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Abstract11

Quantitative extensions of parity games have recently attracted significant interest. These ex-12

tensions include parity games with energy and payoff conditions as well as finitary parity games13

and their generalization to parity games with costs. Finitary parity games enjoy a special status14

among these extensions, as they offer a native combination of the qualitative and quantitative15

aspects in infinite games: the quantitative aspect of finitary parity games is a quality measure16

for the qualitative aspect, as it measures the limit superior of the time it takes to answer an odd17

color by a larger even one. Finitary parity games have been extended to parity games with costs,18

where each transition is labelled with a non-negative weight that reflects the costs incurred by19

taking it. We lift this restriction and consider parity games with costs with arbitrary integer20

weights. We show that solving such games is in NP∩co-NP, the signature complexity for games21

of this type. We also show that the protagonist has finite-state winning strategies, and provide22

tight exponential bounds for the memory he needs to win the game. Naturally, the antagonist23

may need infinite memory to win. Finally, we present tight bounds on the quality of winning24

strategies for the protagonist.25
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1 Introduction30

Finite games of infinite duration offer a wealth of challenges and applications that has31

garnered to a lot of attention. The traditional class of games under consideration were32

games with a simple parity [19, 12, 11, 21, 2, 31, 15, 16, 29, 18, 25, 27, 26, 3, 17, 13, 20] or33

payoff [24, 32, 15, 1, 27] objective. These games form a hierarchy with very simple tractable34

reductions from parity games through mean payoff games [24, 32, 15, 1, 27] and discounted35

payoff games [32, 15, 27] to simple stochastic games [9].36
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35:2 Parity Games with Weights

More recently, games with a mixture of the qualitative parity condition and further37

quantitative objectives have been considered, including mean payoff parity games [8] and38

energy parity games [4]. Finitary parity games [7] take a special role within the class of39

games with mixed parity and payoff objectives. To win a finitary parity game, Player 040

needs to enforce a play with a bound b such that almost all occurrences of an odd color are41

followed by a higher even color within at most b steps.42

This is interesting, because it provides a natural link between the qualitative and quanti-43

tative objective. One aspect that attracted attention is that, as long as one is not interested44

in optimizing the bound b, these games are the only games of the lot that are known to be45

tractable [7]. However, the bound b itself is also interesting: It serves as a native quality46

measure, because it limits the response time [30].47

This property calls for a generalization to different cost models, and a first generalization48

has been made with the introduction of parity games with costs [14]. In parity games with49

costs, the basic cost function of finitary parity games—where each step incurs the same50

cost—is replaced with different non-negative costs for different edges. In this paper, we51

generalize this further to general integer costs: We decorate the edges with integer weights.52

The quantitative aspect in these parity games with weights consists of having to answer53

almost all odd colors by a higher even color, such that the absolute value of the weight of the54

path to this even color is bounded by a bound b.55

In addition to their conceptual charm, we show that parity games with weights are PTime56

equivalent to energy parity games. This indicates that these games are part of a natural57

complexity class, whereas the games with a plain objective appear to form a hierarchy. We58

use the reduction from parity games with weights to energy parity games to solve them.59

This reduction goes through intermediate reductions to and from bounded parity games60

with weights. These games have the additional restriction that the limit superior of the61

absolute weight of initial sequences of unanswered requests in a play is finite. These bounded62

parity games with weights are then reduced to energy parity games. The other direction63

of the reduction is through simple gadgets that preserve the main elements of winning64

strategies in games that are extended in two steps by very simple gadgets. As a result,65

we obtain the same complexity results for parity games with weights as for energy parity66

games, i.e., NP ∩ co-NP, the signature complexity for finite games of infinite duration with67

parity conditions and their extensions. Thereby, we obtain an argument that these games68

might be representatives of a natural complexity class, lending a further argument for the69

relevance of two player games with mixed qualitative and quantitative winning conditions.70

Furthermore, Daviaud et al. recently showed that parity games with weights can even be71

solved in pseudo-quasi-polynomial time [10].72

Naturally, parity games with weights subsume parity games (as a special case where all73

weights are zero), finitary parity games (as a special case where all weights are positive), and74

parity games with costs (as a special case where all weights are non-negative).75

Finally, we show that the protagonist has finite-state winning strategies, and provide76

tight exponential bounds for the memory he needs to win the game. We also present tight77

bounds on the quality of winning strategies for the protagonist. Naturally, the antagonist78

may need infinite memory to win.79

2 Preliminaries80

We denote the non-negative integers by N, the integers by Z, and define N∞ = N ∪ {∞}. As81

usual, we have ∞ > n, −∞ < n, n+∞ =∞, and −∞− n = −∞ for all n ∈ Z.82
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An arena A = (V, V0, V1, E) consists of a finite, directed graph (V,E) and a parti-83

tion {V0, V1} of V into the positions of Player 0 (drawn as ellipses) and Player 1 (drawn84

as rectangles). The size of A, denoted by |A|, is defined as |V |. A play in A is an infinite85

path ρ = v0v1v2 · · · through (V,E). To rule out finite plays, we require every vertex to86

be non-terminal. We define |ρ| = ∞. Dually, for a finite play prefix π = v0 · · · vj we87

define |π| = j + 1.88

A game G = (A,Win) consists of an arena A with vertex set V and a set Win ⊆ V ω of89

winning plays for Player 0. The set of winning plays for Player 1 is V ω \Win. A winning90

condition Win is 0-extendable if, for all ρ ∈ V ω and all w ∈ V ∗, ρ ∈Win implies wρ ∈Win.91

Dually, Win is 1-extendable if, for all ρ ∈ V ω and all w ∈ V ∗, ρ /∈Win implies wρ /∈Win.92

