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Abstract—The usage of EVs as energy storage units via vehicle-
to-home (V2H) provides an effective solution to load shaping at
the end-user premises since it enables householder to alleviate the
load burden of power grid and save bills simultaneously. In this
paper, an innovative demand response (DR) strategy with an EV
auxiliary power supply (EV-APS) model is proposed, to jointly
optimize the household appliance scheduling and economic cost
based on dynamic pricing (DP). The proposed DR strategy takes
account of the comprehensive impacts of EVs charging behaviors,
user preferences, distributed generation and load priority. The
effectiveness of the proposed DR strategy is verified by numerical
results in terms of load balancing and cost reduction. It also
significantly outperforms the previous DR approaches.

I. INTRODUCTION

Electric vehicles (EVs) have become increasingly popular in
recent years due to their environmental and economic benefits,
and the rapid advance of rechargeable battery technology [1]–
[3]. Meanwhile, an increasing adoption of EVs brings about
both opportunities and challenges for smart grid along with
worldwide application of dynamic pricing (DP) [4]. As the
EVs are in fact involved in the power grid by plugging in
at consumer premises, the charging power of EV leads to an
increase in electric demand. However, the usage of EVs as
energy storage units via vehicle-to-home (V2H) provides an
effective solution to load shaping at demand side. In addition,
householders are able to participate in load shifting and may
have multiple options in energy allocation.

As an effective method for reducing energy wastage, de-
mand response (DR) management for residents plays a sig-
nificant role in both balancing energy supply and demand,
and enhancing the reliability in smart grid [5]. The basic
principle of DR management is to shift the operating time
of home appliances automatically or manually during high-
price periods and gain the benefits from low-price periods,
thus achieving the aim of saving electric bills for customers
[6]. In other ways, it is also benefit to power grid as it offers an
effective solution to average the power usage at different time
so that alleviates the load burden of power grid, especially in
peak demand time. Therefore, the research on DR strategy is
quite meaningful and worthy for both householders and power
suppliers. Considering the flexible energy storage purpose of
EVs, the realisation of a DR management strategy coordinated
with EVs becomes possible.

The implementation of DR with EVs requires efficient en-
ergy distribution management and high-performance batteries
as basis. Moreover, DP provides a basic control signal to
optimally schedule the charging and discharging behaviors of
EVs, by minimizing the overall cost [7]. Compared with the
conventional energy storage system (ESS) and other energy
production facilities, using EVs as an auxiliary power source
has advantages in employing flexibility and economical effi-
ciency. It does not expect extra investment besides the daily
used EVs. Therefore, the DR strategy with EVs holds wide
prospects in practice.

Much research has been conducted on demand response
and there are many popular DR strategies being presented
in literatures. In [8], a user-expected price (UEP) based DR
strategy was proposed as an indicator of differential pricing in
dynamic domestic electricity tariffs, and exploited the modern
smart grid infrastructure to respond to these dynamic pricing
structures. However, the impact of including an EV which can
also be beneficial for load clipping in certain periods has not
been considered.

In [9], an optimization framework based DR program was
proposed, with high penetration of EVs and storage system-
s from residential customers perspective as well as utility
companys perspective. The simulation results showed that the
appropriate scheduling has benefits for both customers and
suppliers. However, the charging profiles of EVs that may
significantly affect the performance of the model have not been
accounted in [9].

Furthermore, Develder et al. [10] focused on EVs’ charging
behaviors by using collected data from EV charging sessions.
Three different types of charging behavior were derived and
the potential of EVs charging behaviors for DR exploitation
was analyzed. Nevertheless, the specific DR strategy with
considering EVs’ types of charging behavior has not been
proposed.

In addition to the above, numerous approaches have been
proposed to address the DR optimization problems. For ex-
ample, a DR strategy was proposed in the context of a
smart distribution network in [3]. In [11], a DR strategy for
residential customers as opposed to commercial ones was
introduced. In [12], the authors proposed an algorithm for
distributed DR of the EVs to shape the daily demand profile.
Additionally, a new model of demand response management



for the future smart grid that integrates plug-in electric vehicles
and renewable distributed generators was described in [13].
In [14], a method for the residential load scheduling was
presented based on human behaviors analysis.

