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—
The results of direct numerical simulations to déterminethe critical conditions for self-

sustained turbulence in wall-driven (Couei(ﬂ.) square éuct flow and its characteristics

at relatively low turbulent Reynolds num 5?; presented. We focus on the case

in which a pair of opposite counter% \7\‘75118 translating with the same speed
ide

drive the flow. Stabilisation by the s is found to play a crucial role in the

transition to turbulence, the mirhw@eynolds number for maintaining a turbulent
state (Re. ~ 875) being mu%a&gr than that in a plane channel. At Reynolds
an

numbers close to the criti \\K lternation of the flow field, in time, between two

~vortex secondary flow pattern is observed, one being

states characterised by
a mirror reflectio the other, and the flow remaining approximately symmetrical

about the comumon bisegtor of the moving walls. Due to the intermittency, large

velocity fluctuatigns about the long-term mean are observed at different locations in

the duct ese ings are consistent with results of previous studies on turbulent
press e—H)iven oiseuille) square duct flow at low Reynolds numbers, hence the
phénomengn is not unique to Poiseuille flows. Instantaneous flow field visualisations

£

reve thefexistence of coherent structures which are persistent over the length of
the dlSct, thus indicating that the states are very stable in the streamwise direction.
(;il ant analysis of the Reynolds shear stress show that the secondary motions are
cl

sely related to the near-wall ejection and sweeping events.
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Publishihg INTRODUCTION

Turbulent flow in a straight square duct is known to be characterised by a mean sec-
ondary motion in the cross sectional plane referred to as Prandtl’s secondary flow of the
second kind. This phenomenon, induced by the turbulent ﬂuctug{ions was first observed

by Nikuradse! and has since been widely researched, both experiment and numerically,

to better understand the origin. Earlier experimental studies?"

used on relatively large
Reynolds numbers (Re, > 4000, Re, = u,;h/v, where u i>t riction velocity given by

the expression: /7*/p and 7*, h, v and p represent_th erage shear stress at the wall

centre, duct half-height, kinematic viscosity and de it; respe tively). Although typically
less than 2% of the primary flow, the seconday§ curre haracterised by eight vortices
which are symmetrical about both the corner ‘&Vallasectors were shown to significantly
influence momentum and heat transport. h; are of great importance in a wide
range of engineering applications such %enﬁlaﬁon and air-conditioning systems,

S

nuclear reactor channels, intake duets of§et engines, heat exchangers and turbine blade

cooling passages among others.’ {I:; }ebf rotation of the secondary vortices in a purely
\{

pressure-driven flow is such that t

directed towards the corners along the duct’s di-

agonals, resulting in the deformm the primary velocity profile and a non-uniform wall
shear stress distributio e findings have been confirmed by direct numerical simula-
tions (DNS),% 9 albei mower Reynolds numbers(Re, < 600), and detailed flow field
statistics not eai}yéq i

SN has been a growing interest in understanding the flow structure at
Reynolds ers close to transition. In this regime where the separation between small
and larg%‘i} all, the duct’s width in wall units is just barely large enough to host

inimum mimber of structures required for self-sustained turbulence.'®™ The DNS of

aple in the laboratory are now available.

In recent t

Uhlma et»l.10 in marginally-turbulent flow revealed a temporal switching of the flow

betyeen two states characterised by a four-vortex mean secondary flow pattern, one
We\ eing a 90° rotation of the other about the duct’s axis, so that a long time average
resulted in the well-known eight vortex pattern in pressure driven flow. These results have
been validated by experiments.'? The probability density functions (p.d.f.s) of streamwise
velocity as well as joint p.d.f.s of streamwise and wall-normal velocity at certain distances

from the wall were observed to feature two peaks corresponding to each of the two states.
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PublishingWhile there has been several studies on the pressure-driven (Poiseuille) case, wall-driven
(Couette) turbulent flow in a square duct remains largely unexplored. Large eddy simula-
tions of Couette-Poiseuille flow by Hsu et al.'® and Lo and Lin'* revealed significant changes
to the secondary flow in the vicinity of a moving wall. As the ratio of the wall to bulk
velocity increased, a merger of the secondary vortices was observyéd and the cross-stream

h?six ortices, with sym-

w pattern was observed

flow changed from the eight-vortex pattern to one characterise

metry only about the moving-wall bisector. A similar secondar

in detail. The Reynolds

in the purely wall-driven case, but the flow was not e m?
ct“Gouette flow are quite high

number in the aforementioned numerical studies on squar

(Re, > 300), hence the flow characteristics close to ransitisn re not well known. An in-

teresting question is whether the switching observed in pressure driven case also exists
in wall-driven flow. ‘)
-

