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Abstract 
A verifiable secret sharing (VSS) scheme is a secret sharing scheme with the special property that 

every player is able to verify whether the share distributed to him by a dealer is correct. VSS is a 

fundamental tool of cryptography and distributed computing. VSS schemes for sharing an element in a 

finite field have been well established for many years. In this paper, we focus on verifiably sharing of a 

secret that is an element of a bilinear group. Such VSS schemes are necessary for sharing the secret 

keys of many bilinear pairing-based cryptosystems which have been a hot topic in cryptographic 

research in recent years. We introduce strict security definitions for such a noninteractive VSS scheme. 

Then we come up with an efficient VSS scheme for sharing a secret in a bilinear group. Compared with 

similar protocols available, the newly proposed scheme is more efficient while enjoys the same level of 

security. 
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1. Introduction 

 
A secret sharing scheme [1] is a method of distributing shares of a secret among a set P of 

participants in such a way that only qualified subsets of P can reconstruct the secret from their shares. 

A verifiable secret sharing (VSS) [2-3]scheme is a secret sharing scheme with the special property that 

every player is able to verify whether the share distributed to him by a dealer is correct. VSS is a 

fundamental tool of cryptography and distributed computing [4-6]. Since the introduction of the first 

non-interactive verifiable secret sharing scheme by Feldman in [7] that is usually known as Feldman-

VSS, non-interactive VSS schemes for sharing secrets in a finite field have been well established and 

widely used.  

Recently, the bilinear pairing-based cryptography has received much attention from the research 

community. By now, many bilinear pairing-based cryptographic schemes and protocols [8-12] have 

been available. In [8], for the first time, J.Baek and Y.Zheng showed a computationally secure 

verifiable secret sharing scheme based on the bilinear groups (CVSSBP). Their proposed CVSSBP 

scheme has been widely used as building blocks in many threshold cryptosystems from the bilinear 

pairings [13-17]. 

As in many pairing-based cryptosystems, the secret keys are random elements in some bilinear 

groups, it is of great importance to investigate the verifiably sharing of such secrets, as well as the 

distributed generation of such secret keys. We think it is not trivial to generalize the verifiable secret 

sharing schemes in finite field to secure verifiable secret sharing schemes in bilinear groups since the 

algebraic properties of groups are very different from that of finite fields. In this paper, we focus on 

this problem. We demonstrate a new efficient VSS scheme for sharing secrets in bilinear groups. We 

consider the security notion and gave rigorous proof to our scheme. The newly proposed scheme is 

more efficient compared with J.Baek and Y.Zheng's CVSSBP scheme. Therefore, it is quite reasonable 

to believe that our scheme will play a critical role in the threshold cryptosystem such as threshold 

decryption and threshold signature etc.. 

The rest of the paper is organized as follows. In Section 2 we briefly describe the concept of 

bilinear map, the definition of discrete logarithm problem(DLP) and some related notions of a VSS 

scheme including the communication model and the definition of security. After that we review the 

bilinear group-based verifiable secret sharing scheme of J.Baek and Y.Zheng in Section 3. In Section 4 

we present our efficient VSS scheme from bilinear groups and analyze its security and efficiency. The 



applications of our VSS scheme are discussed in Section 5. Finally, in Section 6 we just conclude this 

paper. 

 

2. Preliminaries and Definitions 

 
In this section, we briefly describe the concepts of bilinear pairings, the definition of discrete 

logarithm problem and some useful knowledge of verifiable secret sharing. 

 

2.1. Bilinear Pairings 

 

Let 1G and 2G  be two groups with the same order q , where q  is a large prime. Here, we assume 

that 1G  is an additive cyclic group, and 2G  is a multiplicative cyclic group. In particular, 1G  is a 

subgroup of the group of points on an elliptic curve over a finite field ( )pE F , and 2G  is a subgroup 

of the multiplicative group over a finite field. A map 1 1 2:̂e G G G   is called a bilinear map if it 

satisfies the following three conditions: 

 Bilinear: For all 1P,Q G  and 
*, qa b Z , ˆ ˆ( ) ( )abe aP,bQ e P,Q .  

 Non-degenerate: There exist 1P,Q G  such that ˆ( ) 1e P,Q  . 

 Computable: For all 1P,Q G , there exists an efficient algorithm to compute ˆ( )e P,Q . 

 

2.2．Definition of Discrete Logarithm Problem(DLP) 

 

Definition 1. Assume G  is a cyclic group generated by g . Let h  be an element from G . The 

discrete logarithm problem in G  is: 

 Given hgG ,, , compute a  such that 
agh  . 

