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a b s t r a c t

Secret sharing plays an important role in protecting confidential information from being lost,

destroyed, or falling into wrong hands. Verifiable multi-secret sharing enables a dealer to

share multiple secrets among a group of participants such that the deceptive behaviors of

the dealer and the participants can be detected. In this paper, we analyze the security of sev-

eral recently proposed verifiable multi-secret sharing schemes. We show that these schemes

cannot withstand some deceptive behaviors of the dealer, and hence fails to satisfy the basic

requirement of secure verifiable secret sharing schemes. After that, we present two improved

verifiable multi-secret sharing schemes. Our new schemes can not only resist cheating by the

dealer or participants, but also remove the use of private channels.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Secret sharing plays an important role in protecting important information from getting lost, destroyed, or falling into wrong

hands. It has many practical applications, such as safeguarding very confidential information, opening a bank vault, launching a

missile, etc. In 1979, the first (t, n) threshold secret sharing schemes were proposed by Shamir [29] and Blakley [2] independently.

In a (t, n) threshold secret sharing scheme, a secret can be shared among n participants such that t or more participants can

reconstruct the secret, but t − 1 or fewer participants can not. In real applications, it is known that traditional secret sharing

schemes like Shamir’s and Blakley’s cannot solve the following problems:

(1) Only one secret can be shared during one secret sharing process, they cannot be used to share multiple secrets simultane-

ously.

(2) The shadows of participants are not reusable. Once the secret has been reconstructed, all shadows will no longer be private.

(3) Deceptive behaviors of a dishonest dealer cannot be detected. A dishonest dealer may distribute a fake shadow to a certain

participant, and then that participant would subsequently never obtain the true secret.

(4) Deceptive behaviors of a malicious participant cannot be prevented in the process of reconstruction. A malicious partici-

pant may provided a fake shadow to cheat the other participants to prevent them from reconstructing the true secret.

(5) Private channels are required for the communications between the dealer and participants.

(6) The dealer knows all shadows of participants. The shadows of participants are not reusable for different dealers.
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To solve some of the above problems, the concepts of multi-secret sharing (MSS) [15,16] and verifiable secret sharing (VSS)

[6] have been introduced. A number of multi-secret sharing schemes and verifiable secret sharing schemes [5,7–9,23,33,35] have

been presented. Using multi-secret sharing schemes [4,13,22], the drawback in (1) can be removed. To deal with the drawback in

(2), Jackson et al. [20] have further introduced multi-use secret sharing schemes. The difference is that the shadow kept by each

participant in a multi-use scheme is reusable after secret reconstruction.

To overcome the problems both in (1) and (2), He and Dawson [15] proposed a MSS scheme. One year later, they [16] put

forward a dynamic MSS scheme based on two-variable one-way function. Two other practical MSS schemes were presented by

Chien et al. [5] in 2000 and Yang et al. [33] in 2004 respectively. Pang and Wang [23] pointed out although the reconstruction in

Yang’s scheme is easier than in Chien’s scheme, more public values are required when p < t. They also demonstrated an improved

scheme based on interpolation method. However, Li et al. [21] pointed out Pang el al.’s scheme needs to generate a polynomial

of degree (n+p-1) in both the secret distribution and the secret reconstruction. And hence the efficiency is unfavorable when p is

very large. They presented a new (t, n) threshold multi-secret sharing scheme using interpolation method. Some vulnerabilities

of MSS schemes using polynomial interpolation were shown by Sahasranand et al. in [28]. They pointed out that a scheme based

on interpolation method cannot be used to implement a (k, t, n) scheme when the k secrets to be distributed are inherently

generated from a polynomial of degree less than k − 1, and the scheme does not work if all of the secrets to be shared are the

same, etc. Although the drawbacks in (1) and (2) may be eliminated in these MSS schemes, the problems in (3)–(6) still exist.

To do away with the drawback in (3), Chor et al. [6] have initiated the study of verifiable secret sharing (VSS). In a VSS scheme,

participants are able to verify that their shadows are consistent, and cheating by a dishonest dealer can be detected. VSS is

now a fundamental tool in cryptographic research [14]. In order to resolve the problem in (4), cheating immune secret sharing

[24–26,34] and publicly verifiable secret sharing (PVSS) [31] were investigated. The PVSS scheme presented by Stadler can detect

not only cheating by the dealer but also the cheating by any participants.

Taking the problems in (1)–(4) into consideration, Harn [13] has introduced a (t, n) threshold verifiable multi-secret sharing

(VMSS) scheme which can detect both malicious dealer and dishonest participants. In Harn’s scheme, every participant keeps

only one reusable shadow for sharing any set of secrets. However, Lin and Wu [22] pointed out that Harn’s scheme suffered

from the problems of large amount (n!/((n − t)! · t!)) of modular exponentiations and running interactive verification protocol

to verify the validity of shadows. Chen et al. [4] presented an alternative (t, n) VSS scheme to avoid the disadvantages in Harn’s

scheme. However, Lin and Wu [22] showed that Chen et al.’s scheme is inefficient because the dealer has to record all participants’

shadows and take 2n modular exponentiations to compute an n-dimensional verification vector for each shared secret. Lin and

Wu put forward a (t, n) threshold VMSS scheme (LW scheme) based on the intractability of factorization and the hardness of the

discrete logarithm problem modulo a composite [22]. In [17], He and Wu have indicated that LW scheme can’t resist cheating by

participants, because a malicious participant can provide a fake subshadow to cheat other honest participants. An improvement

of the LW scheme was given by Chang et al. [3]. The improved scheme not only successfully overcomes the drawbacks of LW

scheme, but also is computationally more efficient than the other VMSS schemes. Unfortunately, Huang et al. [18] identified that

Chang’s VMSS scheme could not withstand conspiracy attack. They showed that any t + 1 participants can conspire to compute

the system’s secret R or φ(N) with high probability. Subsequently, these malicious participants could reconstruct the shared

secret independently.

In 2004, Yang et al. [33] proposed a relatively efficient multi-secret sharing scheme (YCH scheme). But Shao and Cao pointed

out that this scheme does not enjoy the property of verifiability, and presented a modified scheme (SC scheme) [30] by adding

the property of verifiability based on Feldman’s [12] VSS scheme. Note that, in the SC scheme, all shadows are computed by

the dealer and private channels are required for the dealer to distribute shadows to participants. So the problems in (5) and (6)

remain unsolved. In 2006, Zhao et al. [35] introduced a practical verifiable multi-secret sharing scheme (ZZZ scheme) based on

YCH scheme and Hwang–Chang’s scheme (HC scheme) [19]. The verification phase of the ZZZ scheme is the same as that of the

HC scheme. By making use of the techniques of public key cryptography [32], e.g. RSA cryptosystem [27] and Diffie–Hellman

key agreement [10] method, the ZZZ scheme and HC scheme realized secret sharing without private channels. This property is

particularly significant in applications where private channels are hard to set up. In these schemes, each participant chooses his

secret shadow by himself. Hence the problems in (5) and (6) could be solved simultaneously. Similar to ZZZ scheme, the VMS

schemes presented in [8,9] were also dealt with the problems in (5) and (6). For simplicity, we call the scheme in [8] MS scheme,

the type 1 scheme in [9] the MS1 scheme, the type 2 scheme in [9] the MS2 scheme.

Although it was claimed that these schemes (ZZZ scheme, MS scheme, MS1 scheme, MS2 scheme) could identify cheating by

both the dealer and the participants, unfortunately, we find that their claims are wrong.