A strategy for Player i ∈ {0, 1} is a mapping σ : V ∗Vi → V such that (v, σ(wv)) ∈ E93

holds true for all wv ∈ V ∗Vi. We say that σ is positional if σ(wv) = σ(v) holds true94

for every wv ∈ V ∗Vi. A play v0v1v2 · · · is consistent with a strategy σ for Player i, if95

vj+1 = σ(v0 · · · vj) holds true for every j with vj ∈ Vi. A strategy σ for Player i is a96

winning strategy for G from v ∈ V if every play that starts in v and is consistent with97

σ is won by Player i. If Player i has a winning strategy from v, then we say Player i98

wins G from v. The winning region of Player i is the set of vertices, from which Player i99

wins G; it is denoted by Wi(G). Solving a game amounts to determining its winning regions.100

If W0(G) ∪W1(G) = V , then we say that G is determined.101

Let A = (V, V0, V1, E) be an arena and let X ⊆ V . The i-attractor of X is defined102

inductively as Attri(X) = Attr|V |i (X), where Attr0
i (X) = X and103

104

Attrji (X) = Attrj−1
i (X) ∪ {v ∈ Vi | ∃v′ ∈ Attrj−1

i (X). (v, v′) ∈ E}105

∪ {v ∈ V1−i | ∀(v, v′) ∈ E. v′ ∈ Attrj−1
i (X)} .106

107

Hence, Attri(X) is the set of vertices from which Player i can force the play to enter X:108

Player i has a positional strategy σX such that each play that starts in some vertex in Attri(X)109

and is consistent with σX eventually encounters some vertex from X. We call σX an attractor110

strategy towards X. Moreover, the i-attractor can be computed in time linear in |E| [23].111

When we want to stress the arena A the attractor is computed in, we write AttrAi (X).112

A set X ⊆ V is a trap for Player i, if every vertex in X ∩ Vi has only successors in X113

and every vertex in X ∩ V1−i has at least one successor in X. In this case, Player 1− i has114

a positional strategy τX such that every play starting in some vertex in X and consistent115

with τX never leaves X. We call such a strategy a trap strategy.116

I Remark 1.117

1. The complement of an i-attractor is a trap for Player i.118

2. If X is a trap for Player i, then Attr1−i(X) is also a trap for Player i.119

3. If Win is i-extendable and (A,Win) determined, then W1−i(A,Win) is a trap for Player i.120

A memory structure M = (M, init,upd) for an arena (V, V0, V1, E) consists of a121

finite set M of memory states, an initialization function init : V → M , and an update122

function upd: M × E → M . The update function can be extended to finite play prefixes123

in the usual way: upd+(v) = init(v) and upd+(wvv′) = upd(upd+(wv), (v, v′)) for w ∈ V ∗124

and (v, v′) ∈ E. A next-move function Nxt: Vi × M → V for Player i has to satisfy125

(v,Nxt(v,m)) ∈ E for all v ∈ Vi and m ∈ M . It induces a strategy σ for Player i with126

memoryM via σ(v0 · · · vj) = Nxt(vj ,upd+(v0 · · · vj)). A strategy is called finite-state if it127

can be implemented by a memory structure. We define |M| = |M |. Slightly abusively, we128

say that the size of a finite-state strategy is the size of a memory structure implementing it.129

CSL 2018
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Cor(ρ, j)

Cor(ρ, j)

w

vj vj′

Figure 1 The cost-of-response of some request posed by visiting vertex vj , which is answered by
visiting vertex vj′ .

3 Parity Games with Weights130

Fix an arena A = (V, V0, V1, E). A weighting for A is a function w : E → Z. We de-131

fine w(ε) = w(v) = 0 for all v ∈ V and extend w to sequences of vertices of length at least132

two by summing up the weights of the traversed edges. Given a play (prefix) π = v0v1v2 · · · ,133

we define the amplitude of π as Ampl(π) = supj<|π| |w(v0 · · · vj)| ∈ N∞.134

A coloring of V is a function Ω: V → N. The classical parity condition requires almost135

all occurrences of odd colors to be answered by a later occurrence of a larger even color.136

Hence, let Ans(c) = {c′ ∈ N | c′ ≥ c and c′ is even} be the set of colors that “answer” a137

“request” for color c. We denote a vertex v of color c by v/c.138

Fijalkow and Zimmermann introduced a generalization of the parity condition and the139

finitary parity condition [7], the parity condition with costs [14]. There, the edges of the140

arena are labeled with non-negative weights and the winning condition demands that there141

exists a bound b such that almost all requests are answered with weight at most b, i.e., the142

weight of the infix between the request and the response has to be bounded by b.143

Our aim is to extend the parity condition with costs by allowing for the full spectrum of144

weights to be used, i.e., by also incorporating negative weights. In this setting, the weight of145

an infix between a request and a response might be negative. Thus, the extended condition146

requires the weight of the infix to be bounded from above and from below.3 To distinguish147

between the parity condition with costs and the extension introduced here, we call our148

extension the parity condition with weights.149

Formally, let ρ = v0v1v2 · · · be a play. We define the cost-of-response at position j ∈ N150

of ρ by151

Cor(ρ, j) = min{Ampl(vj · · · vj′) | j′ ≥ j,Ω(vj′) ∈ Ans(Ω(vj))}152

where we use min ∅ =∞. As the amplitude of an infix only increases by extending the infix,153

Cor(ρ, j) is the amplitude of the shortest infix that starts at position j and ends at an answer154

to the request posed at position j. We illustrate this notion in Figure 1.155

We say that a request at position j is answered with cost b, if Cor(ρ, j) = b. Consequently,156

a request with an even color is answered with cost zero. The cost-of-response of an unanswered157

request is infinite, even if the amplitude of the remaining play is bounded. In particular,158

this means that an unanswered request at position j may be “unanswered with finite cost b”159

