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a b s t r a c t

In this work, we establish a theory about the almost sure pathwise exponential
stability property for a class of stochastic neutral functional differential equations by
developing a semigroup scheme for the drift part of the systems under consideration
and dealing with their pathwise stability through a perturbation approach, rather
than through that one to get their moment stability first. As an illustration, we can
show that some stochastic systems have their almost sure exponential stability not
sensitive to small delays.

Crown Copyright © 2017 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Let H be a real Hilbert space with its norm ∥ · ∥H and inner product ⟨·, ·⟩H , respectively. We denote by
L (H) the space of all bounded linear operators from H into itself. Let r > 0 be a constant and consider a
deterministic time delay differential equation in H,{

dy(t) =
[
Ay(t) +By(t− r)

]
dt, t ≥ 0,

y(0) = ϕ0 ∈ H, y(t) = ϕ1(t), t ∈ [−r, 0], ϕ1 ∈ L2([−r, 0], H), (1.1)

where A is a linear operator generating a C0-semigroup etA, t ≥ 0, on H and B is some appropriate linear
operator in H. Recall that the trivial solution of (1.1) is called exponentially stable if there exist number
M = M(ϕ) ≥ 1 and constant γ > 0 such that ∥y(t)∥H ≤ M(ϕ)e−γt for all t ≥ 0. It was observed by Datko
et al. [1] (see also [2]) that small delays may destroy exponential stability of an infinite dimensional system
like (1.1). More precisely, if the spectrum σ(A) of A is unbounded along an imaginary line, it was shown
(see Theorem 7.4, [3]) that one can find a bounded linear operator B ∈ L (H) such that A + B generates
an exponentially stable semigroup, i.e., ∥et(A+B)∥ ≤ Ce−βt, C, β > 0, for all t ≥ 0, and meanwhile for
any ε > 0, there always exists r ∈ (0, ε) such that the system (1.1) is not exponentially stable. From this
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observation, we can see that the unboundedness of the spectrum set of A along imaginary axes may cause
trouble for exponential stability of (1.1). Thus, one need make additional assumptions on etA, t ≥ 0, to
obtain the desired stability. In fact, we have the following result whose proof is referred to [3].

Theorem 1.1. Assume that A generates a norm continuous C0-semigroup etA, t ≥ 0, i.e., e·A : [0,∞) →
L (H) is continuous and the semigroup generated by A+B, B ∈ L (H), is exponentially stable in H. Then
there exists a constant r0 > 0 such that the trivial solution of (1.1) is exponentially stable for all r ∈ (0, r0).

Bearing Theorem 1.1 in mind, let A = ∂2/∂ξ2 which surely generates a norm continuous C0-semigroup
on H = L2(0, π). Consider a linear partial differential equation in H,⎧⎨⎩dy(t, ξ) = ∂2

∂ξ2 y(t, ξ)dt+ αy(t− r, ξ)dt, t ≥ 0, ξ ∈ [0, π],

y(t, 0) = y(t, π) = 0, t ≥ 0, y(0, ·) = ϕ0(·) ∈ L2(0, π), y(θ) = ϕ1(θ) ∈ L2([−r, 0];L2(0, π))
(1.2)

where r ≥ 0 and α ∈ R. If r = 0, it is well known that when α < 1, the trivial solution of (1.2) is exponentially
stable. If r ̸= 0 and α < 1, we have by virtue of Theorem 1.1 that the trivial solution of (1.2) is exponentially
stable when r ∈ (0, r0) for some r0 > 0.

