
Single-beam multimode fiber imaging system 
using digital micro-mirror device and 
transmission matrix analysis 

LIANG DENG,1,2 JOSEPH YAN,1 DANIEL ELSON,3 AND LEI SU2,* 

1Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3BX, UK 
2School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK 
3Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK 

*l.su@qmul.ac.uk 

Abstract: This work demonstrates experimental approaches to characterize a single multimode 

fiber without a reference beam. Spatial light modulation is performed with a digital micro-

mirror device that enables high-speed binary amplitude modulation. Intensity-only images are 

recorded by the camera and processed by a Bayesian inference based algorithm to retrieve the 

phase of output optical field as well as the transmission matrix of the fiber. The calculated 

transmission matrix is validated by three standards: prediction accuracy, transmission imaging, 

and focus generation. Also, it is found that information on mode count and eigenchannels can 

be extracted from the transmission matrix by singular value decomposition. This paves the way 

for a much more compact and cheaper single multimode fiber imaging system for many 

demanding imaging tasks. 
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1. Introduction 

Recently, optical multimode fiber (MMF) has become a promising candidate for endoscopic 

imaging due to the great number of spatial modes travelling within a small cross-section down 

to tens of micrometers [1]. Typically, wave propagating in MMFs suffers from mode coupling 

and mode dispersion and generates complex speckle patterns, which imposes a fundamental 

challenge for a single MMF to be used imaging applications. Although how optical fiber modes 

propagate in a MMF varies significantly from fiber to fiber, which scrambles the transmitted 

image information, the process is actually deterministic. With appropriate characterizations, 

MMFs can work similarly as conventional transparent imaging components such as optical 

lenses. 

Over the past few years, the wavefront shaping technology has been investigated 

extensively to characterize MMFs so that a single MMF can be used to transmitted images. 

Light propagation in a linear medium is a linear process and can, therefore, be described by its 

transmission matrix (TM) [2,3], which is calculated from a set of system’s input-output pairs. 

In Ref. [4], Choi et al. used a scanning mirror to modulate the input fields and obtained the 

output fields with off-axis holography. All the data was processed to construct the TM, leading 

to imaging with diffraction-limited resolution. However, this method necessitates the recording 

of input fields, which is time-consuming and lowers experiment operability. Compared with 

the scanning mirror, by offering phase-only modulations, spatial light modulator (SLM) is more 

widely used in wavefront shaping. Using an SLM, Papadopoulos et al. demonstrated focus 

generation [5] and point scanning based fluorescence imaging [6] with digital phase 

conjugation. Loterie and co-workers utilized an SLM to measure the TM of the MMF and 

further achieved high imaging with digital confocal [7] and optical confocal setup [8]. The 

importance of monitoring system stability and phase drifting is stressed in their works, as phase 

correction is essential for TM effectiveness. Digital micromirror device (DMD) has been used 

as a cheap and high-speed alternative of SLM. The rotation of micro-mirrors on board can 

realize binary amplitude modulation, which can also be used to measure fiber TM and to 

perform point-scanning imaging [9]. The previously mentioned approaches all require a 

reference beam, either co-propagating in the fiber [2,3] or in an external form [4-9]. However, 

to extract the full information of the optical field by phase-shifted or off-axis holography is at 

the cost of a complicated system and suffers from instability issues arising from the holographic 

interference process for phase retrieval.  

Since the mode coupling is highly subject to the change of fiber shapes, and movements, 

flexible single MMF imaging is a real challenge. Normally, multimode fiber imaging systems 

have very limited flexibility. And it has been demonstrated that graded-index MMF [10] and 

high-NA MMF [11] suffer less from fiber deformations for image transmission. To improve 

this, Farahi et al. proposed a dynamic bending compensation system with the help of another 

single mode fiber and a virtual beacon source [12]. But the possible change to the MMF shape 

is carefully limited in their setup and sufficient pre-acquired data is needed to perform the re-

focusing. Moreover, recent developments in theoretical models enable the prediction of fiber 

output after deformation [13]. To match the experimental results with the theory, the model has 

to be extremely accurate. Since the errors are accumulated with the increase of the image 

transmission distance, this method is only validated for short fibers (no more than 300 mm). 

