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Abstract 
Big data and analytics for educational information systems, despite having gained researchers’ 
attention, are still in their infancy and will take years to mature. Massive open online courses 
(MOOCs), which record learner-computer interactions, bring unprecedented opportunities to 
analyse learner activities at a very fine granularity, using very large datasets. To date, studies 
have focused mainly on dropout and completion rates. This study explores learning activities 
in MOOCs against their demographic indicators. In particular, pre-course survey data and 
online learner interaction data collected from two MOOCs, delivered by the University of 
Warwick, in 2015, 2016, and 2017, are used, to explore how learner demographic indicators 
may influence learner activities. Recommendations for educational information system 
development and instructional design, especially when a course attracts a diverse group of 
learners, are provided. 
Keywords: demographic analytics, learning analytics, massive open online courses, MOOCs. 

1. Introduction  
Since the launch of the first three major massive open online courses (MOOCs) platforms, 
Coursera, Udacity and edX, in 2012, the landscape has grown to reach a total of 57 MOOC 
platforms, 9,400 courses, more than 500 MOOC-based credentials, and approximately 100 
million learners worldwide, by the end of 2017 [30, 31]. With the rapid advancement of 
eLearning technologies, MOOC platforms have been experiencing a massive increase in the 
amount of learner data collected. Along with the development of data analytics techniques, 
this brings unprecedented opportunities to explore learner behaviours and behavioural 
patterns, which in turn may help enhance MOOC platforms and their design, and ultimately 
improve learning experience and outcomes. 

FutureLearn, founded in December 2012, is a joint initiative of the UK universities, 
backed by the UK government, created to alleviate the increasing domination by USA’s 
MOOC platforms. The first FutureLearn MOOCs were launched in September 2013. As of 
June 2018, FutureLearn has 143 UK and international partners, including non-universities, 
and more than 7.9 million people have joined FutureLearn [9], which tops it as one of the five 
most popular MOOC platforms worldwide by registered users [30]. As a growing MOOC 
platform, FutureLearn has demonstrated their commitment to support partners on co-
implementing effective solutions to improve research opportunities and, ultimately, the 
learner experience. FutureLearn MOOCs collect complete records of all learner activity data. 
The dataset used in this study was extracted from the FutureLearn platform, in particular, 
from six runs of two MOOCs delivered by the University of Warwick. 

FutureLearn employs a social constructivist approach, inspired by Laurillard’s 
Conversation Framework [13, 16], which, in brief, describes a general theory of effective 
learning through conversation. The aims include allowing for multimedia resources, 



LEI SHI AND ALEXANDRA I. CRISTEA           DEMOGRAPHIC INDICATORS NFLUENCING LEARNING ACTIVITIES IN MOOCS  

  

collaborative learning, and opportunities for tutorial intervention and guidance [8]. However, 
one of the main challenges has been to keep learners motivated in performing desired learning 
behaviours and achieving learning goals [26]. Motivational theories, such as self-
determination theory (SDT) [20, 23] and techniques, such as gamification and social 
interaction [22], have been influencing the improvement of the system development and the 
instructional and pedagogical design of MOOCs. Other techniques, such as open social user 
modelling [25], opening (visualising) learner data for the learners or for other parties, have 
also been inspiring the engagement strategy development in MOOCs. Since many techniques 
and strategies have been implemented in MOOCs, there is a strong need to examine how they 
influence learner activities. 

To date, most studies have focused on dropout rates and completion rates of learners [7, 
10, 19, 28]. This study was conducted at a relatively finer-grain level – investigating learner 
demographic indicators, including gender and age, against their learning activities, including 
following the courses, discussions in the forums, learning material visits and quiz attempts, on 
two MOOCs delivered by the University of Warwick in 2015, 2016 and 2017, respectively. 
The pre-course surveys were used to collect learner demographic data; whilst the system logs 
were used to collect learner activity data. These two datasets were linked together using the 
unique and anonymous Learner IDs, in order to anonymously associate learner demographic 
indicators with their activities in MOOCs. 

The results of the study revealed statistically significant differences of learning activities 
among different groups of learners categorised by different ways using the demographic 
indicators. This paper reproduces the process of the study and discusses the results. 

