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Latent class modeling with a time-to-event distal outcome: A comparison

of one, two and three-step approaches

Latent class methods can be used to identify unobserved subgroups

which differ in their observed data. Researchers are often interested

in outcomes for the identified subgroups and in some disciplines time-

to-event outcome measures are common, e.g. overall survival in on-

cology. In this study Monte Carlo simulation is used to evaluate

the empirical properties of latent class effect estimates on a time-

to-event distal outcome using one, two and three-step approaches.

Both standard and inclusive bias-corrected three-step approaches are

considered. One-step latent class effect estimates are shown to be

superior to the evaluated alternatives. Both the two-step approach

and a standard three-step approach, where subjects are partially as-

signed to latent classes, produced unbiased estimates with nominal

confidence interval coverage when latent classes were well separated,

but not otherwise.

2



Latent class methods encompass a broad range of models which can be used to iden-

tify and characterise unobserved subgroups which differ in their observed or ‘manifest’

data. These models have been widely applied in many scientific disciplines including

medicine (e.g. Downing et al., 2010; Rahbar et al., 2015), social and behavioural science

(e.g. Chung et al., 2006; Stapinski et al., 2016) and education (e.g. Denson and Ing,

2014; Auer et al., 2016). For example, Stapinski et al. (2016) used latent class analysis

(LCA) of a large cohort study to identify four groups of adolescents who differed in

their motives for alcohol use.

A common objective of LCA is to assess the relationship between the identified

latent classes and a distal outcome variable. In some disciplines, time-to-event variables

are common outcome measures, for example, overall and progression-free survival times

in oncology. Time-to-event data differs from other data types since it is typically highly

right-skewed and subject to censoring (see e.g. Collett, 2015). Applications of various

latent class models with a time-to-event distal outcome can be found in Snuderl et al.

(2008), Muthén et al. (2009), Zhang and Wang (2010), Desantis et al. (2012) and Leigh

et al. (2015).

When model assumptions are met a preferred statistical approach is to jointly model

the latent classes and distal outcome in one step (Bakk et al., 2013). Larsen (2004)

introduced a one-step latent class model with a time-to-event distal outcome variable

and a framework for continuous time latent class models was set out by Asparouhov

et al. (2006).

A general criticism of one-step approaches, however, is that the distal outcome

variable can influence the composition of the latent classes (Vermunt, 2010; Asparouhov

and Muthén, 2014). Moreover, one-step approaches may be impractical if there are

many distal outcome variables, or if the outcome data is collected at a different stage
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of a trial and/or by different researchers (Vermunt, 2010).

A simple and frequently applied alternative approach to incorporating a distal out-

come variable into a latent class model is the ‘Classify-Analyze’ (Clogg, 2013) or ‘stan-

dard three-step approach’: Step 1) a latent class model is fitted, Step 2) subjects are

assigned to a latent class, and Step 3) the distal outcome is regressed on the assigned

class. Whilst intuitive, the standard three-step approach has two important drawbacks.

Firstly, estimates of the relationship between latent class and the distal outcome vari-

able can be attenuated due to misclassification in Step 2 (Bolck et al., 2004). Secondly,

standard errors in Step 3 can be underestimated since class is treated as known in

the regression model, potentially misleading statistical inference (Clark and Muthén,

2009). Bray et al. (2015) identified that non-inclusion of the distal outcome variable

in the classification model (Step 1) as a further cause of bias in Step 3 and proposed

an ‘inclusive’ approach to correct for this bias, where the distal outcome variable is

included as a latent class predictor variable in Step 1, along with other covariates.

Bakk and Kuha (2017) proposed a two-step alternative to address the aforemen-

tioned issues with one and standard three-step approaches. In this approach, a latent

class model is fitted in Step 1, as in the three-step approach. Then, in Step 2, the full

joint latent class and distal outcome model is fitted, as in the one-step model, but the

parameters for the latent class part of the model are held fixed at their estimates from

Step 1. A correction is then applied to account for additional uncertainty in the second

step.

Research into estimating the effect of latent class on distal outcomes has so far

been restricted to categorical or continuous outcome variables (Clark and Muthén,

2009; Bakk et al., 2013; Lanza et al., 2013; Asparouhov and Muthén, 2014; Bray et al.,

2015; Bakk and Vermunt, 2016; Collier and Leite, 2017; Bakk and Kuha, 2017). In this
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study Monte Carlo simulation is used to compare one, two and three-step approaches

to latent class modeling with a time-to-event distal outcome. For the one and two-step

approaches joint latent class models with piecewise constant baseline hazard functions

are used (Asparouhov et al., 2006; Muthén et al., 2009). For the three-step models, four

approaches to class assignment are compared and the impact of the inclusive approach

for bias-correction (Bray et al., 2015) with a time-to-event distal outcome variable is

assessed.

LATENT CLASS MODELING WITH A TIME-TO-

EVENT DISTAL OUTCOME

The one-step approach

In this section latent class models are introduced and a full one-step latent class model

with a time-to-event distal outcome, as introduced by Larsen (2004), is developed.

The latent class model

LCA was introduced by Lazarsfeld in 1950 and is used to identify and characterise un-

observed and mutually exclusive subgroups using multiple imperfect indicators known

as manifest variables. The basic latent class model is depicted in Figure 1(a). The

latent class variable, C, is assumed to consist of J categories with prevalences

P (C = j) = ηj ,

for j = 1, . . . , J and
∑J

j=1 ηj = 1. Let Y = (Y1 . . . , YM )ᵀ denote a vector of manifest

variables with observed values y = (y1, . . . , yM )ᵀ for a given subject. Typically each Ym
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(m = 1, . . . ,M) is categorical with g = 1, . . . , Gm categories, so that the probability of

observing category g on the mth manifest variable for subjects in the jth class is given

by

P (Ym = g|C = j) = πmgj =

Gm∏
g=1

π
I{ym=g}
mgj ,

where
∑Gm

g=1 πmgj = 1, and I {ym = g} is an indicator function which equals 1 if ym takes

the value g and 0 otherwise, for a given subject. Normal, Poisson, binomial, gamma

and ordinal categorical are some other possibilities for the conditional distribution of

the manifest variables (Moustaki, 1996; Bartholomew et al., 2011). The distribution of

the responses for an individual is given by

fY(y) =
J∑
j=1

P (C = j)fY|C(y|j)

=

J∑
j=1

ηj

M∏
m=1

fYm|C(ym|j),

(1)

where the manifest variables are assumed to be independent conditional on class and

f(.) is used to denote a probability density or mass function as required. Some options

for introducing dependencies between manifest variables are discussed in Hunt and

Jorgensen (1999) and Desantis et al. (2012). The posterior probability that a subject

belongs to class j given Y = y is obtained using Bayes theorem, so that

P (C = j|Y = y) =
ηjfY|C(y|j)∑J
k=1 ηkfY|C(y|k)

. (2)

Latent class regression

A natural extension to the latent class model (Equation 1) is the concomitant-variable

or ‘latent class regression’ model (Dayton and Macready, 1988; Formann, 1992; van der
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Heijden et al., 1996; Bandeen-Roche et al., 1997; Chung et al., 2006), as depicted in

Figure 1(b). In the LCR model the class prevalences, ηj , are allowed to vary as a

function of a vector of ‘latent class predictors’ X, with observed values x. Following on

from Equation 1 the distribution function for a given subject is

fY|X(y|x) =
J∑
j=1

ηj(x)
M∏
m=1

fYm|C(ym|j), (3)

where the latent class predictors and manifest variables are assumed to be conditionally

independent given latent class. Huang and Bandeen-Roche (2004) showed how depen-

dencies between latent class predictors and categorical manifest variables can be added

to the model. A generalised linear model with a logit link function is used to model

the relationship between the latent class predictors and class prevalences, so that the

inverse of the logit link function is

P (C = j|X = x) = ηj(x) =
exp(xᵀκj)∑J
k=1 exp(xᵀκk)

, (4)

for j = 1, . . . , J and where κj is a vector of log odds ratios for the jth class, κJ = 0

for identifiability and the first element of x is set to 1 in order to include an intercept.