In this paper, we analyze the security drawbacks of these verifiable multi-secret sharing schemes, including the ZZZ scheme,

MS scheme, MS1 scheme, MS2 scheme. We demonstrate how a dishonest dealer can cheat a participant without being detected

in all these schemes. So these schemes cannot withstand cheating by dishonest dealer.

In addition, taking into account all the problems (1) to (6) , we also propose two new verifiable multi-secret sharing schemes.

Our new schemes have the following features:

(1) The dealer can arbitrarily give any set of secrets for sharing, and only one shadow, which is reusable, should be kept by

each participant. This solves the problems in (1) and (2).

(2) Every participant can detect any cheating by the dealer. This solves the problem in (3).

(3) Every participant can detect the cheating by any other participants by using a non-interactive protocol. This solves the

problem in (4).
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(4) The dealer and the participants communicate through public channel. This solves the problem in (5).

(5) The dealer does not know each participant’s shadow. The shadows of participants can be reusable for the different round

of sharing. This solves the problem in (6).

With these features, our new schemes can be applied in many practical situations, such as authenticating an electronic funds

transfer.

The rest of the paper is organized as follows. In Section 2 we revisit the concepts of RSA encryption scheme and homogeneous

linear recursion (HLR) which will be building blocks in constructing our new VMSS schemes. Then we describe the security model

for VMSS schemes. The security analysis and attacks on several verifiable multi-secret sharing schemes are shown in Section 3.

Our new verifiable multi-secrets sharing scheme without a private channel is depicted in Section 4 followed by security analysis.

In Section 5 we give performance analysis of our new VMSS schemes. Finally, Section 6 concludes our paper.

2. Preliminaries

2.1. RSA encryption scheme

RSA is one of the best known public-key encryption schemes named after its inventors Rivest, Shamir and Adleman [27]. It is

is the first practical realization of public-key encryption scheme based on the notion of one-way trapdoor function introduced

by Diffie and Hellman [10,11]. The security of RSA is based on the hardness of large integer factorization.

The RSA encryption scheme is specified as follows:

Key setup: A user Alice performs the following steps to generate her public and private keys.

1. choose two random prime numbers p and q such that |p| ≈ |q|;

2. compute N = pq;

3. compute φ(N) = (p − 1)(q − 1);

4. choose a random integer e < φ(N) such that gcd(e, φ(N)) = 1, and compute the integer d such that

ed ≡ 1(mod φ(N));
5. publish (N, e) as her public key, safely destroy p, q and φ(N), and keep d as her private key.

Encryption: To send a confidential message m ∈ ZN to Alice, the sender Bob creates the ciphertext c as follows

c ← me(mod N).

Decryption: To decrypt a ciphertext c, Alice computes

m ← cd(mod N).

2.2. Homogeneous linear recursion (HLR)

In this section we briefly introduce homogeneous linear recursion which forms the mathematical background of our second

scheme. A detailed description of homogeneous linear recursion can be found in [1].

Definition 1. Let t be a positive integer and c1, c2, . . . , ct , a1, a2, . . . , at be real numbers. A homogeneous linear recursion of

degree t is defined by the equations

[HLR]

{
u0 = c1, u1 = c2, . . . , ut−1 = ct ,

ui+t + a1ui+t−1 + · · · + at ui = 0 (i ≥ 0)

where c1, c2, . . . , ct and a1, a2, . . . , at are constants.

Definition 2. We define the auxiliary equation for [HLR] to be

xt + a1xt−1 + · · · + at = 0.

We shall assume that the auxiliary equation has t roots, which will certainly be the case if we work in the field C of complex num-

bers. However, the t roots do not need to be distinct, and we shall suppose that the distinct values are α1, α2, . . . , αl , occurring

with multiplicities m1, m2, . . . , ml , respectively. In other words, the auxiliary equation can be rewritten as

(x − α1)
m1(x − α2)

m2 . . . (x − αl)
ml = 0,

where m1 + m2 + · · · + ml = t .

Lemma 1. Suppose sequence {ui} is defined by [HLR], and the auxiliary equation has roots α1, α2, . . . , αl with multiplicities

m1, m2, . . . , ml. Then

ui = p1(i)αi
1 + p2(i)αi

2 + · · · + pl(i)αi
l ,

where, for j = 1, 2, . . . , l, pj(i) is an expression of the form A0 + A1i + · · · + A(m j−1)i(m j−1)
. In other words, pj(i) is a polynomial function

of i with degree at most m j − 1.
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t

2.3. Security model of VMSS schemes

A (t, n) VMSS scheme without private channels involves a dealer D and a set M = {M1, M2, . . . , Mn} of n participants. It is

composed of the following 4 phases.

1. Initialization: The dealer sets up the system parameters which may include its private information and some public data

authentically available to all participants. All participants choose their secret shadows and compute the corresponding public

information respectively. Then each participant authenticates its identity and public information to the dealer. After that the

dealer publishes the public parameters, the identities and public information of all participants.

2. Construction: For a set of secrets to be shared, the dealer D computes subshadows and corresponding verification information

for all participants. D authentically publishes all verification information.

3. Verification: Each participant gets its subshadow from verification information. Then it checks the validity of its subshadow

using the public information.

4. Recovery: t or more participants cooperate to recover the shared secrets. Each of them supplies its subshadow to the others.

They verify the validity of each subshadow. When at least t valid subshadows are collected, they can compute all shared

secrets using a predetermined algorithm.

With regard to the security, a (t, n) VMSS scheme without private channels must satisfy the following requirements.

1. Correctness: If the dealer and the participants act honestly, any t or more participants can reconstruct the secret correctly

during the execution of the reconstruction algorithm.

2. Verifiability:

− Any deceptive behavior of the dealer can be identified in the verification phase.

− In the recovery phase, a dishonest participant who supplies a fake subshadow can be identified by the others.

3. Privacy: Any collusion of less than t participants cannot obtain any of the shared secrets.

According to these security requirements, in the security model of VMSS schemes, we characterize three types of adversaries.

One is a dishonest dealer who aims to cheat some participants by distributing to them invalid subshadows. We say a dishonest

dealer succeeds if it distributes an invalid subshadow to a participant without being detected with a non-negligible probability.

The second is a cheating participant who aims to submit a fake subshadow without being detected in the recovery phase. Such

an adversary succeeds if it submits a fake subshadow without being detected with a non-negligible probability. Another is an

adversary who is not the dealer but corrupts up to t − 1 participants. An adversary of this kind gets complete control of up to

− 1 corrupted participants and aims to extract some information of the shared secrets. We say such an adversary succeeds if

it can get some information of the shared secrets other than those can be induced from public information and the information

owned by the corrupted participants with a non-negligible probability.

Definition 3. A a (t, n) VMSS scheme without private channels is said secure if it satisfies Correctness and no adversary can

succeed with a non-negligible probability.

3. Security analysis and attacks to several verifiable multi-secret sharing schemes

3.1. Security analysis and attack on ZZZ scheme [35]

3.1.1. Brief review of ZZZ scheme

• Initialization phase

Let P1, P2, . . . , Pk denote k secrets to be shared. Firstly, the dealer D chooses two large strong primes, p and q, computes N = pq.

D randomly chooses an integer g from the interval [N1/2, N] such that g is relatively prime to p and q. D publishes {g, N}.

Let M = {M1, M2, . . . , Mn} be the set of participants. Each participant Mi in M randomly chooses an integer si from the interval

[2, N] as her/his own secret shadow and computes Ri = gsi mod N, then Mi provides Ri and her/his identity information IDi,

to the dealer D. D must ensure that Ri �= Rj for all i �= j. Once Ri = R j, D should demand these participants to choose different

secret shadows until R′
i
s are different for i = 1, 2, . . . , n. D publishes {(IDi, Ri)}.

