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Abstract

The MiniBooNE collaboration recently reported further evidence for the
existence of sterile neutrinos, implying substantial mixing with the left–handed
active neutrinos and at a comparable mass scale. I argue that while sterile
neutrinos may arise naturally in large volume string models, they prove more of
a challenge in heterotic–string models that replicate the Grand Unified Theory
structure of the Standard Model matter states. Sterile neutrinos in heterotic–
string models may imply the existence of an additional Abelian gauge symmetry
of order 10–100TeV.
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1 Introduction

The MiniBooNE collaboration recently reported further evidence for the existence
of sterile neutrinos [1]. The MiniBooNE data strengthens the results of the LSND
collaboration that were obtained more than two decades ago [2]. If substantiated
by further experimental data, these results will have profound implications on string
phenomenology. While sterile neutrinos may arise naturally in large volume scenarios,
they present more of a challenge in heterotic–string models that replicate the matter
structure of Grand Unified Theories (GUTs).

Possible existence of sterile neutrinos has been studied in the Beyond the Standard
Model field theory constructions [3]. In this paper I examine the potential implica-
tions of sterile neutrinos in string derived models. The discussion for the most part
will be qualitative and more elaborate investigations are relegated for future work.

Field theory extensions of the Standard Model often give rise to sterile neutrinos
and by implications to neutrino masses and mixing. The renormalisable Standard
Model itself does not accommodate neutrino masses, which are mandated by the
observation of neutrino oscillations [4]. However, as the sterile neutrinos are neutral
under the Standard Model gauge group, one can write for them a large Majorana
mass term, which produces the so–called seesaw mechanism [5]. At low scales there
remain three active neutrinos, which mostly consist of the Standard Model left–
handed neutrinos, whereas the right–handed neutrinos mass is of the order of the
seesaw scale. The seesaw mechanism naturally explains the suppression of the left–
handed neutrino masses, compared to the mass scale of the charged Standard Model
particles.

This explanation of the light neutrino masses and oscillations also fits beautifully
in SO(10)–GUT embedding of the Standard Model, in which each generation, aug-
mented by a right–handed neutrino, fits in the chiral 16 representation of SO(10).
The structure of the Standard Model matter charges then possess a robust mathe-
matical underpinning. The seesaw mass scale is tied to the GUT symmetry breaking
scale and therefore has a natural origin. Furthermore, GUT mass relations between
the neutral leptons and charged fermions make the seesaw mechanism a necessity,
rather than a nicety. Thus, within SO(10)–GUTs the neutrino spectrum generically
consists solely of three active neutrinos. Extending the SO(10) symmetry to E6 may
naturally give rise to sterile neutrinos, depending on the symmetry breaking struc-
tures [3]. Furthermore, the existence of sterile neutrinos in this scheme may hinge on
the existence of an Abelian symmetry, beyond the Standard Model, and that remains
unbroken down to low scales.

An alternative to the seesaw mechanism is the possibility that neutrinos obtain
their mass via electroweak symmetry breaking. In this case sterile neutrinos natu-
rally arise as right–handed neutrinos and mirrors the mass generation of the Standard
Model charged sector. One then needs to explain the, at least, nine orders of magni-
tude suppression of the neutrino Yukawa coupling compared to the Yukawa couplings
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in the charged sector. In this case one also abandons the GUT scenario, which is
motivated by Standard Model matter charges.

In this paper, I focus for the most part on examination of sterile neutrinos in
string GUT models. I argue that in the generic model sterile neutrinos do not arise
and discuss the conditions that may allow them to appear. String GUT models
contain right–handed neutrino states that arise from the 16 spinorial representation
of SO(10). While the SO(10) gauge group is broken directly at the string level,
remnants of the GUT symmetry give rise to mass relations between the up quark mass
matrix and the neutrino Dirac mass matrix. Suppression of the active neutrino masses
therefore necessitates employing the seesaw mechanism at a high scale, which gives
the right–handed neutrinos mass of the order of the seesaw scale. Heuristically, we
might associate the existence of light sterile neutrinos with an unbroken Abelian gauge
symmetry below the string scale. The caveat with string derived GUT constructions is
that obtaining such extra U(1) symmetries, that may remain viable below the string
scale, is not straightforward. The reason is that the typical E6 U(1) symmetries,
that are amply discussed in the string inspired literature, are generically anomalous
in the string derived models [6]. A highly non–trivial construction that enables an
additional E6 Z

′ to remain unbroken below the string scale was presented in ref. [7],
and utilises self–duality under the spinor–vector duality symmetry of ref. [8].

