basis, the first parameter considered, there is really nothing
to show: we would merely choose a particular order in which states are elimi-
nated, and the correctness of Hahn’s state-elimination approach does not depend
on the order in which states are eliminated.

For the induction step, consider that we have an order for one parameter
value, and that we have an execution of the state elimination along this given
order <o. Our approach then builds a new order for the next parameter value.
The new order <n is quite closely linked to the old order <o, but for correctness,
a very weak property suffices.

10

To prepare our argument, let us consider a set E of states with the following
properties: the neighbourhood of E is the same in the Markov chains for the old
and new parameter; the restriction of <o and <n to E define the same order; and
E is the set of smallest states w.r.t. <o and <n (s ∈ E and (s′ <o s ∨ s′ <n s)
implies s′ ∈ E). In this case, the initial sequence of the first |E| reductions for
the new Markov chain (along <n) are the same as the first |E| state eliminations
along the old Markov chain (along <o). Consequently, these elimination steps
can be re-used, rather than re-done.

In Algorithm 3 we require less: we still require that the neighbourhood of E is
the same in the Markov chains for the old and new parameter and the restriction
of <o and <n to E define the same order, but relax the third requirement to
s ∈ E and (s′ <o s ∨ s′ <n s) implies that s′ ∈ E or s′ is no neighbour of s.
The result is the same: for the states in E, the |E| state eliminations for the new
Markov chain (along <n) are the same as |E| state eliminations along the old
Markov chain (along <o). Consequently, these elimination steps can be re-used.

3.4 Extension to Parametric Markov Reward Models

We now describe how we can extend the algorithms to PMCs annotated with
rewards.

Definition 5. A Parametric Markov Reward Model (PMRM) is a tuple R =
(D, r) where D = (S, s0,P, V) is a PMC and r : S → FV is the reward function.

The reward function labels states in R with a rational function over V that
corresponds to the reward that is gained if that state is visited. Given a PMRM
R = (D, r) with D = (S, s0,P, V), we are interested in the parametric expected
accumulated reward [19] until some target state st ∈ S is reached. This is defined
as the expectation of the random variable XR : Paths(s0) → R ∪ {∞} over the
infinite paths of R. Given the set ωst = {i | w[i] = st} we define

XR(ω) =

{
∞ if ωst = ∅∑k−1

i=0 r(ω[i]) otherwise, where k = minωst ,

and define the expectation of XR with respect to Prs0 as

E[XR] =
∑

ω∈Paths(s0)

XR(ω)Prs0(ω).

We extend our notion of volatility to PMRMs as follows. We say that a state
is volatile if structural changes might occur in that state or if the reward labelling
that state might change. Because of space limitations we omit the full definitions
for volatile PMRMs, but the constructions are straightforward. Algorithms 1 to 3
are extended to incorporate rewards. For Algorithm 1, in addition to updating
the probability matrix for the elimination of some state se, we also update the
reward function as follows,

r(s1)← r(s1) + P(s1, se)
P(se, se)

1−P(se, se)
r(se).

11

The updated value for r(s1) reflects the reward that would be accumulated if
a transition would be taken from s1 to se, where the expected number of self

transitions would be P(se,se)
1−P(se,se)

. Algorithm 2 then constructs additional map-

pings to record these computed expected reward values, which are then used for
reconfiguration in Algorithm 3.

4 Case Studies

We provide a prototypical implementation1 of the technique and define the met-
ric that we will use for the evaluation of different models to be the total number
of arithmetic operations performed for the elimination of all states in a model.
Our implementation serves only to illustrate the potential of the method, and
we will integrate the technique into the probabilistic model checker ePMC [12].

Due to space limitations we restrict our analysis to two classes of models.
Firstly we consider the family of Zeroconf protocols described in Section 1, and
secondly we consider a family of models used for the analysis of biologically
inspired firefly synchronisation protocols—the class of protocols that inspired
this work.