Next we turn our attention to stochastic systems and consider their sensitivity problem to small delays
of almost sure pathwise exponential stability. As a motivation example, let us consider a stochastic version
of (1.1) analogous to (1.2). Precisely, let r ≥ 0 and consider a stochastic delay partial differential equation,⎧⎨⎩dy(t, ξ) = ∂2

∂ξ2 y(t, ξ)dt+ αy(t− r, ξ)dt+ σy(t, ξ)dw(t), t ≥ 0, ξ ∈ [0, π],

y(t, 0) = y(t, π) = 0, t ≥ 0, y(0) = ϕ0 ∈ L2(0, π), y0(·) = ϕ1(·) ∈ L2([−r, 0];L2(0, π))
(1.3)

where α, σ ∈ R and w is a standard real Brownian motion. Let H = L2(0, π), then it is known (see, e.g., [4])
that when r = 0 and α − 1 < σ2/2, the trivial solution of (1.3) is exponentially stable in the almost sure
sense, i.e., for each ϕ0 ∈ H, there exist constants M ≥ 1, γ > 0 and a random variable T = T (ϕ0, ω) ≥ 0
such that ∥y(t, ·)∥H ≤ M∥ϕ0∥He

−γt for all t ≥ T almost surely. If r > 0, it was shown in [4] that under the
condition α− 1 < σ2/2, the pathwise exponential stability of the trivial solution to (1.3) is not sensitive to
small delays r > 0. Precisely, in addition to the condition α − 1 < σ2/2, if it is further assumed that the
delay parameter r > 0 satisfies |α| exp(3σ2r/2) − 1 < σ2/2, or equivalently, satisfies

r <
2

3σ2 ln
( 1

2σ
2 + 1
|α|

)
, (1.4)

when α ̸= 0, σ ̸= 0, then the trivial solution of (1.3) is exponentially stable in almost sure sense. Now let us
consider a time delay version of (1.3) of neutral type in the following form⎧⎨⎩d(y(t, ξ) − γy(t− r, ξ)) = ∂2

∂ξ2 y(t, ξ)dt+ α
∂2

∂ξ2 y(t− r, ξ)dt+ σy(t, ξ)dw(t), t ≥ 0, ξ ∈ [0, π],

y(t, 0) = y(t, π) = 0, t ≥ 0, y(0) = ϕ0 ∈ L2(0, π), y0(·) = ϕ1(·) ∈ L2([−r, 0];L2(0, π)),
(1.5)

where γ ∈ R. In comparison with (1.3), the novelty of system (1.5) is that a delay term is included under
the differentiation at the left-hand side of (1.5) on one hand, and a time delay appears in the highest-order
derivative term in (1.5) on the other. Here we want to know whether, in addition to some conditions
on α, σ, γ, the trivial solution of Eq. (1.5) can still secure its pathwise exponential stability, at least for
sufficiently small delay parameter r > 0. In this work, we shall consider this sensitivity problem of pathwise
stability to small delays for such stochastic functional differential equations of neutral type as (1.5).
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2. Strongly continuous semigroups

Let V be a real Hilbert space and a : V × V → R a bounded bilinear form satisfying the so-called
G̊arding’s inequality |a(x, y)| ≤ β∥x∥V · ∥y∥V , a(x, x) ≤ −α∥x∥2

V for all x, y ∈ V and some constants β > 0,
α > 0. Let A be a linear operator associated with this form through a(x, y) = ⟨x,Ay⟩V,V ∗ , x, y ∈ V, where
V ∗ is the dual space of V and ⟨·, ·⟩V,V ∗ is the dual pairing between V and V ∗. Then A ∈ L (V, V ∗), the
family of all bounded and linear operators from V to V ∗, and A generates a C0-semigroup etA, t ≥ 0, on
V ∗. We also introduce the standard interpolation Hilbert space H = (V, V ∗)1/2,2, which is described by
H = {x ∈ V ∗ :

∫ ∞
0 ∥AetAx∥2

V ∗dt < ∞}. We identify the dual H∗ of H with H, then it is easy to see that
V ↪→ H = H∗ ↪→ V ∗ where the embedding ↪→ is dense and continuous with ∥x∥2

H ≤ ν∥x∥2
V , x ∈ V, for some

constant ν ≥ 1. Hence, ⟨x,Ay⟩H = ⟨x,Ay⟩V,V ∗ for all x ∈ V and y ∈ V with Ay ∈ H. It can be shown that
the semigroup etA, t ≥ 0, is bounded and analytic on both V ∗ and H such that etA : V ∗ → V for each t > 0
and for some constant M0 > 0, ∥etA∥L (V ∗) ≤ M0, and ∥etA∥L (H) ≤ e−αt for all t ≥ 0.