2 Sterile neutrinos in large volume scenarios

In this section I briefly elaborate why sterile neutrinos may arise naturally in large
volume scenarios. Neutrino masses in these scenarios, in which the fundamental
scale of quantum gravity may be as low as the TeV scale, were discussed in e.g.

ref. [9]. In this case the SO(10) GUT embedding of the Standard Model states must
be abandoned. As discussed above the reason is the SO(10) mass relations that
necessitate a high seesaw scale. In large volume scenarios the seesaw scale is low,
indicating that the origin of the right–handed neutrino states differs from that of
the other Standard Model fields. This is achieved if the Standard Model particles
are confined to a brane, whereas the right–handed neutrinos can propagate in the
bulk [9]. The neutrino mass terms arise from the higher dimensional kinetic terms
that produce Dirac mass terms. The Yukawa couplings of the left– and right–handed
neutrinos are then suppressed by the volume of the extra dimensions. Considering
a five dimensional theory, (xµ, y) with µ = 0, · · · , 3 and a compactified circle y with
radius R. The right–handed neutrino is bulk fermion state, while the lepton and
Higgs doublets are confined to the brane. The bulk Dirac spinor is decomposed in
the Weyl basis Ψ = (νR, ν̄cR) and takes the usual Fourier expansion

ν
(c)
R (x, y) =

∑

n

1√
2πr

ν
(c)
Rn(x)e

iny/r (2.1)
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The four dimensional model then contains the usual tower of Kaluza–Klein states
with Dirac masses n/r and a free action for the lepton doublet, which is localized on
the wall. The leading interaction term between the walls fields and the bulk fermion
is

S int =

∫

d4xλl(x)h∗(x)νR(x, y = 0) (2.2)

with λ being a dimensionless parameter. The Yukawa coupling λ is rescaled like the
graviton and dilaton coupling to all brane fields. The effective Yukawa on the four
dimensional brane is given by

λ(4) =
λ

√

rnMn
∗

, (2.3)

which leads to very strong suppression of the Dirac mass even for λ ∼ 1:

m =
v√
2
λ(4) =

λv√
2

M∗

MPl
≃ λ

M∗

1TeV
· 5 · 10−5eV, (2.4)

where v is the electroweak VEV. The brane left–handed neutrino couples to the tower
of bulk Kaluza–Klein modes. The resulting mass matrix for every neutrino species is
given by [9]

M =





















m 0 0 0 . . .
m 1/r 0 0 . . .
m 0 2/r 0 . . .
m 0 0 3/r . . .
. . . . . . .
. . . . . . .
. . . . . . .





















(2.5)

In the limit m = 0, the mass matrix (2.5) has one vanishing eigenvalue and the usual
ladder of KK masses. In this limit the left-handed neutrino is decoupled from the
Kaluza–Klein tower of states. When m is finite, the left-handed neutrino mixes with
the other states and the mixing angle θk between the left-handed neutrino and k-th
Kaluza–Klein state is given by

θk ≃ mr

|k| (2.6)

The suppression of λ(4), similar to the suppression of the gravitational couplings,
results in the suppression of neutrino masses. However, for our purpose here it is noted
that the tower of Kaluza–Klein states acts naturally as sterile neutrinos and may
lead to observable effects through their interactions with the left–handed neutrino
masses [9]. String derived brane constructions that may be used toward realising the
large volume scenarios were explored (see e.g. [10] and references therein).
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3 Sterile neutrinos in string GUT constructions

In this section I explore possible existence of sterile neutrinos in string GUT con-
structions, which are string models that retain the embedding of the Standard Model
states in SO(10) and E6 representations. While the GUT symmetries are broken in
these models directly at the string level, the matter states are obtained from GUT
representations that are decomposed under the final unbroken GUT subgroup. Con-
sequently, the embedding preserves the weak hypercharge U(1) GUT charges, and
the canonical sin2 θW (MGUT) = 3/8 normalisation. String GUT models may, in gen-
eral, be obtained from perturbative and nonperturbative constructions. The concrete
class of models that are investigated here are perturbative heterotic string models in
the free fermionic formulation [11]. These string vacua correspond to Z2×Z2 toroidal
orbifold compactifications [12]. The free fermionic representation is constructed at en-
hanced symmetry point in the toroidal moduli space, and deformation away from the
free fermionic point are obtained by adding world–sheet Thirring interactions among
the worldsheet fermions [13]. This construction produces a large space of phenomeno-
logical three generation models [14–23] that can be used to explore the physics of the
Standard Model and its extensions. Details of the free fermionic formulation and of
the phenomenological three generation models are given in the references and will
not be repeated. Only the features relevant for the question of sterile neutrinos and
neutrino masses will be highlighted here.

