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The results of direct numerical simulations to determine the critical conditions for self-

sustained turbulence in wall-driven (Couette) square duct flow and its characteristics

at relatively low turbulent Reynolds numbers are presented. We focus on the case

in which a pair of opposite counter-moving walls translating with the same speed

drive the flow. Stabilisation by the side walls is found to play a crucial role in the

transition to turbulence, the minimum Reynolds number for maintaining a turbulent

state (Rec ≈ 875) being much greater than that in a plane channel. At Reynolds

numbers close to the critical, an alternation of the flow field, in time, between two

states characterised by a four-vortex secondary flow pattern is observed, one being

a mirror reflection of the other, and the flow remaining approximately symmetrical

about the common bisector of the moving walls. Due to the intermittency, large

velocity fluctuations about the long-term mean are observed at different locations in

the duct. These findings are consistent with results of previous studies on turbulent

pressure-driven (Poiseuille) square duct flow at low Reynolds numbers, hence the

phenomenon is not unique to Poiseuille flows. Instantaneous flow field visualisations

reveal the existence of coherent structures which are persistent over the length of

the duct, thus indicating that the states are very stable in the streamwise direction.

Quadrant analysis of the Reynolds shear stress show that the secondary motions are

closely related to the near-wall ejection and sweeping events.
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I. INTRODUCTION

Turbulent flow in a straight square duct is known to be characterised by a mean sec-

ondary motion in the cross sectional plane referred to as Prandtl’s secondary flow of the

second kind. This phenomenon, induced by the turbulent fluctuations was first observed

by Nikuradse1 and has since been widely researched, both experimentally and numerically,

to better understand the origin. Earlier experimental studies2–4 focused on relatively large

Reynolds numbers (Reτ > 4000, Reτ = uτh/ν, where uτ is the friction velocity given by

the expression:
√
τ ∗/ρ and τ ∗, h, ν and ρ represent the average shear stress at the wall

centre, duct half-height, kinematic viscosity and density, respectively). Although typically

less than 2% of the primary flow, the secondary currents characterised by eight vortices

which are symmetrical about both the corner and wall bisectors were shown to significantly

influence momentum and heat transport. Hence they are of great importance in a wide

range of engineering applications such as heating ventilation and air-conditioning systems,

nuclear reactor channels, intake ducts of jet engines, heat exchangers and turbine blade

cooling passages among others.5 The sense of rotation of the secondary vortices in a purely

pressure-driven flow is such that they are directed towards the corners along the duct’s di-

agonals, resulting in the deformation of the primary velocity profile and a non-uniform wall

shear stress distribution. These findings have been confirmed by direct numerical simula-

tions (DNS),6–9 albeit at much lower Reynolds numbers(Reτ < 600), and detailed flow field

statistics not easily obtainable in the laboratory are now available.

In recent times, there has been a growing interest in understanding the flow structure at

Reynolds numbers close to transition. In this regime where the separation between small

and large scales is small, the duct’s width in wall units is just barely large enough to host

the minimum number of structures required for self-sustained turbulence.10,11 The DNS of

Uhlmann et al.10 in marginally-turbulent flow revealed a temporal switching of the flow

field between two states characterised by a four-vortex mean secondary flow pattern, one

state being a 90◦ rotation of the other about the duct’s axis, so that a long time average

resulted in the well-known eight vortex pattern in pressure driven flow. These results have

been validated by experiments.12 The probability density functions (p.d.f.s) of streamwise

velocity as well as joint p.d.f.s of streamwise and wall-normal velocity at certain distances

from the wall were observed to feature two peaks corresponding to each of the two states.

2

http://dx.doi.org/10.1063/1.5026947


While there has been several studies on the pressure-driven (Poiseuille) case, wall-driven

(Couette) turbulent flow in a square duct remains largely unexplored. Large eddy simula-

tions of Couette-Poiseuille flow by Hsu et al.13 and Lo and Lin14 revealed significant changes

to the secondary flow in the vicinity of a moving wall. As the ratio of the wall to bulk

velocity increased, a merger of the secondary vortices was observed and the cross-stream

flow changed from the eight-vortex pattern to one characterised by six vortices, with sym-

metry only about the moving-wall bisector. A similar secondary flow pattern was observed

in the purely wall-driven case, but the flow was not examined in detail. The Reynolds

number in the aforementioned numerical studies on square duct Couette flow are quite high

(Reτ > 300), hence the flow characteristics close to transition are not well known. An in-

teresting question is whether the switching observed in the pressure driven case also exists

in wall-driven flow.