• Construction phase

The dealer D performs the following steps

(1) Randomly choose an integer s0 from the interval [2, N] such that s0 is relatively prime to (p − 1) and (q − 1). Then D

computes f such that s0 × f = 1 mod φ(N), where φ(N) is the Euler phi-function;

(2) Compute R0 = gs0 mod N and Ii = R
s0
i

mod N, (i = 1, 2, . . . , n);

(3) Publish {R0, f}.

In case k ≤ t,

– Choose a prime Q and construct (t − 1)th degree polynomial h(x) mod Q,

h(x) = P1 + P2x + · · · + Pkxk−1 + a1xk + a2xk+1 + · · · + at−kxt−1 mod Q,

where 0 < P1, P2, , Pk, a1, a2, . . . , at−k < Q;

– Compute y = h(I ) mod Q for i = 1, 2, . . . , n;
i i
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– Publish (y1, y2, . . . , yn).

In case k > t,

– Choose a prime Q and construct (k − 1)th degree polynomial h(x) mod Q,

h(x) = P1 + P2x + · · · + Pkxk−1 mod Q,

where 0 < N, P1, P2, . . . , Pk < Q;

– Compute yi = h(Ii) mod Q for i = 1, 2, . . . , n;

– Compute h(i) mod Q for i = 1, 2, . . . , k − t;

– Publish
(
y1, y2, . . . , yn, h(1), h(2), . . . , h(k − t)

)
.

• Recovery and verification phase

Without loss of generality, suppose t or more members M1, M2, . . . , Mt of M collaboratively recover the secrets P1, P2, . . . , Pk,

they execute the following steps:

(1) Mi supplies I
′
i
= R

si
0

mod N, where si is the shadow of Mi;

(2) Anybody can verify the validity of I
′
i

provided by Mi: if I
′ f
i

= Ri mod N, then I
′
i

is true; otherwise I
′
i

is false and Mi may

be a cheater;

(3) Recover the secrets: The polynomial h(x) mod Q can be uniquely determined as follows:

k ≤ t

h(x) =
t∑

i=1

yi

t∏
j=1, j �=i

x − I
′
j

I
′
i
− I

′
j

mod Q

= P1 + P2x + · · · + Pkxk−1 + a1xk + a2xk+1 + · · · + at−kxt−1 mod Q .

k > t

h(x) =
t∑

i=1

yi

t∏
j=1, j �=i

x − I j

Ii − I j

k−t∏
l=1

x − l

Ii − l
+

k−t∑
i=1

h(i)
k−t∏

j=1, j �=i

x − j

i − j

t∏
l=1

x − Il
i − Il

mod Q

= P1 + P2x1 + · · · + Pkxk−1 mod Q .

3.1.2. Analysis and attack to ZZZ scheme

We notice that, when collaboratively reconstruct the shared secrets, only the validity of Ii provided by each Mi is checked

using equation I
f
i

= Ri mod N. But the consistence of I
i

with yi is not verified. Based on this observation, a dishonest dealer D can

cheat Mi by using an invalid yi which is inconsistent with Ii = R
s0
i

mod N. The attack comes as follows:

In the Construction phase, the dishonest dealer D performs:

In case k ≤ t

• D chooses a prime Q and construct (t − 1)th degree polynomial h(x) mod Q,

h(x) = P1 + P2x + · · · + Pkxk−1 + a1xk + a2xk+1 + · · · + at−kxt−1 mod Q

where 0 < P1, P2, . . . , Pk, a1, a2, . . . , at−k < Q;

• Assume D wants to cheat participant Mi, he/she first randomly chooses Ji �= Ii and computes y
′
i
= h( Ji) mod Q, correctly

computes the other yj for j = 1, 2, . . . , n, j �= i;

• D publishes (y1, y2, . . . , yi−1, y
′
i
, yi+1, . . . , yn).

In case k > t

• D chooses a prime Q and construct (t − 1)th degree polynomial h(x) mod Q,

h(x) = P1 + P2x + · · · + Pkxk−1 + a1xk + a2xk+1 + · · · + at−kxt−1 mod Q,

where 0 < P1, P2, . . . , Pk, a1, a2, . . . , at−k < Q;

• Assume D wants to cheat participant Mi, he/she first randomly chooses Ji(Ji �= Ii) and computes y
′
i
= h( Ji) mod Q,

correctly computes the other yj for j = 1, 2, . . . , n, j �= i;

• D publishes
(
y1, y2, . . . , y

′
i
, . . . , yn, h(1), h(2), . . . , h(k − t)

)
.

In the Recovery and verification phase, the honest Mi will supply I
′
i
= R

si
0

mod N which is really valid, since it does hold that I
′ f
i

=
Ri mod N. As any participant can by no means find out y

′
i

is inconsistent with I
′
i
= R

si
0

mod N, i.e. y
′
i
�= h(Ii), in the reconstruction

phase, Mi and his collaborators will use the fake y
′
i
. As a result they will not recover the true secrets. In addition, when this

happens, it is hard for the collaborators to identify which yi is fake.

[Note]: Obviously, such attacks can also be extended to MS scheme [8].
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3.2. Security analysis and attacks to MS1 and MS2 schemes [9]

3.2.1. Analysis and attack to MS1 scheme

For space limitation, we omit the description of the original MS1 scheme. Please refer to [9] for details. The security drawbacks

of the MS1 scheme is similar to that of the ZZZ scheme. We notice that, when collaboratively reconstruct the shared secrets, only

the validity of Ii = f (r, si) provided by each Mi is checked using equation gIi = Gi mod p. While the consistence of Ii with the

[∗MS1] homogeneous linear recursive formula is not verified. Based on this observation, in the generation of sequence {ui}, a

dishonest dealer D can cheat Mi by replacing the valid Ii = f (r, si) with an invalid I′
i
= f (r, s′

i
), where s′

i
�= si. And any participants

are not able to detect. The attack comes as follows:

D randomly chooses Ji(Ji �= si) and computes:{
I′
i
= f (r, Ji);

Ii = f (r, si);
Gi = gIi mod p.

If 1 ≤ i ≤ t

• D replaces the Ii with the I′
i

to calculate the following [HLR] equations:

[∗]

{
u0 = I1, u1 = I2, . . . , u′

i−1
= I′

i
, . . . , ut−1 = It ,

uj+t + a1uj+t−1 + · · · + at u j = 0 mod q ( j ≥ 0)

• D computes uj for t ≤ j ≤ n + k;

• D computes y j = I j − u j−1 for t < j ≤ n and r j = Pj − u j+n for 1 ≤ j ≤ k;

• D publishes (r, G1, G2, . . . , Gi, . . . , Gn, r1, r2, . . . , rk, yt+1, yt+2, . . . , yn).

If t < i ≤ n

• D considers [HLR](Homogeneous linear recursion) which is defined by the equations

[∗]

{
u0 = I1, u1 = I2, . . . , ut−1 = It ,
uj+t + a1uj+t−1 + · · · + at u j = 0 mod q ( j ≥ 0)

• D computes uj, t ≤ j ≤ n + k;

• D replaces the Ii with the I′
i

to compute y′
i
= I′

i
− ui−1, correctly computes the other yj for t < j ≤ n, j �= i and r j = Pj − u j+n

for 1 ≤ j ≤ k.

• D publishes (r, G1, G2, . . . , Gi, . . . , Gn, r1, r2, . . . , rk, yt+1, yt+2, . . . , y′
i
, . . . , yn).