An intercept only LCR model is equivalent to the latent class model. Other suitable

link functions can be used. To obtain posterior probabilities Equation 2 is updated to

P (C = j|Y = y,X = x).

A time-to-event distal outcome model

Time-to-event (survival) data is typically highly right-skewed and subject to censoring,

since the event of interest is not always observed (see e.g. Collett, 2015). Note that we

assume throughout that censoring is non-informative. Important functions for time-
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to-event data are the hazard function, α(t), the instantaneous event rate, cumulative

hazard function, H(t) =
∫ t

0 α(v)dv, and survival function, S(t) = exp[−H(t)] = P (T >

t).

Larsen (2004) extended the latent class model to include a time-to-event submodel

in order to model latent class and a time-to-event distal outcome in one step, as depicted

in Figure 1(d). An extensive framework for these continuous time one-step or ‘joint’

models is presented in Asparouhov et al. (2006) and software functionality is available

in M-Plus (Muthén and Muthén, 2011). One option for the time-to-event submodel is

a proportional hazards model extended to include a latent class effect

α(t|Z = z, C = j) = α0(t) exp(zᵀβ + γj), (5)

for j = 1, . . . , J where α(t| . . . ) represents the hazard for a given subject at time

t, α0(t) is the baseline hazard at time t, β is a vector of log hazard ratios for the

corresponding covariates z and γj represents the log hazard ratio for the effect of latent

class j on the baseline hazard, with γJ = 0 for identifiability. In this model both the

covariate and class effects are assumed to act proportionally on the baseline hazard

and independently of time. Options for assessing the suitability of the proportionality

assumption are discussed later.

A useful approach to modeling the baseline hazard function is the the piecewise

exponential model (Friedman, 1982), where the baseline hazard function is assumed to

be piecewise constant. For a piecewise exponential time-to-event submodel, let time be

partitioned into s = 1, . . . , S intervals and let α0 = (α01, . . . , α0S) denote a vector of

baseline hazard parameters. To complete the required notation, let T and ∆ represent

the event-time and censoring indicator with observed values t and δ and where δ equals
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1 if the event is observed and 0 otherwise. The required density function of the event

time for a given subject is

fT,∆|Z,C(t, δ|z, j) =
S∏
s=1

[α0s exp(zᵀβ + γj)]
δψs ×

exp

{
− ψs

[
α0s(t− as−1) +

s−1∑
h=1

α0h(ah − ah−1)

]
exp(zᵀβ + γj)

}
,

for j = 1, . . . , J and where ψs denotes an indicator variable which equals 1 if the event

occurs in the sth interval and 0 otherwise, as denotes the upper boundary for the sth

interval on the time grid and a0 equals 0. The joint density for the manifest variables

and time-to-event distal outcome for a given subject is then

fY,T,∆|Z(y, t, δ|z) =
J∑
j=1

ηj

M∏
m=1

fYm|C(ym|j)fT,∆|Z,C(t, δ|z, j), (6)

where the distributions of the manifest variables and time-to-event distal outcome are

assumed to be conditionally independent given class. Latent class predictors can also

be included, as in Equation 4 and detailed in Larsen (2004), but this feature is not

considered for one-step models in this article. The log likelihood of the observed data

is given by

`(θ) =
N∑
i=1

log

[
fYi,Ti,∆i|Zi

(yi, ti, δi|zi)
]
, (7)

where N is the total number of subjects indexed by i and θ = (η,π,α,β,γ) denotes

the full vector of parameters to be estimated.

The two-step approach

For the two-step approach of Bakk and Kuha (2017), the required parameters from

the one-step model are partitioned into those to be estimated in Steps 1 and 2 so
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that θ = (θ1,θ2). In the first step a latent class model is fitted (Equation 1) so that

θ1 = (η,π) and therefore θ2 = (α,β,γ). Let θ̃1 denote the estimates from Step 1 and

then in Step 2 maximise the log-likelihood of the observed data conditional on the Step

1 estimates, i.e. `(θ2|θ1 = θ̃1). The required log-likelihood is given in Equation 7.

Clearly the uncertainty of the estimates obtained in Step 2, θ̃2 will be underesti-

mated since the Step 1 parameters have been held fixed during estimation. Xue and

Bandeen-Roche (2004) and Bakk and Kuha (2017) demonstrate how to obtain corrected

standard errors in the two-step approach.

Standard and inclusive three-step approaches

Three-step approaches proceed as follows: Step 1) a latent class model is fitted, Step

2) an assignment rule is used to classify subjects according to their class conditional

posterior probabilities, Step 3) the assigned classes are used as a covariate in a regression

model to estimate the relationship between the latent classes and the external variable.

These steps are now considered in more detail in the context of modeling with a time-

to-event distal outcome.

Step 1: Fit the latent class model

For Step 1 in a standard three-step approach a latent class model is simply fitted, as in

Equation 1 and depicted in Figure 1(a). In an inclusive three-step approach an LCR

model is fitted with the distal outcome variable as a latent class predictor variable,

along with other covariates related to the outcome, as depicted in Figure 1(c). How

then might we incorporate an event time subject to censoring as a latent class predic-

tor? For the purposes of multiple imputation of baseline covariate data in proportional

hazards models, White and Royston (2009) recommended using the estimated cumula-
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tive hazard function (notably in preference to the observed survival time or its natural

logarithm), the event indicator and other covariates related to the event time in the

model. Expressing Equation 4 in logit form and replacing x with the required elements

the inclusive model is given by

logitP (C = j|H(t),∆ = δ,Z = z) = κj0 + κj1H(t) + κj2δ + κj3z,

for j = 1, . . . , J and where H(t) is the (non-parametric) Nelson-Aalen estimate of

the unconditional cumulative hazard, which is estimated separately. For illustration

purposes only a single covariate, z, has been included but additional covariates can be

incorporated easily.

Step 2: Class assignment

In Step 2, subjects are assigned to a latent class according to an assignment rule. The

simplest and most commonly used assignment rule is modal assignment (MA) in which

each subject is assigned to the latent class for which they have the highest posterior

probability. MA ensures that all subjects with the same response pattern are allocated

to the same class.

Another commonly used method is random assignment, also known as the ‘pseudo

class’ method (PC). For PC, class is imputed once for each subject by randomly draw-

ing from a multinomial distribution with probabilities equal to the subject’s posterior

probabilities from the latent class model (Bolck et al., 2004; Bandeen-Roche et al.,

1997). Consequently not all subjects with the same response pattern are guaranteed

to be assigned to the same class. Wang et al. (2005) introduced multiple pseudo class

draws (mPC) to improve estimation efficiency over a single random draw. With mPC,
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class is imputed multiple times for each subject, with the authors recommending at

least 20 random draws. Note that mPC is distinct from multiple imputation since the

estimated posterior probabilities are effectively treated as known (Wang et al., 2005).

Finally, we highlight partial assignment (PA) and proportional assignment (PrA). In

these methods, each subject is assigned partially rather than absolutely to a latent class.

In PA, no assignment is made and posterior probabilities are used in further analyses.

In PrA each subject is assigned to all classes simultaneously with case-weights equal to

their corresponding class-specific probabilities, and as a result each subject will enter

any further analyses J times.

Step 3: Estimate the effect of latent class on the distal outcome

In Step 3, the distal outcome variable is regressed on the assigned class from Step 2,

possibly in addition to other relevant covariates. For a time-to-event distal outcome

the Cox proportional hazards model (Cox, 1972) is a natural choice and is utilised in

the subsequent simulation study.