In this study, we investigate the purely wall-driven turbulent flow in a square duct using

direct numerical simulations. First, we determine the critical conditions for self-sustained

turbulence. Motivated by the findings of Uhlmann et al.10 on the existence of bi-stable

states in “marginally turbulent” Poiseuille square duct flows, we then characterise the tur-

bulence field at relatively low Reynolds numbers with a view to determining whether this

phenomenon is a ubiquitous feature of wall-bounded flows. For a mean secondary flow to

exist, a duct of finite aspect ratio is required. In this regard, a square duct is the simplest

and most widely studied geometry, thus it was selected to allow for direct comparison with

results on pressure-driven flow10. We focus on the case in which a pair of opposite counter-

moving walls translating with the same speed (Uw) drive the flow. This configuration results

in a zero net transport of fluid through the duct.

II. NUMERICAL METHOD

We consider turbulent Couette flow of an incompressible Newtonian fluid through a

straight duct of square cross-section (2h × 2h). The streamwise direction is x while y

and z are the transverse and spanwise directions, respectively, with u, v and w being the

corresponding velocity components. An illustration of the computational domain is shown

in Fig. 1. The governing equations for this flow are those expressing the conservation of

mass and momentum, which in tensor notation, are given as:
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FIG. 1. Coordinate system and geometry
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where ui, p and t denote the velocity field, static pressure and time, respectively, and the

mean pressure gradient in the streamwise direction is equal to zero. The boundary conditions

employed are the no-slip conditions at the walls and periodicity in the streamwise direction.

In solving the Navier-Stokes equations, the finite volume approach is employed. The equa-

tions are advanced in time using a semi-implicit fractional step method. The convection

and diffusion terms are evaluated by the Adams-Bashforth and Crank-Nicholson schemes,

respectively, while spatial derivatives are approximated using second-order central difference

schemes. The resulting system of algebraic equations are evaluated using the preconditioned

conjugate gradient solver. A Poisson equation for pressure is solved at each time step to

obtain the incompressible velocity field. The three dimensional Poisson equation is reduced,

using fast Fourier transform, to uncoupled two-dimensional algebraic equations which are

solved by LU decomposition.

The code used in this study is a modified version of that employed by Hsu et al.13 and

Lo and lin14 and has been validated against turbulent Poiseuille flow data. Symmetrically

clustered grids were employed in the cross-sectional plane, the spacing increasing with dis-

tance from the wall. Along the bisector of the moving walls, ∆y+ varied from about 0.04 at

the wall to 4.57 at the centre of the duct, while in the streamwise direction, the grids were
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uniformly spaced with ∆x+ < 9. The superscript, + refers to normalisation by wall units

defined in terms of the local friction velocity at the centre of the moving wall. The time

steps employed were such that CFL number was less than 0.3. In this study, we introduce

a Reynolds number, Rew, given by the expression: Rew = Uwh/ν, where Uw is the velocity

of the moving wall.

III. CRITICAL CONDITIONS FOR SELF-SUSTAINED TURBULENCE

We seek to determine the critical Reynolds number (Rec) for transition to turbulence and

also obtain an estimate of the typical length scales (Lc) of the smallest structures required for

the sustenance of a turbulent state in wall-driven square duct flow. The value of Lc places a

lower bound on the length of the box that can be used for a turbulent flow simulation. Given

the sub-critical nature of the transition, initial conditions are very important. Following the

approach of Jimenez and Moin15, Hamilton et al.16 and Uhlmann et al.10, the simulations

were initiated using, as starting conditions, the fully developed turbulent flow field at a high

Reynolds number and/or duct length (Lx). The Reynolds number was then gradually varied

in successive runs while keeping Lx constant until the flow re-laminarised. In other cases,

Lx was varied while holding Rew constant. The fluctuations in the streamwise and wall-

normal velocity at different locations in the duct were monitored; upon re-laminarisation,

these dropped to zero. In each simulation, the flow was allowed to evolve for a time of at

least 3500 h/Uw. Similar integration times have been employed by Refs. 10 and 15 in their

studies on turbulence sustenance in minimal flow units.

Figure 2 shows the flow states for different combinations of Rew and Lx. The data points

at the boundary between laminar and turbulent states are connected with dashed lines. For

turbulent states away from this boundary, a mesh with 96× 96 cross-sectional divisions was

found to be sufficient to obtain a sustained turbulent state. At Rew = 1500 and Lx = 4πh,

we compared the turbulence statistics obtained using this grid with that from a grid having

128×128 cross-sectional divisions and obtained good agreement. In both cases, the number

of cells in the streamwise direction (Nx) was equal to 160. The data also agreed well with

those in a duct of length 12πh (having 96× 96× 352 cells). However, two-point correlations

showed that a decorrelation of the streamwise velocity fluctuations was not achieved with

Lx = 4πh.