Since Mi cannot find out Ii = f (r, si) is replaced with an invalid I′
i
= f (r, s′

i
) by D, in the reconstruction phase, he and his collab-

orators will use the subshadow Ii = f (r, si) to recover the secrets. As a result they will fail to recover the true secrets. (Note that

any t or more honest participants without Mi can recover the true secrets.) In addition, when this happens, it is hard for the

collaborators to identify which Ii = f (r, si) is replaced by D. This fact indicates that the MS1 scheme cannot withstand cheating

by the dealer.

3.2.2. Analysis and attack to MS2 scheme

For the complete description of the MS2 scheme, please refer to [9]. We notice that, when collaboratively reconstruct the

shared secrets, only the validity of Ii = R
si
0

mod N provided by each Mi is checked using equation (Ii)
f = Ri mod N, while the

consistence of Ii with the sequence {ui} generated from Homogeneous linear recursive formula [∗MS2] is not verified. Based on

this observation, a dishonest dealer D can cheat Mi by replacing the valid Ii = R
s0
i

with an invalid I′
i
= ( Ji)

s0 (Ji �= Ri) in generating

the sequence {ui} or {yi}. The attack comes as follows:

D randomly chooses Ji(Ji �= Ri) and computes:{
I′
i
= (Ji)

s0 mod N;
Ii = (Ri)

s0 mod N.

If 1 ≤ i ≤ t

• D replaces the Ii with the I′
i

to compute the following [HLR] equations:

[∗]

{
u0 = I1, u1 = I2, . . . , u′

i−1
= I′

i
, . . . , ut−1 = It ,

ui+t + a1ui+t−1 + · · · + at ui = 0 mod q (i ≥ 0)

• D computes ui for t ≤ i ≤ n + k;

• D computes yi = Ii − ui−1 for t < i ≤ n and ri = Pi − ui+n for 1 ≤ i ≤ k;

• D publishes (R0, f, r1, r2, . . . , r , yt+1, yt+2, . . . , yn).
k
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If t < i ≤ n

• D considers the sequence {ui} which is defined by the formulas:

[∗]

{
u0 = I1, u1 = I2, . . . , ut−1 = It ,
ui+t + a1ui+t−1 + · · · + at ui = 0 mod q (i ≥ 0)

• D computes ui for t ≤ i ≤ n + k;

• D replaces the Ii with the I′
i

to compute y′
i
= I′

i
− ui−1, correctly computes the other yj for t < j ≤ n, j �= i and ri = Pi − ui+n

for 1 ≤ i ≤ k;

• D publishes (R0, f, r1, r2, . . . , rk, yt+1, yt+2, . . . , y′
i
, . . . , yn).

Since Mi cannot find out Ii = R
s0
i

is replaced by D in the generation of sequence {ui} or {yi}, in recovery phase, he and his collabo-

rators will use the true Ii that is inconsistent with sequence {ui} or {yi}. As a result they will not recover the true secrets. (But any

t or more honest participants without Mi can recover the true secrets.) In addition, when this kind of cheating occurs, it is hard

for the collaborators to identify which Ii = R
s0
i

is replaced by D. This fact indicates that the MS2 scheme also cannot withstand

cheating by the dealer.

4. New VMSS schemes

To overcome the security drawbacks of the above analyzed VMSS schemes, we propose two new VMSS schemes in this section.

By adding some consistence checking measures, our new schemes effectively get rid of the security flaws in ZZZ scheme, MS

scheme, MS1 scheme, and MS2 scheme. Our first scheme is based on the ZZZ scheme introduced in [35] and Feldman’s VSS

scheme [12], and the second is based on the MS2 scheme [9]. The two new schemes can not only resist cheating by the dealer or

participants, but also remove the use of private channels.

4.1. Description of our scheme 1

Let D be the dealer, M = {M1, M2, . . . , Mn} be the set of participants, t( < n) be the threshold.

• Initialization phase

In this phase, the dealer (denoted as D ) first creates a public notice board (NB) which is used for storing necessary public

information. The participants can access the information on NB. But the contents on the board can only be modified or

updated by D. Let λ be the security parameter. For our context, it should be chosen as the security parameter for a secure RSA

cryptosystem.

Initialization of the dealer D, D performs the following:

(1) Choose two large strong primes p0 and q0 (p0 > q0) with bit-length λ/2 satisfying the requirement of a secure RSA

public key cryptosystem [32], and compute N = p0q0 of bit-length λ.

(2) Compute φ(N) = (p0 − 1)(q0 − 1) which is Euler’s function, then safely destroy p0, q0.

(3) Choose primes q, Q such that Q|(q − 1), and the bit-length of Q is at least λ/2. Then randomly choose an element g of

Z∗
q with order Q.

(4) D publishes (λ, N, Q, q, g) on NB.

Initialization of participants:

(1) Each Mi with identity information IDi chooses two strong primes pi and qi (pi > qi) of bit-length λ/2 , and computes

Ni = piqi which satisfy (Ni > N).

(2) Mi computes φ(Ni) = (pi − 1)(qi − 1).

(3) Mi randomly chooses an integer ei which is coprime to φ(Ni) and computes the integer di such that eidi =
1 (mod φ(Ni)).

(3) Mi provides authentically (IDi, ei, Ni) to D through a public channel, and keeps his shadow di secret.

D puts (IDi, ei, Ni), i = 1, 2, . . . , n, on NB.

[Note]: After the initialization phase, the information on NB can be reusable. The dealer D does not know any participant’s

shadow, so the shadow can be reusable for multiple rounds of sharing even with different dealers.

• Construction phase

Let P1, P2, . . . , Pk be the k secrets to be shared, 0 < Pi < Q, i = 1, 2, . . . , k. The dealer D performs the following steps:

(1) In case k ≤ t

(1) D constructs a polynomial f(x) mod Q of degree (t − 1):

f (x) = P1 + P2x + · · · + Pkxk−1 + a1xk + a2xk+1 + · · · + at−kxt−1 mod Q .

(2) D generates subshadow Yi for participant Mi: D randomly chooses n different integers C1,C2, . . . ,Cn such that

0 < Ci < Q, i = 1, 2, . . . , n and computes Yi = f (Ci) mod Q for i = 1, 2, . . . , n.

(3) D computes Hi for i = 1, 2, . . . , n,

Hi = Y ei mod Ni.
i
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(4) D computes Ai for i = 1, 2, . . . , t,

Ai = gPi mod q (1 ≤ i ≤ k),

Ai = gai−k mod q (k < i ≤ t).

(5) D publishes (C1,C2, . . . ,Cn, H1, H2, . . . , Hn, A1, A2, . . . , At) on NB.

(2) In case k > t

(1) D constructs a polynomial f(x) mod Q of degree (k − 1):

f (x) = P1 + P2x + · · · + Pkxk−1 mod Q .

(2) D generates subshadow Yi for participant Mi, D randomly chooses distinct integers C1, C2, ���, Cn such that

0 < Ci < Q, i = 1, 2, . . . , n, and computes Yi = f (Ci) mod Q for i = 1, 2, . . . , n.

(3) D picks k − t distinct minimum integers η1, η2, . . . , ηk−t from Z
∗
Q

− {Ci | i = 1, 2, . . . , n}, computes f(ηi) mod Q

for i = 1, 2, . . . , k − t .

(4) D computes Hi for i = 1, 2, . . . , n:

Hi = Y ei

i
mod Ni.

(5) D computes Ai = gPi mod q, i = 1, 2, . . . , k.