For MA and PC, J−1 dummy variables are used to represent the assigned/imputed

class in the regression model. For mPC this process is repeated for each class imputation

and parameter estimates are combined across regression models using Rubin’s rules

(Rubin, 2004). For PA, J − 1 posterior probabilities are included as covariates in the

regression model. For PrA each subject is included in the regression model J times

with case-weights equal to the posterior probabilities from the latent class model. One

consequence of PrA in a time-to-event setting is that tied event times are introduced.
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Entropy

The extent to which latent classes can be distinguished by the data and the latent class

model can be assessed using the principle of entropy (Muthén and Muthén, 2004; Bakk

et al., 2013). The Ramaswamy entropy statistic (Ramaswamy et al., 1993; Muthén and

Muthén, 2004; Dziak et al., 2014) is defined as

E = 1−
∑N

i=1

∑J
j=1−p̂ij log(p̂ij)

N log(J)
,

for a sample of i = 1, . . . , N subjects and where p̂ij is the estimated posterior probability

of the ith subject belonging to class j from a latent class model. E can take values

between 0 and 1, where 0 indicates that the model contains no information on class

assignment and 1 indicates that all subjects are estimated to belong to a class with

100% probability. Lower entropy implies that classes are less well distinguished and

corresponds to greater classification error being introduced in Step 2 for three-step

methods. Note that this is contrary to classical entropy measures for which low values

correspond to better classification (Dziak et al., 2014).

MONTE CARLO SIMULATION STUDY

Aims

The purpose of this Monte Carlo simulation study was to investigate the empirical

properties of latent class effect estimates on a time-to-event distal outcome using a

number of different models and simulated scenarios. In particular, we aimed to compare

one, two, standard three and inclusive three-step approaches. For both the standard

and inclusive three-step approaches subjects were assigned to classes using MA, mPC,
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PA and PrA.

Software

Data were simulated using R (R Core Team, 2017). Step 1 latent class models for the

three-step approaches were fitted using R package poLCA (Linzer and Lewis, 2011) and

Step 3 Cox regression models were fitted using the coxph() function in the survival

package (Therneau, 2015), with the default of Efron’s method for tied survival times.

Standard errors and Wald 95% confidence intervals are those returned from these pack-

ages. Robust standard errors were used for three-step models with PrA to account for

observations entering the analysis model twice. One and two-step models were fit-

ted using an author-written R function, LCSM(), which uses an adapted version of

the estimation routine detailed in Larsen (2004) to include a piecewise exponential

time-to-event submodel. Both LCSM() and poLCA use the expectation-maximisation

algorithm (Dempster et al., 1977) with Newton-Raphson steps to obtain maximum like-

lihood estimates (Larsen, 2004; Linzer and Lewis, 2011). Standard errors for one and

two-step models were obtained using Louis’s method (Louis, 1982). Standard errors in

the two-step models were corrected to account for Step 1 parameter fixing as described

previously (Xue and Bandeen-Roche, 2004; Bakk and Kuha, 2017). The R code for

LCSM() is available on request from the corresponding author.

Data simulation

Two-class models with equal prevalences and ten independent Bernoulli distributed

manifest variables were simulated. The factors manipulated were (a) sample size, N ∈

{500, 1000}, (b) approximate entropy statistic values, E ∈ {0.35, 0.50, 0.70} and (c) the

hazard ratio for the latent class effect, exp(γ1) ∈ {1, 1.5, 2, 3} (note that exp(γ2) = 1,
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i.e. no effect, for identifiability), giving 24 simulation scenarios in total.

The entropy statistic values are similar to those used previously (Clark and Muthén,

2009) and correspond to low, medium and high class separation respectively. The

manifest variables were simulated from independent Bernoulli distributions according

to a crossed-profile plot, as depicted in Figure 2 and used previously by Clark and

Muthén (2009). The entropy settings were obtained by varying the class conditional

response probabilities, π(1) ∈ {0.60, 0.65, 0.70} and π(2) = 1− π(1).

Simulated event times were based on observed data from the ESPAC3v2 trial (Neop-

tolemos et al., 2010). The ESPAC3v2 trial was an open-label randomised controlled

trial in patients with pancreatic ductal adenocarcinoma who had undergone cancer

resection. Patients were randomised to either fluorouracil plus folinic acid or gemc-

itabine (the standard of care). Survival times were generated using the Kaplan-Meier

estimate of the overall survival curve from the gemcitabine arm as described in the

supplementary materials.

The hazard ratio values for the latent class effect, exp(γ1), were chosen to represent

no effect and approximate small, medium and large effect sizes respectively (Azuero,

2016). In addition to the latent class effect, an independent Bernoulli distributed time-

to-event covariate, z, with a probability of 0.5 was simulated for each subject. This

covariate was included to mimic randomised treatment in a clinical trial setting and

the effect on survival was fixed across simulations as exp(β) = 0.75. Administrative

censoring was applied at 60 months and uniform censoring was added by generating

censoring times from an exponential distribution such that overall approximately 50%

of survival times were right-censored in each scenario.
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Model fitting

The ten fitted model types (1 × one-step, 1 × two-step, 4 × standard three-step and

4 × inclusive three-step) are detailed in Table 1. For each model type and simulation

scenario, 50 sets of random starting values were used and the best fitting model was

selected in order to avoid obtaining local maximum solutions. A tolerance of 10−9

was used for convergence and a maximum of 1000 iterations were permitted. For each

scenario there were 2000 replications. Class labelling was evaluated using the algorithm

described in the supplementary materials. Parameter estimates were to be evaluated

in terms of bias, percentage bias, 95% confidence interval coverage and 95% confidence

interval length (Burton et al., 2006, Table I).

RESULTS

Simulation results for the estimated hazard ratios and corresponding performance mea-

sures are presented by true latent class effect and can be found in Tables 2 to 5. For

simplicity, results aggregated over the small, medium and large effect sizes are presented

in Table 1 (where the high and medium entropy scenarios have also been aggregated).

As an illustrative example, histograms of parameter estimates from Scenario 23 (low

entropy, large effect, N = 500) are presented in Figure 3.

One and two-step approaches

Latent class effect estimates for the one-step model exhibited no or low bias and ap-

proximately nominal coverage in most scenarios, although in the low entropy and low

sample size scenarios confidence interval coverage was slightly below the nominal level

at 93% on aggregate (Table 1).
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In the medium and high entropy scenarios two-step estimates were unbiased with

nominal coverage. In the low entropy scenarios the two-step models exhibited some

parameter attenuation, although this was less pronounced for the larger sample size

(18% and 8% for small and large sample sizes respectively, on aggregate, Table 1).

Confidence interval coverage was typically similar to the one-step approach.

Standard three-step approaches

Estimates from the standard three-step models were approximately unbiased in the no

effect scenarios (Table 2). In these scenarios MA and PA exhibited nominal coverage,

but coverage was generally too high for mPC and PrA at approximately 97-99%. For

the small, medium and large effect scenarios (Tables 3 to 5), MA, mPC and PrA

estimates exhibited considerable bias towards the null and poor coverage. Even in the

high entropy and larger sample size scenarios these methods exhibited attenuation in

the latent class effect of >19% and this became considerably worse in the low entropy

scenarios.

PA estimates were approximately unbiased with nominal coverage in all of the

high and medium entropy scenarios, irrespective of effect size. With N = 500 in the

low entropy scenarios for the small, medium and large effect sizes (Tables 3 to 5) PA

exhibited considerable attenuation (20% on aggregate, Table 1) and poor coverage, but

the bias was far less than the other standard three-step procedures which exhibited

>57% bias on aggregate. With N = 1000 in the low entropy scenarios, attenuation

was improved (10% on aggregate) but coverage was below the nominal level (90% on

aggregate).
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Inclusive three-step approaches

Latent class effect estimates from the inclusive three-step approaches were further from

the null than their counterpart standard three-step approaches, suggesting some re-

versal of attenuation as intended. This effect is illustrated in Figure 3. Incl-PrA and

Incl-mPC produced no or low bias in all scenarios, and Incl-MA exhibited improved

bias compared with the counterpart standard three-step approaches. Incl-PA estimates,

however, considerably exceeded the true values for small, medium and large effects for

all entropy levels (Tables 3 to 5).