 

2.3. Verifiable Secret Sharing 

 
Secret sharing is a way of distributing information to a set of processors such that a quorum of 

processors is needed to access the information. A verifiable secret sharing scheme is a secret sharing 

scheme with the special property that every player is able to verify whether the share distributed to him 

is correct. The basic procedure of a VSS scheme is more or less the same with secret sharing scheme 

expect an additional verification phase between the original distribution phase and reconstruction phase, 

which can be easily realized with the public commitments of some secret information during the 

distribution step. 

Here we give the notion of communication model and the requirement of security for a VSS scheme. 

 Communication model: 

The communication model of a verifiable secret sharing scheme is composed of a set of n  

players nUUU ,,, 21   and a dealer D  that can be modelled by polynomial-time 

randomized Turing machines. They are connected by a complete network of private (i.e. 

untappable) point-to-point channels. In addition, all the players and the dealer have access to a 

dedicated broadcast channel. 

 Notions of security: 

Consider a static and strong admissible adversary [18]. That means the adversary has 

determined which players to corrupt before the protocol being implemented, and can corrupt 

less than t  players totally. We consider the security of a VSS scheme from the following 

aspects[19]： 

∙ The dealer can not pass through verification when he distributes inconsistent shares (i.e. 

consistency of the shares).  



∙ No useful information about the secret is revealed (i.e. privacy of the secret). It involves 

two aspect as following: 

1) The public information does not reveal any useful information about the secret and 

the shares. 

2) A static and strong admissible adversary can not derive the share of any 

uncorrupted player and consequently the secret. 

 

 

3. Available Scheme 

   
In this section we just review the first non-interactive verifiable secret sharing scheme of Feldman 

and the bilinear group-based one of J.Beak and Y.Zheng. 

 

3.1. Feldman-VSS 

 
3.1.1. Parameters 

Assume that p  and q  are two large primes such that q  divides 1p - . Let qG  be the unique 

subgroup of 
*

pZ  of order q , and g  is a generator of qG . The discrete logarithm problem is 

intractable in qG . Both the secret space and the share space are the finite field ( )GF q . Let 

( )s GF q  be the secret to be shared. The number of players is n  and the threshold is t  with the 

restriction 1 t n q   . 

 

3.1.2. Algorithm of sharing 

 

D  chooses 1 1ta , ,a   from qG . Let 
1

0 1 1( ) t

tf x a a x a x 

     where 0a s . 

D  computes and publishes ia

iC g  for 0 1i , ,t -   as the commitments of s  and ( )f x . 

D  computes the share ( ) modis f i   q  and sends it secretly to iU  for 1i , ,n  . 

 

3.1.3. Algorithm of verification 

 

When iU  has received his share is  he verifies if 

1

0

j
i

t
s i

j

j

g C




   (1). 

If the verification fails, the share is  assigned to iU  is invalid. 

 

3.1.4. Algorithm of reconstruction 

 

Without loss of generality, we suppose 1 2 t, , ,U U U  be the t  players to reconstruct the shared 

secret. Each iU  broadcasts his share is  to other cooperators, and every participator can check its 

validity through Eq.1. For 1i , ,t  , while all is  have been verified to be valid, every cooperator 

can reconstruct s  by computing 

1 1

t

i

i j t, j i

i
s s

i j   




  . 

 

 



3.2. J.Beak and Y.Zheng's scheme 

 
3.2.1. Parameters 

 

Suppose 1G  and 2G  are two groups with the same order q  and 1 1 2:̂e G G G   is a bilinear 

map as we defined previously in Section 2. Assume that P  is a generator of 1G  such that nobody 

knows the discrete logarithm to the base ˆ( )e P,P . Both the secret space and the share space are 1G . 

Let 1S G  be the secret to be shared. The number of players is n  and the threshold is t  with the 

restriction 1 t n q   . 

 

3.2.2. Algorithm of sharing 

 

D  chooses 1 1tA , ,A   from 1G . Let 
1

0 1 1( ) t

tF x A A x A x 

     where 0A S . 

D  computes and publishes ˆ( )i iC e A ,P  for 0 1i , ,t -   as the commitments of S  and 

( )F x . 

D  computes the share ( ) modiS F i   q  and sends it secretly to iU  for 1i , ,n  . 

 

3.2.3. Algorithm of verification 

 

When iU  has received his share iS  he verifies if 

1

0

ˆ( )
j

t
i

i j

j

e S ,P C




    (2). 

If the verification fails, the share iS  assigned to iU  is invalid. 

 

3.2.4. Algorithm of reconstruction 

 

Without loss of generality, we suppose 1 2 t, , ,U U U  be the t  players to reconstruct the shared 

secret. Each iU  broadcasts his share iS  to other cooperators, and every participator can check its 

validity through Eq.2. For 1i , ,t  , while all iS  have been verified to be valid, every cooperator 

can reconstruct S  by computing 

1 1

t

i

i j t, j i

i
S S

i j   




  . 