(6) D puts
(
C1,C2, . . . ,Cn, H1, H2, . . . , Hn, η1, η2, . . . , ηk−t , f (η1), f (η2), . . . , f (ηk−t), A1, A2, . . . , Ak

)
on NB.

• Verification phase

Each participant Mi gets his subshadow by computing Yi = (Hi)
di mod Ni for i = 1, 2, . . . , n. The validity of subshadows and

their consistence with the information published by D on NB can be verified by each participant Mi as follows.

(1) If k ≤ t, Mi checks

gYi
?=

t−1∏
l=0

(Al+1)
(Ci)

l

mod q

(2) If k > t, Mi checks

gYi
?=

k−1∏
l=0

(Al+1)
(Ci)

l

mod q

gf (η j) ?=
k−1∏
l=0

(Al+1)
(η j)

l

mod q, j = 1, 2, . . . , k − t

If Mi
′s verification is successful, Mi believes the subshadow Yi he has got is valid and is consistent with the public information

on NB. If no participant fails in the verification, D is thought honest.

Note that we add the consistency detection of all subshadows in the verification phase. This is necessary for preventing the

dealer from distributing a fake subshadow to a participant. The weakness of the schemes attacked in the previous section is

mainly due to lack of such a detection.

• Recovery phase

Suppose t arbitrary participants {Mi}i∈I

(
I ⊆ {1, 2, . . . , n}) pool their subshadows Yi to reconstruct the shared secrets. Each

participant Mi(i ∈ I) can check whether others’ secret subshadows are valid and consistent by the following equations:

gYi
?=

k−1∏
l=0

(Al+1)
(Ci)

l

mod q, j ∈ I.

Once t valid subshadows are collected, the polynomial f(x) mod Q can be uniquely determined as follows:

(1) If k ≤ t

f (x) =
(

t∑
i=1

Yi

t∏
j=1, j �=i

x − Cj

Ci − Cj

)
mod Q

= P1 + P2x + · · · + Pkxk−1 + a1xk + a2xk+1 + · · · + at−kxt−1 mod Q

(2) If k > t

f (x) =
(

t∑
i=1

Yi

t∏
j=1, j �=i

x − Cj

Ci − Cj

k−t∏
l=1

x − ηl

Ci − ηl

+
k−t∑
i=1

f (ηi)
k−t∏

j=1, j �=i

x − η j

ηi − η j

t∏
l=1

x − Cl

ηi − Cl

)
mod Q

= P1 + P2x + · · · + Pkxk−1 mod Q

The structure of our scheme 1 is similar to that of the ZZZ scheme. The main difference lies in we use the RSA encryption

system while the ZZZ scheme uses Diffie–Hellman key exchange. A comparison of the two scheme is shown in Fig. 1. In the ZZZ
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Fig. 1. The difference between our scheme 1 and ZZZ scheme.
scheme, participant Mi chooses its secret shadow si and computes its subshadow as Ii = R
si
0

mod N using the public information

R0 = gs0 mod N published by the dealer D. Mi also sends Ri = gsi mod N to D as its public information corresponding to its secret

shadow si. D computes the subshadow of Mi as Ii = R
s0
i

mod N which is used in the computation of public information yi = h(Ii).

While in our new scheme, participant Mi generates a RSA public and private key pair ((ei, Ni), di). It sets the private key di as its

secret shadow and computes its subshadow as Yi = H
di
i

mod Ni using the public information Hi = Y
ei
i

mod Ni published by the

dealer D. Where D computes the subshadow Yi of Mi as Yi = f (Ci) mod Q from a publicly known Ci ∈ ZQ. D also publishes com-

mitments to the coefficients of the polynomial f(x). To compare the two scheme, please note in the ZZZ scheme, three modular

exponentiation Ii = R
si
0

mod N, Ri = gsi mod N, and Ii = R
s0
i

mod N are needed for Mi and D to compute the same subshadow Ii for

participant Mi. Whereas in our new scheme, only two modular exponentiation Yi = H
di
i

mod Ni and Hi = Y
ei
i

mod Ni are needed

for this purpose. More importantly, in the ZZZ scheme the dealer D does not commit to the public information yi. This weakness

makes it possible for the dealer D to cheat a participant Mi by publishing a fake yi as pointed in our attack. While in our new

scheme,this weakness is eliminated by requiring the dealer publishing commitment to the polynomial f(x).

4.2. Security analysis

The security of our scheme 1 is based on the discrete logarithm problem and the large integer factorization problem which

are assumed to be hard. We analyze the security of our scheme 1 from three aspects as formulated in the security model.

1. Correctness: If the dealer and the participants are honest, any t or more participants can correctly reconstruct the set of secrets

using the recovery algorithm. This can be proved by the following equations.

• If k ≤ t

f (x) =
(

t∑
i=1

Yi

t∏
j=1, j �=i

x − Cj

Ci − Cj

)
mod Q

= P1 + P2x + · · · + Pkxk−1 + a1xk + a2xk+1 + · · · + at−kxt−1 mod Q

• If k > t

f (x) =
(

t∑
i=1

Yi

t∏
j=1, j �=i

x − Cj

Ci − Cj

k−t∏
l=1

x − ηl

Ci − ηl

+
k−t∑
i=1

f (ηi)
k−t∏

j=1, j �=i

x − η j

ηi − η j

t∏
l=1

x − Cl

ηi − Cl

)
mod Q

= P1 + P2x + · · · + Pkxk−1 mod Q

2. Verifiability:

The following theorem shows that the dealer can not pass through verification if he distributes inconsistent subshadows.

Theorem 1. Suppose the discrete logarithm in Z∗
q with base g is intractable. Then the probability for the dealer successfully dis-

tributes a fake subshadow to any participant is negligible, and the success probability for a participant Mi in submitting a fake

subshadow in the recovery phase without being detected is also negligible.
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Proof. For any participant Mi, its valid subshadow is an element Yi ∈ Z∗
Q such that Yi = f (Ci) mod Q, gYi =∏t−1

l=0
(Al+1)

(Ci)
l

mod q, if k ≤ t; or Yi = f (Ci) mod Q, gYi = ∏k−1
l=0

(Al+1)
(Ci)

l
mod q, gf (η j) = ∏k−1

l=0
(Al+1)

(η j)
l

mod q, j =
1, 2, . . . , k − t, if k > t.

Without loss of generality, just consider the case k ≤ t. Assume that the dealer distributes an invalid subshadow Y ′
i

to Mi that

passes the verification. Then D has to find a Y ′
i

�= f (Ci) such that gYi
′

= ∏t−1
l=0

(Al+1)
(Ci)

l
mod q. As gYi

′
= ∏t−1

l=0
(Al+1)

(Ci)
l

mod q

implies the equation Y ′
i

= f (Ci) mod Q holds with probability 1, we conclude that the probability for the dealer D successfully

cheats any participant is negligible. �

Now consider the success probability for a participant Mi in submitting a fake subshadow in the recovery phase without being

detected. Let Yi be Mi’s true subshadow obtained from the dealer. To successfully cheat in the recovery phase, Mi has to find

a Y ′
i

�= Yi, Y ′
i

∈ Z∗
Q

such that gYi
′
=∏t−1

l=0
(Al+1)

(Ci)
l

mod q. Since gYi
′
=∏t−1

l=0
(Al+1)

(Ci)
l

mod q implies Y ′
i

= f (Ci) = Yi mod Q with

probability 1, we know that Mi’s success probability in submitting a fake subshadow in the recovery phase without being

detected is negligible.