Coverage was below the nominal value for estimates from all of the inclusive three-

step approaches in all scenarios. In the no effect scenarios the low coverage of the

inclusive estimates generally resulted in more than double the nominal Type I error

rates, and this became far worse as the entropy decreased (Table 2).

DISCUSSION

In this article, one, two and three-step approaches to latent class modeling with a time-

to-event distal outcome were presented and the empirical properties of latent class effect

estimates were compared using Monte Carlo simulation. To our knowledge this is the

first study to investigate various approaches to latent class modeling when the distal

outcome is a time-to-event variable. Moreover this is the first study to demonstrate and

implement two-step (Bakk and Kuha, 2017) and inclusive bias-correction approaches

(Bray et al., 2015) with a time-to-event distal outcome. This study contributes to the

emerging body of literature on latent class modeling with a distal outcome variable.

Latent class effect estimates for the one-step model exhibited no or low bias and ap-

proximately nominal coverage in most scenarios, although confidence interval coverage
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was slightly below the nominal value in the low entropy and low sample size scenarios.

The lack of bias is consistent with studies with a continuous distal outcome (Clark and

Muthén, 2009; Asparouhov and Muthén, 2014; Bakk and Kuha, 2017). Interestingly,

standard errors (which determine confidence interval coverage when an estimate is un-

biased) in one-step models with a continuous distal outcome have been shown to be

both overestimated and underestimated previously when both the entropy and sample

size are low (Bakk et al., 2013; Bakk and Kuha, 2017).

The two-step approach resulted in low bias and approximately nominal coverage in

the medium and high entropy scenarios. However this approach did exhibit some bias

towards the null in the low entropy scenarios, which is consistent with previous research

using this approach with continuous distal outcome variables (Bakk and Kuha, 2017).

Confidence interval coverage was typically similar to the one-step approach.

Generally standard three-step approaches resulted in attenuated estimates of the

latent class effect with underestimated standard errors, resulting in poor confidence

interval coverage. This result is consistent with the research literature in this area

(Clark and Muthén, 2009; Bakk et al., 2013; Asparouhov and Muthén, 2014). A sur-

prising result however was that a standard three-step approach using partial assignment

produced unbiased estimates and nominal coverage in medium and high entropy sce-

narios. In the low entropy scenarios partial assignment exhibited similar levels of bias

to the two-step approach, however confidence interval coverage was typically poorer

with partial assignment.

The inclusive approach to bias-correction proposed by Bray et al. (2015) was

adapted here to include a time-to-event variable as a latent class predictor. As intended

the inclusive approach produced estimates further from the null than their non-inclusive

counterpart models and in general improved bias. Proportional and multiple pseudo-
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class assignment approaches benefited considerably from the inclusive approach with no

or low bias in all scenarios. Results for partial assignment (which performed well as a

standard approach), however, were worse when combined with the inclusive approach.

Despite the improvements in bias, confidence interval coverage of inclusive approaches

was too low, notably producing increased Type I errors compared with standard three-

step approaches when simulating under the null hypothesis. An alternative approach to

obtaining standard errors with inclusive approaches, such as bootstrapping, may help

resolve these issues, as has been suggested previously for a closely related approach

(Bakk and Vermunt, 2016).

Despite the superior performance of one-step approaches demonstrated in this study,

one-step approaches have a few disadvantages as explicated by Vermunt (2010). The

main criticism is that the distal outcome variable can influence latent class composition,

possibly affecting the characteristics or even the number of latent classes (Vermunt,

2010; Bakk et al., 2016). Asparouhov and Muthén (2014) give an example of a one-step

approach ‘failing’ where class composition is determined solely by the distal outcome

variable, which in that case was simulated from a two component normal mixture

distribution. The extent to which a time-to-event submodel could influence latent class

composition is not clear and this is a relevant topic for further research. Inclusive

three-step methods may also be subject to the same limitation. When fitting one-step

latent class models we support the recommendations of Larsen (2004) and Asparouhov

and Muthén (2014) in fitting latent class models without the distal outcome variable

in model building and/or sensitivity analyses.

In this study the performance of the two-step (Bakk and Kuha, 2017) and inclusive

bias-correction approaches (Bray et al., 2015) were assessed. A number of other correc-

tion methods have been proposed (Bolck et al., 2004; Vermunt, 2010; Petersen et al.,
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2012; Bakk et al., 2013; Lanza et al., 2013), although not all are suitable for model-

ing with a time-to-event distal outcome. Investigation of the bias-corrected three-step

methods described in Vermunt (2010) and Bakk et al. (2013) with a time-to-event distal

outcome would be a valuable addition to the research described here. However, these

methods are based upon introducing and subsequently correcting classification error

and a key advantage of the two-step approach studied here is that this step is avoided

(Bakk and Kuha, 2017). Moreover, estimates from the two-step approach were previ-

ously found to have better statistical properties than corrected three-step approaches

with a continuous distal outcome (Bakk and Kuha, 2017). An interesting additional

feature of the two-step approach is that different observations can be used for the la-

tent classification and distal outcome models (Xue and Bandeen-Roche, 2004; Bakk

and Kuha, 2017).

In this study the various models used different hazard functions for the time-to-event

outcome variable and, as identified by a reviewer, this feature warrants special attention.

To model the distal outcome in both the standard and inclusive three-step approaches

a Cox model was used where the baseline hazard function is not estimated. This is

the most common model used in practice and does not disadvantage the standard or

inclusive three-step models in any way, as demonstrated in a supportive analysis in the

supplementary materials. For the inclusive three-step approaches the hazard function

used for the distal outcome model should not to be confused with that in latent class

prediction in Step 1, see Figure 1(c). In this approach, a non-parametric estimate of the

unconditional cumulative hazard is used as a latent class predictor, as recommended

for multiple imputation, and notably in preference to the observed event time or its

logarithm (White and Royston, 2009).

For the one and two-step models we used piecewise exponential baseline hazard
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models, see Figure S1(b). Setting the partitions of the time-grid for a piecewise ex-

ponential model to the observed event times is equivalent to using a non-parametric

baseline hazard, as in Larsen (2004). A non-parametric baseline hazard model is, in

turn, equivalent to a Cox model (Breslow, 1974). Whilst the piecewise exponential

model can offer improved parameter efficiency (it can also result in bias if the time grid

is poorly specified), see Han et al. (2014), the main purpose here was to simplify the cal-

culation of standard errors by reducing the number of parameters required to estimate

the baseline hazard function. For the one and two-step models we used Louis’s method

(Louis, 1982) to obtain standard errors, which requires the inversion of the negative

Hessian matrix and is not feasible when the number of parameters is large (Larsen,

2004). Bootstrapping has been recommended (Hsieh et al., 2006) but fitting one and

two-step models to bootstrap resamples from each simulated data set was found to be

overly computationally burdensome.

In this study time-to-event data were simulated and analysed using a proportional

hazards model. In practice the suitability of the proportional hazards assumption

should be investigated. Standard residual analyses for time-to-event data (see e.g Col-

lett, 2015) can be used with one-step latent class models by calculating class-specific

fitted values and averaging over classes (Proust-Lima et al., 2014). Other possible op-

tions are to include a time-dependent latent class effect in the one-step model (Muthén

et al., 2009), to estimate separate hazard functions for latent classes (Asparouhov et al.,

2006), or by investigating the tenability of the proportional hazards assumption using

a pseudo class draw approach to the log-log cumulative hazard plot (Larsen, 2004).
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CONCLUSIONS

In this study the empirical properties of various latent class effect estimates on a time-

to-event distal outcome were compared. The study contributes to the emerging body

of literature on latent class modeling with a distal outcome variable.

One-step models performed very well in general, whilst two-step approaches per-

formed well when classes were well separated. A surprising result was that a standard

three-step approach using partial assignment also performed well when classes were

well-separated. Although inclusive bias-correction approaches were generally shown to

decrease attenuation of the latent class effect estimate, partial assignment was overall

the best performing three-step approach. However, when the entropy was low this ap-

proach was found to be inferior to one-step approaches and confidence interval coverage

was generally worse than the two-step approach.