(if the amplitude of the remaining play is b ∈ N) or “unanswered with infinite cost” (if the160

amplitude of the remaining play is infinite). In either case, however, we have Cor(ρ, j) =∞.161

3 We discuss other possible interpretations of negative weights in Section 9.
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We define the parity condition with weights as162

WeightParity(Ω, w) = {ρ ∈ V ω | lim supj→∞ Cor(ρ, j) ∈ N} .163

I.e., ρ satisfies the condition if and only if there exists a bound b ∈ N such that almost all164

requests are answered with cost less than b. In particular, only finitely many requests may165

be unanswered, even with finite cost. Note that the bound b may depend on the play ρ.166

We call a game G = (A,WeightParity(Ω, w)) a parity game with weights, and we de-167

fine |G| = |A|+log(W ), whereW is the largest absolute weight assigned by w; i.e., we assume168

weights to be encoded in binary. If w assigns zero to every edge, then WeightParity(Ω, w) is169

a classical (max-) parity condition, denoted by Parity(Ω). Similarly, if w assigns positive170

weights to every edge, then WeightParity(Ω, w) is equal to the finitary parity condition over171

Ω, as introduced by Chatterjee and Henzinger [6]. Finally, if w assigns only non-negative172

weights, then WeightParity(Ω, w) is a parity condition with costs, as introduced by Fijalkow173

and Zimmermann [14]. In these cases, we refer to G as a parity game, a finitary parity game,174

or a parity game with costs, respectively. We recall the characteristics of these games in175

Table 1 on Page 15.176

4 Solving Parity Games with Weights177

We now show how to solve parity games with weights. Our approach is inspired by the classic178

work on finitary parity games [7] and parity games with costs [14]: We first define a stricter179

variant of these games, which we call bounded parity games with weights, and then show180

two reductions:181

parity games with weights can be solved in polynomial time with oracles that solve182

bounded parity games with weights (in this section); and183

bounded parity games with weights can be solved in polynomial time with oracles that184

solve energy parity games (Section 5).185

Furthermore, in Section 8 we polynomially reduce solving energy parity games to solving186

parity games with weights and thereby show that parity games with weights, bounded parity187

games with weights, and energy parity games belong to the same complexity class.188

The energy parity games that we reduce to are known to be efficiently solvable [4, 10]:189

they are in NP ∩ co-NP and can be solved in pseudo-quasi-polynomial time.190

We first introduce the bounded parity condition with weights, which is a strength-191

ening of the parity condition with weights. Hence, it is also induced by a coloring and a192

weighting:193

194

BndWeightParity(Ω, w) = WeightParity(Ω, w)195

∩ {ρ ∈ V ω | no request in ρ is unanswered with infinite cost} .196
197

Note that this condition allows for a finite number of unanswered requests, as long as they198

are unanswered with finite cost.199

We solve parity games with weights by repeatedly solving bounded parity games with200

weights. To this end, we apply the following two properties of the winning conditions:201

We have BndWeightParity(Ω, w) ⊆WeightParity(Ω, w) as well as that WeightParity(Ω, w)202

is 0-extendable. Hence, if Player 0 has a strategy from a vertex v such that every203

consistent play has a suffix in BndWeightParity(Ω, w), then the strategy is winning for204

her from v w.r.t. WeightParity(Ω, w). Thus, Attr0(W0(A,BndWeightParity(Ω, w))) ⊆205

W0(A,WeightParity(Ω, w)). The algorithm that solves parity games with weights repeatedly206

CSL 2018
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removes attractors of winning regions of the bounded parity game with weights until a fixed207

point is reached. We will later formalize this sketch to show that the removed parts are a208

subset of Player 0’s winning region in the parity game with weights.209

To show that the obtained fixed point covers the complete winning region of Player 0, we210

use the following lemma to show that the remaining vertices are a subset of Player 1’s winning211

region in the parity game with weights. The proof is very similar to the corresponding one212

for finitary parity games and parity games with costs.213

I Lemma 2. Let G = (A,WeightParity(Ω, w)) and let G′ = (A,BndWeightParity(Ω, w)). If214

W0(G′) = ∅, then W0(G) = ∅.215

Lemma 2 implies that the algorithm for solving parity games with weights by repeatedly216

solving bounded parity games with weights (see Algorithm 1) is correct. Note that we use217

an oracle for solving bounded parity games with weights. We provide a suitable algorithm in218

Section 5.219

Algorithm 1 A fixed-point algorithm computing W0(A,WeightParity(Ω, w)).
k = 0; W k

0 = ∅; Ak = A
repeat
k = k + 1
Xk =W0(Ak−1,BndWeightParity(Ω, w))
W k

0 = W k−1
0 ∪AttrAk−1

0 (Xk)
Ak = Ak−1 \AttrAk−1

0 (Xk)
until Xk = ∅
return W k

0

The loop terminates after at most |A| iterations (assuming the algorithm solving bounded220

parity games with weights terminates), as during each iteration at least one vertex is removed221

from the arena. The correctness proof relies on Lemma 2 and is similar to the one for finitary222

parity games [7] and for parity games with costs [14].223

I Lemma 3. Algorithm 1 returns W0(A,WeightParity(Ω, w))224

The winning strategy defined in the proof of Lemma 3 can be implemented by a memory225

structure of size maxk≤k∗ sk, where sk is the size of a winning strategy σk for Player 0 in226

the bounded parity game with weights solved in the k-th iteration, and where k∗ is the value227

of k at termination. To this end, one uses the fact that the winning regions Xk are disjoint228

and are never revisited once left. Hence, we can assume the implementations of the σk to229

use the same states.230

5 Solving Bounded Parity Games with Weights231

After having reduced the problem of solving parity games with weights to that of solving232

(multiple) bounded parity games with weights, we reduce solving bounded parity games with233

weights to solving (multiple) energy parity games [4].234

Similarly to a parity game with weights, in an energy parity game, the vertices are colored235

and the edges are equipped with weights. It is the goal of Player 0 to satisfy the parity236

condition, while, at the same time, ensuring that the weight of every infix, its so-called energy237

level, is bounded from below. In contrast to a parity game with weights, however, the weights238

in an energy parity game are not tied to the requests and responses denoted by the coloring.239
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v1/1 v2/2

−1

−1
v1/1 v2/0 v3/2

0

+1

0

0

Figure 2 The difference between energy parity games and parity games with weights.