In this study, we investigate the purely W 1 turbulent flow in a square duct using

turbulence. Motivated by the findi hlmann et al.l® on the existence of bi-stable

direct numerical simulations. First, dee‘?\\%le the critical conditions for self-sustained

—

s 0
states in “marginally turbulent” ois;%e%quare duct flows, we then characterise the tur-
bulence field at relatively low, R& mbers with a view to determining whether this
phenomenon is a ubiquitous fem wall-bounded flows. For a mean secondary flow to
exist, a duct of finite agpectwatio is required. In this regard, a square duct is the simplest
and most widely studied ‘br';ary, thus it was selected to allow for direct comparison with
.

én ﬂyw 0. We focus on the case in which a pair of opposite counter-

results on press?—
moving walls translasing with the same speed (U,,) drive the flow. This configuration results

in a zero net zhport of fluid through the duct.
£
ﬂ /
II. UM CAL METHOD
ﬁ

We cﬁ)nsider turbulent Couette flow of an incompressible Newtonian fluid through a

?‘hﬁxi& duct of square cross-section (2h x 2h). The streamwise direction is z while y
and z are the transverse and spanwise directions, respectively, with u, v and w being the
corresponding velocity components. An illustration of the computational domain is shown
in Fig. 1. The governing equations for this flow are those expressing the conservation of

mass and momentum, which in tensor notation, are given as:
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where u;, p and t denote the vel¢ity

d}tatic pressure and time, respectively, and the
mean pressure gradient in the th; irection is equal to zero. The boundary conditions
employed are the no-slip conditions at the walls and periodicity in the streamwise direction.

In solving the Navier-S okgs\eﬁ\lations, the finite volume approach is employed. The equa-

tions are advanced i t}m sing a semi-implicit fractional step method. The convection

and diffusion terpis a eva}ﬁated by the Adams-Bashforth and Crank-Nicholson schemes,

respectively, while spatial derivatives are approximated using second-order central difference

schemes. sulting system of algebraic equations are evaluated using the preconditioned
conjugatéegraflient “solver. A Poisson equation for pressure is solved at each time step to
obtaid the incomipressible velocity field. The three dimensional Poisson equation is reduced,
using, Fourier transform, to uncoupled two-dimensional algebraic equations which are
solyed b§) LU decomposition.

xfﬂe code used in this study is a modified version of that employed by Hsu et al.'® and
Lo, and lin'* and has been validated against turbulent Poiseuille flow data. Symmetrically
clustered grids were employed in the cross-sectional plane, the spacing increasing with dis-

tance from the wall. Along the bisector of the moving walls, Ay varied from about 0.04 at

the wall to 4.57 at the centre of the duct, while in the streamwise direction, the grids were

4
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Publishimgi’ormly spaced with Az™ < 9. The superscript, + refers to normalisation by wall units
defined in terms of the local friction velocity at the centre of the moving wall. The time
steps employed were such that CFL number was less than 0.3. In this study, we introduce
a Reynolds number, Re,,, given by the expression: Re, = U,h/v, where U, is the velocity

of the moving wall. /\

III. CRITICAL CONDITIONS FOR SELF-SUSTA% TURBULENCE

We seek to determine the critical Reynolds number (R2e. or tramsition to turbulence and
also obtain an estimate of the typical length scales (L )of the‘imallest structures required for

the sustenance of a turbulent state in wall-drive Sc‘l‘uare flow. The value of L. places a

lower bound on the length of the box that can W Lfg)? a turbulent flow simulation. Given
n

the sub-critical nature of the transition, i 'th%il ions are very important. Following the
12\« z

approach of Jimenez and Moin'®, Ha Qo and Uhlmann et al.'?, the simulations
were initiated using, as starting conditions, the fully developed turbulent flow field at a high

Reynolds number and/or duct length
in successive runs while keepj %m tant until the flow re-laminarised. In other cases,
L, was varied while holding%Q tant. The fluctuations in the streamwise and wall-

normal velocity at diffi en?hsutions in the duct were monitored; upon re-laminarisation,
these dropped to Ze<< ach/simulation, the flow was allowed to evolve for a time of at
£

. The Reynolds number was then gradually varied

g C
least 3500 h/U, {Sim I infegration times have been employed by Refs. 10 and 15 in their
studies on turbulencegustenance in minimal flow units.