For the applied researcher, a one-step approach is recommended where possible,

although excluding the distal outcome variable in model building and\or accompanying

sensitivity analyses is recommended. The suitability of assuming proportional hazards

should also be assessed.
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Table 1: Details of models used in the simulation study and aggregated results for the estimated latent class effect.

Absolute % Bias % CI Coverage
N=500 N=1000 N=500 N=1000

Model No. Name Steps LC predictors Ass. method Base haz. High/Med. Low High/Med. Low High/Med. Low High/Med. Low

1 1step 1 None - Piecewise constant 2 6 1 3 95 93 95 94

2 2step 2 None - Piecewise constant 1 18 1 8 95 93 95 94

3 MA 3 None MA Unspecified 28 57 28 55 62 30 44 13
4 mPC 3 None mPC Unspecified 38 69 38 70 50 22 30 2
5 PA 3 None PA Unspecified 3 20 2 10 95 87 94 90
6 PrA 3 None PrA Unspecified 38 69 38 70 40 10 23 0

7 Incl-MA 3 H0(t),δ,z MA Unspecified 13 43 14 45 77 41 73 32
8 Incl-mPC 3 H0(t),δ,z mPC Unspecified 1 8 0 3 89 67 88 68
9 Incl-PA 3 H0(t),δ,z PA Unspecified 56 196 56 186 43 16 28 6
10 Incl-PrA 3 H0(t),δ,z PrA Unspecified 1 7 0 2 82 52 82 54

Table 1: MA modal assignment, mPC multiple pseudo class draws, PA partial assignment, PrA proportional assignment, Incl inclusive. Absolute % bias and 95%

confidence interval (CI) coverage are aggregate results over the small, medium and large effect sizes. High and medium entropy results have been aggregated. One-step

models (1) exhibit little or no bias and approximately nominal coverage, two-step models (2) exhibit no bias and nominal coverage in High/Med entropy scenarios

but are biased in Low entropy scenarios, standard three-step models (3-6) generally exhibit bias and poor coverage (excepting PA in High/Med entropy scenarios),

inclusive three-step models (7-10) offer improved bias over standard three-step models (excepting Incl-PA) but coverage is generally poor.
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Table 2: Simulation results for the effect of latent class in scenarios with a hazard ratio of 1.

Scenario HR log(HR) Entropy π(1) π(2) N Measure 1step 2step MA mPC PA PrA
Incl-
MA

Incl-
mPC

Incl-
PA

Incl-
PrA

1 1 0 High 0.30 0.70 500 Estimate -0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
Bias -0.00 -0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00

Bias (%) NC NC NC NC NC NC NC NC NC NC
SE 0.15 0.15 0.13 0.13 0.15 0.12 0.13 0.13 0.15 0.12

CI Coverage (%) 95.0 95.2 95.0 98.5 95.0 96.8 85.2 91.0 84.4 87.8
CI Length 0.59 0.59 0.51 0.52 0.59 0.47 0.51 0.52 0.59 0.47

2 1 0 High 0.30 0.70 1000 Estimate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Bias (%) NC NC NC NC NC NC NC NC NC NC
SE 0.11 0.11 0.09 0.09 0.11 0.08 0.09 0.09 0.11 0.08

CI Coverage (%) 94.9 94.9 94.7 98.0 95.2 96.5 81.5 91.2 85.2 87.7
CI Length 0.42 0.42 0.36 0.37 0.42 0.33 0.36 0.37 0.42 0.33

3 1 0 Medium 0.35 0.65 500 Estimate -0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
Bias -0.00 -0.00 0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00

Bias (%) NC NC NC NC NC NC NC NC NC NC
SE 0.18 0.18 0.13 0.14 0.17 0.11 0.13 0.14 0.17 0.11

CI Coverage (%) 94.0 94.4 94.1 99.2 94.3 97.4 75.0 85.5 69.2 77.4
CI Length 0.70 0.70 0.51 0.54 0.68 0.45 0.51 0.54 0.68 0.45

4 1 0 Medium 0.35 0.65 1000 Estimate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Bias (%) NC NC NC NC NC NC NC NC NC NC
SE 0.12 0.13 0.09 0.10 0.12 0.08 0.09 0.10 0.12 0.08

CI Coverage (%) 95.0 95.4 95.0 99.3 95.2 97.8 75.3 85.9 71.4 79.0
CI Length 0.49 0.49 0.36 0.37 0.48 0.31 0.36 0.37 0.48 0.31

5 1 0 Low 0.40 0.60 500 Estimate -0.01 -0.01 -0.00 -0.00 -0.01 -0.00 -0.01 0.00 -0.22 0.00
Bias -0.01 -0.01 -0.00 -0.00 -0.01 -0.00 -0.01 0.00 -0.22 0.00

Bias (%) NC NC NC NC NC NC NC NC NC NC
SE 0.25 0.25 0.14 0.15 0.22 0.11 0.14 0.15 0.22 0.11

CI Coverage (%) 91.8 96.6 94.9 99.9 93.9 98.4 52.6 68.7 45.9 55.2
CI Length 0.95 0.96 0.54 0.58 0.87 0.43 0.56 0.59 0.88 0.44

6 1 0 Low 0.40 0.60 1000 Estimate -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.01 -0.00
Bias -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.01 -0.00

Bias (%) NC NC NC NC NC NC NC NC NC NC
SE 0.17 0.17 0.09 0.10 0.16 0.08 0.10 0.10 0.16 0.08

CI Coverage (%) 93.1 96.0 94.9 99.9 94.4 99.2 53.1 71.5 44.9 58.7
CI Length 0.69 0.69 0.37 0.39 0.63 0.29 0.37 0.39 0.63 0.30

Table 2: Estimates are presented on the log scale. NC not calculable, MA modal assignment, mPC multiple pseudo class draws, PA partial assignment, PrA

proportional assignment, Incl inclusive. All models are unbiased. One-step, two-step, MA and PA models exhibit approximately nominal coverage. mPC and PrA

coverage is too high and for all inclusive methods coverage is too low, implying increased Type I error rates.
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Table 3: Simulation results for the effect of latent class in scenarios with a hazard ratio of 1.5.

Scenario HR log(HR) Entropy π(1) π(2) N Measure 1step 2step MA mPC PA PrA
Incl-
MA

Incl-
mPC

Incl-
PA

Incl-
PrA

7 1.5 0.41 High 0.30 0.70 500 Estimate 0.41 0.41 0.33 0.30 0.40 0.30 0.45 0.41 0.55 0.41
Bias 0.00 -0.00 -0.08 -0.11 -0.00 -0.11 0.04 0.01 0.15 0.00

Bias (%) 0.98 -0.09 -19.33 -26.61 -0.53 -26.71 10.73 1.29 36.31 1.07
SE 0.15 0.15 0.13 0.13 0.15 0.12 0.13 0.13 0.15 0.12

CI Coverage (%) 94.8 95.2 90.1 91.2 95.1 86.7 85.4 91.6 73.6 87.5
CI Length 0.59 0.59 0.50 0.52 0.58 0.46 0.50 0.52 0.58 0.47

8 1.5 0.41 High 0.30 0.70 1000 Estimate 0.41 0.41 0.33 0.30 0.40 0.30 0.47 0.41 0.55 0.41
Bias 0.00 -0.00 -0.08 -0.11 -0.00 -0.11 0.07 0.00 0.15 0.00

Bias (%) 0.44 -0.08 -19.13 -26.70 -0.18 -26.75 17.05 0.53 36.19 0.54
SE 0.11 0.11 0.09 0.09 0.10 0.08 0.09 0.09 0.11 0.08

CI Coverage (%) 94.7 94.9 86.7 82.3 94.5 76.0 80.2 91.5 66.8 88.5
CI Length 0.41 0.41 0.35 0.36 0.41 0.33 0.36 0.36 0.41 0.33