When q  is large enough this scheme satisfies the two demands of security as we defined in Section 

2, which means their scheme is computational secure. For more details, please refer to [10]. 

 

4. Our Scheme 

 
In this section, we present our efficient verifiable secret sharing scheme based on bilinear groups. 

Then we analyze the security of the newly proposed scheme with detailed demonstration. At last we 

discuss the computational cost and compare our scheme with J.Beak and Y.Zheng's scheme in a table. 

 

4.1 Description of the scheme 

 
4.1.1 Parameters 

 



Let  1G  and 2G  be two groups with the same order q  and 1 1 2:̂e G G G   a bilinear map as we 

defined before. Choose a random generator P  from 1G  such that nobody knows the discrete 

logarithm to the base ˆ( )e P,P . Both the secret space and the share space are 1G . Suppose the number 

of players is n  and the threshold is t  with the restriction 1 t n q   . The common parameters of 

this scheme are 
1 2

ˆ ˆ, , , , ( , ), ,G G e P e P P t n . 

 

4.1.2 Algorithm of sharing 

 

D  chooses s  randomly from 
*

qZ  and sets the secret S sP . 

D chooses 1 1ta , ,a  from 
*

qZ  and establishes a polynomial 
1

0 1 1( ) t

tf x a a x a x 

     

where 0a s . 

D  computes and publishes ˆ( ) ia

iC e P,P  for 0 1i , ,t -   as the commitments of S  and 

( )f x . 

D  computes the share ( ) modiS f i P  q  and sends it secretly to iU  for 1i , ,n  . 

 

4.1.3 Algorithm of verification 

 

When iU  has received his share iS  he verifies if 
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         (3). 

If the verification fails, the share iS  assigned to iU  is invalid. 

 

4.1.4 Algorithm of reconstruction 

 

Without loss of generality, we suppose 1 2 t, , ,U U U  be the t  players to reconstruct the shared 

secret. Each iU  broadcasts his share iS  to other cooperators, and every participator can check its 

validity through Eq.3. For 1i , ,t  , while all iS  have been verified to be valid, every cooperator 

can reconstruct S  by computing 

1 1

t

i

i j t, j i

i
S S
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  . 

 

4.2 Security 

 

The security of our scheme is based on the intractability to calculate the discrete logarithm on 1G  

and 2G . We analyze our scheme's security from two aspects as we define before in Section 2. 

 
4.2.1 Consistency of the shares 

 

The following theorem shows that the dealer can not pass through verification if he distributes 

inconsistent shares as long as DLP on 1G  and 2G  is intractable. 

Theorem 1. The probability for the dealer to compute an inconsistent share for any player that 

passes the verification successfully is neligible. 



Proof. From the properties of admissible bilinear pairing and the intractability of discrete logarithms 

in group 1G  and 2G , the share iS  is completely determined by ˆ( )ie S ,P , the coefficient  ia  of the 

polynomial (x)f  is uniquely fixed by iC . Hence, the polynomial (x)f  is completely defined by 

0 1 -1, ,..., tC C C . Notice that the share iS  for player iU  is valid if and only if 
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    , we have 

1

0

ˆ( )
j

t
i

i j

j

e S ,P C




  iff 

( )ˆ ˆ( , ) ( , ) f i

ie S P e P P  iff ˆ ˆ( , ) ( ( ) , )ie S P e f i P P  iff ( )iS f i P . 

This implies that the probability for the dealer to compute an inconsistent share ( )iS f i P   for 

any player iU  such that 

1

0

ˆ( )
j

t
i

i j

j

e S ,P C




   is negligible. 

 

4.2.2 Privacy of the secret 

 

To show that no useful information about the secret is revealed we give the following two theorems 

with brief proof. The first one shows that the open commitments do not reveal any useful information 

about the secret and the shares, and the second one implies the secrecy of the secret while there exists a 

static and strong admissible adversary who corrupts up to k  players, where k t . 

Theorem 2. Under the difficulty of calculating discrete logarithm in 1G  and 2G , the adversary can 

not get any useful information about the secret S  and the share possessed by any players from the 

public information, i.e. the commitments of the secret S  and the polynomial ( )f x  do not reveal any 

useful information about the secret and the shares.  

Proof. The public commitments are  ˆ( ) ia

iC e P,P  for 0 1i , ,t -  . As computing the discrete 

logarithm to the base ˆ( )e P,P  is difficult in 2G , the adversary can not derive any useful information 

about S  and ( )f x  from the public commitments. 