2. Related Work  
Learning analytics is the measurement, collection, analysis and reporting of data about 
learners and their contexts, for purposes of understanding and optimising learning and the 
information system in which it occurs [29]. It combines expertise from different academic 
disciplines, such as predictive modelling [21]. It is overlapping with another two rapidly 
developing fields, i.e., educational data mining and academic analytics, yet learning analytics 
is concerned with enhancing aspects of learning [6]. 
 Learning analytics is influenced by a wide range of disciplines, including education, 
psychology, philosophy, sociology, linguistics, learning science, statistics, intelligence and 
computer machine learning/artificial science [21]. Various tools and approaches have been in 
use in learning analytics, to provide educators and designers with quantitative intelligence, to 
make informed decisions about student learning. Data is collected from a broad range of 
sources, including behavioural data taken from online learning systems, such as discussion 
forums, activity completion, assessments, and functional data taken from student admissions 
systems and progress reports [27]. Learning analytics has been used in many application 
areas, such as modelling of user knowledge, user behaviour and user experience; user 
profiling; modelling of key concepts in a domain and modelling a domain’s knowledge 
components; trend analysis; and adaptation and personalisation of user experience [14]. 

Learning analytics provides a method for identifying factors influencing retention, which 
enables MOOC providers to make improvements of the learning context, design and 
pedagogies, where appropriate; the large datasets collected in MOOC activities provide strong 
support for this type of method [7]. 

Bote-Lorenzo and Gómez-Sánchez [3] discussed the decrease of engagement indicators 
using learner activity data. Those indicators were derived for the main tasks carried out in a 
MOOC, including watching lecture videos, solving short and simple comprehension questions 
interspersed in the videos (called ‘finger exercises’), and submitting assignments. The results 
supported the possibility of detecting disengaging learners in the MOOC. Khalil and Ebner  
[12] used clustering techniques to portray learner engagement in MOOCs. Their study 
clustered learners based on learners’ engagement level. The results recommended adding 
intrinsic factors to improve future MOOCs. The study conducted by Kahan, et al. [11], 
characterised different types of learning activities in a MOOC using data mining techniques, 
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which clustered learners based on their activities in relation to the main learning resources of 
the MOOC, including video lectures, discussion forums and assessments. The results 
supported the claim that MOOCs’ influence should not be evaluated solely based on 
certification rates, but rather based on learning activities. In their study [15], Morris et al. 
argued that four learner demographic indicators were significantly associated with the degree 
of completion, namely age, online experience, educational attainment and employment status. 

In this study, learning analytics techniques were used to collect, analyse, and report data 
about learner activities, to understand how learner demographic indicators may influenced 
learning activities, in the FutureLearn MOOC context. The learner demographic indicators 
considered include gender and age. Different from previous studies, instead of investigating 
dropoff and completion rates [5, 7, 10, 19, 28], this study focused on a finer-grain level – the 
influences of these learner demographic indicators on learning activities, including following 
a course, discussions in the forums (comments), learning material visits and attempts to 
answer questions in quizzes; instead of predicting learning performance [2, 4, 18], the results 
may be able to shed light on the importance and possibility of personalisation and early 
intervention in MOOCs. 

3. The Method 

3.1. Study Settings 

FutureLearn MOOCs are organised in weekly learning units. They consist of a set of learning 
blocks, which may contain one or several steps, which are the basic learning items. Steps may 
include articles, images, videos, and quizzes. Fig. 1 shows the navigation page of a MOOC, 
where a learner can click on the WEEK button on the top to navigate to a weekly learning unit 
or click on the step title to navigate to the step page. 

 

 
Fig. 1. The navigation page of a MOOC. 

 Fig. 2 demonstrates the interaction component on a step page (on the left). Using the 
interaction component, learners can navigate to the last step and the next step, by clicking on 
the arrows at the bottom of the step page; they can click on the button “Mark as complete”, to 
claim that they have completed the current step. To read or submit comments (discussions), 
they firstly click on the pink “plus” button on the left, so that the comment component shows 
(Fig. 2 on the right). Learners can then also declare they “like” comments of their own or 
written by others (as in Facebook, Weibo and Zhihu). 
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Fig. 2. The interaction component (left) and the comment component (right) on a step page. 