Let r > 0 and T ≥ 0. For y ∈ L2([−r, T ], V ), we always write yt(θ) := y(t + θ) for any t ≥ 0 and
θ ∈ [−r, 0] in this work. Now suppose that D1 ∈ L (V ), D2 ∈ L (L2([−r, 0], V ), V ), F1 ∈ L (V, V ∗)
and F2 ∈ L (L2([−r, 0], V ), V ∗). We introduce two linear mappings D and F , respectively, defined by
Dyt = D1y(t − r) + D2yt and Fyt = F1y(t − r) + F2yt, t ∈ [0, T ], y(·) ∈ C([−r, T ], V ). It was
shown in [5] that both D and F have a bounded linear extension on L2([−r, T ], V ), i.e., D, F ∈
L (L2([−r, T ], V ), L2([0, T ], V )). Let H = H × L2([−r, 0], V ), equipped with its canonical inner product
⟨ϕ, ψ⟩H = ⟨ϕ0, ψ0⟩H +

∫ 0
−r

⟨ϕ1(θ), ψ1(θ)⟩V dθ, ϕ = (ϕ0, ϕ1), ψ = (ψ0, ψ1) ∈ H. Consider the following
functional integral equation of neutral type in V ∗,

y(t) −Dyt = etAϕ0 +
∫ t

0
e(t−s)AFysds, t ≥ 0; y0 = ϕ1, ϕ = (ϕ0, ϕ1) ∈ H. (2.1)

We say that y is a (strict) solution of (2.1) in [0, T ] if y ∈ L2([0, T ], V ) ∩ W 1,2([0, T ], V ∗) and Eq. (2.1)
is satisfied almost everywhere in [0, T ], T ≥ 0. Here W 1,2([0, T ], V ∗) is the Sobolev space consisting of all
functions y : [0, T ] → V ∗ such that y and its first order distributional derivative are in L2([0, T ], V ∗).
It can be shown (see [5]) that for arbitrarily given ϕ = (ϕ0, ϕ1) ∈ H × L2([−r, 0], V ) and T ≥ 0, there
exists a function y(t) ∈ V , t ∈ [−r, T ], which is the unique solution of Eq. (2.1) with y0 = ϕ1 such that
y(·) ∈ L2([−r, T ], V ) and y(·) −Dy· ∈ L2([0, T ], V ) ∩W 1,2([0, T ], V ∗) ⊂ C([0, T ], H). Based on this solution,
we further define a family of operators S(t) : H → H, t ≥ 0, by S(t)ϕ = (y(t) − Dyt, yt) for any ϕ ∈ H.
Then it was shown in [5] that t → S(t) is a C0-semigroup on H. Moreover, the generator A of S(t) or etA,
t ≥ 0, is given by

D(A) = {(ϕ0, ϕ1) ∈ H : ϕ1 ∈ W 1,2([−r, 0], V ), ϕ0 = ϕ1(0) −Dϕ1 ∈ V, Aϕ0 + Fϕ1 ∈ H} (2.2)

and for each ϕ = (ϕ0, ϕ1) ∈ D(A), Aϕ = (Aϕ0 + Fϕ1, ϕ
′
1) ∈ H.

Now let us consider the following deterministic functional differential equation of neutral type in V ∗,⎧⎨⎩y(t) −Gy(t− r) = etAϕ0 +
∫ t

0

∫ 0

−r

e(t−s)Adη(θ)y(s+ θ)dθds, t ≥ 0,

y0 = ϕ1, ϕ = (ϕ0, ϕ1) ∈ H,
(2.3)

where G ∈ L (V ) and η : [−r, 0] → L (V, V ∗) is of bounded variation.