Figure s@e flow states for different combinations of Re,, and L,. The data points
at the bdundaty between laminar and turbulent states are connected with dashed lines. For

£

turbulent statés away from this boundary, a mesh with 96 x 96 cross-sectional divisions was

W Compyred the turbulence statistics obtained using this grid with that from a grid having

f@Q’;8 e ;ﬁﬁcient to obtain a sustained turbulent state. At Re, = 1500 and L, = 4xh,

ﬁifx\ cross-sectional divisions and obtained good agreement. In both cases, the number
oficells in the streamwise direction (IV,) was equal to 160. The data also agreed well with
those in a duct of length 127h (having 96 x 96 x 352 cells). However, two-point correlations
showed that a decorrelation of the streamwise velocity fluctuations was not achieved with

L, = 4mh.
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FIG. 2. Critical conditions for turbulence. Filled bo}s;-)epresent laminar states while unfilled
I\Q& id cells; O, N, = N, = 96 grid cells;

tﬁe lowest Reynolds number (Re.) at which a

ones are the turbulent states. A, N, =

- - - -, laminar/turbulent boundary.

From Fig. 2, it can be obs Ve
turbulent state can be sust

laminarisation of the flow occur

0 t 875. For values of Re, less than this, a re-
T spectlve of the domain length. Given that the same
result was obtain in bg es'msngth 8mh, 10wh and 127wh, we do not expect to see a large

change in the estimafed v. f Re. in a longer box. However, there is an uncertainty of

£
eynglds number was varied in steps of 50). We further check that

about +25 (sincesthe

Re, is indepe

the grid by repeating the simulation at Re,, = 825 (the laminar data
e.) using two different meshes having 128 x 128 and 256 x 256 cells in

ane and 320 cells in the streamwise direction and a re-laminarisation of

The transition Reynolds number is much greater than that in plane Couette flow (Re, ~
370, see Refs. 17 and 18), thus underscoring the importance of side walls in stabilising the
flow. For large aspect ratio ducts, where end effects are negligible, Re. is expected to be

similar to that in plane Couette flow. To verify this, we carried out simulations in two
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PUbIIShI'I;lg' 3LE I. Simulation parameters for data points on the laminar/turbulent boundary. L, is the
length of computational domain Ay™ is the grid resolution along the bisector of the moving wall
and Az™, is that in the streamwise direction. N,, N, and N, are the number of grid points in
the z, y and z directions, respectively. Re, is defined in terms of ‘? average value of the

shear stress at the centre plane of the moving walls.

Vo
>
Rey, L, Ny x N, x N, Re, Q 3 Azt
875 127h 128 x 128 x 352 52 ‘)04 —4.91 5.80
—
875 10mh 128 x 128 x 320 52 [ 4—1.91 5.16
875 8mh 128 x 128 x 320 3 5).04 —1.92 4.17
1000 18h 128 x 128 x 192 9 ‘) 0.04 —2.16 5.60

1125 Arh 96 x 96 x 160 5 0.07 — 2.50 5.19
1125 Arh 128 x 128 x 160 N 0.05 — 2.38 5.19
1500 3h 128 x 128 x QR\SS 0.07 — 3.21 2.81
1750 3h 128 x 128 )7 N 0.08 — 3.69 4.89
2250 2h 96 x 9GNG4

2250 2h 128&& 64

ducts of aspect zti 2:/1 89;1 4:1 having a length of 47h and observed a turbulent state
to be maintained atwlZe,,

101
125 0.13 — 4.65 4.52
125 0.10 — 4.57 4.04

low as 625 and 500, respectively. For the pressure-driven case,
Vinuesa et a 1E’Qggested that a duct with an aspect ratio of at least 24 is required to obtain

results ¢ pzyab o those in a channel. We thus expect that a similar aspect ratio will be

requiréd-in eyL/te flow.

t &ating an increase in the length scales of the turbulence structures; hence longer