Consider, for example, the games shown in Figure 2. In the game on the left-hand side,240

players only have a single, trivial strategy. If we interpret this game as a parity game with241

weights, Player 0 wins from every vertex, as each request is answered with cost one. If242

we, however, interpret that game as an energy parity game, Player 1 instead wins from243

every vertex, since the energy level decreases by one with every move. In the game on the244

right-hand side, the situation is mirrored: When interpreting this game as a parity game245

with weights, Player 1 wins from every vertex, as she can easily unbound the costs of the246

requests for color one by staying in vertex v2 for an ever-increasing number of cycles. Dually,247

when interpreting this game as an energy parity game, Player 0 wins from every vertex, since248

the parity condition is clearly satisfied in every play, and Player 1 is only able to increase249

the energy level, while it is never decreased.250

In Section 5.1, we introduce energy parity games formally and present how to solve251

bounded parity games with weights via energy games in Section 5.2.252

5.1 Energy Parity Games253

An energy parity game G = (A,Ω, w) consists of an arena A = (V, V0, V1, E), a color-254

ing Ω: V → N of V , and an edge weighting w : E → Z of E. Note that this definition is255

not compatible with the framework presented in Section 2, as we have not (yet) defined the256

winner of the plays. This is because they depend on an initial credit, which is existentially257

quantified in the definition of winning the game G. Formally, the set of winning plays with258

initial credit c0 ∈ N is defined as259

EnergyParityc0(Ω, w) = Parity(Ω) ∩ {v0v1v2 · · · ∈ V ω | ∀j ∈ N. c0 + w(v0 · · · vj) ≥ 0} .260

Now, we say that Player 0 wins G from v if there exists some initial credit c0 ∈ N such that261

he wins Gc0 = (A,EnergyParityc0(Ω, w)) from v (in the sense of the definitions in Section 2).262

If this is not the case, i.e., if Player 1 wins Gc0 from v for every c0, then we say that Player 1263

wins G from v. Note that the initial credit is uniform for all plays, unlike the bound on the264

cost-of-response in the definition of the parity condition with weights, which may depend on265

the play.266

Unravelling these definitions shows that Player 0 wins G from v if there is an initial267

credit c0 and a strategy σ, such that every play that starts in v and is consistent with268

σ satisfies the parity condition and the accumulated weight over the play prefixes (the269

energy level) never drops below −c0. We call such a strategy σ a winning strategy for270

Player 0 in G from v. Dually, Player 1 wins G from v if, for every initial credit c0, there is271

a strategy τc0 , such that every play that starts in v and is consistent with τc0 violates the272

parity condition or its energy level drops below −c0 at least once. Thus, the strategy τc0273

may, as the notation suggests, depend on c0. However, Chatterjee and Doyen showed that274

using different strategies is not necessary: There is a uniform strategy τ that is winning from275

v for every initial credit c0.276

CSL 2018
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I Proposition 4 ([4]). Let G be an energy parity game. If Player 1 wins G from v, then she277

has a single positional strategy that is winning from v in Gc0 for every c0.278

We call such a strategy as in Proposition 4 a winning strategy for Player 1 from v. A279

play consistent with such a strategy either violates the parity condition, or the energy levels280

of its prefixes diverge towards −∞.281

Furthermore, Chatterjee and Doyen obtained an upper bound on the initial credit282

necessary for Player 0 to win an energy parity game, as well an upper bound on the size of a283

corresponding finite-state winning strategy.284

I Proposition 5 ([4]). Let G be an energy parity game with n vertices, d colors, and largest285

absolute weight W . The following are equivalent for a vertex v of G:286

1. Player 0 wins G from v.287

2. Player 0 wins G(n−1)W from v with a finite-state strategy with at most ndW states.288

The previous proposition yields that finite-state strategies of bounded size suffice for289

Player 0 to win.290

Such strategies do not admit long expensive descents, which we show by a straightforward291

pumping argument.292

I Lemma 6. Let G be an energy parity game with n vertices and largest absolute weight W .293

Further, let σ be a finite-state strategy of size s, and let ρ be a play that starts in some vertex,294

from which σ is winning, and is consistent with σ. Every infix π of ρ satisfies w(π) > −Wns.295

Moreover, Chatterjee and Doyen gave an upper bound on the complexity of solving energy296

parity games, which was recently supplemented by Daviaud et al. with an algorithm solving297

them in pseudo-quasi-polynomial time.298

I Proposition 7 ([4, 10]). The following problem is in NP ∩ co-NP and can be solved in299

pseudo-quasi-polynomial time: “Given an energy parity game G and a vertex v in G, does300

Player 0 win G from v?”301

5.2 From Bounded Parity Games with Weights to Energy Parity Games302

Let G = (A,BndWeightParity(Ω, w)) be a bounded parity game with weights with vertex303

set V . Without loss of generality, we assume Ω(v) ≥ 2 for all v ∈ V . We construct, for each304

vertex v∗ of A, an energy parity game Gv∗ with the following property: Player 1 wins Gv∗305

from some designated vertex induced by v∗ if and only if she is able to unbound the amplitude306

for the request of the initial vertex of the play when starting from v∗. This construction is307

the technical core of the fixed-point algorithm that solves bounded parity games with weights308

via solving energy parity games.309

The main obstacle towards this is that, in the bounded parity game with weights G,310