5

http://dx.doi.org/10.1063/1.5026947


1000 1500 2000
Rew

0

10

20

30

40

L
x
/h

FIG. 2. Critical conditions for turbulence. Filled symbols represent laminar states while unfilled

ones are the turbulent states. 4, Nz = Ny = 128 grid cells; ©, Nz = Ny = 96 grid cells;

- - - -, laminar/turbulent boundary.

From Fig. 2, it can be observed that the lowest Reynolds number (Rec) at which a

turbulent state can be sustained is about 875. For values of Rew less than this, a re-

laminarisation of the flow occurred irrespective of the domain length. Given that the same

result was obtain in boxes of length 8πh, 10πh and 12πh, we do not expect to see a large

change in the estimated value of Rec in a longer box. However, there is an uncertainty of

about ±25 (since the Reynolds number was varied in steps of 50). We further check that

Rec is independent of the grid by repeating the simulation at Rew = 825 (the laminar data

point just before Rec) using two different meshes having 128 × 128 and 256 × 256 cells in

the cross-sectional plane and 320 cells in the streamwise direction and a re-laminarisation of

the flow was observed in both. We also check the grid independence of Lc at the Reynolds

numbers considered, by repeating the cases where re-laminarisation occured, with a grid

having 128 × 128 cross-sectional divisions. Table I gives the parameters for the eight data

points connected by the dashed line in Fig. 2.

The transition Reynolds number is much greater than that in plane Couette flow (Rec ≈

370, see Refs. 17 and 18), thus underscoring the importance of side walls in stabilising the

flow. For large aspect ratio ducts, where end effects are negligible, Rec is expected to be

similar to that in plane Couette flow. To verify this, we carried out simulations in two
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TABLE I. Simulation parameters for data points on the laminar/turbulent boundary. Lx is the

length of computational domain ∆y+ is the grid resolution along the bisector of the moving wall

and ∆x+, is that in the streamwise direction. Nx, Ny and Nz are the number of grid points in

the x, y and z directions, respectively. Reτ is defined in terms of the average value of the

shear stress at the centre plane of the moving walls.

Rew Lx Ny ×Nz ×Nx Reτ ∆y+ ∆x+

875 12πh 128× 128× 352 52 0.04− 1.91 5.80

875 10πh 128× 128× 320 52 0.04− 1.91 5.16

875 8πh 128× 128× 320 53 0.04− 1.92 4.17

1000 18h 128× 128× 192 59 0.04− 2.16 5.60

1125 4πh 96× 96× 160 65 0.07− 2.50 5.19

1125 4πh 128× 128× 160 65 0.05− 2.38 5.19

1500 3h 128× 128× 96 88 0.07− 3.21 2.81

1750 3h 128× 128× 64 101 0.08− 3.69 4.89

2250 2h 96× 96× 64 125 0.13− 4.65 4.52

2250 2h 128× 128× 64 125 0.10− 4.57 4.04

ducts of aspect ratios 2:1 and 4:1 having a length of 4πh and observed a turbulent state

to be maintained at Rew as low as 625 and 500, respectively. For the pressure-driven case,

Vinuesa et al.19 suggested that a duct with an aspect ratio of at least 24 is required to obtain

results comparable to those in a channel. We thus expect that a similar aspect ratio will be

required in Couette flow.

Close to transition, Lc can be observed to be larger than at higher Reynolds numbers,

thus indicating an increase in the length scales of the turbulence structures; hence longer

computational boxes are needed for the simulations. For Rew > 1500, Lc is about 3h. The

flow in such minimal units are not realisable in the laboratory; rather, they are the basic

building blocks of wall-bounded turbulent flows.15 To simulate a physically realisable turbu-

lent flow, the domain length would have to be much longer than Lc such that a decorrelation

of the turbulence statistics is achieved.

7

http://dx.doi.org/10.1063/1.5026947


IV. TURBULENT FLOWS AT LOW REYNOLDS NUMBERS

Having determined the critical conditions for self-sustained turbulence, we investigate

the flow at relatively low turbulent Reynolds numbers. In the following sections, we present

results obtained at Rew = 1500 in a computational domain of length 12πh. We have checked

that this box is long enough to allow for the decorrelation of velocity fluctuations. A mesh

having 96× 96× 352 cells have been used. For this grid we have verified that the cell sizes

are of the order of the Kolmogorov length scale (η) given by η = (ν3/ε)1/4, where ε is the

rate of turbulent kinetic energy dissipation. At the wall, ε was estimated from the viscous

diffusion term in the turbulent kinetic energy equation20 but away from the wall, ε was

obtained by assuming turbulent kinetic energy production to be equal to dissipation. From

this analysis, the grid resolution ranged from about 0.16η to 1.8η. Along the bisector of

the moving walls, ∆y+ varied from about 0.09 at the wall to 4.05 at the centre of the duct,

while in the streamwise direction, ∆x+ was about 8.91.