In this paper, we propose a DP based and EV assisted
DR strategy, for household appliance scheduling, in order
to alleviate the load burden for the grid and save bills for
householders simultaneously. Our work is different in that we
utilize EV as an auxiliary power supply (APS) for household
appliances and that we consider various affecting factors such
as user preferences, EV’s charging behavior and load priority
for scheduling. The effectiveness of the proposed EV-APS
based DR strategy is verified by numerical results, which
demonstrate that 86.4% of the load can be shaped to a low
level in peak demand hours and that the daily electric cost
can be reduced by 30.6%. The EV-APS based DR strategy
also significantly outperforms the DR approach in [15].

The rest of this paper is organized as follows. Section II
presents the EV-APS demand response network overall. In
Section III, two significant power supply models are thor-
oughly discussed. Additionally, the problem formulation and
optimization are presented in Section IV. In Section V, a case
study is carried out to evaluate the feasibility of the proposed
strategy. Finally, we conclude the paper in Section VI.

II. EV-APS DEMAND RESPONSE NETWORK

This section illustrates an overall description of the proposed
EV-APS demand response network.

The schematic diagram of the proposed DR strategy with
EV-APS model is showed in Fig. 1. Specifically, householders
buy electricity from the power grid for the daily usage includ-
ing EV charging under the dynamic pricing tariff. Normally,
the domestic appliances are directly powered by the main
power grid. However, as an interim energy storage unit, EV
is able to supply power for the household appliances in
auxiliaries on appropriate occasions, especially in high price
periods. The time of activating EV-APS is dependent on the
instructions from the smart controller.

In addition, the smart controller plays the role as a super-
visor in the system network. It regulates the energy sources
supplying and the operating time of the household appliances
based on real-time load information which is received from
the smart meter, and other signals (e.g. DP, EV status, load
priority and etc.).

In general, more than 20 types of household appliances will
be used in domestic homes. Considering the operating charac-
teristic of each appliance, it is not necessary to schedule all of
them via the proposed network. Hence, in accordance with the
device operating characteristics, the household appliances can
be classified into different scenarios. As a result, the appliances
are sorted into two main scenarios in this study.

• Critical Scenario (CS). CS contains the appliances that
have to be used at a specified time or cannot be scheduled.
Examples include lightings, TV, laptop and etc.;
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Fig. 1. Schematic diagram of a fundamental DR strategy with EV-APS model
for domestic homes

• Flexible Scenario (FS). FS contains the appliances that
can be powered on with a tolerable delay and have a
flexible operating time. Hot water tank and washer are
typical representatives in FS.

Moreover, both CS and FS will be accounted in the proposed
EV-APS DR strategy. The initial idea of DR management at
the end-user premises is to save electric bill through shifting
the operating time of the household appliances during high
price time periods and alleviate the load burden simultane-
ously. Considering the EVs as an auxiliary power source for
household appliances, multiple choices are provided to DR
management and energy allocation. The detailed power supply
models will be discussed in next section.

III. POWER SUPPLY MODELS

In this section, the formulation of the EV-APS DR strategy
consisting of the main power supply model and EV auxiliary
power supply model is thoroughly analyzed.

A. Main Power Supply Model

We define variable Wgrid as the total energy consumption
and variable P t

grid as the total load power on grid at time
t. Afterwards, the main power supply model including the
corresponded constrains can be presented as:

Wgrid =

∫ Tterm

Tin

P t
grid · d(t) (1)

P t
grid = P t

AP + P t
EV,ch − P t

EV,dis (2)

P t
AP =

n∑
j=1

P t
CS,j +

m∑
i=1

P t
FS,i · εi (3)

Subject to:

∀t ∈ [Tin, Tterm] , P t
grid 6 Pmax

grid (4)

P t
EV,ch = 0, if P t

EV,dis > 0, (5)



P t
EV,dis = 0, if P t

EV,ch > 0, (6)

Equation (1) indicates that the total energy consumption
(Wgrid) is equal to the integral of total power (P t

grid) through
the time that is between initial time Tin and terminate time
Tterm. Equation (2) illustrates the relationships between the
total power and each power consumed component. P t

AP is the
load power consumed by the household appliances at time t.
P t

EV,ch and P t
EV,dis represent the power rates of the EV charging

and discharging, respectively.
Additionally, as it is showed in Equation (3), P t

AP consists
of the power cost by CS appliances (P t

CS,j) and FS (P t
FS,i)

appliances, where j and i are the index of the appliances.
The ε parameters have small positive values (e.g. 1+e−8,
1+2e−8 and 1+3e−8) that are determined by assumptions.
Thus, the total power of appliances is not affected. This setting
meets the requirement of having a priority according to user
preferences in scheduling the FS appliances. The smaller value
of ε indicates a higher priority in scheduling process by the
DR management system.