In the free fermionic formulation of the light–cone heterotic–string in four dimen-
sions there are 20 left–moving, and 44 right–moving, worldsheet real fermions, The
sixty–four free fermions are denoted by

{ψ1,2, (χ, y, ω)1,··· ,6|(ȳ, ω̄)1,··· ,6, ψ̄1,··· ,5, η̄1,2,3, φ̄1,··· ,8},

where 32 of the right–moving real fermions are grouped into 16 complex fermions
that produce the Cartan generators of the rank 16 gauge group. Here φ̄1,··· ,8 are
the Cartan generators of the rank eight hidden sector gauge group and ψ̄1,··· ,5 are the
Cartan generators of the SO(10) GUT group. The complex worldsheet fermions η̄1,2,3

generate three Abelian currents, U(1)1,2,3, in the Cartan subalgebra of the observable
gauge group with U(1)ζ being their linear combination

U(1)ζ = U(1)1 + U(1)2 + U(1)3 . (3.1)

Models in the free fermionic formulation are constructed by specifying a set of
boundary condition basis vectors that specify the transformation properties of the
64 worldsheet fermions around the noncontractible loops of the worldsheet torus,
B = {v1, v2, v3, · · · }, and the one–loop Generalised GSO (GGSO) phases in the
partition function c

[

vi
vj

]

[11]. The basis vectors spans an additive group Ξ, that

contains all possible linear combinations of the basis vectors Ξ =
∑

k nkvk, where
nk = 0, · · · , Nvk − 1, and Nvk denote the order of each of the basis vectors. The
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physical representations in the Hilbert space of a given sector ξ ∈ Ξ are obtained
by acting on the vacuum with fermionic and bosonic oscillators and by applying
the GGSO projections. The U(1) charges of the physical states with respect to the
Cartan generators of the four dimensional gauge group are given by

Q(f) =
1

2
ξ(f) + Fξ(f),

where ξ(f) is the boundary condition of the complex worldsheet fermion f in the sec-
tor ξ, and Fξ(f) is a fermion number operator [11]. The phenomenological properties
of the string model are extracted by calculating tree-level and higher order terms in
the superpotential and by analysing its flat directions [24].

The free fermionic formulation of the heterotic–string produced a large space
of phenomenological models that share the underlying Z2 × Z2 orbifold structure,
with differing unbroken SO(10) subgroups. The construction of the models can
be viewed in two stages. The first consist of the basis vectors that preserve the
SO(10) symmetry. The models at this stage possess (2,0) worldsheet supersymmetry,
with N = 1 spacetime supersymmetry, and a number of vectorial and spinorial
representations of SO(10). The second stage of construction consist of the inclusion
of the basis vectors that break the SO(10) gauge group to a subgroup. The SO(10)
breaking vectors correspond to Wilson line breaking in the corresponding Z2 × Z2

orbifold models. The SO(10) preserving basis vectors are typically denoted by {bi}
i = 1, 2, 3..., whereas those that break the SO(10) symmetry are denoted by small
Greek letters {α, β, γ...}. In all these models the unbroken SO(10) subgroup contains
an unbroken combination of the SO(10) Cartan generators, beyond the Standard
Model gauge group. This additional combination must therefore be broken in the
effective field theory low energy limit of the string models. The only available fields
in the string models to achieve this breaking are fields that arise from the spinorial
representation of SO(10) and its conjugate. The case of the Standard–like models
also contains exotic states that can be employed toward that end. This distinction
will not be important in the following. The weak hypercharge combination and the
additional unbroken U(1) are given by

U(1)Y =
1

3
U(1)C +

1

2
U(1)L, (3.2)

U(1)Z′ = U(1)C − U(1)L, (3.3)

where U(1)C and U(1)L are2 defined in terms of the worldsheet charges by

QC = Q(ψ̄1) +Q(ψ̄2) +Q(ψ̄3) and QL = Q(ψ̄4) +Q(ψ̄5). (3.4)

The string models contain additional unbroken U(1) symmetries and an unbroken
hidden sector gauge group, the details of which are not crucial for the general dis-
cussion here. Aside from the linear combination given by U(1)ζ in eq. (3.1), which

2U(1)C = 3

2
U(1)B−L;U(1)L = 2U(1)T3R

.
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arises from the breaking E6 → SO(10)× U(1)ζ . This breaking pattern is a generic
consequence of the breaking of the worldsheet supersymmetry from (2, 2) to (2, 0)
and is of vital importance in the ensuing discussion. The point is that a generic con-
sequence of this breaking is that U(1)ζ is anomalous in most of the phenomenological
free fermionic string vacua, and therefore cannot remain unbroken below the string
scale. The sole example in which it is anomaly free is the string model of ref. [7].

The entire spectrum of specific free fermionic string models is typically derived
by applying the generalised GGSO projections. Here I focus on the generic features
of the spectrum relevant for the question of sterile neutrinos. The three chiral gen-
erations are obtained in these models from the three twisted sectors of the Z2 × Z2

orbifold, which are denoted in the free fermionic models as B1,2,3. The Standard
Model electroweak Higgs doublet may be obtained from the untwisted–sector or the
twisted sectors. In either case fermion mass terms are obtained from coupling of the
chiral generations to the Higgs doublets and quasi-realistic mass spectrum may be
generated. Additionally, the models contain numerous Standard Model and SO(10)
singlet states that may transform under the hidden gauge group and are charged
under the additional U(1) symmetries. Typically, the models also contain a number
of states that are singlets of the entire four dimensional gauge group. In some models
the number of such singlets is correlated with the total number of generations and
anti–generations.