The study was to explore the influence of learners’ demographic indicators (gender and 
age) on their activities in two MOOCs delivered by the University of Warwick. The first 
MOOC, “Big Data: Measuring and Predicting Human Behaviour”, aimed to introduce 
learners with an overview on the state of the art in ‘big data’ research across a range of 
domains, including economics, crime and health, as well as teach them basic practical skills 
for data science, including writing basic programs in R, creating basic data visualisations and 
carrying out simple analyses. This MOOC was broken down into 9 weekly learning units: 8 
units of study with a break for reflection in the fifth unit. Each weekly learning unit contained 
a sequence of individual steps to complete. There were 11 steps in week 1, 12 steps in week 2, 
15 steps in week 3, 11 steps in week 4, 4 steps in week 5, 11 steps in week 6, 12 steps in week 
7, 12 steps in week 8, and 14 steps in week 9. In total, MOOC 1 had 102 steps. Learners were 
learning by watching videos, reading articles and taking part in discussion activities (writing 
and reading comments on step pages). Learners were asked to do a quiz in weeks 2, 3, 4, 6, 7, 
8, 9, respectively. In each quiz, there were 5 questions, thus there were 35 questions in total 
within the MOOC. 

The second MOOC, “The Mind is Flat”, aimed to present how understanding human 
being’s minds could help recognise some of the surrounding social and economic forces, from 
market booms and crashes, to the origin of communication and language, to human being’s 
mysterious collective ability to construct societies. This MOOC was broken down into 6 
weekly learning units, each of which consisted of several steps. There were 14 steps in week 
1, 12 steps in week 2, 14 steps in week 3, 12 steps in week 4, 12 steps in week 5, and 18 steps 
in week 6. In total, MOOC 2 had 82 steps. Most steps contained videos, whilst a few 
contained only articles. Learners could use the comment component on step pages for 
discussions. There were 10 quizzes each week, thus there were 60 questions in total. 

The learner activities that this study focused on included clicking on the button “Mark as 
complete”, submitting a comment, and attempting to answer a question in a quiz. 

The first MOOC was a STEM1 course; whereas the second MOOC was a non-STEM 
course. The reason of choosing these two courses was thus to compare demographic 
indicators and learning activities between different disciplines of courses. 

Table 1 shows the number of weekly learning units and the number of steps within both 
MOOC 1 and MOOC 2. 

Table 1. The number of weekly learning units and steps within MOOC 1 and MOOC 2 

 MOOC 1 MOOC 2 
The number of weekly learning units 9 6 
The number of steps 102 82 
The number of questions in quizzes 35 60 

                                                
1 STEM stands for Science, Technology, Engineering and Mathematics. It is a term used to group academic 
disciplines, in order to address education policy and curriculum choices. 
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3.2. Data Collection 

This study was conducted in accordance with the FutureLearn Code of Practice for Research 
Ethics2. All data was completely anonymous – thus individuals could not be identified by any 
means. Two data sources were used in this study: 1) responses from a pre-course survey, and 
2) system logs populated by learners. Each record (either a response or a system log) had a 
unique Learner ID, linking both sources. The pre-course survey was sent by email, either 
when a learner first joined FutureLearn, in case of a new FutureLearn user, or first enrolled on 
a new course, in case of an existing FutuerLearn user. Learners might have also completed the 
survey by visiting the URL directly. The optional questions on the survey included their 
gender and age range. System logs were generated nightly by the FutureLearn platform from 
the course start until two weeks after it ended. System logs contained the information about 
learning activities, such as visiting a step page, clicking on the button “Mark as complete” 
(Fig. 2), submitting a comment, and attempting to answer a question on a step (quiz) page. 

3.3. The Dataset 

Each MOOC ran three times. For MOOC 1, Run 1 was in spring 2015; Run 2 was in spring 
2016; and Run 3 was in spring 2017. For MOOC 2, Run 1 was in autumn 2015; Run 2 was in 
spring 2016; and Run 3 was in autumn 2016. 
 In MOOC 1 Run 1, there were initially 16,329 learners enrolled, yet 2,222 of them 
proactively unenrolled from the course. Thus, the number of remaining learners were 16,329 
– 2,222 = 14,107. Additionally, the learners who did not visit any step pages were considered 
to be irrelevant and thus removed from this study. Therefore, in MOOC 1 Run 1, there were 
6,631 learners considered in the study. Using the same method of filtering, 4,094 learners 
were considered in MOOC 1 Run 2, and 3,571 in MOOC 1 Run 3. Thus, in total, 6,631 + 
4,094 + 3,571 = 14,296 learners from MOOC 1 were able to be considered in the study. The 
resulting relevant learner rate was thus 14,296 / 29,343=48.72%.  
 The same filtering process was applied to MOOC 2 (see Table 2) resulting in a relevant 
learner rate of 12,068/30,010=40.21%. 
 In summary, in total, 14,296 + 12,068 = 26,364 learners were considered in this study. 
The total relevant learner rate was (14,296 + 12,068) / (29,343 + 30,010) = 44.42% (Table 2).  