In spite of that, Pmax
grid is proposed in constraint (4) to limit

the maximum power rate on grid at time t for safety and
power distribution considerations. Further, constraints (5) and
(6) express that the battery charging and discharging cannot
execute simultaneously otherwise the battery will be damaged
to a certain extent.

B. EV Auxiliary Power Supply Model

Determining the EV-APS model requires sufficient knowl-
edge from previous researches. According to the investigation
of the current EV market, Table I illustrates the core param-
eters of five major-brands of EVs around the world [16]–
[18]. The parameters include the battery capacity BC, the
discharging power PEV,dis and the driving range per charge
RC.

Moreover, multiple charging schemas are provided for each
EV. In Section V, the Tesla-Model-S is taken as an example in
this study and Table II shows the relevant charging schemes
that will be considered in the DR strategy. It can be seen that
the charging power PEV,ch plays as an important role in the
grid due to the high power rate of battery charging.

Further, variables W 1
EV,in and W 2

EV,in are defined as the initial
energy storage when people leave home in the morning of the
1st day and the 2nd day, respectively. Therefore, the EV model
can be proposed as below.

W 1
EV,in = WEV,remain +WEV,road (7)

WEV,road =
BC

RC
· Distance (8)

W 2
EV,in = WEV,remain +WEV,ch −WEV,dis (9)

WEV,ch =

∫ Tc,e

Tc,b

η1 · P t
EV,ch · d(t) (10)

WEV,dis =

∫ Td,e

Td,b

η2 · P t
EV,dis · d(t) (11)

Subject to:

∀t, BCmin 6 W t
EV 6 BCmax (12)

∀t ∈ [Td,b, Td,e] , P t
EV,dis 6 P rated

EV,dis (13)

∅ = [Tc,b, Tc,e] ∩ [Td,b, Td,e] (14)

Equation (7) - (8) indicate the state relations between the 1st

day initial energy (W 1
EV,in), the remaining energy (WEV,remain)

and the energy consumption on road (WEV,road). It is apparent
that WEV,road is directly proportional to the driving distance.
Additionally, Equation (9) enforces that the remaining energy
of EV can be used to cover a portion of energy usage by
household appliances via battery discharging (WEV,dis). The
EV will be charged to an appropriate level for the usage of
the 2nd day.

Moreover, Equation (10) explains the relationship between
the total energy charging (WEV,ch) and the charging power rate
(P t

EV,ch). η1 is the battery charging efficiency. Time parameters
Tc,b and Tc,e denote the begin time and the end time of
the charging operation. Meanwhile, the battery discharging
occasion is described in Equation (11) which is similar to
Equation (10).

Despite that, constraint (12) presents a limit on the the
actual amount energy of the EV battery. It can not drop below
the minimum allowed battery capacity (BCmin) or exceed the
maximum allowed battery capacity (BCmax). Constraint (13)
limits the actual discharging power rate (P t

EV,dis) to be less than
the rated power of the EV. Additionally, since battery damages
will be caused by the simultaneous charging and discharging,
constraint (14) restricts the operation time of battery charging
and discharging.

IV. PROBLEM FORMULATION AND OPTIMIZATION

According to the previous analysis, the problem in this
study can be formulated as minimizing the total cost (TC)
by scheduling the operating time of the household appliances.
Hence, the objective function can be proposed as:

Minimize TC =

∫ Tterm

Tin

Wgrid · Ptariff · d(t) (15)

where the variable Wgrid represents the total energy bought
from the power grid in time period [Tin, Tterm]. Additionally,
the price variable Ptariff is time dependent and varies hourly
depending on the total load demand [19]. The DP tariff that
is used in simulation is given in Fig. 2 in Section V.

In order to obtain the optimal solution and reduce the cost
to the minimum, the exhaustive search technique can be used
on the basis of the established models. The description of the
technique is not the focus of this work and is not emphasized
here.