A. Secondary flow pattern

Figure 3 shows the mean velocity fields, the velocity vectors indicating the secondary flow

pattern. An alternation of the flow field in time between two states can be observed, one

being a mirror reflection of the other, and the flow remaining approximately symmetrical

about the common bisector of the moving walls (see Figs. 3(a) and (b)). We hereafter refer

to the state corresponding to Fig. 3(a) as A and that shown in Fig. 3(b) as B. In either case,

a pair of large counter-rotating vortices associated with a moving wall dominates the entire

flow field, transporting momentum from the wall to the interior of the duct, and another pair

of smaller vortices is located at the opposite wall. The time spent in each state can be rather

long. The velocity fields in Figs. 3(a) and (b) have been obtained by averaging over two

separate intervals, of lengths 1050h/Uw and 1506h/Uw, respectively during which the flow

was continuously in each state. As the flow switches states, the large vortices shrink and are

pushed towards the corners, while maintaining their rotation sense and the vortex pair at the

opposite wall become enlarged. Averaging over long times result in a four-vortex secondary

flow pattern, symmetrical about the wall bisectors (see Fig. 3(c), where the integration time

is 12960h/Uw).
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FIG. 3. Contours of mean streamwise velocity normalised by the wall velocity, Uw, and secondary

flow vectors at Rew = 1500 and Lx/h = 12π: (a) averaging interval 1050h/Uw, (b) average over a

different interval of length 1506h/Uw (flow is in a different state),(c) averaging interval 12960h/Uw

(including both previous intervals). Contours range from -1 at the lower wall to 1 at the upper

wall, with increment 0.2. For clarity, vectors are shown at every third grid point.

To quantitatively identify the two states, we define the magnitude S(t) of the secondary

flow in the central part of the duct, assigning a sign depending on the value of the wall-normal

velocity component:

S(t) =


√
ṽ2 + w̃2, ṽ > 0

−
√
ṽ2 + w̃2, ṽ < 0,

(3)

where the tilde symbol represents instantaneous spatial averaging in the streamwise direc-

tion. We introduce an indicator function given by:

I(t) =

∫∫
R
S(t)dydz∫∫

R
|S(t)|dydz

, (4)

where R is the region bounded by the lines z/h = 0.6, z/h = 1.4 and the upper and lower

walls, where the secondary flow is mostly in the direction normal to the moving walls (see

Fig. 3(a) and (b)). I(t) ranges between -1 and 1, negative values corresponding to state A

and positive values, B. Based on the above criteria, conditional averaging was carried out

to separate the two states. Figure 4 shows the evolution of the indicator function over the

interval for which the flow fields in Fig. 3 have been computed. The average values of I in

Figs. 3(a) and (b) are -0.775 and 0.709, respectively. The change in state can be observed
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FIG. 4. variation of the indicator function, I(t) with non-dimensional time at Rew = 1500 and

Lx/h = 12π
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FIG. 5. Convergence test: (a) mean velocities computed from different integration times; (b)

turbulent kinetic energy computed from different integration times. Data along the moving-wall

bisector is presented. ×, y/h = 1.0; 2, y/h = 1.2; *, y/h = 1.4; ◦, y/h = 1.6; +, y/h = 1.8.

to occur in an irregular fashion; however, the time spent in each state is of the order of

1000h/Uw.

Statistical convergence of the long-time-averaged flow fields was checked by computing

the velocity magnitude and turbulent kinetic energy (t.k.e) from data accumulated over

different times (see Fig. 5 where data along the moving-wall bisector is shown). The

simulation was run for a period of up to 38650h/Uw. For times greater than 28140h/Uw, the

differences in the computed statistics were found to be less than 1%, hence the analyses in

the following sections are based on flow fields accumulated over integration periods larger

than 28140h/Uw.
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FIG. 6. Contours of mean streamwise vorticity at Rew = 1500. (a) and (b) correspond to states A

and B, respectively, while (c) is the contour plot for the long-time-averaged flow field. The data

have been normalised by the maximum absolute vorticity; contours range from -1 to 1 with

increment 0.1; negative values dashed. Length of computational domain is 12πh.