In all the free fermionic models the breaking of the U(1) symmetry in equation
(3.3) requires the existence of heavy Higgs fields N and N , that are obtained from
the spinorial 16 and 16 representations of SO(10). In models with an intermediate
non–Abelian gauge symmetry, like the flipped SU(5) (FSU5) [14,21], the Pati–Salam
(PS) [16,19], the Left–Right Symmetric (LRS) [18,23], and the SU(6)×SU(2) (SU62)
[20] models, the heavy Higgs fields break the non–Abelian gauge symmetry, whereas
in the Standard–like Models (SLM) [15,22] they only break the extra U(1) eq. (3.3).
In the case of the FSU5 and SU62 models the breaking is constrained to be of the
order of the GUT scale, whereas in the other cases it may be lower. The VEV of the
N field also generate the Majorana mass term of the right–handed neutrino in these
models.

The structure of the neutrino mass matrix is quite generic in models inspired from
the free fermionic models. The terms in the superpotential, in term of component
fields, that generate the neutrino mass matrix are (see e.g. [25]),

LiNjh̄ , NiNφj , φiφjφk , (3.5)

where Ni, Li and φi, with i, j, k = 1, 2, 3 the right–handed neutrinos; are the chiral
lepton doublets; and three SO(10) singlet fields, respectively; h̄ is the electroweak
Higgs doublet and N is the component of the heavy Higgs field that breaks U(1)Z′

in eq. (3.3). All these states appear in the string models, possibly as components of
larger representation in as, e.g., the PS and SU62 models. Generally, the neutrino
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seesaw matrix has the form

(

νi, Ni, φi

)





0 (M
D
)ij 0

(M
D
)ij 0 〈N 〉ij

0 〈N〉ij 〈φ〉ij









νj
Nj

φj



, (3.6)

where M
D

is the Dirac mass matrix arising from the first term in eq. (3.5). The
Dirac mass matrix is proportional to the up–quark mass matrix due to the underlying
SO(10) symmetry [25]. Taking the mass matrices to be diagonal the mass eigenstates
are primarily νi, Ni and φi with negligible mixing and with the eigenvalues

mνj ∼
(

kM j
u

〈N〉

)2

〈φ〉 , mNj
, mφ ∼ 〈N〉 . (3.7)

where k is a renormalisation factor due to RGE evolution. The important point to
consider is whether any of the Standard Model singlet fields may serve the role of a
sterile neutrino, i.e. it has to remain light and mix with the active neutrinos. The
obvious observation is that in general the answer is negative. While the string models
contain numerous Standard Model and SO(10) singlet fields, they appear mostly as
vector–like fields and would therefore receive heavy mass along supersymmetric flat
directions. From eq. (3.7) it is seen that the mass eigenvalues correspond to three
light active neutrinos and six massive states with masses of the order of the seesaw
scale. Therefore, there are no sterile neutrinos in these cases.

The question of light neutrino masses was analysed in some detail in concrete
string derived models in refs. [26,27]. Mass terms in the superpotential are obtained
from renormalisable and nonrenormalisable terms by calculating correlators between
vertex operators [24]. The models typically contain an anomalous U(1) gauge symme-
try that breaks supersymmetry at the string scale and destabilises the vacuum. The
vacuum is stabilised by assigning Vacuum Expectation Values to Standard Model
singlet fields in the string massless spectrum, along supersymmetric F– and D–flat
directions. Some of the nonrenormalisable operators then become renormalisable op-
erators in the effective low energy field theory below the string scale. In this process
many of the Standard Model singlets receive heavy mass and decouple from the low
energy spectrum. The seesaw mass matrix in eq. (3.6) requires that some of the
singlet fields obtain intermediate mass. As the singlet fields are typically vector–like
this presents a major difficulty in generating the seesaw mechanism in the string
models, let alone allowing for the existence of sterile neutrinos. A priori it is not
apparent that any of the non–chiral singlets can remain light. I focus here on the
analysis performed in ref, [27] for the model in ref. [17]. Details of the model and its
spectrum are given in ref. [17].