Closewto t)ansition, L. can be observed to be larger than at higher Reynolds numbers,
%51}& ational boxes are needed for the simulations. For Re, > 1500, L. is about 3h. The

in such minimal units are not realisable in the laboratory; rather, they are the basic
building blocks of wall-bounded turbulent flows.'® To simulate a physically realisable turbu-
lent flow, the domain length would have to be much longer than L. such that a decorrelation

of the turbulence statistics is achieved.
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Having determined the critical conditions for self-sustained turbulence, we investigate
the flow at relatively low turbulent Reynolds numbers. In the following sections, we present
results obtained at Re,, = 1500 in a computational domain of length/127h. We have checked
that this box is long enough to allow for the decorrelation of velocity fluctuations. A mesh
Qriﬁed that the cell sizes

4/€)/* where € is the

having 96 x 96 x 352 cells have been used. For this grid we ha
are of the order of the Kolmogorov length scale (n) give bf: &

rate of turbulent kinetic energy dissipation. At the wall;

diffusion term in the turbulent kinetic energy equa@r;ks away from the wall, ¢ was
ct

obtained by assuming turbulent kinetic energy produ

stimated from the viscous

be equal to dissipation. From

this analysis, the grid resolution ranged fro t 6)67] to 1.8n. Along the bisector of
the moving walls, Ay varied from about 0409 at the Wall to 4.05 at the centre of the duct,
while in the streamwise direction, Azx™ Waz‘{.@t.&m.

-

<

A. Secondary flow pattern\\
Figure 3 shows the mean vmds, the velocity vectors indicating the secondary flow
pattern. An alternatio omBﬂow field in time between two states can be observed, one

being a mirror reflegfion ofsghe other, and the flow remaining approximately symmetrical

about the commofl bisegtor 6f the moving walls (see Figs. 3(a) and (b)). We hereafter refer

Lﬁmg to Fig. 3(a) as A and that shown in Fig. 3(b) as B. In either case,

ounter-rotating vortices associated with a moving wall dominates the entire

to the state co

a pair of larg
flow field

raisporting momentum from the wall to the interior of the duct, and another pair

of sm ller Vor s is located at the opposite wall. The time spent in each state can be rather

omty fields in Figs. 3(a) and (b) have been obtained by averaging over two
%?ntervals of lengths 1050h/U,, and 1506h /U, respectively during which the flow
&g muously in each state. As the flow switches states, the large vortices shrink and are

p hed towards the corners, while maintaining their rotation sense and the vortex pair at the
opposite wall become enlarged. Averaging over long times result in a four-vortex secondary

flow pattern, symmetrical about the wall bisectors (see Fig. 3(c), where the integration time

is 12960h/U,, ).
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FIG. 3. Contours of mean streamwise velocity normalisedl by the 11 velomty, Uy, and secondary
flow vectors at Re,, = 1500 and L,/h = 127: 1 1050h/U,,, (b) average over a

different interval of length 1506h/U,, (flow is in a\ state),(c) averaging interval 12960k /U,
e fr

(including both previous intervals). Contours 1 at the lower wall to 1 at the upper

wall, with increment 0.2. For clarity, vectors a sh at every third grid point.

\

To quantitatively identify the tw h&s, define the magnitude S(¢) of the secondary
m{ng sign depending on the value of the wall-normal

flow in the central part of the duc\
velocity component: \\

VU2 4+aw?, 0>0 3
—\V02+w? v <0,
where the tilde bol esents instantaneous spatial averaging in the streamwise direc-

tion. We int an dicator function given by:

B ffRS(t)dydz
K 1O =77 5@ dydz (4)

is t e region bounded by the lines z/h = 0.6, z/h = 1.4 and the upper and lower

Is, wgere the secondary flow is mostly in the direction normal to the moving walls (see
3 a) and ( I(t) ranges between -1 and 1, negative values corresponding to state A
p081t1ve values, B. Based on the above criteria, conditional averaging was carried out

to separate the two states. Figure 4 shows the evolution of the indicator function over the
interval for which the flow fields in Fig. 3 have been computed. The average values of I in

Figs. 3(a) and (b) are -0.775 and 0.709, respectively. The change in state can be observed

9
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FIG. 4. variation of the indicator function, I(t) with non-dimensional time at Re, = 1500 and
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FIG. 5. Convergence test: (a)%%@locities computed from different integration times; (b)

turbulent kinetic energy gomputed from different integration times. Data along the moving-wall
/

bisector is presented.< 10; 0,y/h=12;* y/h=1.4; 0, y/h =1.6; +, y/h = 1.8.
AY,

to occur in’ an“gregular fashion; however, the time spent in each state is of the order of

t

wﬁn times (see Fig. 5 where data along the moving-wall bisector is shown). The
S

§ty magnitude and turbulent kinetic energy (t.k.e) from data accumulated over

@r icabconvergence of the long-time-averaged flow fields was checked by computing
velo

ilation was run for a period of up to 38650h/U,,. For times greater than 28140h/U,,, the
differences in the computed statistics were found to be less than 1%, hence the analyses in

the following sections are based on flow fields accumulated over integration periods larger

than 28140h/U,.