Table 2. The numbers of learners being considered in the study. 

 MOOC 1 MOOC 2 
Run 1 Run 2 Run 3 Total Run 1 Run 2 Run 3 Total 

Enrolled 16,329 11,258 5,753 33,340 13,446 14,240 7,511 35,197 
Unenrolled 2,222 1,355 420 3,997 2,087 2,030 1,070 5,187 
Remaining 14,107 9,903 5,333 29,343 11,359 12,210 6,441 30,010 

Considered in the study 6,631 4,094 3,571 14,296 4,421 4,992 2,655 12,068 
Relevant learner rate 47.0% 41.3% 67.0% 48.7% 38.9% 40.9% 41.2% 40.2% 

4. Analysis 

4.1. Learner Demographic Indicators Influencing Following MOOCs 

Note that the demographic analytics below is only relevant under the assumption that 
responding the pre-course survey is independent of the demographic indicators. For example, 
females and males are equally likely to respond to the survey. 

Table 3 details learners’ gender and age range, as per learners’ responses to the pre-course 
survey. Most learners, i.e., more than 90%, did not answer the optional questions. 
 

                                                
2 Research Ethics for FutureLearn, https://about.futurelearn.com/terms/research-ethics-for-futurelearn 
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Table 3. The learner demographic indicators. 

  MOOC 1 MOOC 2 Grand 
Total  Run 1 Run 2 Run 3 Total Run 1 Run 2 Run 3 Total 

Gender 

Female 136 196 163 495 188 496 224 908 1403 
Male 167 251 154 572 113 244 93 450 1022 
Nonbinary 1 1 1 3  3 1 4 7 
Other 2 5  7 3 4 1 8 15 
Unknown 6,325 3,641 3,253 13,219 4,117 4,245 2,336 10,698 23,917 
Total 6,631 4,094 3,571 14,296 4,421 4,992 2,655 12,068 26,364 

 <18 1 0 10 11 1 3 5 9 20 

Age Range 

18-25 55 32 26 113 48 128 58 234 347 
26-35 12 50 42 104 17 68 28 113 217 
36-45 53 127 79 259 49 92 34 175 434 
46-55 45 97 68 210 50 98 42 190 400 
56-65 56 72 49 177 63 178 71 312 489 
>65 69 62 37 168 74 163 82 319 487 
Unknown 6,340 3,654 3,260 13,254 4,119 4,262 2,335 10,716 23,970 
Total 6,631 4,094 3,571 14,296 4,421 4,992 2,655 12,068 26,364 

4.1.1. Gender Indicator influencing Following MOOCs 

Fig. 3 shows the gender distribution. Amongst the 26,364 relevant learners considered 
in the study, there were 2,447 learners answered the questions about their gender 
asked in the pre-course survey (1,077 from MOOC 1, and 1,370 from MOOC 2), with 
an overall response rate of 2,447 / 26,364 = 9.28%. In MOOC 1, 495 learners 
disclosed their gender as female, 572 as male, 3 as "nonbinary", and 7 as "other". As 
the "nonbinary" and "other" only represented a very small proportion (0.9%), to 
simplify the procedure, in the following analyses, we only take into consideration the 
"female" and "male" gender categories. The result shows that the female male ratio 
was 0.865 in MOOC 1. The gender gap was more prominent in MOOC 2: 908 
learners disclosed their gender as female, and 450 as male, with the female male ratio 
of 2.018. A chi-square test revealed significant gender differences in choosing the two 
MOOCs (χ2=102.697, p < .01). This suggests that in comparison with male learners, 
female learners are more underrepresented in STEM fields, and vice-versa, which has 
consistently been reported in the literature, e.g. [17]. 

 
Fig. 3. Gender distribution. 