The set of fields in the model of ref. [17] that enter the seesaw mass matrix
includes the three right–handed neutrinos, Ni; the three left–handed neutrinos, Li;
and the set of Standard Model singlets. These include: SO(10) singlets with U(1) and
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hidden charges, {Φ45,Φ
±
1,2,3,Φ13,Φ23,Φ12, Ti, Vi}⊕h.c.; a set of SU(3)×SU(2)×U(1)Y

singlets, H13−14,17−20,23−26, with U(1)Z′ charge; three entirely neutral singlets ξ1,2,3.
In ref. [27] a detailed study of the superpotential, with nonrenormalisable terms

up to order N = 10, and of the supersymmetric flat directions was presented. The
resulting neutrino mass matrix takes the approximate form [27]

























































L3 L2 L1 N3 N2 N1 H23 H25 Φ13 Φ45 Φ̄−
1 Φ̄−

3 Φ+
2 Φ̄+

2

L3 0 0 0 0 0 r 0 0 0 0 0 0 0 0
L2 0 0 0 r 0 r 0 0 0 0 0 0 0 0
L1 0 0 0 r 0 v 0 0 0 0 0 0 0 0

N3 0 r r 0 0 0 0 x 0 0 0 0 0 0
N2 0 0 0 0 0 0 z 0 u z u u z u
N1 r r v 0 0 0 0 w 0 0 0 0 0 0

H23 0 0 0 0 z 0 p 0 x p x x x x
H25 0 0 0 x 0 w 0 0 0 0 0 0 0 0
Φ13 0 0 0 0 u 0 x 0 q x y y 0 y
Φ45 0 0 0 0 z 0 p 0 x p x x x x
Φ−

1 0 0 0 0 u 0 x 0 y x q q q q
Φ−

3 0 0 0 0 u 0 x 0 y x q q q q
Φ+

2 0 0 0 0 z 0 x 0 0 x q q 0 x
Φ̄+

2 0 0 0 0 0 0 x 0 y x q q x q

























































where

r ∼ 10−6GeV v ∼ 102GeV w ∼ 106GeV q ∼ 107GeV u ∼ 108GeV

x ∼ 109GeV z ∼ 1010GeV p ∼ 1011GeV y ∼ 1013GeV

It is important to emphasise that this solution is not aimed to produce a realistic mass
and mixing spectrum for the fermionic fields, but merely to explore its qualitative
features. The mass matrix (3.8) has the mass eigenvalues {1.7× 1013, 1.7× 1013, 2×
1011, 1 × 1010, 9 × 109, 1 × 109, 1 × 109, 5 × 106, 101, 101, 17.5, 17.5, 0.02, 2.4−8}GeV.
The lightest eigenvalue, of order 10eV, is predominantly L3. The lightest singlet
states, with order 10% mixing with L2, are two nearly degenerate combinations of
∼ 70% mixture of Φ−

1 and Φ−
3 , and mass of order 17.5GeV. The remaining spectrum

is readily analyzed and contains mixtures of the right-handed neutrinos and the
SO(10) singlets, with heavier masses. The main demonstration from the analysis is
the lesson that although a simple and elegant mechanism for the neutrino spectrum
can be motivated from string theory in the form of (3.6), generating it from string
models is not straightforward The main difficulty is to understand how the singlet
masses can be protected from being too massive. This problem already appears when
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trying to generate a seesaw mechanism for the three active neutrinos, let alone for
any additional sterile neutrinos at a comparable mass scale.

Several comments are in order. The picture described above is generic in the
string GUT models. The common features include the existence of an anomalous
U(1) symmetry and proliferation of Standard Model singlets in the massless spec-
trum that nevertheless gain heavy or intermediate mass in the effective field theory
limit. Generation of quasi–realistic fermion mass matrices typically requires elab-
orate solutions of the flat directions [28]. This in turn generate intermediate mass
terms for the Standard Model singlet fields, and therefore eliminates them from being
candidate sterile neutrino states. We may also consider the possibility of generat-
ing Majorana mass terms for the right–handed neutrinos from the nonrenormalisable
terms

NiNjNN , (3.8)

where N obtains a VEV that breaks the U(1)Z′ in eq. (3.3). In the SLM model of
ref. [17] this requires the utilization of the exotic H fields that carry −1/2Q(Z ′) with
respect to the charge of the right–handed neutrino, as the N state is not obtained
in the massless spectrum. The needed terms are of the form NNHHHHφn. In the
model of ref. [17] such terms were not found up to N = 14 and hence cannot induce
the seesaw mechanism. In the FSU5 [14, 21], PS [16, 19], LRS [18, 23] and SU62 [20]
models the N states do arise in the spectrum and may generate terms of the form of
eq. (3.8). However, while this may contribute to the implementation of the seesaw
mechanism, its role in allowing for light sterile neutrinos in the string derived models
is yet to be examined.