B. Origin of the secondary flow

Associated with the secondary flows in non-circular ducts is a mean streamwise compo-

nent of vorticity; hence by examining the vorticity transport equation, an insight into the

origin of these motions can be obtained. For fully developed flow in a straight duct, the

equation reads

v
∂Ω̄x

∂y
+ w

∂Ω̄x

∂z︸ ︷︷ ︸
C

− ν
(
∂2

∂y2
+

∂2

∂z2

)
Ω̄x︸ ︷︷ ︸

D

+

(
∂2

∂y2
− ∂2

∂z2

)
v′w′︸ ︷︷ ︸

P1

+
∂2

∂y∂z
(w′2 − v′2)︸ ︷︷ ︸
P2

= 0, (5)

where Ω̄x = ∂w
∂y
− ∂v

∂z
is the mean streamwise vorticity, and the prime symbol as well as the

overbars represent fluctuating velocity components and time averaging, respectively. The

first two terms, C, on the left hand side of Eq. (5) represent the convection of streamwise

vorticity by the secondary motion itself. Together with the viscous diffusion term, D, these

quantities are mainly involved in the redistribution of vorticity within the duct. P1 and

P2 represent the contribution of the Reynolds cross-stream shear stress and the anisotropy

of the cross-stream normal stresses, respectively. They act to either produce or destroy

streamwise vorticity.
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FIG. 7. Contours of production terms in the mean streamwise vorticity transport equation, nor-

malised by (Uw/h)2. (a) and (b) show the normal (P2) and shear-stress (P1) terms, respectively,

while the flow is in state A. (c) and (d) show P2 and P1, respectively, for the long-time-averaged

flow field. Contours range from -0.1 to 0.1, with increment 0.02; negative values dashed.

Figure 6 shows the contours of Ω̄x. It can be observed that they closely match the

secondary flow patterns shown in Fig. 3, except close to the walls where there is an inversion

of the vorticity sign. The corner vortices are associated with higher values of vorticity, but

the maximum is located on the moving wall. Figures 7(a) and (b) show the distribution

of the normal and shear-stress terms of the vorticity transport equation, respectively, while

the flow is in state A (note that the corresponding plots for state B can be obtained by

a π rotation about the duct’s axis). The plots for the long-time-averaged data are shown

in Fig. 7(c) and (d). Since the flow is symmetrical about the common bisector of the

moving walls, only half of the computational domain is shown. In state A, close to the

lower corner, where the small vortices are located and across most of the lower wall, the

contribution of P2 to the production of streamwise vorticity can be observed to be larger

than that of P1. Its maximum value, which is about 1.8 times larger than the maximum P1

occurs at z/h = 0.023, y/h = 0.190. However, at the upper wall, where the large vortices

are located, P1, though relatively small in magnitude, accounts for the vorticity production

away from the corner. Switching between states results, in the long run, in a flow field in

which streamwise vorticity production is dominated by gradients of the anisotropy of the

Reynolds normal stresses (see Fig. 7(c) and (d)).
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FIG. 8. Budget of terms in the mean streamwise vorticity transport equation along lines parallel

to the side wall and passing through the centre of the vortices: (a) at z/h = 0.25, while the flow

is in state A, (b) at z/h = 0.6 (same state as (a)), (c) at z/h = 0.4 in the long-time-averaged flow

field. +, normal stress (P2); —–, shear stress (P1); ×, viscous diffusion; -.-.-, convection; - - - -,

balance; ......., Ω̄x/(6Uw/h)

The contributions of terms in Eq. (5) are quantitatively shown in Fig. 8. Plots of the

streamwise vorticity are also included for reference. Consider a line parallel to the y axis,

located at z/h = 0.25, and passing through the centre of the corner vortex. Close to the

lower wall, the production of vorticity is dominated by the anisotropy term, P2 (see Fig.

8(a)), the maximum value occurring at y/h ≈ 0.05 where there is a change in the vorticity

sign. P2 is balanced by viscous diffusion and the shear-stress term which is much smaller

in magnitude. It can be observed that the contributions of P2 and P1 are of opposite signs

across most of the duct, one acting as a source term and the other, having the same sign as

the viscous diffussion term, acting as a sink. Beyond y/h ≈ 0.36, P1 and P2 are roughly of

the same magnitude. The convection term is very small across the entire length shown, and

so is D beyond y/h ≈ 0.36. Figure 8(b) shows the terms in the vorticity transport equation

along a vertical line, located at z/h = 0.6, passing through the centre of the large vortex

associated with the upper wall. Close to the wall, P1 can be observed to account for most

of the vorticity production as earlier discussed, its maximum value occurring at y/h ≈ 1.94.

Again, balance is maintained by the viscous diffusion term, while the convection term is very

small. Below y/h ≈ 1.94, P2 increases, attaining a maximum at y/h ≈ 1.79, beyond which
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it is roughly of the same magnitude as P1. For the long-time-averaged flow field along a line

passing through the centre of a secondary flow vortex at z/h = 0.4 (see Fig. 8(c)), a trend

similar to that of Fig. 8(a) can be observed. From the foregoing, it can be concluded that

gradients of the Reynolds secondary shear stress, v′w′ away from the corners play a key role

in the formation of the large secondary flow vortices. On the other hand, the corner vortices

emerge as a result of gradients of w′2 − v′2.