10
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FIG. 6. Contours of mean streamwise vorticity at Re,, ={1500. S nd (b) correspond to states A
and B, respectively, while (c) is the contour plot for(\the long-time-averaged flow field. The data
have been normalised by the maximum absolute*weorticity; contours range from -1 to 1 with

L
increment 0.1; negative values dashed. Length% tational domain is 127h.

B. Origin of the secondary flow \‘S\

Associated with the secondary flows\in non-circular ducts is a mean streamwise compo-
ini

/

nent of vorticity; hence by e e vorticity transport equation, an insight into the

origin of these motions can be obtained. For fully developed flow in a straight duct, the
ion reads Q
£
{ gﬂ/
8(2 52 B 52 o2 92
7—2F £ — 4+ — | Q. IS I, 12 _ 12\ —
"oy f@\éw *azﬁ) +(ay2 azQ)“” T ez =0 6)

= % is the mean streamwise vorticity, and the prime symbol as well as the

equat

~

~
D P1 P2

Y
episent fluctuating velocity components and time averaging, respectively. The
first two}erms, (', on the left hand side of Eq. (5) represent the convection of streamwise
}05510\1 y by the secondary motion itself. Together with the viscous diffusion term, D, these
quantities are mainly involved in the redistribution of vorticity within the duct. P, and
P; represent the contribution of the Reynolds cross-stream shear stress and the anisotropy
of the cross-stream normal stresses, respectively. They act to either produce or destroy

streamwise vorticity.

11
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FIG. 7. Contours of production terms in the mean stre mwise vO icity transport equation, nor-
malised by (U,/h)%. (a) and (b) show the normal (). andighedr-stress (P;) terms, respectively,

while the flow is in state A. (c) and (d) show P4an , respectively, for the long-time-averaged
L
\n 0.02; negative values dashed.

flow field. Contours range from -0.1 to 0.1, WiquﬂQ

\

Figure 6 shows the contours{o _>It\can be observed that they closely match the
secondary flow patterns shown'in Fig. 3y.except close to the walls where there is an inversion
of the vorticity sign. The coer es are associated with higher values of vorticity, but
&1\033 moving wall. Figures 7(a) and (b) show the distribution

of the normal and shéar-stregs terms of the vorticity transport equation, respectively, while

the maximum is locat

the flow is in state ot9/ that the corresponding plots for state B can be obtained by
a 7 rotation 5h\e\duct’s axis). The plots for the long-time-averaged data are shown

)

l1s{ only“half of the computational domain is shown. In state A, close to the

in Fig. 7 (d). Since the flow is symmetrical about the common bisector of the

moving

lower fcorner, wiliere the small vortices are located and across most of the lower wall, the

¢ ibution©f P, to the production of streamwise vorticity can be observed to be larger
than tha§ of P;. Its maximum value, which is about 1.8 times larger than the maximum P,
u

X’b? rs at z/h = 0.023,y/h = 0.190. However, at the upper wall, where the large vortices
a

"
located, P;, though relatively small in magnitude, accounts for the vorticity production

away from the corner. Switching between states results, in the long run, in a flow field in
which streamwise vorticity production is dominated by gradients of the anisotropy of the

Reynolds normal stresses (see Fig. 7(c) and (d)).

12
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FIG. 8. Budget of terms in the mean streamwise chticity ns}ort equation along lines parallel

to the side wall and passing through the centre of t @es: (a) at z/h = 0.25, while the flow

is in state A, (b) at z/h = 0.6 (same state as ( . (¢) ﬁh 0.4 in the long-time-averaged flow

field. +, normal stress (P»); ——, shear stress ), viscous diffusion; -.-.-, convection; - - - -,

balance; ....... , Q. /(6U,, /h)

~

streamwise vorticity are also for reference. Consider a line parallel to the y axis,