From the discussion above it is clear that existence of sterile neutrinos at a mass
scale of the order of the active neutrinos and with substantial mixing with them, is
rather problematic in string derived GUT models. This situation is, however, not
without hope. A model that may present an alternative scenario is the string derived
Z ′ model of ref. [7], where the unbroken SO(10) subgroup is SO(6) × SO(4). The
model is self dual under the spinor-vector duality of ref. [8]. As a result the chiral
spectrum in this models forms complete E6 representation, and consequently the
U(1)ζ combination of eq. (3.1) is anomaly free and may remain unbroken below the
string scale. The gauge symmetry, however, is not enhanced, and spacetime vector
bosons arise in this model solely from the untwisted sector. The entire massless
spectrum of the model, and the charges under the gauge group, are given in ref [7].
Tables 1 and 2 provide a glossary of the states in the model and their charges under
the SU(4)× SO(4)× U(1)ζ gauge group. We note in particular the existence of the
seven S and four S states that are singlets of SO(10) and are charged under U(1)ζ .
There are therefore three chiral states that are singlets of SO(10) and charged under
U(1)ζ . They are left–over components from the 27 and 27 representations of E6.

The string model is obtained by trawling a self–dual model under the spinor–
vector duality at the SO(10) level, i.e. prior to breaking the SO(10) symmetry to
the Pati–Salam subgroup. Self–duality under the spinor–vector duality plays a key
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Symbol Fields in [7] SU(4)× SU(2)L × SU(2)R U(1)ζ
FL F1L, F2L, F3L (4, 2, 1) +1

2

FR F1R (4, 1, 2) −1
2

F̄R F̄1R, F̄2R, F̄3R, F̄4R (4̄, 1, 2) +1
2

h h1, h2, h3 (1, 2, 2) −1
∆ D1, . . . , D7 (6, 1, 1) −1
∆̄ D̄1, D̄2, D̄3, D̄6 (6, 1, 1) +1
S Φ12,Φ13,Φ23, χ

+
1 , χ

+
2 , χ

+
3 , χ

+
5 (1, 1, 1) +2

S̄ Φ̄12, Φ̄13, Φ̄23, χ̄
+
4 (1, 1, 1) −2

φ φ1, φ2 (1, 1, 1) +1
φ̄ φ̄1, φ̄2 (1, 1, 1) −1
ζ Φ−

12,Φ
−
13,Φ

−
23, Φ̄

−
12, Φ̄

−
13, Φ̄

−
23 (1, 1, 1) 0

χ−
1 , χ

−
2 , χ

−
3 , χ̄

−
4 , χ

−
5

ζi, ζ̄i, i = 1, . . . , 9
Φi, i = 1, . . . , 6

Table 1: Observable sector field notation and associated states in [7].

Symbol Fields in [7] SU(2)4 × SO(8) U(1)ζ
H+ H3

12 (2, 2, 1, 1, 1) +1
H2

34 (1, 1, 2, 2, 1) +1
H− H2

12 (2, 2, 1, 1, 1) −1
H3

34 (1, 1, 2, 2, 1) −1
H H1

12 (2, 2, 1, 1, 1) 0
H i

13, i = 1, 2, 3 (2, 1, 2, 1, 1) 0
H i

14, i = 1, 2, 3 (2, 1, 1, 2, 1) 0
H1

23 (1, 2, 2, 1, 1) 0
H1

24 (1, 2, 1, 2, 1) 0
H i

34, i = 1, 4, 5 (1, 1, 2, 2, 1) 0
Z Zi, i = 1, . . . , (1, 1, 8) 0

Table 2: Hidden sector field notation and associated states in [7].

in the construction of the string model with anomaly free U(1)ζ , together with E6

embedding of the U(1)ζ charges. In this respect it is noted that U(1)ζ is anomaly
free in the LRS heterotic–string models as well [18,23]. However, in the LRS models
the U(1)ζ charges of the Standard Model states do not possess the E6 embedding.
The VEV of N and N leaves unbroken the same U(1) combination of U(1)C , U(1)L
and U(1)ζ , but in the case of the LRS models its breaking at low scales would lead to
contradiction with sin2 θW (MZ) and αs(MZ) [29]. An alternative to the construction
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of ref [7] is the construction proposed in ref. [30] that essentially amounts to an
alternative E6 breaking pattern, as follows. The contributions to the observable
gauge symmetry in the free fermionic models may come from two sectors. The first is
the untwisted sector and the second is the x–sector that enhances the ten dimensional
observable SO(16) to E8. In most of the phenomenological free fermionic models the
spacetime vector bosons from the x–sector are projected out, which results in the
symmetry breaking pattern E6 → SO(10)× U(1)ζ , and U(1)ζ becoming anomalous.
In ref. [30] an alternative symmetry breaking pattern is proposed that retains the
spacetime vector bosons from the x–sector and may allow for U(1)ζ to remain anomaly
free. An explicit string derived model that realises this symmetry breaking pattern
is the three generation SU(6)× SU(2) GUT model of ref. [20]. In this model U(1)ζ
is anomaly free by virtue of its embedding in the GUT group. It should be remarked
that the precise combination of U(1)1,2,3 that forms U(1)ζ may differ from the one in
eq. (3.1), up to signs. This is the case, for example, in the model of ref. [20]. The
important properties of U(1)ζ are that: it is the family universal combination; it is
anomaly free; and the charges of the Standard Model states admit the E6 embedding.
The models of refs. [7] and [20] demonstrate how this is achieved, either by exploiting
the self–duality under the spinor–vector duality, as in the model ref. [7], or embedding
U(1)ζ in a non–Abelian group, as in the model of ref. [20].