Another related difficulty is that the shape of the fiber needs to be completely confirmed to 

model the propagation, which is hard in real applications, as the fiber will be randomly shaped. 

To deal with truly free deformation, A. M. Caravaca-Aguirre et al. demonstrated a real-time 



re-focusing system based on feedback and wavefront control [14]. They used in-line 

interference to extract transmission matrix by dividing each input field into reference part and 

controlled part. This approach does not need any knowledge of fiber deformation and can obtain 

TM in tens of milliseconds with the help of FPGA. But the instability problem due to 

interference still exists as in Ref [2,3]. 

In this paper, we demonstrate the acquisition of the complete TM of a MMF using DMD 

without using interference. It involves an advanced phase retrieval algorithm [15] and therefore 

leads to a simplified and robust optical setup. A sufficiently large number of output fields can 

be measured quickly thanks to the high speed of DMD. The algorithm itself runs in a parallel 

way such that distributed computations can be done to accelerate the data acquisition. The 

calculated TM is then verified using the following three approaches. Firstly, predicted outputs 

for random inputs are compared with corresponding actual outputs for prediction accuracy 

estimation. Secondly, imaging in the transmission mode is demonstrated with pre-defined 

patterns. Lastly, a set of focuses is generated on the distal fiber end with the information in TM 

as a focus-scanning process. In addition, it has been demonstrated that one can obtain accurate 

mode count and eigenchannels for better energy delivery by performing singular value 

decomposition for transmission matrix. 

2. Experimental setup 

The diagram of our experimental setup is shown in Fig. 1. A DMD with 1024×768 micro-

mirrors (Discovery 1100, Texas Instruments) driven by an interface board (ALP-1, ViALUX) 

was used to modulate the 632.8-nm laser beam, which was direction-adjusted by two mirrors 

(M1 and M2) and expanded by two lenses (L1 and L2). The DMD modulated light field was 

couple into the MMF with a tube lens TL1 and a 40X microscope objective OL1. 

Corresponding MMF outputs, magnified by a 20X microscope objective OL2 and the tube lens 

TL2, were recorded by the camera. In our setup, we set 2×2 micromirrors as a single macro 

pixel in the modulation to enhance the difference between the “ON” and the “OFF” pixels.  We 

also used input patterns consisting of N = 1296 macro pixels and captured output patterns with 

M = 9216 pixels on camera. The number N is limited by the maximum number of modes 

supported in the MMF, as sufficient degrees of freedom are required to describe the change of 

input patterns. The number M is determined by the parameters of the MMF used in our 

experiment particularly the core diameter (50 μm in this case) and by the magnification ability 

of the objective lens used. In order to retrieve phase information successfully, M/N ≥ 2 is needed 

according to the algorithm. 

 

Fig. 1.  Schematic experimental setup of reference-less MMF characterization. He-Ne Laser: 25-

LHP-925-230, Melles Griot; M1, M2: Mirrors; L1, L2: Bi-Convex Lenses; DMD: Digital Mirror 

Device, Discovery 1100, Texas Instruments; TL1: Tube Lens, AC254-200-A-ML; TL2: Tube 
Lens, AC254-100-A-ML; OL1: 40X Objective Lens, Nikon; OL2: 20X Objective Lens, 

Olympus; MMF: Multimode Fiber, FG050UGA, Thorlabs; P: Polarizer, LPVISE100-A, 

Thorlabs; Camera: C1140-22CU, Hamamatsu; OP: Object Plane; IP: Image Plane. 



In calibration, we fed the system with approximately P = 8000 input fields, which are 

random binary patterns with half pixels “ON” and half pixels “OFF”. Alternatively, it might be 

most straightforward to light up one macro pixel each time and record the generated output (if 

with phase), which is actually a point spread function of the system and one column of its TM. 

However, we did not carry out in the latter way as the light diffracted by only one pixel is very 

weak, resulting in poor signal to noise ratio (SNR). With half pixels “ON”, the response of a 

single macro pixel is measured P/2 times, improving SNR √𝑃/2 times compared to the simple 

approach of turning on one macropixel at a time. Moreover, the DMD was operated at 250 Hz, 

limited by our camera as the DMD speed can be up to 8 kHz. With the latest models such as 

Discovery 4100 from Texas Instruments, the calibration can be done easily in one minute. Also 

note that system stability is critical and needs to be monitored during the whole experiment. 