Under the given constraints, the programme is continuously
searching the solutions of appliances allocation by minimizing
the global cost according to the DP signals. The objective
appliances in FS are scheduled in sequence based on the pre-
set priority. Meanwhile, as the auxiliary power source, the



TABLE I
THE MAJOR-BRANDS OF EVS IN CURRENT MARKET

Manufacturer and Model Battery Capacity Discharging Power Driving Range per Charge
Tesla, Model-S (EV) 60 kWh 3.0 kW 273 miles

BYD, Tang-100 (HEV) 23 kWh 3.3 kW 63 miles
BMW, i3 (EV/HEV) 33 kWh 2.5 kW 114 miles

GM, Chevrolet Bolt (EV) 60 kWh - 283 miles
Nissan, Leaf (EV) 30 kWh - 107 miles

TABLE II
TESLA-MODEL-S CHARGING SCHEMES

Charging Circuit Charging Power Charging Speed Time Cost per 100 miles
Wall connector (1-phase grid) 7.4 kW 22 miles/hr 4.5 hr
Wall connector (3-phase grid) 11 kW 34 miles/hr 2.9 hr
High power charger upgrade 16.5 kW 51 miles/hr 2.0 hr

3-pin domestic adapter 2.3 kW 6.8 miles/hr 14.7 hr

operating time of EV discharging is dependent on the EV
status and the load demand. In this study, the remaining EV
energy is assumed to be firstly consumed in high price hours
to ensure the maximum utilization of storage.

To evaluate the feasibility of the EV-APS DR strategy, a
case study is proposed in next section.

V. NUMERICAL RESULTS

This section demonstrates how the proposed EV-APS DR
strategy can be implemented at the household level to alleviate
the load burden in peak demand periods and save electric bills.
Some assumptions for simulations are presented.

A. Case Study Description

First of all, the selected time interval for the optimization is
set as 3 minutes (0.05 hr). The households comprise over 15
types of common used loads covering both CS and FS. The
rated power and the pre-set operating time of the corresponded
appliances are given in Table III. The EV and four other com-
mon used appliances, hot water tank, dish machine, washer
and drying machine, are considered as the flexible loads in
this study.

In addition, the ε parameters are given to indicate the pri-
orities of the related loads. According to the user preferences,
it is assumed as, ε0 < ε1 < ε2 < ε3 < ε4, which means
the operating of EV charging obtains the highest priority in
scheduling among all FS loads. Besides, in accordance with
the operating habits, the objective scheduling time for these
appliances are set as: EV charging, [0:00-8:00]; hot water tank,
[17:00-22:00]; dish machine, [18:30-24:00]; washer, [17:00-
24:00]; drying machine, [0:00-8:00].

Moreover, the Tesla-Model-S (EV) with a battery rating of
30 kWh (up to 60 kWh) is employed in the case study. On
the one hand, it is provided with a charging wall connector
(1-phase grid) limited to a charging power of 7.4 kW. On the
other hand, the discharging power for household appliances
is up to 3.0 kW as it is showed in Table I. The charging
and discharging efficiencies are considered as η1=η2=0.95. It

TABLE III
PRE-SET HOUSEHOLD APPLIANCES INFORMATION

CS Appliances Power (kW) Operating Time
Refrigerator 0.1 0:00-24:00

Water Dispenser 0.1 0:00-24:00
Toaster 0.6 7:30-7:45

Microwave Oven1 2.4 7:30-8:00
Lights 0.4 17:00-24:00

Electric Cooker 0.5 17:00-17:45
Electric Kettle 2.0 17:15-17:30

Microwave Oven2 2.4 17:30-18:00
Television 0.2 18:00-23:00

Cleaner 0.9 19:00-19:30
Laptop 0.4 21:00-23:30

Hair-Drier 2.0 22:30-23:00
FS Appliances Power (kW) Operating Time

EV, ε0 7.4 18:00-20:00
Hot Water Tank, ε1 2.5 20:00-22:00
Dish Machine, ε2 0.5 18:30-19:15

Washer, ε3 0.6 19:00-20:15
Drying Machine, ε4 2.5 20:30-21:30

is also considered that the householder always arrives home
at 5:00 p.m. with 18 kWh (60%) remaining energy in EV
battery and leaves home at 8:00 a.m. in the next morning with
fully charged battery (100±5%, 30±1.5 kWh). However, the
minimum remaining energy in EV is restricted to 7.5 kWh
(25±5%) to avoid the deep discharging. The deep charging
will cause damages to the battery and reduce battery life [20].