C. Flow statistics and turbulence structure

Streamwise velocity profiles along the moving-wall bisector, normalised by local friction

velocity are presented in Fig. 9(a). The plane Couette flow data of Avsarkisov et al.21

and Pirozzoli et al.22 at Reτ = 125 and 171, respectively and duct flow experiment of

Owolabi et al.12 are also shown for the purpose of making comparison. In state A, at the

lower half of the duct, the velocity profile can be observed to be in good agreement with those

in the channel. The data matches the logarithmic scaling law: |ū−Uw|+ = 2.44 ln(y+)+5.1,

in the region: 30 < y+ < 69. At the duct’s upper half (equivalent to the lower half in state

B), however, an overshoot from the log law can be observed. As will be shown later, the

local shear stress at the upper moving wall is smaller than at the lower one. Therefore,

normalising by the local friction velocity results in higher non-dimensional velocities being

obtained. Furthermore, the Reynolds number based on the local friction velocity (Reτ = 70)

is smaller than at the lower wall (Reτ = 90) hence this deviation from the classical profile

is a low Reynolds number effect. For the long-time-averaged flow field, the velocity profile

lies between those of the bi-stable states.

Root mean square velocity fluctuations along the moving-wall bisector normalised by the

wall velocity are shown in Fig 9(b). Larger streamwise fluctuations can be observed across

most of the duct in the long-time-averaged flow field. These are induced by the intermittency

in the flow. In one state, the velocities fluctuate about a mean which is higher than the

long-term one, while in the other, the fluctuations are about a mean value lower than the

long-time-average. Hence in the long run, the deviations from the long-term mean are large

(see Fig. 10, where the probability density functions of instantaneous streamwise velocity

at y/h = 0.4 are shown). In state A, the peaks in urms (urms/Uw ≈ 0.172 and 0.170 near

the lower and upper walls, respectively) can be observed to be slightly higher than that
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FIG. 9. Turbulence statistics: (a) Streamwise velocity profiles, (b) Root-mean-square velocity

fluctuations. ——, profile from lower half of duct while the flow is in state A; - - - -, profile from

upper half of the duct while the flow is in state A; -.-.-.-, long-time-averaged flow field; 2 , Plane

Couette flow DNS of Ref. 21 at Reτ = 125; ?, plane Couette flow DNS of Ref. 22 at Reτ = 171; M

square duct flow exp. of Ref. 12; -.-.-.-, |ū− Uw|+ = y+; ......., |ū− Uw|+ = 2.44.ln(y+) + 5.1.

in the plane Couette flow data of Avsarkisov et al.21 (urms/Uw ≈ 0.165). At the lower

wall, the maximum urms/Uw exists closer to the wall than at the upper wall. As earlier

shown, the Reynolds numbers based on the local friction velocity is larger at the bottom,

hence this trend is consistent with findings in wall-bounded turbulent flows which show an

inward shift of the peak with increasing Reynolds number. A similar argument applies to the

wall-normal velocity fluctuations which can be observed to be higher close to the lower wall.

Here, vrms/Uw and wrms/Uw are slightly greater than those of the long term averaged flow

field. The converse is the case close to the upper wall. As the duct’s centre is approached,

urms/Uw drop to lower values than in the channel while vrms/Uw and wrms/Uw are very

similar to those in the channel.

Next, we consider the invariants of the non-dimensional Reynolds stress anisotropy tensor

given by:

II = bijbji/2, III = bijbjkbki/3, (6)

where

bij = u′iu
′
j/u
′
ku
′
k −

1

3
δij. (7)
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FIG. 10. Probability density function of instantaneous streamwise velocity, ũ, at y/h = 0.4. Legend

as in Fig. 9. Arrows indicate fluctuations about the short and long-time averages.

All possible turbulence states must lie within the Lumley triangle,23 bounded by the lines:

−II/3 = (III/2)2/3, −II/3 = (−III/2)2/3 and −II = 3(1/27 + III), corresponding to

axisymmetric expansion, axisymmetric contraction and two-component turbulent states,

respectively,24 while the bottom, left and right vertices represent the three-component

isotropic, two-component axisymmetric and one-component limits, respectively. It should

be noted that these do not relate to the shape of the turbulent eddies; rather, they give

an indication of the state of the Reynolds stress tensor. Figure 11 shows the anisotropy

invariant map (AIM) for the long-time-averaged flow field as well as the plane Couette

flow data of Avsarkisov et al.21 at Reτ = 125. Data for only half of the duct is shown.

Along the moving-wall bisector (see Fig. 11(a)), the AIM is not very different from that

in plane Couette flow (Fig. 11(b)). Close to the wall, due to the damping of wall-normal

velocity fluctuations, the turbulence is two-dimensional but at y+ ≈ 7.6 (y+ ≈ 7.3 in the

plane Couette data), there is a switch to an axisymmetric state. As the centre of the duct

is approached, the turbulence becomes increasingly isotropic due to the closeness of the

fluctuations in all velocity components (see Fig. 9(b)). The level of isotropy at the centre

is however higher in the square duct.