We performed this by calculating correlation coefficients of outputs for the same input over 

time and the system was ensured 99% stable. The input and output data was processed with the 

prVBEM algorithm [16] after recording. In short, this algorithm infers one row of the output 

field phases and one row of the TM according to each other iteratively in a Bayesian way. The 

iteration is stopped if the changes of both are below the threshold (i.e., in stable states). The 

steady values are then returned as the most possible and estimated values for each item. This 

algorithm is also suitable for parallel computation since estimations of different TM rows are 

independent. In our implementation, high performance computing facilities were used to 

perform parallel calculation and it took 1 to 3 minutes to calculate one TM row with Intel Xeon 

Processor E5645 @ 2.4 GHz, depending on data size. 

3. TM evaluation 

In order to test the calculated TM, we compared the TM-predicted outputs with the actually 

recorded outputs by the camera for the same inputs in terms of the correlation coefficient, which 

is realized with the corr2/corr functions in MATLAB. The correlation coefficient was averaged 

over around 8000 input patterns and the relationship between data amount and calculated TM’s 

prediction ability is described in Fig. 2. Here, P denotes the number of input patterns and N is 

the macro pixel count on DMD as mentioned before. It is found that more input fields for 

calibration could result in stronger prediction ability. In the view of Bayesian inference, the 

posterior probability distribution of the item being estimated will get updated and narrowed 

down when feeding the algorithm more and more data. Since the expectation value of the latest 

posterior probability is returned as the inferred value in the algorithm, the estimated value tends 

to deflect more from the true value if the data is not enough as the posterior is still relatively 

wide in this scenario, which could explain the undesirable TM  

 

Fig. 2.  Prediction performance expressed by correlation coefficient as a function of P/N. N is 

the count of macro pixels used on DMD while P denotes the number of measurements performed 

during calibration. 



performance when P/N is insufficient. As the data is becoming bigger, the posterior would be 

sharp enough and the estimated value would therefore be very close to the true value, leading 

to clearly improved performance. For our setup, P/N = 6 is thought to be the threshold for a 

successful implementation as the corresponding prediction accuracy is around 99%, 

demonstrating high-quality TM estimation and precise prediction as offered by holography 

based methods. In the following parts, P/N = 6 was therefore used to ensure good performance 

and calculation was accelerated in a parallel way. 

With TM, we are able to reconstruct the displayed DMD patterns based on recorded images 

on the camera. This represents imaging through the MMF in transmission mode. To 

demonstrate this, three pre-defined patterns (‘LIV’, ‘3.14’ and a smiley face) were included 

intentionally in the input set. And the phases of corresponding outputs were recovered with the 

algorithm as done with other random input set. The inferred DMD patterns EOP were calculated 

by solving the following linear equation: 

OP IPTM E E                                                           (1) 

where EOP and EIP stand for electric fields on the proximal fiber end and the distal fiber end, 

respectively. The EOP may be calculated by using the inverse of TM. However, the TM is not a 

square matrix (N ≠ M) in most cases, and has no a strict inverse matrix. The pinv function in 

MATLAB can be used to calculate the so-called pseudoinverse instead and it can work as a 

substitute of the strict inverse. Considering our TM shape (N is a few times of M), such 

replacement may cause additional noise. To solve the linear equation directly can avert this 

problem and this implementation is faster, especially for large TM. Note that to calculate 

pseudoinverse of large matrix can be very calculation-intensive. The inferred patterns are 

compared with the actual input patterns in Fig. 3. As shown, patterns can be observed distinctly 

through the MMF, demonstrating that the TM was estimated correctly and capable of undoing 

the information distortion caused by MMF effectively. Besides, the line width of three patterns 

was designed to be around 1.4 μm as an evaluation of system imaging resolution. Since the 

adjacent lines, as in Fig. 3(d) and Fig. 3(e), and small dots, as in Fig. 3(e) and Fig. 3(f), were 

separated well from the background and imaged clearly, the system imaging resolution is 

thought to be around 1.4 um, which is actually very close to the MMF’s Abbe diffraction limit 

calculated as λ/(2NA) = 1.44 μm. Therefore, our MMF has been demonstrated to be fully 

exploited and working with  

 

Fig. 3. MMF Imaging in transmission mode. (a) Original pattern of ‘LIV’; (b) Original pattern 

of 3.14; (c) Original pattern of a smiley face; (d) Imaging result for the pattern in (a); (e) Imaging 
result for the pattern in (b); (e) Imaging result for the pattern in (c). Red boxes indicate the parts 

for resolution evaluation. Scale Bar: 5 um. 