4.1 Zeroconf

We are interested in the reachability of the error state for the family of Zeroconf
models, parameterised in the number n of attempts, after which the protocol will
(potentially incorrectly) assume that it has selected a unique address. The initial
model for n = 1 is defined, its volatile region is determined as in Example 1,
and Algorithm 2 is applied. In each incremental step we increment n and apply
Algorithm 3 to the model. Volatile states can be identified in each step.

Figures 4a and 4b show the total number of performed arithmetic opera-
tions accumulated during the incremental analysis of the models and the ratio
of the number of arithmetic operations performed for regular state elimination,
respectively. This ratio shows the small share of the number of iterations re-
quired when the values are calculated for a range of parameters in our approach
(repeated applications of Algorithm 3), when compared to the näıve approach
to re-calculate all values from scratch (applying Algorithm 2).

Figure 4a shows that the total number of operations is quadratic in the pa-
rameter when regular state elimination (applying Algorithm 2) is repeatedly
applied from scratch. This is a consequence of the number of operations for
each parameter being linear in the parameter value when näıvely applying Al-
gorithm 2. This is in stark contrast to the number of operations needed when
the parameter is stepwise incremented using Algorithm 3, stepwise capitalising
on the analysis of the respective predecessor model. Here the update cost is con-
stant: since the extent of structural change at each step is constant. This leads
to dramatic savings (quadratic vs. linear) when exploring the parameter space,
as illustrated by Figure 4b.

1 https://github.com/PaulGainer/PMC

12

https://github.com/PaulGainer/PMC

1 50 100 150 200

0

20,000

40,000

60,000

n

cu
m

u
la

ti
v
e

to
ta

l
o
p

er
a
ti

o
n
s

no reconf.

reconf.

(a)

1 50 100 150 200

0

20

40

60

n

%
to

ta
l

o
p
s.

fo
r

st
a
te

el
im

.

(b)

Fig. 4: Cumulative total of arithmetic operations performed for iterative analysis
of Zeroconf for n = 1 . . . 200 (a), and the ratio of total operations for reconfigu-
ration to total operations for regular state elimination, given as a percentage (b).

4.2 Oscillator Synchronisation

We now consider the models developed in [8] and [9] to analyse protocols for
the clock synchronisation of nodes in a network. In these protocols, consensus
on clock values emerges from interactions between the nodes. The underlying
mathematical model is that of coupled oscillators. This family of models is para-
metric in the number N of nodes that form the network; the granularity T of the
discretisation of the oscillation cycle; the length R of the refractory period, dur-
ing which nodes ignores interactions with their neighbours; the strength ε of the
coupling between the oscillators; and finally the likelihood µ of any individual
interaction between two nodes not occurring due to some external factor.

Each state of the model corresponds to some global configuration for the
network—a vector encoding the size of node clusters that share the same progress
through their oscillation cycle. The target states of interest are those in which
all nodes share the same progression through their cycle and are therefore syn-
chronised.

Changing the parameters N and T redefines the encoding of a global network
state. This results in drastic changes to the structure of the model and therefore
makes it hard to identify volatile states. Our prototypical implementation only
considers low-level models defined explicitly as a set of states and a transition
matrix, which trivialises the identification of volatile areas. Future implemen-
tation into ePMC, however, will allow volatile states to be clearly identified by
analysing the guards present in high-level model description languages [1]. This
works in particular for the parameters N and T we have studied.

Changing the parameter ε results in such severe changes in the structure of
the model that we do not see how the synergistic effects we have observed can
be ported to analysing its parameter space, while changing µ does not change
the structure of the underlying graph and hence is not interesting for what we
want to show.

In this paper, we therefore focus on the incremental analysis for the parameter
R. We arbitrarily fix N to be 5 and ε to be 0.1, and repeat the incremental

13

1 2 3
0

50

100

150

200

250

R

cu
m
u
la
ti
ve

to
ta
l
op

er
at
io
n
s

T=4

no reconf.
reconf.