The contributions of term m are quantitatively shown in Fig. 8. Plots of the
G

located at z/h = 0.25, .nahﬁsing through the centre of the corner vortex. Close to the
lower wall, the prodiiction orticity is dominated by the anisotropy term, P, (see Fig.
8(a)), the maxinufm value gfcurring at y/h ~ 0.05 where there is a change in the vorticity
sign. P is b ce viscous diffusion and the shear-stress term which is much smaller
in magnitude. aﬁam be observed that the contributions of P, and P; are of opposite signs
across mbst of the duct, one acting as a source term and the other, having the same sign as
the vifcous diffuSsion term, acting as a sink. Beyond y/h ~ 0.36, P, and P, are roughly of
thesante magnitude. The convection term is very small across the entire length shown, and
sous D k&yond y/h ~ 0.36. Figure 8(b) shows the terms in the vorticity transport equation
E‘lswia vertical line, located at z/h = 0.6, passing through the centre of the large vortex
associated with the upper wall. Close to the wall, P, can be observed to account for most
of the vorticity production as earlier discussed, its maximum value occurring at y/h ~ 1.94.
Again, balance is maintained by the viscous diffusion term, while the convection term is very

small. Below y/h ~ 1.94, P, increases, attaining a maximum at y/h &~ 1.79, beyond which

13
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passing through the centre of a secondary flow vortex at z/h = 0.4 (see Fig. 8(c)), a trend
similar to that of Fig. 8(a) can be observed. From the foregoing, it can be concluded that
gradients of the Reynolds secondary shear stress, v'w’ away from the corners play a key role
in the formation of the large secondary flow vortices. On the otherzfand, the corner vortices

emerge as a result of gradients of w? — v'2.

C. Flow statistics and turbulence structure

Streamwise velocity profiles along the moving-wal bisect?r, normalised by local friction
velocity are presented in Fig. 9(a). The plan Couetteflow data of Avsarkisov et al.!
and Pirozzoli et al.?? at Re, = 125 and 1715 esp(;@vely and duct flow experiment of
Owolabi et al.'? are also shown for the purpose of making comparison. In state A, at the
lower half of the duct, the velocity proﬁ%bserved to be in good agreement with those
in the channel. The data matches t arithymic scaling law: |a—U,|T = 2.44 In(y™)+5.1,
in the region: 30 < y™ < 69. At the d%shaper half (equivalent to the lower half in state
B), however, an overshoot fr & Jaw can be observed. As will be shown later, the
local shear stress at the upper mgoving wall is smaller than at the lower one. Therefore,

frictien velocity results in higher non-dimensional velocities being
obtained. Furthermofe, th.sn

normalising by the loc
olds number based on the local friction velocity (Re, = 70)
is smaller than atfthe /weWall (Re, = 90) hence this deviation from the classical profile
is a low Reynol SMI effect. For the long-time-averaged flow field, the velocity profile
lies betwee sé of the bi-stable states.

Root fganfsquare velocity fluctuations along the moving-wall bisector normalised by the
wall velocity a éhown in Fig 9(b). Larger streamwise fluctuations can be observed across

Sk‘gwi ct in the long-time-averaged flow field. These are induced by the intermittency
:‘r(@ w. In one state, the velocities fluctuate about a mean which is higher than the
hﬁg—&erm one, while in the other, the fluctuations are about a mean value lower than the
long-time-average. Hence in the long run, the deviations from the long-term mean are large
(see Fig. 10, where the probability density functions of instantaneous streamwise velocity

at y/h = 0.4 are shown). In state A, the peaks in t. s (Urms/Uy, =~ 0.172 and 0.170 near
the lower and upper walls, respectively) can be observed to be slightly higher than that
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FIG. 9. Turbulence statistics: (a) Streamwise l(gf@ @ﬁles, (b) Root-mean-square velocity

fluctuations. , profile from lower half of W the flow is in state A; - - - -, profile from
upper half of the duct while the flow is i st%\—.-.—.—, long-time-averaged flow field; O , Plane
\

Couette flow DNS of Ref. 21 at Re, =d25; x,"plane Couette flow DNS of Ref. 22 at Re, = 171; A

Bm"‘ = y+; ....... , |Z_L — Uw’+ = 2-44-ln(y+) +5.1.

in the plane Couette flow da\\\sarkisov et al.®! (Uppms/Uy = 0.165). At the lower
exist

wall, the maximum ¢/

square duct flow exp. of Ref. 12; -.4-.