Proposition 2.1. Suppose that ⟨x,Ax⟩V,V ∗ ≤ −α∥x∥2
V for x ∈ V and some α > 0. Assume that

∥G∥ + ∥G∥2 < 1 and for some λ ∈ (0, α),[ |η|(0) − |η|(−r)
(1 − ∥G∥)(1 − e2λr(∥G∥ + ∥G∥2))

∫ 0

−r

e−2λθd|η|(θ)
]1/2

< α− λ, (2.4)



60 K. Liu / Applied Mathematics Letters 77 (2018) 57–63

where |η|(θ) is the total variation on [−r, θ], θ ∈ [−r, 0], then there exists a constant M > 0 such that
∥etA∥ ≤ Me− λ

ν t for all t ≥ 0, where ν ≥ 1 is the constant given in ∥v∥H ≤ ν∥v∥V for any v ∈ V .

Proof. Note that since ∥G∥ + ∥G∥2 < 1, it makes sense that 1 − ∥G∥ > 0 and there exists a λ > 0
such that 1 − e2λr(∥G∥ + ∥G∥2) > 0. We show that there exists an equivalent inner product (·, ·)H on
H = H × L2([−r, 0];V ) to ⟨·, ·⟩H on H such that (Aϕ, ϕ)H ≤ −λν−1∥ϕ∥H for all ϕ ∈ D(A). Here (·, ·)H is
defined by (ϕ, ψ)H := ⟨ϕ0, ψ0⟩H +

∫ 0
−r
γ(θ)⟨ϕ1(θ), ψ1(θ)⟩V dθ, ϕ, ψ ∈ H, where γ : [−r, 0] → R+ is given by

γ(θ) = e2λθ
[
α− λ− |η|(0) − |η|(−r)

(1 − ∥G∥)(α− λ)

∫ 0

θ

e−2λτd|η|(τ)
]
, θ ∈ [−r, 0]. (2.5)

First, note that under the conditions of Proposition 2.1, (·, ·)H does define an inner product. Indeed, both
(2.4) and (2.5) imply the lower boundedness of γ(·),

γ(θ) ≥ e−2λr
[
α− λ− |η|(0) − |η(−r)|

(1 − ∥G∥)(α− λ)

∫ 0

−r

e−2λτd|η|(τ)
]

for any θ ∈ [−r, 0].

This implies that (·, ·)H defines an inner product on H. Also, it is easy to see that for any ϕ ∈ H,

(ϕ, ϕ)H = ∥ϕ0∥2
H +

∫ 0

−r

γ(θ)∥ϕ1(θ)∥2
V dθ ≤ [1 + e2λr(α− λ)]

(
∥ϕ0∥2

H +
∫ 0

−r

∥ϕ1(θ)∥2
V dθ

)
which implies that the inner product (·, ·)H is also equivalent to the canonical inner product ⟨·, ·⟩H on H.
On the other hand, since ⟨x, y⟩H = ⟨x, y⟩V,V ∗ for any x ∈ V , y ∈ H, it follows for any ϕ ∈ D(A) that

(ϕ, (A + λν−1)ϕ)H =
⟨
ϕ0, Aϕ0 + λν−1ϕ0 +

∫ 0

−r

dη(θ)ϕ1(θ)
⟩

H
+

∫ 0

−r

γ(θ)⟨ϕ1(θ), ϕ̇1(θ) + λν−1ϕ1(θ)⟩V dθ

≤
⟨
ϕ0, Aϕ0 +

∫ 0

−r

dη(θ)ϕ1(θ)
⟩

V,V ∗
+

∫ 0

−r

γ(θ)⟨ϕ̇1(θ), ϕ1(θ)⟩V dθ + λ∥ϕ0∥2
V + λ

∫ 0

−r

γ(θ)∥ϕ1(θ)∥2
V dθ

≤ (λ− α)∥ϕ0∥2
V + ∥ϕ0∥V

∫ 0

−r

∥ϕ1(θ)∥V d|η|(θ) +
∫ 0

−r

γ(θ)
(1

2
d

dθ
∥ϕ1(θ)∥2

V + λ∥ϕ1(θ)∥2
V

)
dθ.