4.1.2. Age Group Indicator influencing Following MOOCs 

Fig. 4 shows the age group distribution. There were 2,394 learners who disclosed their age 
group (1,042 from MOOC 1, and 1,352 from MOOC 2), with an overall response rate of 
2,394 / 26,364 = 9.08%. In MOOC 1, 11 learners claimed to be in age group <18, 113 in age 
group 18-25, 104 in age group 26-35, 259 in age group 36-45, 210 in age group 46-55, 177 in 
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age group 56-65, and 168 in age group >65. In MOOC 2, 9 learners claimed to be in age 
group <18, 234 in age group 18-25, 113 in age group 26-35, 175 in age group 36-45, 190 in 
age group 46-55, 312 in age group 56-65, and 319 in age group >65. Interestingly, MOOC 2 
attracted a larger proportion of older learners i.e. >55 (46.67%) in comparison to MOOC 2 
(33.11%). For both MOOC 1 and 2, the age group <18 was the most underrepresented, with 
percentages of only 1.06% and 0.67%, respectively. A chi-square test was conducted, 
showing significant age group differences in choosing the two MOOCs (χ2=105.745, p < .01). 

 
Fig. 4. Age group distribution. 

4.2. Learner Demographic Indicators influencing Learning Activities in MOOCs 

Table 4 summarises the activities performed by those 26,364 relevant learners (14,296 from 
MOOC 1, and 12,068 from MOOC 2). From MOOC 1, there were 317,882 distinct visits to 
step pages, 275,596 "completes" marked on distinct step pages, 18,938 comments 
(discussions), and 92,535 attempts to answer a question in a quiz, whilst from MOOC 2, there 
were 224,839 distinct visits to step pages, 200,228 "completes" marked on distinct step pages, 
29,880 comments, and 179,227 attempts to answer a question in a quiz. 

Table 4. The number of activities performed by learners. 

Actions MOOC 1 MOOC 2 
Run 1 Run 2 Run 3 Total Run 1 Run 2 Run 3 Total 

Visits 159,488  102,912   55,482  317,882   76,021   98,497   50,321  224,839  
Completes 137,763   91,486   46,347  275,596   66,100   88,460   45,668  200,228  
Attempts  46,196   31,541   14,798   92,535   58,547   78,613   42,067  179,227  
Comments  8,830   7,431   2,677   18,938   7,703   16,210   5,967   29,880  
Total 352,277  233,370  119,304  704,951  208,371  281,780  144,023  634,174  
Grand Total 1,339,125 

Visits denotes the number of distinct step pages visited; Completes denotes the number of step pages 
marked as "complete"; Attempts denotes the number of attempts to answer a question in a quiz; 
Comments denotes the number of comments submitted on step pages. 

As stated in section 3.1, there were 102 steps and 35 questions in MOOC 1; 82 steps and 
60 questions in MOOC 2. As they contained different numbers of steps and questions, to 
compare learner activities between them, we considered the "rates" instead of the actual 
numbers of steps and attempts. Here we define the following "rates": 

𝑅" = 𝑉% ÷ 𝑆(   (1) 
𝑅) = 𝐶% ÷ 𝑉%   (2) 
𝑅+ = 𝐴- ÷ 𝑄(   (3) 
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where 𝑅" represents the "visit rate"; 𝑉% denotes the number of distinct visits to steps; 𝑆( is the 
number of steps in MOOCm (𝑚 ∈ {1,2}); 𝑅) is the "completion rate"; 𝐶% is the number of 
steps marked as "complete"; 𝑅+ indicates the "attempt rate"; 𝐴- is the number of attempts to 
answer questions in quizzes; 𝑄( means the number of questions in MOOCm; 𝑅" ∈
{𝑟|0 ≤ 𝑟 ≤ 1}, 𝑅) ∈ {𝑟|0 ≤ 𝑟 ≤ 1}, 𝑅+ ∈ {𝑟|𝑟 ≥ 0}. Note that the reason that 𝑅+ can be 
greater than 1 is because learners could attempt to answer the same question multiple times. 

4.2.1. Gender Indicator influencing Learning Activities in MOOCs 

Fig. 5 displays the comparison of the mean visit rate (𝑅"), mean completion rate (𝑅)), and 
mean attempt (to answer questions in quizzes) rate (𝑅+), between the two gender groups, i.e. 
female and male, in MOOC 1 and MOOC 2, respectively. Overall, for both MOOCs, all these 
rates were higher for male learners compared to female learners. 