Player 1 may win by unbounding the amplitude for a request from above or from below,311

while she can only win Gv∗ by unbounding the costs from below. We model this in Gv∗ by312

constructing two copies of A. In one of these copies the edge weights are copied from G,313

while they are inverted in the other copy. We allow Player 1 to switch between these copies314

arbitrarily. To compensate for Player 1’s power to switch, Player 0 can increase the energy315

level in the resulting energy parity game during each switch.316

First, we define the set of polarities P = {+,−} as well as + = − and − = +. Given a317

vertex v∗ of A, define the “polarized” arena Av∗ = (V ′, V ′0 , V ′1 , E′) of A = (V, V0, V1, E) with318

V ′ = (V × P ) ∪ (E × P × {0, 1}),319
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V ′i = (Vi × P ) ∪ (E × P × {i}) for i ∈ {0, 1}, and320

E′ contains the following edges for every edge e = (v, v′) ∈ E with Ω(v) /∈ Ans(Ω(v∗))321

and every polarity p ∈ P :322

((v, p), (e, p, 1)): The player whose turn it is at v picks a successor v′. The edge e =323

(v, v′) is stored as well as the polarity p.324

((e, p, 1), (v′, p)): Then, Player 1 can either keep the polarity p unchanged and execute325

the move to v′, or326

((e, p, 1), (e, p, 0)): she decides to change the polarity, and another auxiliary vertex is327

reached.328

((e, p, 0), (e, p, 0)): If the polarity is to be changed, then Player 0 is able to use a329

self-loop to increase the energy level (see below), before330

((e, p, 0), (v′, p)): he can eventually complete the polarity switch by moving to v′.331

Furthermore, for every vertex v with Ω(v) ∈ Ans(Ω(v∗)) and every polarity p ∈ P , E′332

contains the self-loop ((v, p), (v, p)).4333

Thus, a play in Av∗ simulates a play in A, unless Player 0 stops the simulation by using334

the self-loop at a vertex of the form (e, p, 0) ad infinitum, and unless an answer to Ω(v∗)335

is reached. We define the coloring and the weighting for Av∗ so that Player 0 loses in the336

former case and wins in the latter case. Furthermore, the coloring is defined so that all337

simulating plays that are not stopped have the same color sequence as the simulated play338

(save for irrelevant colors on the auxiliary vertices in E × P × {0, 1}). Hence, we define339

Ωv∗(v) =


Ω(v′) if v = (v′, p) with v′ /∈ Ans(Ω(v∗)) ,

0 if v = (v′, p) with v′ ∈ Ans(Ω(v∗)) ,

1 otherwise .

340

As desired, due to our assumption that Ω(v) ≥ 2 for all v ∈ V , the vertices from E×P×{0, 1}341

do not influence the maximal color visited infinitely often during a play, unless Player 0 opts342

to remain in some (e, p, 0) ad infinitum (and thereby violating the parity condition) or an343

answer to the color of v∗ is reached (and thereby satisfying the parity condition).344

Moreover, recall that our aim is to allow Player 1 to choose the polarity of edges by345

switching between the two copies of A occurring in Av∗ . Intuitively, Player 1 should opt for346

positive polarity in order to unbound the costs incurred by the request posed by v∗ from347

above, while she should opt for negative polarity in order to unbound these costs from below.348

Since in an energy parity game, it is, broadly speaking, beneficial for Player 1 to move along349

edges of negative weight, we negate the weights of edges in the copy of A with positive350

polarity. Thus, we define351

wv∗(e) =


−w(v, v′) if e = ((v,+), ((v, v′),+, 1)) ,

w(v, v′) if e = ((v,−), ((v, v′),−, 1)) ,

1 if e = ((e, p, 0), (e, p, 0)) ,

0 otherwise .

352

This definition implies that the self-loops at vertices of the form (v, p) with Ω(v) ∈ Ans(Ω(v∗))353

have weight zero. Combined with the fact that these vertices have color zero, this allows354

4 Note that this definition introduces some terminal vertices, i.e., those of the form ((v, v′), p, i) with
Ω(v) ∈ Ans(Ω(v∗)). However, these vertices also have no incoming edges. Hence, to simplify the
definition, we just ignore them.
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Player 0 to win Gv∗ by reaching such a vertex. Intuitively, answering the request posed at355

v∗ is beneficial for Player 0. In particular, if Ω(v∗) is even, then Player 0 wins Gv∗ trivially356

from (v∗, p), as we then have Ω(v∗) ∈ Ans(Ω(v∗)).357

Finally, define the energy parity game Gv∗ = (Av∗ ,Ωv∗ , wv∗). In the following, we are358

only interested in plays starting in vertex (v∗,+) in Gv∗ .359

v0/5

v1/4

v2/4

v3/6

0

0

+1

0

−1

0

0

v0,+/5

v1,+/4

v2,+/4

v3,+/0

v0,−/5

v1,−/4

v2,−/4

v3,−/0

+1

+1

+1

+1

+1

+1
+1

+1

-1
+1

+1
+1

+1
+1

-1
+1

Figure 3 A bounded parity game with weights G and the associated energy parity game Gv0 .
The unnamed vertices of Player 1 (Player 0) are of the form ((v, v′), p, 1) (of the form ((v, v′), p, 0))
when between the vertices (v, p) and (v′, p′). All missing edge weights in Gv0 are 0.