(2.6)

By using integration by parts, one can further derive from (2.6) and (2.4) that for ϕ ∈ D(A),

(ϕ, (A + λν−1)ϕ)H ≤ (λ− α)∥ϕ0∥2
V + ∥ϕ0∥V

∫ 0

−r

∥ϕ1(θ)∥V d|η|(θ) + 1
2(α− λ)∥ϕ0 +Gϕ1(−r)∥2

V

− 1
2γ(−r)∥ϕ1(−r)∥2

V − |η|(0) − |η|(−r)
2(1 − ∥G∥)(α− λ)

∫ 0

−r

∥ϕ1(θ)∥2
V d|η|(θ)

≤ −1
2(α− λ)(1 − ∥G∥)∥ϕ0∥2

V + 1
2

(
∥G∥(α− λ) + (α− λ)∥G∥2 − γ(−r)

)
∥ϕ1(−r)∥2

V

+ ∥ϕ0∥V

∫ 0

−r

∥ϕ1(θ)∥V d|η|(θ) − |η|(0) − |η|(−r)
2(1 − ∥G∥)(α− λ)

∫ 0

−r

∥ϕ1(θ)∥2
V d|η|(θ)

≤ −1
2(α− λ)(1 − ∥G∥)∥ϕ0∥2

V + ∥ϕ0∥V

∫ 0

−r

∥ϕ1(θ)∥V d|η|(θ) − |η|(0) − |η|(−r)
2(1 − ∥G∥)(α− λ)

∫ 0

−r

∥ϕ1(θ)∥2
V d|η|(θ).

(2.7)

If ∥ϕ0∥V = 0 or |η|(0) = 0, i.e., η is constant, it is immediate from (2.7) that (ϕ, (A + λν−1)ϕ)H ≤ 0 for all
ϕ ∈ D(A). If ∥ϕ0∥V ̸= 0 and |η|(0) > 0 for ϕ ∈ D(A), we have from (2.7) that

(ϕ, (A + λν−1)ϕ)H ≤ ∥ϕ0∥2
V

∫ 0

−r

[
− (1 − ∥G∥)(α− λ)

2(|η|(0) − |η|(−r)) + ∥ϕ1(θ)∥V

∥ϕ0∥V
− |η|(0) − |η|(−r)

2(1 − ∥G∥)(α− λ)
∥ϕ1(θ)∥2

V

∥ϕ0∥2
V

]
d|η|(θ)

= −∥ϕ0∥2
V

2 · |η|(0) − |η|(−r)
α− λ

∫ 0

−r

( ∥ϕ1(θ)∥V

(1 − ∥G∥)1/2∥ϕ0∥V
− (1 − ∥G∥)1/2(α− λ)

|η|(0) − |η|(−r)

)2
d|η|(θ) ≤ 0.
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Hence, it follows that (ϕ, (A + λν−1)ϕ)H ≤ 0 for all ϕ ∈ D(A). Due to the equivalence between ⟨·, ·⟩H
and (·, ·)H, this further implies, in addition to Proposition 2.1.4 in [6], that C0-semigroup etA, t ≥ 0, is
exponentially stable. The proof is completed now. □

3. Stochastic neutral functional evolution equations

Consider the following stochastic retarded evolution equation in the real Hilbert space H: for t ≥ 0,⎧⎪⎨⎪⎩y(t) −Gy(t− r) = etAϕ0 +
∫ t

0
A1y(s− r)ds+

∫ t

0

∫ 0

−r

A2(θ)y(s+ θ)dθds+
∫ t

0
By(s)dw(s),

y0 = ϕ1, ϕ = (ϕ0, ϕ1) ∈ H,
(3.1)

where B ∈ L (H), G ∈ L (V ) with ∥G∥ < 1, A1 ∈ L (V, V ∗), A2(·) ∈ L2([−r, 0]; L (V, V ∗)) and w(·) is a
standard real Brownian motion. Let A be the generator given in (2.2) and define a linear operator B ∈ L (H)
by Bϕ = (Bϕ0, 0) for any ϕ ∈ H. Then Eq. (3.1) can be lifted up into a stochastic evolution equation without
delays,

Y (t) = etAϕ+
∫ t

0
e(t−s)ABY (s)dw(s), t ≥ 0; Y (0) = ϕ, ϕ ∈ H, (3.2)

where Y (t) = (y(t) − Gy(t − r), yt), t ≥ 0. It is easy to see that ∥B∥ = ∥B∥. We also want to employ the
following result whose proof is referred to Proposition 2.1 in [4].