The variation of shear stress along the moving walls while the flow is in state A, as

well as that in the long-time-averaged flow field are shown in Fig. 12(a). The plots have

been normalised by the long-term mean at the centre of the moving wall, τ ∗. Close to the
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FIG. 11. Anisotropy invariant maps. (a) At z/h = 1 (b) Plane Couette flow data of Ref. 21.
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FIG. 12. Wall shear stress distribution at the moving walls. Flow is in state A: ——–, lower wall;

- - - -, upper wall; -.-.-.-.-, long-time-averaged flow field. Only half of the duct is shown, due to

symmetry about the moving-wall bisector.

corners, the stresses increase dramatically (see inset of Fig. 12(a)). Slow-moving fluid at

the stationary side walls interact with fast-moving fluid at the moving wall, resulting in

large velocity gradients. At the lower wall, the shear stress drops to a local minimum at

z/h = 0.45 before approaching a local maximum at z/h = 1, while at the upper wall, a

local minimum is found at the duct centre. As the flow switches to state B, the profiles
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become interchanged, hence no distinct extrema can be observed in the long-time-averaged

flow field.

Figures 13(a) and (b) show the typical instantaneous velocity fields at x-z planes close

to the lower and upper walls in the bi-stable states (In this case, the data for state A is

presented). As earlier shown, Reτ for this flow is as low as 70. This corresponds to a duct

width of about 140 in wall units. Given that the separation distance of coherent structures

in a turbulent flow is about 100 wall units27, the duct is just barely wide enough to host the

structures required to maintain a turbulent state. The figures reveal the existence of only a

single high-speed streak centrally positioned along the upper wall and two at the lower wall,

close to the corners. Hence the switching between states occurs in such a way as to increase

the number of structures close to a given wall, to ensure continued sustenance of turbulence.

The position of the streaks correspond to the wall shear stress extrema locations. To clearly

show them, we present data at y/h=0.2 and y/h=1.8, corresponding to locations of large

urms. The structures are persistent over the length of the duct, indicating that the states

are very stable in the streamwise direction. Associated with each streak is a pair of counter-

rotating vortices. Figure 13 (c) shows a snapshot of the instantaneous velocity field in the

cross-sectional plane of the duct at x/h = 20 where the two streaks in Fig.13 (b) are clearly

separated. The high-speed streaks, indicated by mushroom-shaped velocity contours, can

be observed to be positioned between the vortices. They are formed due to the lift-up of

high speed flow by the vortices from the wall. These coherent structures have been shown

to play a crucial role in the turbulence regeneration cycle.25. When averaged in space and

time, they result in the observed secondary flow pattern in a square duct.

Figure 14 shows the results of quadrant analysis carried out to determine the contribution

of various turbulent events to the Reynolds shear stress, u′v′. The Reynolds shear stress

can be divided into four quadrants (Q1-Q4) depending on the sign of velocity fluctuations

(see inset of figure 14(a)). In the analysis, the coordinate system was modified such that

positive v always pointed away from the nearest moving wall, while u was always positive

in the translation direction of the nearest moving wall. In state A, along the bisector of

the upper wall, Q1 events representing the ejection of fast-moving fluid away from the

wall by positive wall-normal velocity fluctuations dominate. This is also the case at the

lower wall, close to the corners (see Fig. 14(b) where data along the line z/h = 0.45

passing through a region where the secondary flow vectors are pointed away from the wall is
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FIG. 13. Coherent structures. (a) and (b) are typical instantaneous velocity fields (not to scale) at

x−z planes located at y/h = 1.8 and 0.2, respectively, corresponding to regions of large fluctuations

in streamwise velocity ; white contours indicate u′ > 0 and black, u′ < 0. Only fluctuations larger

than 40% of the maximum in each plane are shown. (c) is the velocity field in the duct’s cross-

section at x/h = 20. - - - -, y/h = 0.2; ——, y/h = 1.8
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FIG. 14. Quadrant analysis of the Reynolds shear stress, while the flow is in state A: (a) along the

bisector of the upper wall, (b) at z/h = 0.45 (line passes through a region where the secondary

flow vectors are pointed away from the lower wall), (c) along the bisector of the lower wall. +,

Q1; -.-.-, Q2; ×, Q3; —–, Q4; - - - - -, u′v′ total.