9 1.5 0.41 Medium 0.35 0.65 500 Estimate 0.41 0.40 0.27 0.22 0.40 0.22 0.48 0.42 0.74 0.41
Bias 0.01 -0.01 -0.14 -0.19 -0.01 -0.19 0.07 0.01 0.33 0.01

Bias (%) 1.98 -1.62 -33.69 -45.84 -2.48 -46.11 18.25 2.49 82.42 2.17
SE 0.18 0.18 0.13 0.14 0.17 0.11 0.13 0.14 0.17 0.11

CI Coverage (%) 94.5 95.0 80.7 78.5 94.7 62.4 72.3 84.5 49.0 75.9
CI Length 0.69 0.69 0.50 0.53 0.67 0.44 0.51 0.54 0.68 0.44

10 1.5 0.41 Medium 0.35 0.65 1000 Estimate 0.41 0.40 0.27 0.22 0.40 0.22 0.49 0.41 0.74 0.41
Bias 0.00 -0.01 -0.14 -0.19 -0.01 -0.19 0.08 0.00 0.34 0.00

Bias (%) 0.53 -1.33 -33.80 -46.49 -1.50 -46.48 19.97 1.07 83.07 0.71
SE 0.12 0.12 0.09 0.09 0.12 0.08 0.09 0.09 0.12 0.08

CI Coverage (%) 94.6 95.2 66.8 46.8 94.8 30.6 70.5 85.7 34.0 77.3
CI Length 0.49 0.49 0.35 0.37 0.48 0.31 0.36 0.37 0.48 0.31

11 1.5 0.41 Low 0.40 0.60 500 Estimate 0.43 0.33 0.17 0.13 0.33 0.13 0.54 0.41 0.97 0.40
Bias 0.02 -0.08 -0.23 -0.28 -0.08 -0.28 0.14 0.00 0.56 -0.00

Bias (%) 4.94 -18.91 -56.94 -68.80 -19.29 -68.98 33.63 0.69 138.42 -1.18
SE 0.24 0.24 0.14 0.15 0.22 0.11 0.14 0.15 0.22 0.11

CI Coverage (%) 92.8 94.8 63.9 57.2 91.8 26.1 47.3 67.0 30.1 51.1
CI Length 0.96 0.96 0.54 0.57 0.86 0.42 0.55 0.58 0.86 0.43

12 1.5 0.41 Low 0.40 0.60 1000 Estimate 0.42 0.37 0.18 0.12 0.37 0.12 0.60 0.42 1.23 0.42
Bias 0.01 -0.03 -0.22 -0.28 -0.03 -0.28 0.20 0.02 0.83 0.02

Bias (%) 3.04 -8.23 -54.49 -69.28 -8.34 -69.39 48.93 4.37 203.54 3.97
SE 0.17 0.17 0.09 0.10 0.16 0.07 0.09 0.10 0.16 0.07

CI Coverage (%) 94.2 95.6 35.6 7.4 94.0 1.1 43.2 69.8 16.0 57.0
CI Length 0.62 0.62 0.36 0.38 0.62 0.29 0.37 0.38 0.62 0.29

Table 3: Estimates are presented on the log scale. MA modal assignment, mPC multiple pseudo class draws, PA partial assignment, PrA proportional assignment,

Incl inclusive. One-step models exhibit no or low bias and approximately nominal coverage. Two-step and PA are unbiased with nominal coverage in medium and

high entropy scenarios but both exhibit bias when the entropy is low. Incl-mPC and Incl-PrA exhibit no or low bias but poor coverage.
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Table 4: Simulation results for the effect of latent class in scenarios with a hazard ratio of 2.

Scenario HR log(HR) Entropy π(1) π(2) N Measure 1step 2step MA mPC PA PrA
Incl-
MA

Incl-
mPC

Incl-
PA

Incl-
PrA

13 2 0.69 High 0.30 0.70 500 Estimate 0.70 0.70 0.56 0.50 0.68 0.50 0.75 0.70 0.94 0.70
Bias 0.01 0.00 -0.14 -0.19 -0.01 -0.19 0.06 0.01 0.24 0.01

Bias (%) 1.34 0.39 -19.87 -27.42 -1.20 -27.54 8.08 0.95 34.96 0.75
SE 0.15 0.15 0.13 0.13 0.15 0.12 0.13 0.13 0.15 0.12

CI Coverage (%) 95.2 95.5 80.5 72.9 95.5 63.8 85.9 92.2 60.0 87.9
CI Length 0.59 0.59 0.50 0.51 0.58 0.46 0.50 0.52 0.58 0.46

14 2 0.69 High 0.30 0.70 1000 Estimate 0.69 0.69 0.55 0.50 0.68 0.50 0.76 0.69 0.93 0.69
Bias -0.00 -0.00 -0.14 -0.19 -0.01 -0.20 0.06 -0.00 0.24 -0.00

Bias (%) -0.07 -0.57 -20.65 -28.06 -1.63 -28.21 9.11 -0.40 34.13 -0.45
SE 0.11 0.11 0.09 0.09 0.10 0.08 0.09 0.09 0.11 0.08

CI Coverage (%) 94.8 94.8 63.4 42.8 94.9 32.2 84.0 90.8 41.9 86.4
CI Length 0.42 0.42 0.35 0.36 0.41 0.32 0.36 0.36 0.41 0.33

15 2 0.69 Medium 0.35 0.65 500 Estimate 0.71 0.68 0.45 0.37 0.66 0.37 0.81 0.70 1.24 0.70
Bias 0.01 -0.01 -0.24 -0.33 -0.03 -0.33 0.12 0.01 0.54 0.01

Bias (%) 1.99 -1.57 -34.97 -47.00 -4.07 -47.28 17.31 1.59 78.23 1.21
SE 0.18 0.18 0.13 0.13 0.17 0.11 0.13 0.14 0.17 0.11

CI Coverage (%) 95.2 95.1 52.4 25.1 95.0 10.8 69.2 85.2 25.9 76.7
CI Length 0.70 0.70 0.50 0.53 0.67 0.43 0.51 0.53 0.67 0.43

16 2 0.69 Medium 0.35 0.65 1000 Estimate 0.69 0.68 0.45 0.36 0.67 0.36 0.81 0.69 1.24 0.69
Bias 0.00 -0.01 -0.24 -0.33 -0.02 -0.33 0.11 -0.00 0.54 -0.00

Bias (%) 0.24 -1.53 -35.17 -47.68 -3.26 -47.76 16.48 -0.07 78.47 -0.27
SE 0.13 0.13 0.09 0.09 0.12 0.08 0.09 0.09 0.12 0.08

CI Coverage (%) 94.7 94.9 23.1 1.5 94.7 0.2 64.3 84.2 9.3 76.1
CI Length 0.49 0.49 0.35 0.36 0.47 0.30 0.36 0.37 0.48 0.30

17 2 0.69 Low 0.40 0.60 500 Estimate 0.73 0.57 0.30 0.22 0.57 0.22 1.03 0.77 2.13 0.76
Bias 0.04 -0.12 -0.39 -0.47 -0.13 -0.47 0.34 0.08 1.44 0.06

Bias (%) 5.83 -17.37 -56.69 -67.66 -18.12 -67.85 48.95 11.23 207.82 9.08
SE 0.25 0.25 0.14 0.14 0.22 0.11 0.14 0.15 0.22 0.11

CI Coverage (%) 93.3 94.1 23.4 8.8 90.4 2.4 41.4 66.7 14.1 51.8
CI Length 0.91 0.91 0.53 0.56 0.85 0.42 0.55 0.57 0.85 0.41

18 2 0.69 Low 0.40 0.60 1000 Estimate 0.71 0.64 0.31 0.21 0.63 0.21 1.00 0.71 1.99 0.71
Bias 0.02 -0.06 -0.38 -0.48 -0.06 -0.48 0.31 0.02 1.30 0.02

Bias (%) 2.34 -8.10 -55.07 -69.58 -9.29 -69.78 44.27 2.73 187.78 2.27
SE 0.17 0.17 0.09 0.10 0.16 0.07 0.09 0.10 0.16 0.07

CI Coverage (%) 94.4 94.7 2.3 0.1 92.4 0.1 32.8 68.4 2.0 54.1
CI Length 0.77 0.78 0.36 0.38 0.61 0.28 0.37 0.38 0.61 0.28

Table 4: Estimates are presented on the log scale. MA modal assignment, mPC multiple pseudo class draws, PA partial assignment, PrA proportional assignment,

Incl inclusive. One-step models exhibit no or low bias and approximately nominal coverage. Two-step and PA are unbiased with nominal coverage in medium and

high entropy scenarios but both exhibit bias when the entropy is low. Incl-mPC and Incl-PrA exhibit no or low bias but poor coverage.
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Table 5: Simulation results for the effect of latent class in scenarios with a hazard ratio of 3.