Proposition 3.1. Suppose that there exist β ∈ R, λ > 0 and M ≥ 1 such that the C0-semigroup et(A+βB)

generated by A + βB satisfies ∥et(A+βB)∥ ≤ Me−λt, t ≥ 0 and β2 + 2M2∥B∥2 < 4λ, then the solution of
(3.2) is almost sure exponentially stable with

lim sup
t→∞

1
t

log ∥Y (t)∥H ≤ −
(
λ− 1

4β
2 − M2

2 ∥B∥2
)

a.s.

Next let us proceed by considering the point delay and distributed delay in (3.1) separately.
(I) Let A2(·) ≡ 0 in (3.1), then we have for any β ∈ R that (A + βB)ϕ = ((A + βB)ϕ0 +

A1ϕ1(−r), dϕ1(θ)/dθ). Hence, by virtue of Propositions 2.1 and 3.1, we have that if there exist numbers
α > 0, β ∈ R and M > 0 such that for some λ ∈ (0, α),

∥et(A+βB)∥ ≤ Me−αt, β2 + 2M2∥B∥2 ≤ 4λ,[ ∥A1∥2e2λr

(1 − ∥G∥)(1 − e2λr(∥G∥ + ∥G∥2))

]1/2
< α− λ,

(3.3)

then the solution Y of (3.2) is exponentially stable in the almost sure sense. In this case, the delay parameter
r > 0 satisfies

r <
1

2λ ln (α− λ)2(1 − ∥G∥)
∥A1∥2 + (α− λ)2(1 − ∥G∥)(∥G∥ + ∥G∥2) , (3.4)

whenever ∥G∥ ≠ 0 or ∥G∥ = 0 and ∥A1∥ ≠ 0.

Example 3.1 (Example in the End of Section 1 Revisited). First consider the following stochastic retarded
partial differential equation,⎧⎨⎩dy(t, ξ) = ∂2

∂ξ2 y(t, ξ)dt+ α
∂2

∂ξ2 y(t− r, ξ)dt+ σy(t, ξ)dw(t), t ≥ 0, ξ ∈ [0, π],

y(t, 0) = y(t, π) = 0, t ≥ 0, y(0, ·) = ϕ0(·) ∈ L2(0, π), y0(·, ·) = ϕ1(·, ·) ∈ L2([−r, 0];L2(0, π)),
(3.5)
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where α, σ ∈ R. It is known that if r = 0 and α − 1 < σ2/2, the trivial solution of (3.5) is exponentially
stable in the almost sure sense. If r > 0, it is true that, in addition to the condition α − 1 < σ2/2, the
pathwise exponential stability of the trivial solution of (3.5) is not sensitive to small delays r > 0 (see [4]).
Next we want to consider a neutral type of version of (3.5), i.e., (1.5), which could be reformulated as

y(t) − γy(t− r) = etAϕ0 + (α+ γ)
∫ t

0
y(s− r)ds+ σ

∫ t

0
y(s)dw(s), t ≥ 0, (3.6)

and y0 = ϕ1, ϕ = (ϕ0, ϕ1) ∈ H = H × L2([−r, 0], V ), where γ ∈ R, V = H1
0 (0, π) ∩ H2(0, π),

H = L2(0, π), A = ∆ = ∂2/∂ξ2 and B ∈ L (H) is given by Bϕ = (σϕ0, 0) for ϕ = (ϕ0, ϕ1) ∈ H. Then
(A + βB)ϕ = (∆ϕ0 + α∆ϕ1(−r) + βσϕ0, dϕ1(θ)/dθ), ϕ ∈ D(A). Suppose that |γ| + |γ|2 < 1, then by virtue
of (3.3), we have that if there exists some number β ∈ R such that for some λ > 0,