3. Privacy:

To demonstrate that no useful information about the set of shared secrets are revealed to an adversary corrupting at most

t − 1 participants, we give the following two theorems with brief proofs. The first one shows that the open commitments do

not reveal any useful information about the set of secrets and the subshadows, and the second one implies the confidentiality

of the set of shared secrets against an adversary who corrupts up to t − 1 participants.

Theorem 2. The adversary E can not get any useful information about {P1, P2, . . . , Pk} and the subshadows possessed by any

participants from the public information under the assumptions that the RSA cryptosystem used in the system is secure, and the

discrete logarithm problem in Z∗
q with respect to the base g is intractable. i.e. the commitments Ai, i = 1, 2, . . . , t(or k), and Hi,

i = 1, 2, . . . , n do not reveal any useful information about the set of secrets and the subshadows.

Proof. In case k ≤ t, the public commitments are Ai = gPi mod q for i = 1, . . . , k, Ai = gai−k mod q for i = k + 1, . . . , t, Hi =
Yi

ei mod Ni for i = 1, 2, . . . , n. While in case k > t, the public commitments are Ai = gPi mod q for i = 1, . . . , k, Hi = Yi
ei mod Ni

for i = 1, 2, . . . , n. As computing the discrete logarithm to the base g is difficult, the adversary can not derive any useful

information about the secrets and the polynomial f(x) from the open commitments. Secondly, to derive a subshadows Yi from

Hi without knowing Mi’s private key, one needs to break the RSA encryption scheme. So, the public information leaks no

useful information about the set of shared secrets and the subshadows. �

Theorem 3. An adversary corrupting up to t − 1 participants cannot derive any subshadow kept by an honest participant and

consequently cannot get useful information about the set of shared secrets.

Proof. We learn that the adversary cannot get any useful information about the secret polynomial f(x) from Theorem 2. Nev-

ertheless according to the algorithm of construction, to acquire the subshadows of those honest participants, the adversary

has no choice but compute f(x) merely using the subshadows of the corrupted ones. Without loss of generality we suppose

that the corrupted participants are {M1, . . . , Mt−1}. The adversary has to compute all coefficients of f(x) from the following

system of linear equations in ZQ:

• If k ≤ t⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P1 + P2C1 + · · · + PkCk−1
1

+ a1Ck
1 + · · · + at−kCt−1

1
= Y1

P1 + P2C2 + · · · + PkCk−1
2

+ a1Ck
2 + · · · + at−kCt−1

2
= Y2

...

P1 + P2Ct−1 + · · · + PkCk−1
t−1

+ a1Ck
t−1 + · · · + at−kCt−1

t−1
= Yt−1

i.e. ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 C1 · · · Ck−1
1

Ck
1 · · · Ct−1

1

1 C2 · · · Ck−1
2

Ck
2 · · · Ct−1

2

...
... · · ·

...
... · · ·

...

1 Ck · · · Ck−1
k

Ck
k

· · · Ct−1
k

1 Ck+1 · · · Ck−1
k+1

Ck
k+1

· · · Ct−1
k+1

...
... · · ·

...
... · · ·

...

1 Ct−1 · · · Ck−1
t−1

Ck
t−1 · · · Ct−1

t−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1

P2

...

Pk

a1

...

at−k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1

Y2

...

Yk

Yk+1

...

Yt−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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• If k > t⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1 + P2C1 + · · · + PkCk−1
1

= Y1

P1 + P2C2 + · · · + PkCk−1
2

= Y2

...

P1 + P2Ct−1 + · · · + PkCk−1
t−1

= Yt−1

P1 + P2η1 + · · · + Pkη
k−1
1

= f (η1)

...

P1 + P2ηk−t + · · · + Pkη
k−1
k−t

= f (ηk−t)

i.e. ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 C1 C2
1 · · · Ck−1

1

1 C2 C2
2 · · · Ck−1

2
...

...
... · · ·

...

1 Ct−1 C2
t−1 · · · Ck−1

t−1

1 η1 η2
1 · · · ηk−1

1
...

...
... · · ·

...

1 ηk−t η2
k−t

· · · ηk−1
k−t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1

P2

...
Pt

Pt+1

...
Pk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y1

Y2

...
Yt−1

f (η1)
...

f (ηk−t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

These are systems of linear equations where the rank of coefficient matrices is less than the number of variables. That means

it has at least Q > 2λ/2 answers and the probability for the adversary to pick out the genuine {P1, P2, . . . , Pk, a1, . . . , at−k} are

not more than 1/Q ≤ λ/2. Accordingly the probability to calculate the subshadow of any uncorrupted participant is not more

than 1/2λ/2, which is a negligible function of the security parameter λ. �

From the above analysis, we can draw the conclusion that our scheme 1 is a secure VMSS scheme.

4.3. Scheme 2

In this section we present another new VMSS scheme based on the homogeneous linear recursion, the RSA cryptosystem and

the discrete logarithm problem. Let D be the dealer, M = {M1, M2, . . . , Mn} be the set of participants, t(t < n) be the threshold.

• Initialization phase

In this phase, the dealer D first creates a public notice board (NB) which is used for storing necessary public information. The

participants can access the information on NB. But the contents on the board can only be modified or updated by D.

Initialization of D:

(1) On input a security parameter λ, D chooses two λ/2 bit strong primes p0 and q0 (p0 > q0), satisfying the requirement

of a secure RSA public key cryptosystem [32], and computes N = p0q0.

(2) D computes φ(N) = (p0 − 1)(q0 − 1), then safely destroy p0, q0.

(3) D randomly chooses two primes Q, q, such that Q|(q − 1), and the bit-length of Q is at least λ/2. D also selects an

element g of Z∗
q with order Q such that the discrete logarithm problem with base g in Z∗

q is infeasible.

(4) D randomly chooses another integer α �= 0 and establishes the auxiliary equation:

(x − α)t = xt + a1xt−1 + · · · + at = 0.

(5) D publishes (λ, N, Q, q, g, α) on NB.

Initialization of participants:

(1) Each Mi with identity information IDi chooses two strong primes pi and qi (pi > qi), satisfying the requirement of a

secure RSA public key cryptosystem [32], and computes Ni = piqi which satisfy (Ni > N).

(2) Mi computes φ(Ni) = (pi − 1)(qi − 1).

(3) Mi randomly chooses an integer ei which is coprime to φ(Ni) and computes the integer di such that eidi = 1 (mod φ(Ni).

(4) Mi authentically provides (IDi, ei, Ni) to D through a public channel, and keeps his shadow di secret.

D puts (IDi, ei, Ni), i = 1, 2, . . . , n, on NB.

we note that, similar to scheme 1, the information on NB can be reusable after the initialization phase. The dealer D does not

know any participant’s shadow, so the shadow can be reusable for multiple rounds of sharing even with different dealers.

• Construction phase

Let P1, P2, . . . , Pk ∈ ZQ denote k secrets to be shared. D chooses at random an integer ai such that Q > ai for i = 1, 2, . . . , t . Then

D performs the following steps to generate a subshadow ui for each participant Mi:

(1) Randomly choose Ci ∈ Z
∗
Q

for i = 1, 2, . . . , t .
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(2) Set up an [HLR] by the equations

[∗]

{
u1 = C1, u2 = C2, . . . , ut = Ct ,

ui+t + a1ui+t−1 + · · · + at ui = 0 mod Q (i ≥ 1)

and compute ui, t < i ≤ n + k.

(3) Compute Yi = Pi − un+i mod Q for i = 1, 2, . . . , k.

(4) Compute Hi = (ui)
ei mod Ni and Ti = gui mod q for 1 ≤ i ≤ n.