Secondly, according to the algorithm of distribution the share iS  for each ( 1 )iU i ,...,n   

satisfies: ( )iS f i P  . Thus without knowing ( )f x  it is intractable to obtain any useful information 

about iS . 

Theorem 3. With the shares of those corrupted participants, a static and strong admissible adversary 

can not derive the share kept by any other honest one and consequently the secret S . 

Proof. We learn that the adversary can not get any useful information about the secret polynomial 

( )f x  from Theorem 2. Nevertheless according to the algorithm of distribution, to acquire the shares 

of those honest players, the adversary has no choice but compute ( )f x  merely using the shares of the 

corrupted ones. Without loss of generality we suppose that the corrupted players are 1 2 k, , ,U U U  

and k t . The adversary has to compute all coefficients of ( )f x  from the following system of 

equations : 

0 1 1 1

1

0 1 1 2

1

0 1 1

2 2

t

t

t
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t k
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a P a P a P S

a P a kP a k P S











   


  


   









, 



i.e. 

0 1

1
1 2

1
1

2 2t

t
t k

a SP P P

a SP P P

a SP kP k P






     
     
     
     
     

    





   



. 

Let i iS b P , the above system of equations equivalent to 
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. 

This is a system of linear equations where the rank of coefficient matrix is less than the number of 

variables. That means it has not less than 
t-kq  answers and the probability for the adversary to dope 

out the genuine  0 1ta ,...,a 
 is not more than 

1
t -kq

. Accordingly the probability to calculate the share 

of any uncorrupted player is not more than 
1
t -kq

. As q  is a large primer and 1t k  , this 

probability can be ignored. 

The above theorems claim that our scheme satisfies the security requirements defined in Section 2, 

and hence the scheme is computationally secure. 

 

4.3 Computational Cost 
 

To compare the computational cost of the newly proposed scheme with J.Beak and Y.Zheng's 

scheme, we count those time-consuming operations in different phases and list them in the following 

table. Let pT , sT  and eT  denote the operation of bilinear pairing from 1G  to 2G , scalar multiplication 

in 1G  and exponentiation in 2G  respectively. In the reconstruction phase, we assume there are t  

participants and the cost of verification is not included. 

 

Table 1. Computation cost comparison 

 Different phase J.Beak and Y.Zheng's scheme The newly proposed scheme 
Distribution phase 

Verification phase 

Reconstruction phase 

tTp+n(t-1)Ts 

nTp+ntTe 

tTs 

nTs+tTe 

nTp+ntTe 

tTs 

 

Obviously, although exponentiation in 2G  increases in our scheme, we just need compute n  

bilinear pairings totally and the scalar multiplication in 1G  is reduced to 0. As computing bilinear 

pairings is the most time-consuming operation, it is quite reasonable to say that our newly proposed 

scheme has a smaller computational cost totally when the common parameters stay the same with 



J.Beak and Y.Zheng's scheme. That means our scheme is more efficient under the same level of 

security. 

 

5. Applications of Our Scheme 

 
Our VSS scheme is applicable to share a secret in a bilinear group for which the dealer knows its 

discrete logarithm with respect to a given basis. Two direct applications of our VSS scheme are 

threshold realization of some identity based cryptosystems and distributed master key generation for 

some identity based cryptosystems. 

We notice that there are many identity based cryptosystems in which a private key of a user is an 

element (or elements) of a bilinear group for which the PKG knows its (their) discrete logarithm 

(logarithms) to a given (publicly known) basis. For threshold realization of these identity based 

cryptosystems, it is convenient and preferable to choose the PKG as the dealer for sharing a private key 

of a designated identity. In such a way, no single player will know the complete private key for 

decrypting or signing. Otherwise, the complete private key for decrypting or signing should be 

generated by the PKG and is given to a player who is nominated as the dealer. From the view point of 

security, the latter method is not preferable and may have to resort to a less efficient sharing scheme. 

Boneh and Franklin's IBE [11], Water's IBE [20], and Hess's IBS [21] are along this class of identity 

based cryptosystems. 

To enhance the security guarantee of the master secret key of an identity based cryptosystem, a 

good choice is to use distributed PKGs. In this case, it is preferable to let all PKG members generate 

the master secret key using a distributed key generation protocol. Making use of the similar techniques 

as in [4], our VSS schem can be turned into distributed master key generation protocol for some 

identity based cryptosystems such as the ones listed above. 

 

6. Conclusions 

 
In this paper we presented an efficient verifiable secret sharing scheme. The new scheme is more 

efficient compared with J.Baek and Y.Zheng's CVSSBP scheme while enjoys the same level of 

security. Therefore, it is quite reasonable to believe that our scheme will play a critical role in the 

threshold cryptosystems such as threshold decryption, threshold signature, and distributed master key 

generation for some identity based cryptostems, etc.. 
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