1 2 3 4
0

200

400

600

800

R

T=5

1 2 3 4 5
0

2,000

4,000

6,000

8,000

R

T=6

1 2 3 4 5 6
0

1

2

3

4

·104

R

T=7

(a)

1 2 3

7.5

7.6

7.7

7.8

R

%
to
ta
l
op

s.
fo
r
st
at
e
el
im

.

T=4

1 2 3 4
6

7

8

9

10

11

R

T=5

1 2 3 4 5

6

8

10

12

14

16

R

T=6

1 2 3 4 5 6

5

10

15

20

R

T=7

(b)

Fig. 5: Cumulative total of arithmetic operations performed for iterative analysis
of synchronisation models with respect to R (a), and the ratio of totals for
reconfiguration to totals for regular state elimination given as a percentage (b).

analysis for four different values for T . The parameter R varies from 1 to T (for
each of the different values of T we have considered).

Figures 5a and 5b show the total number of performed arithmetic operations
and the ratio of the totals for regular state elimination to the totals for recon-
figuration given as a percentage, respectively. The effectiveness of the approach
lessens as T increases, a result of the rounding of real values to discrete inte-
ger values that occurs when generating the transitions for the initial model [8].
Higher values of T result in an increase in the number of possible successor
states for global states of the network, which in turn leads to an increase in the
number of transitions in the model. Similarly, incrementing R results in reduced
effectiveness as fewer interactions between nodes are ignored, and again more
transitions are introduced to the model.

Overall it is clear that, while still substantial, the gains here are not as
pronounced as those seen for the analysis of the Zeroconf protocol. This is to be
expected, since the structural changes induced by changing the parameter R are
not constant for each iteration—the higher the value of R the greater the extent
of the structural changes incurred.

5 Conclusion and Future Work

It is clear—and, in hindsight, unsurprising—that our approach works well for
structured Markov chains, such as chain-, ring-, or tree-like structures. Our ex-
periments have lent evidence to this by showing that where the cost of model-
checking an individual model grows linearly with a parameter, model checking up
to a parameter becomes linear in the maximal parameter considered, whereas

14

the overall costs grow quadratically if all models are considered individually.
Thus, we expect significant gain wherever changes can be localised and isolated.
Moreover, we expect this to be the norm rather than the exception. After all,
chains, rings, and trees are common structures in models.

It is quite striking that very specialised structures have enjoyed a lot of at-
tention, and so have absolutely general ones. The standard example for very
specialised structures is waiting queues. Fixed length waiting queues, for ex-
ample, have closed form solutions. Thus, when the system analyst creates a
structure, which is so standard that it has a known closed form solution and—
and this is a big ‘and’—realises that this is the case and looks up the closed form
solution, then this analysis is the unicorn. However, if the structure is slightly
different, if she fails to see that the problem has a closed form solution, or if she
does not want to invest the time to research the closed form solution, then she
would currently have to fall back to the näıve solution. Here our technique is a
nice sweet spot between these extremes: the speed is close to evaluating closed
form solutions, but applying our method does not put any burden on the system
analyst who creates the parametrised model.

The limitations of our model are that it loses much of its advantage when a
change in a parameter induces severe structural changes in the model. For the
synchronisation protocol, some parameters severely change the structure. This is
because most of the nodes are connected by an edge, and for such dense graphs,
structural changes can have a huge cone of influence. In the worst case, e.g. a
fully connected graph, a cubic overhead is incurred [10].

The next step of our work will be to tap the full potential of our approach by
integrating it into the probabilistic model checker ePMC [12]. Here the symbolic
description of the system will expose the volatile areas and—more importantly—
the non-volatile areas that appear to be stable under successive increments of
the parameter values. We also expect to obtain synergies by combining our
method with the approach of [7], extending our approach to models with non-
determinism, such as interactive Markov chains and Markov decision processes.