In either of these cases the massless string spectrum contains the fields required
to break the GUT symmetry to the Standard Model. I focus here on the model of
ref. [7]. The observable and hidden gauge groups at the string scale are produced by
untwisted sector states and are given by:

observable : SO(6)× SO(4)× U(1)1 × U(1)2 × U(1)3

hidden : SO(4)2 × SO(8)

Additional spacetime vector bosons that may enhance the observable and hidden
gauge symmetries are projected out in this model due to the choice of GGSO projec-
tion coefficients. There are two anomalous U(1)s in the string model with

TrU(1)1 = 36 and TrU(1)3 = −36. (3.9)

Therefore, the E6 combination in eq. (3.1) is anomaly free and can be as a component
of an extra Z ′ below the string scale. As noted from table 2 the model contains hidden
sector vector–like states, that include: four bidoublets denoted by H± with Qζ = ±1
charges; 12 neutral bidoublets denoted by H ; and five states that transform in the
8 representation of the hidden SO(8) gauge group with Qζ = 0. The observable
SO(6) × SO(4) gauge symmetry in the model is broken by the VEVs of the heavy
Higgs fields H = FR and H, which is a linear combination of the four F̄R fields. The
decomposition of these fields in terms of the Standard Model gauge group factors is
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given by:

H(4̄, 1, 2) → ucH

(

3̄, 1,
2

3

)

+ dcH

(

3̄, 1,−1

3

)

+N (1, 1, 0) + ecH (1, 1,−1)

H (4, 1, 2) → uH

(

3, 1,−2

3

)

+ dH

(

3, 1,
1

3

)

+N (1, 1, 0) + eH (1, 1, 1)

The VEVs along the N and N directions leave the unbroken combination

U(1)Z′ =
1

5
(U(1)C − U(1)L)− U(1)ζ /∈ SO(10), (3.10)

that may remain unbroken below the string scale provided that U(1)ζ is anomaly
free. The cancellation of the U(1)Z′ anomalies requires the presence of the vector–like
quarks {Di, Di} and leptons {Hi, H̄i}, that arise from the vectorial 10 representation
of SO(10), as well as the SO(10) singlets Si in the 27 of E6. The spectrum below
the Pati–Salam breaking scale is displayed schematically in table 3. The three right–
handed neutrino N i

L states become massive at the SU(2)R breaking scale, which
generates the seesaw mechanism via either eq. (3.6) or via the nonrenormalisable
term in eq. (3.8). I assume here that the spectrum is supersymmetric below the
SU(2)R breaking scale, and allow for the possibility that the spectrum contains an
additional pair of vector–like electroweak Higgs doublets. Additionally, the existence
of light states ζi, that are neutral under the SU(3)C × SU(2)L ×U(1)Y ×U(1)Z′ low
scale gauge group, is allowed. The states φ and φ̄ are exotic Wilsonian states [31],
that match the φ1,2 and φ̄1,2 in table 1. The U(1)Z′ gauge symmetry can be broken
at low scales by the VEV of the SO(10) singlets Si and/or φ1,2.

The extended set of fields appearing in the seesaw mass matrix in this model
are {Li, Ni, Hi, Si, h, h̄, φ, φ̄, ζi}, and we wish to examine scenarios leading to a sterile
neutrino with substantial mixing with the active neutrino. The allowed renormal-
isable couplings among these fields, contributing to the seesaw mass matrix, in the
model are

LiNjh̄, LiNjH̄k, NiζjN , HiH̄jSk, Hih̄Sk, H̄ihζj, hh̄ζi, φφ̄ζi, φ̄φ̄Si, ζiζjζk. (3.11)

as well as the nonrenormalisable coupling in eq. (3.8). Restricting for simplicity solely
to the set of chiral fields under the U(1)Z′ gauge symmetry generates the seesaw mass
matrix in eq. (3.12), per generation,













Li Si Hi H i Ni

Li 0 0 0 λn λv
Si 0 0 λv2 λv3 0
Hi 0 λv2 0 z′ 0
H i λn λv3 z′ 0 0

Ni λv 0 0 0 N
2

M













,
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Field SU(3)C ×SU(2)L U(1)Y U(1)Z′