 

Fig. 4.  Focus generation with the TM information. (a) A focus generated around fiber end center. 

Scale bar: 10 um; (b) Normalized EF distribution across a 50 by 50 grid within distal fiber end. 

Grid pitch: 0.58 um; (c) Intensity profile of the focus in (a) along y axis; (d) Intensity profile of 
the focus in (a) along x axis. 

diffraction-limited resolution. To further improve imaging performance, one may want to 

utilize higher-NA MMF or to work with shorter-wavelength laser. In this part, DMD patterns 

worked as objects for the proof-of-concept study. Note that to do general imaging may involve 

matching the object/camera with the modulation device [7,8] since the TM depends on the 

modulator’s specific position. To be precise, the optical distance between the modulator and 

the proximal fiber end should be equal to that between object/camera and the proximal fiber 

end. Additionally, when matching camera with modulator, it is also suggested that they have 

same pixel size and pitch and that transverse displacement is minimized. 

Focusing through complex media has been an interesting topic over the recent years. In 

order to further evaluate our system, we utilized the information in the calculated TM to 

perform focus generation through the MMF. In detail, the complex conjugate of one TM row 

was chosen as a necessary input field for generating a focus on the distal fiber end. The position 

of the focus was controlled by choosing the corresponding row in the TM. To implement this 

complex input wave with DMD, we selectively turned on the macro pixels where the real part 

is positive. By doing so, we are able to create a clean focus through the MMF, such as the one 

around the fiber end center shown in Fig. 4(c) and Fig. 4(d) by fitting the data with a Gaussian 

function. The result indicates that the full width at half maximum ( FWHM) of the focus in Fig. 

4(a) is about 2.2 μm along the y-axis and 1.9 μm along the x-axis, We attribute the difference 

to the fact that the MMF is not an absolutely axisymmetric waveguide due to random fiber 

bending. The theoretical value of FWHM in our case is around 1.8 μm. And the degradation 

results from the difference between ideal input field and practical input field. Note that input 

fields are processed to be binary as DMD amplitude modulation is not continuous. Such field 

transformation will inevitably cause that doable input is actually different from the ideal one. 

Moreover, by choosing different TM rows, we scanned the focus across a 50 by 50 grid within 

fiber end and recorded the intensity enhancement factors (EFs), defined as the ratio of the focus 

peak value to the average value of output generated by a random input. The EF distribution is 

presented as a heatmap in Fig. 4(b). It is found that the maximum EF = 70 was obtained and 

the level of enhancement is obviously over the result achieved by genetic algorithm [16], thanks 

to fully exploiting spatial modes in the MMF and to accurate phase retrieval with the algorithm. 

Further improvement can be obtained by using more macro pixels on DMD and higher-NA 

fibers as done in [8].  It is also observed that the focus quality is not uniform over the fiber end. 

As mentioned, the modulation ability of DMD is limited by its binary feature and the actual 

input fields are more or less different from the ideal ones. Since the degree of such deflection 



is case by case, it is reasonable that to generate a high-quality focus is difficult in specific 

positions, leading to an unbalanced EF distribution. To get a higher EF or a more balanced EF 

distribution, one may want to utilize more macro pixels on DMD or to use SLM instead (slower 

however) as both approaches will bring stronger modulation ability and control the input field 

more precisely. 

4. TM properties 

To the best of our knowledge, most of the work in this area used transmission matrix to generate 

specific patterns or to realize imaging. However, as a description of the corresponding system, 

TM’s other information has not been studied extensively. In this section, we are to analyze TM 

mathematically and to extract information on fiber mode count and eigen channels for best 

energy delivery. 