Scenario HR log(HR) Entropy π(1) π(2) N Measure 1step 2step MA mPC PA PrA
Incl-
MA

Incl-
mPC

Incl-
PA

Incl-
PrA

19 3 1.1 High 0.30 0.70 500 Estimate 1.12 1.11 0.86 0.77 1.07 0.77 1.17 1.11 1.46 1.10
Bias 0.02 0.01 -0.24 -0.33 -0.03 -0.33 0.07 0.01 0.36 0.00

Bias (%) 1.97 0.68 -21.75 -29.59 -2.65 -29.75 6.39 0.62 33.15 0.31
SE 0.16 0.16 0.13 0.14 0.15 0.12 0.14 0.14 0.16 0.12

CI Coverage (%) 95.0 95.5 53.6 30.0 94.9 19.0 86.2 92.0 39.9 87.1
CI Length 0.63 0.63 0.51 0.53 0.60 0.46 0.53 0.55 0.61 0.48

20 3 1.1 High 0.30 0.70 1000 Estimate 1.11 1.11 0.86 0.77 1.07 0.77 1.17 1.10 1.46 1.10
Bias 0.01 0.01 -0.24 -0.33 -0.03 -0.33 0.07 -0.00 0.36 -0.00

Bias (%) 1.28 0.68 -21.96 -29.71 -2.47 -29.87 6.37 -0.05 32.98 -0.16
SE 0.11 0.11 0.09 0.09 0.11 0.08 0.10 0.10 0.11 0.09

CI Coverage (%) 94.8 95.1 26.3 3.6 94.5 1.6 84.4 91.1 15.7 87.3
CI Length 0.44 0.44 0.36 0.37 0.42 0.32 0.37 0.38 0.43 0.34

21 3 1.1 Medium 0.35 0.65 500 Estimate 1.13 1.09 0.69 0.56 1.03 0.56 1.28 1.11 1.89 1.10
Bias 0.03 -0.01 -0.41 -0.54 -0.07 -0.54 0.18 0.01 0.80 0.01

Bias (%) 3.05 -1.17 -37.30 -49.18 -6.36 -49.43 16.14 1.03 72.39 0.48
SE 0.19 0.19 0.13 0.14 0.17 0.11 0.14 0.14 0.18 0.11

CI Coverage (%) 94.4 95.4 12.0 0.4 92.8 0.0 64.3 85.8 8.1 75.8
CI Length 0.76 0.76 0.51 0.54 0.69 0.43 0.54 0.56 0.70 0.44

22 3 1.1 Medium 0.35 0.65 1000 Estimate 1.12 1.10 0.69 0.55 1.04 0.55 1.27 1.10 1.90 1.10
Bias 0.02 -0.00 -0.41 -0.54 -0.06 -0.55 0.17 -0.00 0.80 -0.00

Bias (%) 1.91 -0.15 -37.04 -49.51 -5.09 -49.64 15.32 -0.08 73.20 -0.32
SE 0.14 0.14 0.09 0.09 0.12 0.08 0.10 0.10 0.13 0.08

CI Coverage (%) 94.5 95.6 0.5 0.0 93.0 0.0 55.9 85.4 0.6 75.9
CI Length 0.53 0.54 0.36 0.37 0.49 0.30 0.38 0.39 0.50 0.31

23 3 1.1 Low 0.40 0.60 500 Estimate 1.16 0.89 0.46 0.33 0.86 0.33 1.62 1.24 3.75 1.21
Bias 0.06 -0.21 -0.64 -0.76 -0.24 -0.77 0.52 0.14 2.65 0.11

Bias (%) 5.90 -18.68 -58.55 -69.63 -21.80 -69.90 47.51 12.45 241.27 9.86
SE 0.28 0.27 0.14 0.15 0.22 0.11 0.15 0.15 0.23 0.11

CI Coverage (%) 94.2 88.9 3.3 0.9 79.5 0.2 35.3 66.9 4.0 51.6
CI Length 1.31 1.32 0.54 0.57 0.87 0.42 0.58 0.59 0.89 0.41

24 3 1.1 Low 0.40 0.60 1000 Estimate 1.15 1.01 0.47 0.32 0.96 0.32 1.55 1.11 2.93 1.11
Bias 0.05 -0.08 -0.63 -0.78 -0.14 -0.78 0.45 0.02 1.83 0.01

Bias (%) 4.87 -7.72 -56.91 -70.97 -12.47 -71.11 40.78 1.46 166.26 1.02
SE 0.20 0.19 0.09 0.10 0.16 0.07 0.10 0.10 0.16 0.07

CI Coverage (%) 94.4 92.8 0.0 0.0 84.0 0.0 21.3 66.7 0.0 51.0
CI Length 0.70 0.66 0.36 0.38 0.62 0.28 0.40 0.40 0.63 0.28

Table 5: Estimates are presented on the log scale. MA modal assignment, mPC multiple pseudo class draws, PA partial assignment, PrA proportional assignment,

Incl inclusive. One-step models exhibit no or low bias and approximately nominal coverage. Two-step and PA are unbiased with nominal coverage in medium and

high entropy scenarios but both exhibit bias when the entropy is low. Incl-mPC and Incl-PrA exhibit no or low bias but poor coverage.
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FIGURES AND TABLES

Figure 1: Schematics for the latent class models discussed in this article.
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Figure 1: (a) latent class model, (b) latent class regression model, (c) inclusive latent class regression

model and (d) one-step latent class model with a distal outcome. Circles and squares are used to

identify unobserved (i.e. latent class) and observed variables respectively. C latent class variable, Y

manifest variables, X latent class predictors, T distal outcome(s) and Z covariates possibly related to

T.
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Figure 2: Class-conditional response probabilities used in the simulation
study.
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Figure 2: Ten independent Bernoulli distributed manifest variables were simulated according to a

crossed profile plot for the two latent classes, where π(1) ∈ {0.60, 0.65, 0.70} and π(2) = 1− π(1).
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Figure 3: Histograms of simulation results taken from low entropy Scenario
23 (N = 500, π(1) = 0.4, π(2) = 0.6).
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Figure 3: The dashed vertical lines represent the true latent class effect, in this case log(3) ≈ 1.10, and

deviations of the empirical distributions from the true value indicate bias. For corresponding confidence

interval coverage and length see Table 5. ‘Class is known’ refers to results from a Cox regression model

including the known underlying class and is included for demonstration purposes only. MA modal

assignment, mPC multiple pseudo class draws, PA partial assignment, PrA proportional assignment,

Incl inclusive.
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SUPPLEMENTARY MATERIAL

Simulation of time-to-event data

Survival times were simulated in a similar way to that described by Bender et al. (2005).

Two classes, 1 and 2, and two treatment groups, A and B, were simulated in each

scenario. The reference survival curve used was based on the Kaplan-Meier estimate of

the gemcitabine arm in the ESPAC2 trial (Neoptolemos et al., 2010), Figure S1(a) and

(b). Let S0 represent this reference survival curve for subjects belonging to true latent

class 2 and treatment group B (i.e. ci = 0 and zi = 0), so that survival probabilities

corresponding to proportional hazard effects can be obtained using

Si = S
exp(βzi+γjci)
0 , (8)

in this case for zi and ci ∈ {0, 1}. As described previously, the hazard ratio for the effect

of Treatment A relative to Treatment B, exp(β), was fixed at 0.75 and the hazard ratio

for the effect of latent class 1 relative to latent class 2 was varied, exp(γ1) ∈ {1, 1.5, 2, 3}.