 
Fig. 5. Mean visit rate (𝑹𝒗), completion rate (𝑹𝒄) and attempt rate (𝑹𝒂) for female and male 

learners in MOOC 1 (on the left) and MOOC 2 (on the right). 

A Mann-Whitney test shows that, in MOOC 1, the visit rates (𝑅") of male learners 
(Median=27.45%) was significantly larger than that of female learners (Median=15.69%), 
u=114,902.5, p<.001 (Table 5). Performing the same test for MOOC 2 confirmed the same 
trend, i.e., the visit rates of male learners (Median=48.78%) being significantly larger than 
that of female learners (Median=19.51%), u= 240,604, p<.001. 

Table 5. Mann-Whitney tests results for visit rate	(𝑹𝒗), completion rate (𝑹𝒄), attempt rate (𝑹𝒂). 

 MOOC 1 MOOC 2 
n Female: 495, Male: 572 Female: 908, Male: 450 

Visit Rate 
(𝑹𝒗) 

Median Female: 87.50%, Male: 94.59% Female: 19.51%, Male: 48.78% 
Mean Ranks Female: 480.1, Male: 580.6 Female: 639.5, Male: 760.2 

U 114,902.5 240,604 
z -5.31 -5.34 
p <.001 <.001 

Completion 
Rate 
 (𝑹𝒄) 

Median Female: 87.50%, Male: 94.59% Female: 90.00%, Male: 96.18% 
Mean Ranks Female: 489.9, Male: 572.1 Female: 735.8, Male: 651.6 

U 119,749.5 229,642.5 
z -4.35 -3.73 
p <.001 <.001 

Attempt 
Rate 
 (𝑹𝒂) 

Median Female: 0, Male: 14.29% Female: 5.00%, Male: 45.83% 
Mean Ranks Female: 491.7, Male: 570.6 Female: 646.6, Male: 745.9 

U 120,643 234,169 
z -4.17 -4.39 
p <.001 <.001 

Similarly, Mann-Whitney tests conducted for completion rates (𝑅)) and attempt rates 
(𝑅+) also show that male learners tended to complete significantly (p<.001) more steps and 
attempt to answer significantly (p<.001) more questions in quizzes.  

In terms of comments (discussions), the Mann-Whitney tests conducted for MOOC 1 
suggest that there are significantly (p<.001) more comments (discussions) from male learners 
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(Median=5.73) than from female learners (Median=4), u=129,115.5, p=0.0066<.05. In 
MOOC 2, on average, male learners (Mean=9.75, SD=26.08) tended to produce more 
comments (discussions) than female learners (Mean=8.26, SD=45.25), but the Mann-Whitney 
test performed did NOT show a significant difference (u=214,951.5, p=.0582>.05). 

4.2.2. Age Group Indicator influencing Learning Activities in MOOCs 

Fig. 6 shows the comparison of the visit rate (𝑅") among different age groups in MOOC 1 and 
MOOC 2. Fig. 7 shows the comparison of the completion rate (𝑅)) for different age groups in 
MOOC 1 and MOOC 2. Fig. 8 shows the comparison of the attempt rate (𝑅+) for different 
age groups in MOOC 1 and MOOC 2. Interestingly, overall, the older the learners were, the 
more activities they performed. From the Kruskal-Wallis test results for both MOOCs, we 
found statistically significant differences for all these three activity rates, i.e. the visit rate 
(𝑅") (MOOC 1: H=124.649, p<.001; MOOC 2: H=175.534, p<.001), the completion rate 
(𝑅)) (MOOC 1: H=60.691, p<.001; MOOC 2: H=107.799, p<.001), and the attempt rate 
(𝑅+) (MOOC 1: H=96.746, p<.001; MOOC 2: H=125.44, p<.001), for all 7 age groups. 

 
Fig. 6. Visit rate (𝑹𝒗) for different age groups in the two MOOCs. 

 
Fig. 7. Completion rate (𝑹𝒄) for different age groups in the two MOOCs. 