19

http://dx.doi.org/10.1063/1.5026947


presented ). However, along the bisector of the lower wall, Q3 events representing sweeping

motion during which slow moving fluid is conveyed to the wall by negative wall-normal

fluctuations account for the bulk of u′v′ generation (see Fig. 14(c)). A closer examination

of the velocity fields in Fig.3(a) reveals that along the bisector of the upper wall (where

quadrant analysis shows ejection events to dominate), the secondary flow can be observed

to transport momentum away from the wall, causing the axial velocity contour to bulge

towards the duct’s interior. Similarly, at the lower wall (where sweeeping motion dominates),

the secondary flow transports momentum towards the wall, causing the contours of axial

velocity to bulge inwards. It is thus evident that the secondary motion is closely related to

the near-wall ejection and sweeping events.

V. CONCLUSION

In this study, direct numerical simulations of turbulent Couette flows in a square duct

at relatively low Reynolds numbers have been carried out. The flow is driven by a pair

of opposite counter-moving walls translating with the same speed, resulting in a zero net

transport of fluid through the duct. A turbulent state was found to be maintained only for

Reynolds numbers greater than about 875. This is much higher than the Rec ≈ 360 − 375

observed in plane Couette flow studies,17,18,26 thus underscoring the stabilising effect of the

side walls on the flow. At Reynolds numbers close to the critical, the flow was observed

to exist in two states, one being a mirror reflection of the other, with symmetry about

the common bisector of the moving walls. In these states, the secondary motion (which is

different from that in Poiseuille flow) is characterised by four vortices, induced by gradients

of the anisotropic Reynolds normal stresses, w′2 − v′2 and cross stream shear stress, v′w′.

Due to the intermittency in the flow, large fluctuations in the velocity, about the long-term

mean were observed. Instantaneous flow field visualisations reveal the existence of coherent

structures which are persistent over the length of the duct, thus indicating that the states

are very stable in the streamwise direction. Quadrant analysis at different locations in the

duct indicate that the secondary flow is closely related to the near-wall ejection and sweeping

events; ejection dominating in regions where the secondary flow transports momentum away

from the wall and sweeping dominating in regions where momentum is transported towards

the wall.
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25J. Jiménez and A. Pinelli, “The autonomous cycle of near-wall turbulence,” Journal of

Fluid Mechanics 389, 335–359 (1999).

26A. Lundbladh and A. V. Johansson, “Direct simulation of turbulent spots in plane couette

flow,” J. Fluid Mech. 229, 499516 (1991).

22

http://dx.doi.org/10.1063/1.5026947


27J. Kim and P Moin and R. Moser, “Turbulence statistics in fully developed channel flow

at low Reynolds number,”J. Fluid Mech. 177, 133–166 (1987)

23

http://dx.doi.org/10.1063/1.5026947


http://dx.doi.org/10.1063/1.5026947


1000 1500 2000
Rew

0

10

20

30

40
L
x
/h

http://dx.doi.org/10.1063/1.5026947


z/h
0 1 2

y
/h

0

1

2

z/h
0 1 2

0

1

2

z/h
0 1 2

0

1

2
(a) (b) (c)

http://dx.doi.org/10.1063/1.5026947


0 2000 4000 6000 8000 10000 12000
t.Uw/h

-1

0

1

I
(t
)

http://dx.doi.org/10.1063/1.5026947


0 1 2 3 4

t.Uw/h× 104

0

0.1

0.2

0.3

0.4

√

(ū
2
+
v̄
2
+
w̄

2
)/
U
w

0 1 2 3 4
t.Uw/h× 104

0.01

0.0125

0.015

0.0175

0.02

t.
k
.e
/U

2 w

(a) (b)

http://dx.doi.org/10.1063/1.5026947


0 1 2
z/h

0

1

2

y
/
h

0 1 2
z/h

0

1

2

0 1 2
z/h

0

1

2
(b)(a) (c)

http://dx.doi.org/10.1063/1.5026947


z/h
0 1

y
/h

0

1

2

z/h
0 1

0

1

2

z/h
0 1

0

1

2

z/h
0 1

0

1

2
(d)(c)(b)(a)

http://dx.doi.org/10.1063/1.5026947


Budget/(Uw/h)
2

-0.1 0 0.1

y
/h

0

0.2

0.4

0.6

0.8

1

Budget/(Uw/h)
2

-0.05 0 0.05
1

1.2

1.4

1.6

1.8

2

Budget/(Uw/h)
2

-0.05 0 0.05
0

0.2

0.4

0.6

0.8

1
(b) (c)(a)

http://dx.doi.org/10.1063/1.5026947


0 0.5 1 1.5 2
y/h

0

0.05

0.1

0.15

0.2

v r
m
s

U
w

w
rm

s

U
w

u
rm

s

U
w

100 101 102

y+

0

5

10

15

20

|u
−
U
w
|+

(b)(a)

http://dx.doi.org/10.1063/1.5026947
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