‘loser to the wall than at the upper wall. As earlier

shown, the Reynolds aumbers based on the local friction velocity is larger at the bottom,

hence this trend is,&nsiétent ‘with findings in wall-bounded turbulent flows which show an

inward shift of t{ ak wi {increasing Reynolds number. A similar argument applies to the
wall-normal el(@ty fluetuations which can be observed to be higher close to the lower wall.
Here, vy, d/U,, and w,,s/U,, are slightly greater than those of the long term averaged flow
field. he /Vey{e is the case close to the upper wall. As the duct’s centre is approached,

Urms /G dro? to lower values than in the channel while v,,,,/U, and w.,/U, are very
q

similar t se in the channel.
t vae consider the invariants of the non-dimensional Reynolds stress anisotropy tensor
wen\by:
IT = b;;bj; /2, IIT = bbb /3, (6)
where
bij = il [ujup, — 151']'- (7)

3

15


http://dx.doi.org/10.1063/1.5026947

! I P | This manuscript was accepted by Phys. Fluids. Click here to see the version of record.

Publishing 12

a, A
10 |

p.d.f
o

FIG. 10. Probability density function of instantaneouds stream velocity, u, at y/h = 0.4. Legend

as in Fig. 9. Arrows indicate fluctuations about t shor }d long-time averages.

All possible turbulence states must lie xumley triangle,?® bounded by the lines:
—I1/3 = (I11/2)*3, —I1/3 = (— lekmd —II = 3(1/27 + III), corresponding to
axisymmetric expansion, axisy 1etr ontraction and two-component turbulent states,
respectively,?* while the bot o& and right vertices represent the three-component
isotropic, two-component axisymipetric and one-component limits, respectively. It should
be noted that these do @ﬁme to the shape of the turbulent eddies; rather, they give

an indication of theState“ef the Reynolds stress tensor. Figure 11 shows the anisotropy

invariant map ( or t};(e long-time-averaged flow field as well as the plane Couette

flow data of Avsar et al?' at Re, = 125. Data for only half of the duct is shown.
Along the ) wall bisector (see Fig. 11(a)), the AIM is not very different from that
in plane Cougtte flew (Fig. 11(b)). Close to the wall, due to the damping of wall-normal
velocify fluct tgns, the turbulence is two-dimensional but at y™ ~ 7.6 (y™ =~ 7.3 in the

pl ne Gquett, data), there is a switch to an axisymmetric state. As the centre of the duct

is approgched, the turbulence becomes increasingly isotropic due to the closeness of the

i

isshowever higher in the square duct.

tons in all velocity components (see Fig. 9(b)). The level of isotropy at the centre

The variation of shear stress along the moving walls while the flow is in state A, as
well as that in the long-time-averaged flow field are shown in Fig. 12(a). The plots have

been normalised by the long-term mean at the centre of the moving wall, 7*. Close to the
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FIG. 12. I/Sh§ress distribution at the moving walls. Flow is in state A: ——, lower wall;
ﬁ
- - - -yupper wall; -.-.-.-.- long-time-averaged flow field. Only half of the duct is shown, due to
symmnietr ut the moving-wall bisector.

)

Eb?l.eis, the stresses increase dramatically (see inset of Fig. 12(a)). Slow-moving fluid at
the stationary side walls interact with fast-moving fluid at the moving wall, resulting in
large velocity gradients. At the lower wall, the shear stress drops to a local minimum at
z/h = 0.45 before approaching a local maximum at z/h = 1, while at the upper wall, a

local minimum is found at the duct centre. As the flow switches to state B, the profiles

17
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Publishih(g »me interchanged, hence no distinct extrema can be observed in the long-time-averaged

flow field.

Figures 13(a) and (b) show the typical instantaneous velocity fields at z-z planes close
to the lower and upper walls in the bi-stable states (In this case, the data for state A is
presented). As earlier shown, Re, for this flow is as low as 70. This corresponds to a duct

width of about 140 in wall units. Given that the separation di

1'5 herent structures
in a turbulent flow is about 100 wall units?”, the duct is just barely wide enough to host the
structures required to maintain a turbulent state. The fi reveal the existence of only a
single high-speed streak centrally positioned along the upp wall‘and two at the lower wall,
close to the corners. Hence the switching between states occsrs in such a way as to increase

the number of structures close to a given wall, toe‘iure continued sustenance of turbulence.
The position of the streaks correspond to the she Qtress extrema locations. To clearly
show them, we present data at y/h=0.2 % 8, corresponding to locations of large
Urms. Lhe structures are persistent over & of the duct, indicating that the states
are very stable in the streamwise dir ctMsociated with each streak is a pair of counter-
rotating vortices. Figure 13 ( 1ovxnﬁf)shot of the instantaneous velocity field in the
cross-sectional plane of the duet 3« = 20 where the two streaks in Fig.13 (b) are clearly
separated. The high-speed stre 1cated by mushroom-shaped velocity contours, can

be observed to be posi 'on?djetween the vortices. They are formed due to the lift-up of

high speed flow by the vortices'from the wall. These coherent structures have been shown
£
to play a crucial pble™ theyturbulence regeneration cycle.?>. When averaged in space and

time, they result iN)b erved secondary flow pattern in a square duct.