I Example 8. Consider the bounded parity game with weights depicted on the left hand side360

of Figure 3 and the associated energy parity game Gv0 on the right side. First, let us note361

that all other Gv for v 6= v0 are trivial in that they all consist of a single vertex (reachable362

from (v,+)), which has even color with a self-loop of weight zero. Hence, Player 0 wins each363

of these games from (v,+).364

Player 1 wins G from v0, where a request for color 5 is opened, which is then kept365

unanswered with infinite cost by using the self-loop at v1 or v2 ad infinitum, depending on366

which successor Player 0 picks.367

We show that Player 1 wins Gv0 from (v0,+): the outgoing edges of (v0,+) correspond368

to picking the successor v1 or v2 as in G. Before this is executed, however, Player 1 gets to369

pick the polarity of the successor: she should pick + for v1 and − for v2. Now, Player 0370

may use the self-loop at her “tiny” vertices ad infinitum. These vertices have color one, i.e.,371

Player 1 wins the resulting play. Otherwise, we reach the vertex (v1,+) or (v2,−). From372

both vertices, Player 1 can enforce a loop of negative weight, which allows him to win by373

violating the energy condition.374

Note that the winning strategy for Player 1 for G from v is very similar to that for her375

for Gv0 from (v0,+). We show that one direction holds in general: A winning strategy for376

Player 0 for Gv from (v,+) is “essentially” one for him in G from v.377

Note that the other direction does, in general, not hold. This can be seen by adding a378

vertex v−1 of color 3 with a single edge to v0. Then, vertices of the form (vi, p) with i ∈ {1, 2}379

in Gv−1 are winning sinks for Player 0. Hence, he wins Gv−1 from (v−1, p) in spite of losing380

the bounded parity game with weights from v−1.381

Hence, the initial request the vertex v inducing Gv plays a special role in the construction:382

It is the request Player 1 aims to keep unanswered with infinite cost. To overcome this and383
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to complete our construction, we show a statement reminiscent of Lemma 2: If Player 0 wins384

Gv from (v,+) for every v, then she also wins Gx from every vertex. With this relation at385

hand, one can again construct a fixed-point algorithm solving bounded parity games with386

weights using an oracle for solving energy parity games that is very similar to Algorithm 1.387

Formally, we have the following lemma, which forms the technical core of our algorithm388

that solves bounded parity games with weights by solving energy parity games.389

I Lemma 9. Let G be a bounded parity game with weights with vertex set V .390

1. Let v∗ ∈ V . If Player 1 wins Gv∗ from (v∗,+), then v∗ ∈ W1(G).391

2. If Player 0 wins Gv∗ from (v∗,+) for all v∗ ∈ V , then W1(G) = ∅.392

This lemma is the main building block for the algorithm that solves bounded parity games393

with weights by repeatedly solving energy parity games, which is very similar to Algorithm 1.394

Indeed, we just swap the roles of the players: We compute 1-attractors instead of 0-attractors395

and we change the definition of Xk. Hence, we obtain the following algorithm (Algorithm 2).396

Algorithm 2 A fixed-point algorithm computing W1(A,BndWeightParity(Ω, w)).
k = 0; W k

1 = ∅; Ak = A
repeat
k = k + 1
Xk = {v∗ | Player 1 wins the energy parity game ((Ak−1)v∗ ,Ωv∗ , wv∗) from (v∗,+)}
W k

1 = W k−1
1 ∪AttrAk−1

1 (Xk)
Ak = Ak−1 \AttrAk−1

1 (Xk)
until Xk = ∅
return W k

1

Algorithm 2 terminates after solving at most a quadratic number of energy parity397

games. Furthermore, the proof of correctness is analogous to the one for Algorithm 1,398

relying on Lemma 9. We only need two further properties: the 1-extendability of399

BndWeightParity(Ω, w), and an assertion that AttrAk−1
1 (Xk) is a trap for Player 0 in Ak−1.400

Both are easy to verify.401

After plugging Algorithm 2 into Algorithm 1, Proposition 7 yields our main theorem,402

settling the complexity of solving parity games with weights.403

I Theorem 10. The following problem is in NP∩co-NP and can be solved in pseudo-quasi-404

polynomial time: “Given a parity game with weights G and a vertex v in G, does Player 0405

win G from v?”406

6 Memory Requirements407

We now discuss the upper and lower bounds on the memory required to implement winning408

strategies for either player. Recall that we use binary encoding to denote weights, i.e., weights409

may be exponential in the size of the game. In this section we show polynomial (in n, d,410

and W ) upper and lower bounds on the necessary and sufficient memory for Player 0 to411

win parity games with weights. Due to the binary encoding of weights, these bounds are412

exponential in the size of the game. In contrast, Player 1 requires infinite memory.413

I Theorem 11. Let G be a parity game with weights with n vertices, d colors, and largest414

absolute weight W assigned to any edge in G. Moreover, let v be a vertex of G.415

1. Player 0 has a winning strategy σ from W0(G) with |σ| ∈ O(nd2W ). This bound is tight.416
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vreq/3 v′req,1/1 · · · v′req,n/1 vdel/1 v′ans/2 vans/4
0 W W W

−1

0

0

0

0

n vertices

Figure 4 A game of size O(n) in which Player 0 only wins with strategies of size at least nW + 1.