6 Acknowledgements

This work was supported by the Sir Joseph Rotblat Alumni Scholarship at Liv-
erpool, EPSRC grants EP/M027287/1 and EP/N007565/1, and by the Marie
Sk lodowska Curie Fellowship Parametrised Verification and Control.

References

1. Alur, R., Henzinger, T.A.: Reactive modules. Formal methods in system design
15(1), 7–48 (1999)

2. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model
repair for probabilistic systems. In: TACAS. pp. 326–340 (2011)

3. Bohnenkamp, H., van der Stok, P., Hermanns, H., Vaandrager, F.: Cost-
optimization of the IPv4 zeroconf protocol, pp. 531–540. IEEE Computer Society
Press (2003)

15

4. Daws, C.: Symbolic and parametric model checking of discrete-time markov chains.
In: International Colloquium on Theoretical Aspects of Computing. pp. 280–294.
Springer (2004)

5. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen,
J., Ábrahám, E.: PROPhESY: A probabilistic parameter synthesis tool. In: CAV.
pp. 214–231 (2015)

6. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A storm is coming: A modern
probabilistic model checker. In: CAV. pp. 592–600. Springer (2017)

7. Forejt, V., Kwiatkowska, M., Parker, D., Qu, H., Ujma, M.: Incremental runtime
verification of probabilistic systems. In: International Conference on Runtime Ver-
ification. pp. 314–319. Springer (2012)

8. Gainer, P., Linker, S., Dixon, C., Hustadt, U., Fisher, M.: Investigating parametric
influence on discrete synchronisation protocols using quantitative model checking.
In: QEST. pp. 224–239. Springer (2017)

9. Gainer, P., Linker, S., Dixon, C., Hustadt, U., Fisher, M.: The power of syn-
chronisation: Formal analysis of power consumption in networks of pulse-coupled
oscillators. arXiv preprint arXiv:1709.04385 (2017)

10. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: Param: A model checker for
parametric markov models. In: CAV. pp. 660–664. Springer (2010)

11. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
markov models. STTT 13(1), 3–19 (2011)

12. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscas m c: a web-based
probabilistic model checker. In: FM. pp. 312–317. Springer (2014)

13. Hopcroft, J.E.: Introduction to automata theory, languages, and computation.
Pearson Education India (2008)

14. Jansen, N., Corzilius, F., Volk, M., Wimmer, R., Ábrahám, E., Katoen, J., Becker,
B.: Accelerating parametric probabilistic verification. In: QEST. pp. 404–420
(2014)

15. Johnson, B., Kress-Gazit, H.: Probabilistic analysis of correctness of high-level
robot behavior with sensor error. In: Robotics: Science and Systems (2011)

16. Johnson, B., Kress-Gazit, H.: Probabilistic guarantees for high-level robot behavior
in the presence of sensor error. Autonomous Robots 33(3), 309–321 (2012)

17. Johnson, B.L.: Synthesis, analysis, and revision of correct-by-construction con-
trollers for robots with sensing and actuation errors. Ph.D. thesis, Cornell Univer-
sity (2015)

18. Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov chains: with a chap-
ter of Markov random fields by David Griffeath, vol. 40. Springer Science & Busi-
ness Media (2012)

19. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Inter-
national School on Formal Methods for the Design of Computer, Communication
and Software Systems. pp. 220–270. Springer (2007)

20. Kwiatkowska, M., Norman, G., Parker, D.: Prism 4.0: Verification of probabilistic
real-time systems. In: CAV. pp. 585–591. Springer (2011)

21. Kwiatkowska, M., Parker, D., Qu, H.: Incremental quantitative verification for
markov decision processes. In: International Conference on Dependable Systems &
Networks. pp. 359–370. IEEE (2011)

22. Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscilla-
tors. SIAM Journal on Applied Mathematics 50(6), 1645–1662 (1990)

23. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.: Parameter synthesis
for markov models: Faster than ever. In: ATVA. pp. 50–67 (2016)

16

	Incremental Verification of Parametric and Reconfigurable Markov Chains