λ < 1 − βσ, β2 + 2σ2 ≤ 4λ, (α+ γ)2e2λr

(1 − |γ|)(1 − e2λr(|γ| + |γ|2))
< (1 − βσ − λ)2, (3.7)

then the trivial solution of (3.2) is exponentially stable in the almost sure sense. It may be verified that
β = −2σ and λ = 3

2σ
2 + ε with ε > 0 sufficiently small satisfy condition (3.7). In this case, the third

inequality in (3.7) is actually reduced to

r <
1

3σ2 ln
(1 + σ2

2 )2(1 − |γ|)
(α+ γ)2 + (1 + σ2

2 )2(1 − |γ|)(|γ| + |γ|2)
. (3.8)

For instance, if α = −γ, σ ̸= 0, the pathwise exponential stability of the lift-up equation of (3.6) is not
sensitive to small delays 0 < r < − 1

3σ2 ln(|γ| + |γ|2).

(II) Let us consider a stochastic system with distributed delay. To this end, we first state a proposition
whose proof is analogous to that of Proposition 2.1.

Proposition 3.2. Suppose that ⟨x,Ax⟩V,V ∗ ≤ −α∥x∥2
V for all x ∈ V and some α > 0, and η takes the

form η(τ) = −
∫ 0

τ
A2(θ)dθ with A2 ∈ L2([−r, 0],L (V, V ∗)). Further, if ∥G∥ + ∥G∥2 < 1 and[ 1

(1 − ∥G∥)(1 − e2λr(∥G∥ + ∥G∥2))

∫ 0

−r

e−2λθ∥A2(θ)∥2dθ
]1/2

< α− λ for some 0 < λ < α, (3.9)

then there exists a constant M > 0 such that ∥etA∥ ≤ Me−λt for all t ≥ 0.

Example 3.2. Consider a distributed time delay version of (3.6) of the form: for t ≥ 0, ξ ∈ [0, π],⎧⎪⎨⎪⎩d(y(t, ξ) − γy(t− r, ξ)) = ∆(y(t, ξ) − γy(t− r, ξ))dt+ α

∫ 0

−r

y(t+ θ, ξ)dθdt+ σy(t, ξ)dw(t),

y(t, 0) = y(t, π) = 0, t ≥ 0, y(0, ·) = ϕ0(·) ∈ L2(0, π), y0(·, ·) = ϕ1(·, ·) ∈ L2([−r, 0];L2(0, π)),
(3.10)

where ∆ = ∂2/∂ξ2 and α, σ ∈ R, which can be reformulated as⎧⎪⎨⎪⎩y(t) − γy(t− r) = et∆ϕ0 + α

∫ t

0

∫ 0

−r

y(s+ θ)dθds+ σ

∫ t

0
y(s)dw(s), t ≥ 0,

y0 = ϕ1, ϕ = (ϕ0, ϕ1) ∈ H = H × L2([−r, 0], V ).
(3.11)

Suppose that |γ| + |γ|2 < 1, then we have similarly that if there is a value β ∈ R such that for some λ > 0,

λ < 1 − βσ, β2 + 2σ2 ≤ 4λ, α2(e2r(1−βσ) − 1)
2(1 − βσ)(1 − |γ|)(1 − e2λr(|γ| + |γ|2))

< (1 − βσ − λ)2, (3.12)
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then the trivial solution of the lift-up equation of (3.11) is exponentially stable in the almost sure sense.
It may be verified that if σ ̸= 0, β = −2σ and λ = 1 + 2σ2 − ε with ε > 0 sufficiently small satisfy
condition (3.12). In this case, the third inequality in (3.12) is actually reduced to

r <
1

2 + 4σ2 ln
α2 + 2(1 + σ2

2 )2(1 + 2σ2)(1 − |γ|)
α2 + 2(1 + σ2

2 )2(1 + 2σ2)(1 − |γ|)(|γ| + |γ|2)
. (3.13)

That is, the pathwise exponential stability of the lift-up equation of (3.11) is not sensitive to small delays.
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