(5) Publish (H1, H2, . . . , Hn, T1, T2, . . . , Tn,Y1,Y2, . . . ,Yk) on NB.

• Verification phase

Each participant Mi can get is subshadow by computing ui = (Hi)
di mod Ni for i = 1, 2, . . . , n. The validity and consistence of

Mi’s subshadow ui with the information published by D on NB can be verified as follows:

Tt+i

t∏
j=1

(Tt+i− j)
aj

?= 1 mod q

Ti
?= gui mod q

If Mi
′s verification is successful, Mi believes the subshadow ui he has got is valid and is consistent with the public information

on NB. If no participant fails in the verification, D is thought honest.

Similar to that in scheme 1, we add the consistency detection of all subshadows in the verification phase. This is necessary for

removing the weakness of the schemes attacked in the previous section.

• Recovery phase

Assume that t or more arbitrary participants {Mi}i∈I

(
I ⊆ {1, 2, . . . , n}) pool together their subshadows ui to reconstruct the

shared secrets. Each participant Mi can check whether the subshadows provided by the others are valid by the following

equations:

guj
?= Tj mod q, j ∈ I.

If there are at least t valid subshadows, the shared secrets can be correctly reconstructed. Suppose they use t valid subshadows

{ui|i ∈ J ⊂ I}, they can get the following simultaneous equations using Lemma 1 in Section 2:

z0 + z1i + · · · + zt−1it−1 = uiα
−i mod Q, i ∈ J.

Solving the equations (or equivalently using the technique of Lagrange interpolation ), they get (in ZQ) z0 = A0, z1 =
A1, . . . , zt−1 = At−1. Now, they have

ui = (A0 + A1i + · · · + At−1it−1)αi mod Q, ∀i ≥ t.

Hence they can reconstruct the shared secrets:

Pi = Yi + un+i mod Q, i = 1, 2, . . . , k.

The difference between our scheme 2 and MS1 and MS2 schemes is shown in Fig. 2.

As seeing in Fig. 2, in scheme SM1, a participant Mi chooses its secret shadow si, and encrypts it using the public key of the

dealer D and sends the cipher text to D. After that both D and Mi can computer the subshadow Ii = f (r, si) for Mi. No information

is provided for detecting whether the Ii used in the [HLR] sequence is the same as the true subshadow of Mi. In scheme SM2,

a participant Mi chooses its secret shadow si, computes its subshadow as Ii = R
si
0

mod N using the public information R0 =
gs0 mod N published by the dealer D and sends Ri = gsi mod N to D as its commitment to its secret shadow si. D computes the

subshadow of Mi as Ii = R
s0
i

mod N which is used in the generation of the [HLR] sequence. Three modular exponentiations are

needed for the computation. No information for verifying whether correct Ii is used in the computation of the [HLR] sequence.

While in our scheme 2, Mi selects its secret shadow di and keeps it from the dealer. The subshadow of Mi is encrypted using Mi’s

public key corresponding to di and is provided in the public information. Only two modular exponentiations are involved for

the transmission of a subshadow. We require the dealer publish some information for verifying the consistence of participant’s

subshadow and the [HLR] sequence so that cheating behavior of the dealer can be detected.

4.4. Security analysis

The security of our scheme 2 is based on the discrete logarithm problem and the large integer factorization problem which

are assumed to be hard.

1. Correctness: If the dealer and the participants are honest, any t or more participants can reconstruct the set of the shared

secrets in the recovery phase. This fact can be shown as follows.

Suppose {Mi, i ∈ I} be a set of at least t honest participants. Let {ui, i ∈ I} be their corresponding subshadows obtained from

the honest dealer D. Using their subshadows, they can get the following equations

z0 + z1i + · · · + zt−1it−1 = u α−i mod Q, i ∈ I.
i
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Fig. 2. The difference of our scheme 2 with MS1 and MS2 schemes.
Solving this system of equations (or using the technique of Lagrange interpolation), they get

ui = (A0 + A1i + · · · + At−1it−1)αi mod Q, ∀i ≥ t.

Hence they can reconstruct the shared secrets:

Pi = Yi + un+i mod Q, i = 1, 2, . . . , k.

2. Verifiability:

The following theorem shows that the dealer cannot pass through verification if he distributes inconsistent subshadows. And

a dishonest participant is unable to submit a fake subshadow without being detected in the recovery phase.

Theorem 4. The probability for the dealer successfully distributing a fake subshadow to any participant without being detected is

negligible. At the same time, the probability for a dishonest participant submitting a fake subshadow without being detected in the

recovery phase is negligible.

Proof. Assume Mi’s valid subshadow is ui, and the dealer successfully distributes a fake subshadow u′
i

to Mi. Then Ti = gui =
gu′

i mod q, and Tt+i

∏t
j=1 (Tt+i− j)

a j = 1 mod q. Since ui, u′
i
∈ ZQ , this implies that the probability for u′

i
�= ui is negligible.

Similarly, if a dishonest participant Mi submits a fake subshadow u′
i

without being detected in the recovery phase, then we

have Ti = gu′
i = gui mod q. Hence, u′

i
= ui mod Q holds with probability 1. This means the probability for a participant Mi

successfully submitting a fake subshadow without being detected in the recovery phase is negligible. �

3. Privacy:

Theorem 5. Assume that computing discrete logarithm in Z∗
q is difficult and the RSA encryption scheme is secure. Then the pub-

lic information Ti, Hi, i = 1, . . . , n, do not reveal any useful information about the set of shared secrets and the subshadows of

participants.

Proof. We know that Ti = gui mod q, Hi = (ui)
ei mod Ni for i = 1, . . . , n. As computing the discrete logarithm to the base g is

difficult, the adversary cannot derive any useful information about subshadows from the open commitments T1, T2, . . . , Tn,.

Second, Since Hi is the RSA encryption of Mi’s subshadow ui, to derive ui from Hi the adversary E has to break the RSA

encryption scheme. Under the assumption that the RSA encryption scheme used in our construction is secure the adversary

gets no useful information about u1, u2, . . . , un from H1, H2, . . . , Hn. Without the knowledge of at least t subshadows of the

participants, the adversary cannot compute any of un+1, un+2, . . . , Tn+k due to the definition and properties of linear recursion

sequence uj. Hence the adversary gets no useful information about the set of shared secrets un+1 + Y1, un+2 + Y2, . . . , un+k + Yk

from public information. �

Theorem 6. An adversary corrupts up to t − 1 participants cannot derive any subshadow kept by any honest participant and

consequently cannot get any of the shared secrets.

Proof. We learn that the adversary cannot get any useful information about the [HLR] from Theorem 5. Nevertheless accord-

ing to the algorithm in the construction phase, to acquire the subshadows of those honest participants, the adversary has no

choice but compute the [HLR] merely using the subshadows of the corrupted ones. Without loss of generality we suppose
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Table 1

Analysis of computation cost.

Scheme Initialization Construction Verification Recovery

Dealer D Each Mi Dealer D Each Mi Each Mi

ZZZ 0 1 n + 1 − t

MS 2n 1 0 − t − 1

MS1 n 1 n − t − 1

MS2 0 1 n + 1 − t

Scheme 1 0 0 n + t, k ≤ t t + 1, k ≤ t (t − 1)(k + 1)

Scheme 2 0 0 2n 2 t − 1
that the corrupted participants are {M1, . . . , Mt−1}. The adversary has to compute the sequence ui of [HLR] from the following

system of equations:{
u1 = C1, u2 = C2, . . . , ut−1 = Ct−1

ui+t + a1ui+t−1 + · · · + at ui = 0 mod Q, i = 1, 2, . . . , n − t.