Fibers are not straight and deformation-free in most practical applications. The bending or 

twist of multimode fibers would impact mode properties such as mode propagation constant, 

mode transmittance as well as mode count in a specific fiber, leading to potential problems 

when utilizing multimode fibers to deliver information. Compared to ideal fibers, it is much 

harder to confirm the mode properties of a practical fiber with deformations to some degree. 

For ideal multimode fibers, one can easily estimate the mode count Nm by 

20.5mN V                                                           (2) 

where V stands for the normalised frequency of the multimode fiber. Equation (1) is obtained 

by solving Helmholtz function for step-index fibers and it is assumed V is large enough. Further, 

the normalized frequency can be calculated by 

2 /V a NA                                                          (3) 

where a denotes fiber core radius, NA stands for its numerical aperture and λ is laser 

wavelength. When dealing with fibers with deformations, one can hardly solve the wave 

equations due to the asymmetry of fibers, complex boundary conditions and unknown 

deformation situations. Therefore, it is not easy to achieve the mode properties of randomly 

deformed multimode fibers. In the previous section, we demonstrated that transmission matrix 

of a multimode fiber imaging system can be achieved in a reference-less setup. This 

transmission matrix is able to describe how light field is changing through the whole system by 

relating independent modes on input plane with those on output plane. Here, we further 

demonstrated that it is practical to achieve the actual mode count in a multimode fiber by 

calculating the rank of its transmission matrix. 

In the viewpoint of mathematics, the elements in transmission matrix are coefficients of 

linear equations relating input and output pixels. Therefore the rank of the matrix indicates the 

count of independent equations, which is also the number of degrees of freedom in the imaging 

system. Note that the input light fields need to couple into fiber modes to propagate in the 

multimode fiber and that the number of the spatial modes is the count of degrees of freedom of 

the system. Therefore we can deduce that the rank of transmission matrix [17] is actually the 

number of modes travelling in the multimode fiber. Since we can record transmission matrix in 

the experiment, it offers a practical method to achieve a number of fiber modes regardless of 

the specific states of deformations and abnormal solutions of wave equations. 

To record the transmission matrix of a specific multimode fiber, we used the experimental 

setup introduced in the last section. Please refer to Fig. 1 for detailed information. In short, a 

number of random input patterns are displayed on the DMD and are delivered into the fiber 

proximal end. The corresponding output images on fiber distal end are captured by the camera 

directly without interference. The prVBEM algorithm is then utilized to infer the phase 



information in output images and to calculate elements in transmission matrix. With the TM, 

one can easily obtain its singular values by singular value decomposition: 

*TM U S V                                                           (4) 

Here, U and V are unitary matrices while S is a diagonal matrix with non-negative real numbers 

on diagonal, which are singular values of TM. In theory, the rank of the TM is the count of 

positive singular values. 

In Fig. 5, we presented the singular value distribution of the TM of a multimode fiber. It is 

clear that the singular value drops obviously with the increasing of mode index. Since the 

squared singular value indicates mode transmittance, our observation is in line with the fact 

that higher-order modes experience larger loss. Also note that all the singular values are positive 

strictly in this TM, indicating the rank of TM is 1296. However, considering the noise level in 

the system, we used 0.01 as our threshold and achieved effective rank as 840. This  

 

Fig. 5. Distribution of singular values of the TM. 

 

Fig. 6. Change of fibre mode count over additional stage translation. 



number is close to 755, half of the estimation of from Equation (2). The reason why half 

estimation is used here is that polarizer is utilized in our experimental system. Therefore fiber 

modes in one polarization direction are filtered out. Considering this, we can still see the 

difference. And this is due to two reasons. First, Equation (2) is more accurate for large 

normalized frequency while the one for this multimode fiber is around 50. Second, Equation 

(5-1) is for ideal straight fiber while the real fiber is with imperfect index distribution as well 

as random bending or twisting. Moreover, it is reasonable that the number of modes supported 

in the multimode fiber is up to its geometry, which cannot be explained by Equation (5-1). 

Here, we further translated the additional fiber stage to observe the change of transmission 

matrix rank. As presented in Fig. 6, one can see fewer fiber modes are supported in the fiber if 

more translation is introduced. In our setup, more translation leads to more severe bending. 