 
Fig. 8. Attempt rate (𝑹𝒂) for different age groups in the two MOOCs. 
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Fig. 9 shows the comparison of the mean numbers of comments (discussions) for different 
age groups in MOOC 1 and MOOC 2. Overall, in general, for both MOOC 1 and MOOC 2, 
the older the learners were, the more comments (discussions) they contributed. Additionally, 
the Kruskal-Wallis test result suggested that the difference between different groups were 
statistically significant, as per, MOOC 1: H=86.489, p<.001; MOOC 2: H=140.817, p<.001. 

 
Fig. 9. Mean number of comments for different age groups in the two MOOCs. 

5. Conclusions and Discussions 
To conclude, this study has analysed and reported learner data collected from six runs of two 
MOOCs delivered by the University of Warwick. Whilst two courses may be too few to 
conclude that gender plays an important role, these two courses have been analysed over 
several runs and have reasonably large sample size. Analyses in section 4 show thus that both 
gender and age group indicators may have very strong influence on following a MOOC, 
visiting step pages, completing steps, attempting to answer questions, and writing comments 
(discussions). The results suggest that learners’ demographic indicators may strongly 
influence their learning activities in MOOCs. 

Given the fact that MOOC learners originate from all around the world, with very 
different backgrounds and characteristics, when designing MOOCs, there is clearly a strong 
need for providing personalised learning support when developing educational information 
systems and instructional design. This means not only recommending learning content for 
learners to learn, based on their prior learning experience or knowledge, as some MOOC 
platforms can do, but also personalising the way they learn, such as adapting the learning path 
and supporting adaptive interventions. 

Finding out, for example, even for a specific course, that a certain age group is more 
likely to complete the course than another, opens up possibilities for support offered for a new 
run of the same course, to the age group that is less likely to continue. They can be offered a 
version that runs at a different pace, or slightly streamlined materials, if it is a matter of time 
available, etc. Importantly, these findings allow very early intervention, starting immediately 
after registration, as these demographic indicators are known often even before the MOOC 
starts, as many learners register early. Thus, real-time (or close to real-time) interventions can 
be developed. FutureLearn tutors tend to have at least weekly wrap-up sessions which are 
recorded during the course run, as well as tutor assistants that monitor and answer questions – 
both of these methods can be used to specifically address learners that may struggle later on. 

MOOCs are widespread, but in order to increase their success, the challenge remains to 
add the capability of adapting to learners’ individual demographic indicators, such as gender 
and age, in order to suggest the most beneficial learning activities for every learner, at every 
moment during the learning. Current MOOCs often lack personalisation support. Still, most 
MOOCs break down learning materials into smaller units, which gives the chance to break 
away from the "one-size-fits-all" education. However, presently, this heavily relies on 
learners’ effort to self-direct and self-determine their learning process, which is clearly not 
functioning well [1]. Therefore, there is a clear and strong need to understand how learner 
demographic indicators may influence activities and learning experience in MOOCs, and, 

0.00 0.73 1.05
3.29

6.48

14.04

18.80

0.36 0.56 1.58
4.02

6.56

11.00
8.83

0

4

8

12

16

20

<18 18-25 26-35 36-45 46-55 56-65 >65

Th
e 

nu
m

be
r o

f  
co

m
m

en
ts

MOOC 2

MOOC 1



ISD2018 SWEDEN 

  

more importantly, to develop effective pedagogical strategies and information systems to 
support meaningful adaptation and interventions. 

This study used data from two MOOCs: one was "Big Data: Measuring and Predicting 
Human Behaviour" – a STEM MOOC (science/engineering); the other was "The Mind is 
Flat" – a non-STEM MOOC (social science/psychology), thus covering different disciplines. 
Nevertheless, the influence of learning demographic indicators on learning activities in terms 
of dependence on the MOOC discipline needs further investigation. Therefore, our future 
work will include investigating the dimension of the MOOC discipline. 

It is noteworthy mentioning that, as clicking on the button "Mark as complete" on a step 
page is a self-claim, it is still unclear to which extent this represents 'real' completion of the 
step. This is specifically interesting in the context of the proportion of claiming learnt steps 
within all pages visited being very high. This is very similar to the observation from [24], yet 
the implications need further interpretation. 

Another dimension to be considered in our future work includes the time sequence, e.g., a 
chronologically ordered set of learner activities. This may potentially help gain deeper insight 
into learning activities in MOOCs, thus allowing to efficiently cluster learners and provide 
real-time adaptation and personalisation, based on learning patterns. 
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