Furthermore, the UK dynamic pricing data of a typical day
[21] which is used in this case is presented in Fig. 2.

B. Simulation Results

Assuming that the target household demand limits of 8
kW all day in this study, Fig. 3 presents the overall load
shaping results of the household appliances. Specifically, Fig.
3 (a) shows the original load profile without DR. It can be
seen that the peak demand time occurs between 6:00 p.m.
and 8:10 p.m. The total house load exceeds the 8 kW limit
during this period and the maximum load demand is 11.5 kW
which occurs at around 8:00 p.m. Additionally, (b) and (c)
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Fig. 2. UK real-time pricing data

present the load profiles after scheduling by using a LSC
DR strategy [15] and the proposed EV-APS DR strategy,
respectively. Apparently, the load burden is alleviated and the
load decreases to an appropriate level in both (b) and (c).
Nonetheless, compared with the results in (b), the load demand
in (c) between 6:00 p.m. and 9:40 p.m. approaches to a very
low level, since the EV discharging is activated during this
time. As a consequence, the EV takes 3.2 hours to charge as
it is showed in (c), which is longer than the charging time (2.1
hours) in (b).

Moreover, since the EV plays a great role in power supply-
ing in modeling, the real-time EV remaining energy variation
at household parking station by using the proposed EV-APS
DR strategy is illustrated in Fig. 4.

Specifically, the EV arrives at home at 5:00 p.m. as it
describes in the figure. Between 5:00 p.m. and 10:18 p.m., the
EV discharging is activated and a part of household appliances
are continuously powered by EV until the amount of EV
remaining energy reaches the minimum threshold (7.5 kWh).
However, the EV is charged from 3:00 a.m. to 6:18 a.m.
in the next day morning to enable the EV leaves with the
fully charged battery at 8:00 a.m. According to the results, it
can be seen that the EV remaining energy variation directly
corresponds with the load curve in Fig. 3 (c), which indicates
that this emulation method is correct and feasible.

Furthermore, Fig. 5 shows the accumulative probabilities of
the reshaped load distributions by DR strategies during peak
load demand period which is between 5:00 p.m. and 12:00
p.m. Based on the figure, we can see that the probabilities for
the case Pgrid < 1 kW of the original load profile without DR,
the LSC DR shaping profile and the EV-APS DR shaping
profile are 7.1%, 24.3% and 72.9%, respectively. For the
case Pgrid < 3 kW, the probabilities are 23.6%, 53.1% and
86.4%, respectively. The results indicate that the load shaping
performance by the EV-APS DR strategy is the best as a higher
percentage load is shaped to a low level, which proves that the
proposed method is an effective tool in load shaping.

The total cost is another issue that customers concern. On
the basis of the DP tariff, the daily electric cost can be
obtained. Fig. 6 presents the accumulative cost comparison
between different demand response strategies. Obviously, the
proposed EV-APS DR strategy performs superior than other
approaches in comparison. The total electric bill of the original
load demand in a typical day is about £3.6. However, it
decreases to £2.9 and £2.5 by using the LSC DR and the EV-
APS DR, respectively. The total saving cost are about £0.7 and
£1.1, which are equivalent to 19.4% and 30.6%, respectively.
Compared with the LSC DR strategy in literature, the proposed
DR strategy in this paper has a better performance in load
shaping and higher cost saving percentage (11.2% improved),
obviously.

VI. CONCLUSION

The aim of this work is to develop a demand response
strategy with EVs, to jointly optimise the household appliance
scheduling and economic cost based on DP. The effectiveness
of the proposed EV-APS based DR strategy is verified by
numerical results, which demonstrate that 86.4% of the load
can be shaped to a low level in peak demand hours and that the
daily electric cost can be reduced by 30.6%. According to the
results, we can conclude that the proposed demand response
strategy is an energy-efficient tool and can fulfill the tasks of
load shaping and saving bills.
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Fig. 3. The overall load shaping results. The load profiles of (a) without DR; (b) by the LSC DR; (c) by the proposed EV-APS DR
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