‘True’ survival probabilities were obtained for each of the four permutations of class and

treatment over a sequence of 0 to 60 months in steps of 0.1 months. High-dimensional

spline fits were used to approximate these survival curves, as shown for the reference

survival curve in Figure S1(a). The splines were fitted separately to each of the four

survival curves by regressing the time sequence on polynomials of the survival proba-

bilities. A survival probability was then simulated for each subject from Uniform(0, 1)

and a corresponding survival time is obtained from the relevant spline fit. Administra-

tive censoring was applied at 60 months and uniform censoring was added by generating

censoring times from an exponential distribution such that overall approximately 50%
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of survival times were right-censored.

A label switching algorithm

Latent class models are only identifiable up to a permutation of class labels (McLachlan

and Peel, 2004). Whilst this is not an issue in standalone applications, it is a problem

for simulation studies since it is not always straight-forward to establish, for a particular

simulated data set, the class label that corresponds to the true class. A useful discussion

of this issue in latent variable models is given in Tueller et al. (2011), and the same

labelling problem arises in Bayesian Monte Carlo Markov Chain simulations (Celeux

et al., 2000; Grün and Leisch, 2009; Sperrin et al., 2010).

A number of solutions have been proposed (e.g. Tueller et al., 2011; Yao, 2015;

Celeux et al., 2000). In this study, we used a clustering and relabelling strategy based

on Euclidean distances, as in Celeux et al. (2000), where the distances between the true

parameter values and their estimates is calculated for each simulated data set.

Assume that data are simulated according to a particular latent class model with P

‘true’ parameter values θ = (θ1, . . . , θP ). There are J ! possible permutations of the class

labels, l = 1, . . . , J !, and we let the last permutation represent the correct labelling.

We simulate d = 1, . . . , D data sets according to the true model. For each data set we

fit a latent class model of the same form as the true model. Let θ̂d =
(
θ̂d1, . . . , θ̂dP

)
be a vector of parameter estimates from the latent class model fitted to the dth data

set. We assume that θ̂d are unbiased estimates of the true values but possibly labelled

incorrectly. If θ̂d are labelled ‘correctly’, then

1

se(θ̂dp)

(
θ̂dp − θp

)
∼ N(0, 1)
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and [
1

se(θ̂dp)

(
θ̂dp − θp

)]2

∼ χ2
(1),

for d = 1, . . . , D and where 1 ≤ p ≤ P . We then assume that parameter estimates are

independent, which in practice will be determined by the form of the model fitted; this

issue is discussed further below. Summing over P,

P∑
p=1

[
1

se(θ̂dp)

(
θ̂dp − θp

)]2

∼ χ2
(P ),

with mean P , for d = 1, . . . , D. The standardised Euclidean distance, δd, between the

estimates from a model fitted to the dth data set and the vector of true parameter

values is

δd =

{
P∑
p=1

[
1

se(θ̂dp)
(θ̂dp − θp)

]2}1/2

∼ χ(P ),

i.e. a central χ distribution. If θ̂d are labelled ‘incorrectly’, then

1

se(θ̂dp)

(
θ̂p − θp

)
∼ N (µp, 1) ,

P∑
p=1

[
1

se(θ̂dp)

(
θ̂dp − θp

)]2

∼ χ2
(P )(λ),

i.e. a non-central χ2 distribution with non-centrality parameter λ =
∑P

p=1 µ
2
p and mean

P + λ. It therefore follows that

δd ∼ χ(P ) (λ) .

Letting δ = (δ1, . . . , δD), and assuming that the random starting values for the param-
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eter estimates do not favour one label permutation over another,

δ ∼ 1

J !

J !∑
l=1

fl(δ),

i.e. a J ! component mixture distribution with one central χ distribution, fJ ! ∼ χ(P ),

and J !−1 non-central χ distributions, fl ∼ χ(P ) (λl), for l = 1, . . . , J !−1. A histogram

of δ should therefore yield a mixture distribution of J ! (hopefully distinct) probability

distributions for which the component with the lowest mean is labelled correctly. Larger

differences in the true parameter values for the latent classes and greater numbers of

class distinct parameters to estimate will result in clearer separation of the mixture

components, making clustering and relabelling easier. An example of such a histogram

for 2000 simulations from a latent class model with J = 2 and P = 21 parameters is

depicted in Figure S2. Assuming sufficient separation between components, either by

introducing some threshold or by clustering δ (e.g. K-means clustering), estimates that

have been labelled incorrectly can be easily identified and relabelled accordingly.

A label switching algorithm is therefore as follows

1. Fit latent class models to each of d = 1, . . . , D data sets.

2. For each of the d = 1, . . . , D data sets calculate the standardised Euclidean dis-

tances, δd, between each set of parameter estimates, θ̂d, and the true parameter

values, θ.

3. Inspect a histogram of δ for distinct component densities.

4. Use K-means clustering to assign each δd (and hence θ̂d) to a cluster (/component

density). The cluster with the lowest mean corresponds to the cluster of correctly

labelled parameter estimates.
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5. Relabel those θ̂d which do not belong to the correctly labelled component density.

As a check, the first three steps can be repeated using the relabelled estimates and

the new histogram should reveal a unimodal (and central) χ distribution. If J > 2

it may be necessary to repeat this process using a permutation of the true parameter

values in the place of the true values in order to distinguish between two or more

incorrectly labelled clusters.

The histogram of δ also serves as a useful diagnostic tool, since any outlying val-

ues, perhaps exceeding a selected critical threshold, can be identified and investigated

further. These may represent local maximum and/or boundary solutions.

In practice, whilst we have provided theoretical justification for the distribution of

the standardised Euclidean distances in the case of independent parameters, if depen-

dencies are included in the model, then the algorithm can still be used. In this case,

these parameters can be included or excluded in the algorithm, as long as the histogram

of the standardised Euclidean distances reveals distinct clusters.
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Comparison of the use of different hazard functions in three-step mod-

els

In this study one and two-step models used a piecewise exponential baseline hazard

function whilst the three-step models used a Cox model in which the baseline hazard is

left unspecified. The choice of a piecewise exponential model for the one and two-step

models was primarily motivated by the fact that standard errors are easier to obtain

when there are few baseline hazard parameters (see Discussion). To illustrate that the

three-step methods are not disadvantaged by the choice of hazard function the table

below contains results from a small simulation study for Scenario 17 (Low entropy,

N = 500, HR=2). The results demonstrate that the results are practically unaffected

by the choice of baseline hazard function.

[Table S1 about here]
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SUPPLEMENTARY TABLE

Model Estimate Bias CI Coverage (%)

MA using Cox model -0.30 0.39 23.4
MA using PE model -0.30 0.39 23.8

PA using Cox model -0.57 0.13 90.4
PA using PE model -0.57 0.13 90.7

Table S1: Comparison of simulation results for modal assignment and partial assignment when using

unspecified (Cox) an piecewise exponential baseline hazard functions. MA Modal assignment, PA

Partial assignment. The results demonstrate that the statistical properties of the latent class effect

estimates are practically unaffected by the different hazard functions compared here.
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SUPPLEMENTARY FIGURES

Figure S1: Kaplan-Meier estimate of overall survival for the gemcitabine
arm from the ESPAC3v2 study and overlaid fitted models.
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Figure S1: (a) Fitted polynomial spline, Weibull and log-logistic (parametric) models. (b) A piecewise

exponential survival model with five partitions approximates the Kaplan-Meier estimate well.
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Figure S2: Example of Euclidean distances between true and estimated
parameters.
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Figure S2: Example of Euclidean distances for 2000 simulations from a latent class model with 2

classes, before relabelling. The distribution on the left contains the models for which the class is

correctly labelled.
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