s the results of quadrant analysis carried out to determine the contribution

turbulent events to the Reynolds shear stress, w/v/. The Reynolds shear stress
can bé divideduifito four quadrants (Q1-Q4) depending on the sign of velocity fluctuations
(seeuin of)igure 14(a)). In the analysis, the coordinate system was modified such that
p itive‘g always pointed away from the nearest moving wall, while u was always positive
MI& ranslation direction of the nearest moving wall. In state A, along the bisector of
the upper wall, Q1 events representing the ejection of fast-moving fluid away from the
wall by positive wall-normal velocity fluctuations dominate. This is also the case at the
lower wall, close to the corners (see Fig. 14(b) where data along the line z/h = 0.45

passing through a region where the secondary flow vectors are pointed away from the wall is
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FIG. 13. Coherent structures. (a) and (b) are typicle‘"-é‘tﬁl‘c)O

x—z planes located at y/h = 1.8 and 0.2, respecti , corresponding to regions of large fluctuations
in streamwise velocity ; white contours indicate %

than 40% of the maximum in each plane r& c) is the velocity field in the duct’s cross-

section at x/h =20. - - - -, y/h = 0.2;¢ «, yMa = 1.8

<

1

uadrant analysis of the Reynolds shear stress, while the flow is in state A: (a) along the
S~

isector of the upper wall, (b) at z/h = 0.45 (line passes through a region where the secondary

flow vectors are pointed away from the lower wall), (c) along the bisector of the lower wall. +,

Ql; -, Q25 %, Q3; ——, Qd; - - - - - , W' total.
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Publishimg:ented ). However, along the bisector of the lower wall, Q3 events representing sweeping
motion during which slow moving fluid is conveyed to the wall by negative wall-normal
fluctuations account for the bulk of w/v/ generation (see Fig. 14(c)). A closer examination

of the velocity fields in Fig.3(a) reveals that along the bisector of the upper wall (where

contour to bulge

quadrant analysis shows ejection events to dominate), the secondaty flow can be observed
to transport momentum away from the wall, causing the axi m

towards the duct’s interior. Similarly, at the lower wall (Wher@ing motion dominates),
caus]

the secondary flow transports momentum towards the Ll? ng ‘the contours of axial

velocity to bulge inwards. It is thus evident that the seconddry motion is closely related to

—
the near-wall ejection and sweeping events. ks
V. CONCLUSION \\L..

In this study, direct numerical sim aﬁ@ turbulent Couette flows in a square duct
at relatively low Reynolds number h“% n carried out. The flow is driven by a pair
of opposite counter-moving wallg {ran ati@ with the same speed, resulting in a zero net
transport of fluid through th u& bulent state was found to be maintained only for
Reynolds numbers greater thﬁ%%& This is much higher than the Re. ~ 360 — 375

eﬂhbstudies,”’ls’% thus underscoring the stabilising effect of the

observed in plane Cou

side walls on the fl eynolds numbers close to the critical, the flow was observed

4
to exist in two ?(ate

ne/being a mirror reflection of the other, with symmetry about

the common isito f the moving walls. In these states, the secondary motion (which is
1

in Poiseuille flow) is characterised by four vortices, induced by gradients

eynolds normal stresses, w2 — v/2 and cross stream shear stress, vw'.
Due tp the in ittency in the flow, large fluctuations in the velocity, about the long-term

al, were ogserved. Instantaneous flow field visualisations reveal the existence of coherent
st Ctur(% which are persistent over the length of the duct, thus indicating that the states
Eﬂsxgy stable in the streamwise direction. Quadrant analysis at different locations in the

t indicate that the secondary flow is closely related to the near-wall ejection and sweeping
events; ejection dominating in regions where the secondary flow transports momentum away
from the wall and sweeping dominating in regions where momentum is transported towards

the wall.
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