According to fiber theory, energy is more likely to couple to cladding modes or radiation modes 

in this case. Therefore it can explain why we see the decreasing of fiber mode count. The energy 

coupling efficiency is up to input field distribution as well as fiber mode distributions. 

Normally, more overlapping between input field and mode field will result in better 

coupling efficiency. Also, different modes experience various transmission loss and this is also 

related to specific fiber geometry. Therefore the energy transport efficiency is different for 

distinct input patterns. In Ref. [18], Choi’s group studied eigenchannels in scattering medium 

to maximize energy delivery efficiency. To the best of our knowledge, similar work has not 

been done for multimode fibers. Here, we measured the transmission matrix of multimode 

fibers and demonstrated corresponding eigenchannels to effectively enhance energy transport. 

The experimental setup is the same as in Fig 1. And we are able to construct full transmission 

matrix without interference thanks to the help of prVBEM algorithm as demonstrated. 

Similarly, we also need to perform singular value decomposition 

 

Fig. 7. Normalised transmittance of eigen channels. 

for the transmission matrix according to Equation (4). Previously, the effective rank of matrix 

S is used to determine the mode count in a specific fiber. Here, we further demonstrated that 

the column vectors in matrix V are actually eigenchannels in the transmission matrix and the 

first one of them corresponds to the input patterns with maximum energy delivery efficiency. 

With a TM, we can first study the energy transport for each eigen channel theoretically. In order 

to do this, we virtually injected column vectors of matrix V into the fiber and obtained 

corresponding outputs with the help of TM. The normalized energy delivery efficiency is 

shown Fig. 7 and one can clearly see the descending trend, indicating the first column vector is 

optimal for energy transport. Besides, the normalized energy delivery efficiency values are 

exactly the normalized squared singular values, indicating the physical meaning of the singular 



values of transmission matrix. Note that we measured output images for random input patterns 

in order to construct TM. Here, we used these input and output data to calculate the energy 

transport efficiency for random input patterns. In addition, we implemented the best eigen 

channel and recorded the corresponding output. The energy 

 

 

Fig. 8. Normalised transmittance for random input patterns. 

delivery efficiency for random patterns is normalized to that of best eigen channel and the 

results are presented in Fig. 8. In this experiment, we can observe that the energy transport 

efficiency for the eigen channel is obviously higher than that of random patterns. Specifically, 

one can expect over 1.5 times enhancement. However, this value is still certainly away from 

theoretical enhancement which is around 8 times in our case. The primary reason for this 

observation is that it is only possible to realize binary amplitude modulation with the DMD.  

 

Fig. 9. Comparison of the ideal and practical eigenchannels. (a) Ideal input amplitude; (b) 
Practical input amplitude; (c) Theoretical output pattern; (d) Realistic output pattern. 



The practical eigen channel and perfect eigen channel are compared in Fig. 9 where we also 

present their corresponding output patterns. As shown, due to the difference between the 

realistic pattern and the ideal pattern, the outputs are clearly distinct, leading to lower energy 

delivery efficiency. This drawback significantly limits our ability to generate accurate patterns 

on the fiber proximal end as mentioned in the last chapter. But the energy transport efficiency 

was apparently improved even with the imperfect input patterns, demonstrating the existence 

of eigenchannels. Also, one can expect to see a great improvement if using phase modulator 

such as SLM. 

5. Conclusions 

In summary, distinct from previous methods, it has been demonstrated that full transmission 

matrix of an MMF is achievable in a reference-less setup and with phase retrieval techniques. 

Such configuration leads to not only a simplified system but also better system stability. The 

TM is calculated by the phase retrieval algorithm, which can be accelerated by distributed 

calculation. The generated TM has also been examined to have strong prediction ability, to be 

able to perform diffraction-limited imaging and to be capable of concentrating light into a clean 

focus. Furthermore, it has been demonstrated that information on mode count and 

eigenchannels is available from TM by singular value decomposition. It is believed that the 

proposed setup improves the current approaches and opens a new way for MMF 

characterization. As a fast and robust implementation, it can also be a promising candidate for 

MMF focusing and endoscopic imaging. 
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