2. There exists a parity game with weights G, such that Player 1 has a winning strategy from417

each vertex v in G, but she has no finite-state winning strategy from any v in G.418

The proof of the second item of Theorem 11 is straightforward, since Player 1 already419

requires infinite memory to implement winning strategies in finitary parity games [7]. Since420

parity games with weights subsume finitary parity games, this result carries over to our421

setting. We show the game witnessing this lower bound on the right-hand side of Figure 2.422

In contrast, exponential memory is sufficient, but also necessary, for Player 0. To this end,423

we first prove that the winning strategy for him constructed in the proof of Lemma 9.2 suffers424

at most a linear blowup in comparison to his winning strategies in the underlying energy425

parity games. This is sufficient as we have argued in Section 4 that the construction of a426

winning strategy for Player 0 in a parity game with weights suffers no blowup in comparison427

to the underlying bounded parity games with weights.428

I Lemma 12. Let G, n, d, and W be as in Theorem 11. Player 0 has a finite-state winning429

strategy of size at most d(6n)(d+ 2)(W + 1) from W0(G).430

Having established an upper bound on the memory required by Player 0, we now proceed431

to show that this exponential bound is indeed tight, which is witnessed by the games Gn432

depicted in Figure 4.433

I Lemma 13. Let n,W ∈ N. There exists a parity game with weights Gn,W with n vertices434

and largest absolute weight W such that Player 0 wins Gn from every vertex, but each winning435

strategy for her is of size at least nW + 1.436

7 Quality of Strategies437

We have shown in the previous section that finite-state strategies of bounded size suffice for438

Player 0 to win in parity games with weights, while Player 1 clearly requires infinite memory.439

However, as we are dealing with a quantitative winning condition, we are not only interested440

in the size of winning strategies, but also in their quality. More precisely, we are interested441

in an upper bound on the cost of requests that Player 0 can ensure. In this section, we show442

that he can guarantee an exponential upper bound on such costs. Dually, Player 1 is required443

to unbound the cost of responses.444

I Theorem 14. Let G be a parity game with weights with n vertices, d colors, and largest445

absolute weight W .446

There exists a b ∈ O((ndW )2) and a strategy σ for Player 0 such that, for all plays ρ447

beginning in W0(G) and consistent with σ, we have lim supj→∞ Cor(ρ, j) ≤ b. This bound is448

tight.449
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v1/1 v2/0 · · · vn−1/0 vn/2
W W W W

W

Figure 5 The game Gn,W witnessing an exponential lower bound on the cost that Player 0 can
ensure.

We first show that Player 0 can indeed ensure an upper bound as stated in Theorem 14.450

We obtain this bound via a straightforward pumping argument leveraging the upper bound451

on the size of winning strategies obtained in Lemma 12.452

I Lemma 15. Let G, n, d, and W be as in the statement of Theorem 14 and let s =453

d(6n)(d+ 2)(W + 1). Player 0 has a winning strategy σ such that, for each play ρ that starts454

in W0(G) and is consistent with σ, we have lim supj→∞Cor(ρ, j) ≤ nsW .455

Having thus shown that Player 0 can indeed ensure an exponential upper bound on the456

incurred cost, we now proceed to show that this bound is tight. A simple example shows457

that there exists a series of parity games with weights, in which Player 0 wins from every458

vertex, but in which he cannot enforce a sub-exponential cost of any request.459

I Lemma 16. Let n,W ∈ N. There exists a parity game with weights Gn,W with n vertices460

and largest absolute weight W as well as a vertex v ∈ W0(G), such that for each winning461

strategy for Player 0 from v there exists a play ρ starting in v and consistent with σ462

with lim supj→∞Cor(ρ, j) ≥ (n− 1)W .463

Proof. We show the game Gn,W in Figure 5. The arena of Gn,W is a cycle with n vertices of464

Player 1, where each edge has weight W . Moreover, one vertex is labeled with color two, its465

directly succeeding vertex is labeled with color one. All remaining vertices have color zero.466

Player 0 only has a single strategy in this game and there exist only n plays in Gn,W ,467

each starting in a different vertex of Gn. In each play, each request for color one is only468

answered after n− 1 steps, each contributing a cost of W . Hence, this request incurs a cost469

of (n− 1)W . Moreover, as this request is posed and answered infinitely often in each play,470

we obtain the desired result. J471

8 From Energy Parity Games to (Bounded) Parity Games with472

Weights473

We have discussed in Sections 4 and 5 how to solve parity games with weights via solving474

bounded parity games with weights and how to solve the latter games by solving energy475

parity games, both steps with a polynomial overhead. An obvious question is whether one476

can also solve energy parity games by solving (bounded) parity games with weights. In this477

section, we answer this question affirmatively. We show how to transform an energy parity478

game into a bounded parity game with weights so that solving the latter also solves the479

former. Then, we show how to transform a bounded parity game with weights into a parity480

game with weights with the same relation: Solving the latter also solves the former. Both481

constructions here are gadget based and increase the size of the arenas only linearly. Hence,482

all three types of games are interreducible with at most polynomial overhead.483

8.1 From Energy Parity Games to Bounded Parity Games with Weights484

Note that, in an energy parity game, Player 0 wins if the energy increases without a bound,485

as long as there is a lower bound. However, in a bounded parity game, he has to ensure an486
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upper and a lower bound. Thus, we show in a first step how to modify an energy parity487

game so that Player 0 still has to ensure a lower bound on the energy, but can also throw488

away unnecessary energy during each transition, thereby also ensuring an upper bound. The489

most interesting part of this construction is to determine when energy becomes unnecessary490

to ensure a lower bound. Here, we rely on Lemma 6.491

Formally, let G = (A,Ω, w) be an energy parity game with A = (V, V0, V1, E) where we492

assume w.l.o.g. that the minimal color in Ω(V ) is strictly greater than 1. Now, we define493

G′ = (A′,Ω′, w′) with A = (V, V0, V1, E) where494

V ′ = V ∪ E, V ′0 = V0 ∪ E, and V ′1 = V1,495

E′ = {(v, e), (e, e), (e, v′) | e = (v, v′) ∈ E},496

Ω′(v) = Ω(v) and Ω′(e) = 1, and497

w′(v, e) = w(e), w′(e, e) = −1, and w(e, v′) = 0 for every e = (v, v′) ∈ E.498

Intuitively, every edge of A is subdivided and a new vertex for Player 0 is added, where he499

can decrease the energy level. The negative weight ensures that he eventually leaves this500

vertex in order to satisfy an energy condition.501

We say that a strategy σ for Player 0 in A′ is corridor-winning for him from some v ∈ V ,502

if there is a b ∈ N such that every play ρ that starts in v and is consistent with σ satisfies503

the parity condition and Ampl(ρ) ≤ b. Hence, instead of just requiring a lower bound on the504

energy level as in the energy parity condition, we also require a uniform upper bound on the505

energy level (where we w.l.o.g. assume these bounds to coincide).506

I Lemma 17. Let G and G′ be as above and let v ∈ V . Player 0 has a winning strategy for507