Qi
L 3 2 +1

6 −2
5

uiL 3̄ 1 −2
3 −2

5

diL 3̄ 1 +1
3 −4

5

eiL 1 1 +1 −2
5

Li
L 1 2 −1

2 −4
5

Di 3 1 −1
3 +4

5

D̄i 3̄ 1 +1
3 +6

5

H i 1 2 −1
2 +6

5

H̄ i 1 2 +1
2 +4

5

Si 1 1 0 −2

h 1 2 −1
2 −4

5

h̄ 1 2 +1
2 +4

5

φ 1 1 0 −1

φ̄ 1 1 0 +1

ζ i 1 1 0 0

Table 3: Spectrum and SU(3)C×SU(2)L×U(1)Y ×U(1)Z′ quantum numbers, with i =
1, 2, 3 for the three light generations. The charges are displayed in the normalisation

used in free fermionic heterotic–string models.

which is produced by the relevant couplings in eqs. (3.11, 3.8). The analysis here is for
only for illustration and performed for a single generation. The seesaw mass matrix in
eq. (3.12) contains VEVs that break three distinct symmetries: the VEVs that break
the SU(2)R symmetry, N and n; the VEVs that break the U(1)Z′ symmetry denoted
by z′ in (3.12); and the VEVs that break the electroweak symmetry denoted by v,
v2 and v3 in eq. (3.12). Here v is the VEV that produces the Dirac mass terms that
couples between the left– and right–handed neutrinos, and v2 and v3 are VEVs along
the lepton doublets H and H̄. The notation in eq. (3.12) expresses generically the
dependence of some mass entries on unknown Yukawa couplings. The aim here is not
a detailed numerical analysis, but merely to provide an example that demonstrates
the possibility of sterile neutrinos in string GUT construction. The mass matrix of
the light eigenvalues can be obtained by defining the seesaw mass matrix eq. (3.12)
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in the form

M =

(

0 B

BT J

)

, (3.12)

with

J =





0 z′ 0
z′ 0 0

0 0 N
2

M



 ,

B =

(

0 λn λv
λv2 λv3 0

)

,

where M ≈ 1018GeV is related to the heterotic–string scale. The light eigenvalues
and eigenvectors are approximately given by those of the matrix

BJ−1BT ≈







M(λv)2

N
2

(λn)(λv2)
z′

(λn)(λv2)
z′

2(λv2)(λv3)
z′






, (3.13)

where the λ coupling appearing is schematic. Taking the parameters in eq. (3.12) to
be given by:

λv = 1GeV; (3.14)

λv2 = 5× 10−4GeV ≈ me;

λv3 = 5× 10−4GeV;≈ me;

λn = 5× 10−4GeV;≈ me;

z′ = 5× 104GeV = 50TeV;

N = 5× 1014GeV,

produces two light eigenvalues withm1 = 10−2eV andm2 = 10−3eV and three massive
states with m3 = m4 = 50TeV and m5 = 2.5× 1011GeV. The heavy eigenstate is the
right–handed neutrino. The two intermediate states are equal mixtures of the Hi and
H̄i and the two light eigenstates are mixtures of the left–handed neutrino and Si, with
mixing angle sin θ ≈ 0.98. This is of course only an illustrative scenario and many
other possibilities exist. However, it does demonstrate the possibility of producing
sterile neutrinos in heterotic–string constructions. And more importantly, it suggests
that the existence of a sterile neutrino in this constructions may be correlated with a
new Abelian gauge symmetry not far removed from scales currently probed in collider
experiments.

4 Conclusions

The results of the MiniBoonNE experiment provide evidence for the existence of
sterile neutrinos in nature with substantial mixing with the active neutrinos. These
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results have profound implications for attempts to unify the Standard Model with
gravity. String theory provides a concrete framework where these implications can
be studied.

In this paper I argued that sterile neutrinos arise naturally in large volume sce-
narios and by implication in string constructions in which the gravitational scale
may be as low as the TeV scale. Of course, the precise nature of the sterile neu-
trinos in these constructions needs to be scrutinised, but it is clear that the sterile
neutrinos in these models can affect various experimental observables that are being
explored in contemporary experiments, e.g. lepton universality [9]. I further argued
that obtaining sterile neutrinos in string GUT constructions proves more of a chal-
lenge, and investigated this question in perturbative heterotic–string models in the
free fermionic formulation. I argued that generic phenomenological models in this
category would not lead to sterile neutrinos at a mass scale comparable to the active
neutrinos and with substantial mixing with them. The main reason being that the
Standard Model singlet states in these models arise in vector–like representation with
respect to the unbroken four dimensional gauge group at the string scale. A way to
guarantee that some singlets remain light and can act as sterile neutrinos is if they
are chiral with respect to an additional Abelian gauge symmetry, which is broken
at low or intermediate scales. The construction of string models that allow for the
required extra Abelian symmetry is, however, highly non–trivial and I discussed how
it is realised in some free fermionic heterotic–string models. The results of the Mini-
BooNE experiment and its successors may therefore provide vital guidance in the
quest for unification of gravity and the gauge interactions.
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