Namely, to compute any other subshadow uj, the adversary should solve the following system of linear equations using the

t − 1 subshadow u1 = C1, u2 = C2, . . . , ut−1 = Ct−1:

ui+t + a1ui+t−1 + · · · + at ui = 0 mod Q, i = 1, 2, . . . , n − t

Note that this system of linear equations consists of n − t equations, and there are n − t + 1 variables ut , ut+1, . . . , un. So

the rank of the coefficient matrix is less than the number of variables. That means it has not less than Q answers and the

probability for the adversary to pick out the correct sequence ut−1+i (i ≥ 1) used in share distribution is not more than 1/Q.

Accordingly the probability to calculate the subshadow of any uncorrupted participant is not more than 1/Q. As Q > 2λ/2, this

probability is not more than 1/2λ/2, which is a negligible function of the security parameter λ. �

From the above analysis, we know that our scheme 2 is a secure VMSS without private channels.

5. Performance analysis

5.1. Computation cost

In comparing the computational cost of our schemes with some other schemes of the same type, we list the amount of the

most time consuming operations in each phase of these schemes. The most time consuming operations we consider here is

modular exponentiation. Table 1 shows the main computational cost of our new schemes and the four schemes analyzed in

Section 3.

As shown in Table 1, in the initialization and construction phases, our scheme 2 is the most efficient. While our scheme1

is slightly more efficient than MS and MS1 schemes (assume n > k), and less efficient than ZZZ and MS2 schemes. All the six

schemes have almost the same computational cost in the recovery phase. Since we add consistence test to prevent cheating by

the dealer, the verification phases of over new schemes require more modular exponentiations than in the other schemes. We

note that such added computational cost is necessary for preventing cheating by the dealer. Without this distinctive feature of

preventing cheating by the dealer, a so called verifiable secret sharing scheme will lose its real meaning for ”verifiability”. As

demonstrated in Section 3, it is the lack of such tests that makes the other four schemes vulnerable to cheating by the dealers.

As a whole, our new schemes are efficient and have a comparable computational cost with respect to similar existing verifiable

multi-secret sharing schemes.

5.2. Communication cost

In Table 2, we list the communication cost in the initialization and construction phases of the six schemes, ZZZ scheme, MS

scheme, MS1 scheme, MS2 scheme, and our new schemes. The communication cost of the six schemes in the recovery phase is

almost the same. Table 2 indicates that our two new schemes are nearly as communication efficient as the other four schemes

in the initialization phase, but slightly less efficient in the construction phase. This inefficiency is due to we require the dealer

publish some redundant information for testing the consistence of the public information with the shadows and subshadows of

participants. Our analysis in Section 3 reveals that the insecurity of the other four schemes is exactly resulted from lacking of

such redundant information.

5.3. Main performance features

We also compare the main performance features of our new schemes with the other four schemes cited above. We consider

six main functionalities of a VMSS scheme.
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Table 2

Analysis of communication cost.

Scheme Initialization phase Construction phase

D Broadcast Mi to D D Broadcast

ZZZ (g, N) (IDi , Ri) (R0, f ), (y1, y2, . . . , yn), k ≤ t

(IDi, Ri), i = 1, 2, . . . , n i = 1, 2, . . . , n (R0, f ),
(
y1, . . . , yn, h(1), . . . , h(k − t)

)
, k > t

MS (e, N, g, p), (r, Gi), i = 1, 2, . . . , n (IDi , Ti) (y1, y2, . . . , yn), k ≤ t

(IDi, Ti), i = 1, 2, . . . , n i = 1, 2, . . . , n (y1, y2, . . . , yn, h(1), h(2), . . . , h(k − t)), k > t

MS1 (e, N, g, q, α) (IDi , Ti) (r, G1, G2, . . . , Gn, r1, r2, . . . , rk, yt+1, yt+2, . . . , yn)

(IDi, Ti), i = 1, 2, . . . , n i = 1, 2, . . . , n

MS2 (N, g, q, α) (i, Ti) (R0, f, r1, r2, . . . , rk, yt+1, yt+2, . . . , yn)

(i, Ti), i = 1, 2, . . . , n i = 1, 2, . . . , n

Scheme 1 (λ, N, Q, q, g) (IDi , ei , Ni) (C1, . . . ,Cn, H1, . . . , Hn, A1, . . . , At), k ≤ t

(IDi, ei, Ni), i = 1, 2, . . . , n i = 1, 2, . . . , n
(
C1, . . . ,Cn, H1, . . . , Hn, η1, . . . ,

ηk−t , A1, . . . , Ak, f (η1), . . . , f (ηk−t)
)
, k > t

Scheme 2 (λ, N, Q, q, g, α) (IDi , ei , Ni) (H1, H2, . . . , Hn, T1, T2, . . . , Tn,Y1,Y2, . . . ,Yk)

(IDi, ei, Ni), i = 1, 2, . . . , n i = 1, 2, . . . , n

Table 3

Performance features.

Functionality ZZZ scheme MS scheme MS1 scheme MS2 scheme Our scheme 1 Our scheme 2

1 NO NO NO NO YES YES

2 YES YES YES YES YES YES

3 YES YES YES YES YES YES

4 YES YES YES YES YES YES

5 YES YES YES YES YES YES

6 YES NO NO YES YES YES
• Functionality 1: Resist cheating by the dealer D

• Functionality 2: Resist cheating by dishonest participants Mi

• Functionality 3: Without secret channel

• Functionality 4: Reconstruct multi-secrets parallelly

• Functionality 5: Reuse of the secret shadows

• Functionality 6: Reuse of the secret shadows for multiple rounds of sharing even with different dealers.

Table 3 shows that both of our new schemes possess all the six main performance features. While the other four schemes do

not have functionality 1, i.e. the cannot resist cheating by a dishonest dealer. The MS scheme and MS1 scheme do not possess

functionality 6. This means that the secret shadows of participants will useless after the recovery phase. So, the initialization of

participants has to be executed in every round of sharing even if the group of participants is not changed. Our two new schemes

effectively overcome this inconvenience. They allow participants reuse their secret shadows in different rounds of multi-secret

sharing even with different dealers. In this way, a participant could run the initialization of participant only once, and could use

the information generated in this execution of initialization in many rounds of multi-secret sharing no matter the dealers in

these round of sharing are different. This feature enables the participants to greatly reduce the cost of initialization in multiple

rounds of multi-secret sharing.

6. Conclusion

Verifiable multi-secret sharing schemes provide practical techniques for sharing multiple secrets in a group of participants

so that cheating behavior of a dealer or a participant can be detected. They are important tools in keeping multiple secrets such

as cryptographic keys, and in designing secure multi-party protocols. In this paper, we begin with re-analyze the security of four

recently proposed VMSS schemes. Our analysis reveals that all these schemes are subject to cheating by dishonest dealers. So

these schemes do not satisfy the basic security requirement of verifiable secret sharing schemes. We notice that the security

drawback of these schemes is induced by lacking of the consistence test of the information published by a dealer with the

subshadows of participants. Based on the analysis, we further put forward two improved VMSS schemes. In our new schemes,

we require the dealer to publish some redundant information for the necessary consistence checking. The security analysis and

performance analysis of our new schemes demonstrate that they are secure and efficient verifiable multi-secret sharing schemes

withstanding cheating by the dealer or a participant, requiring no secret channels, allowing parallel reconstruct of multiple

secrets and reuse of shadows in different rounds of sharing even with different dealers.
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