G from v if and only if Player 0 has a corridor-winning strategy for G′ from v.508

Now, we turn G′ into a bounded parity game with weights. In such a game, the cost-of-509

response of every request has to be bounded, but the overall energy level of the play may510

still diverge to −∞. To rule this out, we open one unanswerable request at the beginning of511

each play, which has to be unanswered with finite cost in order to satisfy the bounded parity512

condition with weights. If this is the case, then the energy level of the play is always in a513

bounded corridor, i.e., we obtain a corridor-winning strategy.514

Formally, for every vertex v ∈ V , we add a vertex v to A′ of an odd color c∗ that is515

larger than every color in Ω(V ), i.e., the request can never be answered. Furthermore, v516

has a single outgoing edge to v of weight 0, i.e., it is irrelevant whose turn it is. Call517

the resulting arena A′′, the resulting coloring Ω′′, and the resulting weighting w′′, and let518

G′′ = (A′′,BndWeightParity(Ω′′, w′′)).519

I Lemma 18. Let G′ and G′′ be as above and let v ∈ V . Player 0 has a corridor-winning520

strategy for G′ from v if and only if v ∈ W0(G′′).521

8.2 From Bounded Parity Games with Weights to Parity Games with522

Weights523

Next, we show how to turn a bounded parity game with weights into a parity game with524

weights so that solving the latter also solves the former. The construction here uses the525

same restarting mechanism that underlies the proof of Lemma 2: as soon as a request has526

incurred a cost of b, restart the play and enforce a request of cost b+ 1, and so on. Unlike527

the proof of Lemma 2, where Player 1 could restart the play at any vertex, here we always528

have to return to a fixed initial vertex we are interested in. While resetting, we have to529

answer all requests in order to prevent Player 1 to use the reset to prevent requests from530

being answered. Assume v∗ ∈ V is the initial vertex we are interested in. Then, we subdivide531
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every edge in A′′ to allow Player 1 to restart the play by answering all open requests and532

then moving back to v∗.533

Formally, fix a bounded parity game with weights G = (A,BndWeightParity(Ω, w)) with534

A = (V, V0, V1, E) and a vertex v∗ ∈ V . We define the parity game with weights Gv∗ =535

(Av∗ ,WeightParity(Ωv∗ , wv∗)) with Av∗ = (V ′, V ′0 , V ′1 , E′) where536

V ′ = V ∪ E ∪ {>}, V ′0 = V0, and V ′1 = V1 ∪ E ∪ {>},537

E′ = {(v, e), (e,>), (e, v′) | e = (v, v′) ∈ E} ∪ {(>, v∗)},538

Ωv∗(v) = Ω(v), Ωv∗(e) = 0 for every e ∈ E, and Ωv∗(>) = 2 max(Ω(V )), and539

wv∗(v, e) = w(e) for (v, e) ∈ V × E and wv∗(e′) = 0 for every other edge e′ ∈ E′.540

I Lemma 19. Let G and Gv∗ as above. Then, v∗ ∈ W0(G) if and only if v∗ ∈ W0(Gv∗).541

9 Conclusions and Future Work542

We have established that parity games with weights and bounded parity games fall into the543

same complexity class as energy parity games. This is interesting, because, while solving544

such games has the signature complexity class NP ∩ co-NP, they are not yet considered a545

class in their own right. It is also interesting because the properties appear to be inherently546

different: While they both combine the qualitative parity condition with quantified costs,547

parity games with weights combine these aspects on the property level, whereas energy548

parity games simply look at the combined—and totally unrelated—properties. We show549

the characteristic properties of parity games and of games with combinations of a parity550

condition with quantitative conditions relevant for this work in Table 1.551

Complexity Mem. Pl. 0/Pl. 1 Bounds

Parity Games [3] quasi-poly. pos./pos. –
Energy Parity Games [4, 10] pseudo-quasi-poly. O(ndW )/pos. O(nW )

Finitary Parity Games [7] poly. pos./inf. O(nW )
Parity Games with Costs [14, 22] quasi-poly. pos./inf. O(nW )
Parity Games with Weights pseudo-quasi-poly. O(nd2W )/inf. O((ndW )2)
Table 1 Characteristic properties of variants of parity games.

As future work, we are looking into the natural extensions of parity games with weights552

to Streett games with weights [7, 14], and at the complexity of determining optimal bounds553

and strategies that obtain them [30]. We are also looking at variations of the problem. The554

two natural variations are555

to use a one-sided definition (instead of the absolute value) for the amplitude of556

a play, i.e., using Ampl(π) = supj<|π| w(v0 · · · vj) ∈ N∞ (instead of Ampl(π) =557

supj<|π| |w(v0 · · · vj)| ∈ N∞), and558

to use an arbitrary consecutive subsequence of a play, i.e., Ampl(π) =559

supj≤k<|π| |w(vj · · · vk)| ∈ N∞.560

There are good arguments in favor and against using these individual variations—and their561

combination to Ampl(π) = supj≤k<|π| w(vj · · · vk) ∈ N∞—but we feel that the introduction562

of parity games with weights benefit from choosing one of the four combinations as the parity563

games with weights.564

We expect the complexity to rise when changing from maximizing over the absolute value565

to maximizing over the value, as this appears to be close to pushdown boundedness games [5],566

and we conjecture this problem to be PSPACE complete.567
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