Experimental direct spatial damping identification
by the Stabilised Layers Method
Domenico Lisitano1, Elvio Bonisoli1, John E. Mottershead2
1 Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino, Italy

2 University of Liverpool, School of Engineering, Liverpool, UK

Abstract
A new method is developed for direct damping matrix identification using experimental receptance-matrix data together with physical connectivity constraints based on what are described as layers. A number of spectral lines are considered in symmetric frequency bands around the damped peaks of the receptances and the identification procedure is shown to be ill-conditioned (singular) when one of the spectral lines coincides with an undamped natural frequency. A test is developed that makes use of a stabilisation diagram to ensure not only that a solution exists, but also that it is stable when the number and frequency range of the spectral lines is changed. An experimental parametric three degrees of freedom lumped mass system connected by springs and air dampers is considered and the matrix of non-proportional viscous damping terms is identified under different damper configurations and levels.
Keywords: parametric system, non-proportional viscous damping, physical constraints, air dashpots.

1. Introduction
The exact identification, localisation and quantification of dissipation sources in mechanical system remain as unsolved problems. While inertial and elastic properties of mechanical system are well understood, damping properties remain obscure and are often modelled equivalently so that the mechanism of energy dissipation is unrepresentative of the true physics. Better understanding the spatial distribution of dissipation sources is therefore a desirable objective and potentially very useful design tool to improve the efficiency of many mechanical systems, especially in problems of Noise Vibration and Harshness (NVH). The commonly used and most simple equivalent model is the famous Lord Rayleigh proportional viscous damping model, which relates the dissipation in a structure only to the velocity field. This model is a particular case of the more general Rayleigh dissipation function [1]. The proportional viscous damping model simplifies the modal analysis to the solution of a strictly real eigenvalue problem. A system can be defined as proportionally damped if the system matrices satisfy the relation 
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. The proportional viscous damping model, while mathematically convenient, quite rarely represents the true nature of dissipation in a system. Numerous damping theories were developed to represent dissipation in mechanical systems and Adhikari and Woodhouse [4] gave an extensive review of the non-viscous models. Non-proportional viscous damping models are regularly used in earthquake response analysis problems and in coupled systems such as classical aerospace fluid-structure interactions and in assembled, combined or hybrid structures [5].
The identification of a general viscous damping matrix is problem fraught with complications. Several classes of identification method can be found in literature, including Lancaster’s formula, energy-based methods, first order perturbation analysis [6], the instrumented variables and local equation of motion methods [7], which appear to be the most widely used. Prandina et al. (2009) [6] and Brumat et al. (2016) [7] produced good identification results when using the inverse receptance method. The effect of modal truncation was investigated in [6] while in [7] the local equation of motion method was found to locate damping sources precisely only for simple continuous structures when the analytical equation of motion was known, such as for beams or plates. Arora [8] presented a method for structural damping identification from direct experimental frequency response functions (FRFs) and in [9] a new structural damping matrix updating method in two steps. Both methods used the concept of the equivalent frequency response function of the undamped system introduced by Chen et al. [10]. In [11] Chen et al. presented a method based on the inverse undamped receptance matrix, derived from the experimental complex receptance matrix, to directly identify the viscous damping matrix from experimental FRFs. The method was extended by Lee and Kim [12-13] to structural damping, so that both viscous and structural damping matrices were identified directly from the imaginary part of the inverse receptance matrix. With all these identification methods, it is possible to obtain physically meaningless results, because no constraints (except on symmetry) are imposed upon the solution. This can result in the identification of not only wrongly located damping elements, but also unstable ones.
In damping identification, the user regularly encounters problems of non-uniqueness because of the many equivalent damping matrices that can represent the system response equally well [14]. The layers method, proposed by the authors [15], overcomes this problem by adding topological constraints to the identification with the purpose of finding the solution closest to the system real topology. The constraints are based on the system physical structure: if the system is known to be stable, all the elementary dampers should be also locally stable, moreover only degrees of freedom physically linked can have damping between them. Chen’s method [10, 11] combined with the layers method was applied for the identification of viscous and structural damping for a body-in-white car chassis [15]; the results were computed using FRF values at the chassis natural frequencies, where it is known the damping has the greatest effect on elastic modes [4]. The layers approach reduced drastically the number of unknowns in Chen’s method and provided reliable results.
The aim of this paper is to validate the Stabilised Layers Method (SLM) on a simpler system, much more controllable than an automotive body in white chassis. In the chassis example [15] it is seen how the method gives realistic spatial damping distribution, but the quantification of shock absorbers damping coefficients can only be validated against datasheet values. In this work identified damping spatial distribution and quantification can be validated by comparing them with known damping locations and coefficients. The robustness of the method is proved by changing the frequency ranges in which the identification procedure is performed and the number of spectral lines within the defined ranges. A stabilisation diagram is introduced for the identification procedure. The stabilisation diagram is typical of several identification techniques in different fields, the most common one is the stabilisation diagram for pole identification in vibrating systems [16-17]. In pole identification the model order is successively increased to identify the stable identification of the poles. The same concept is here applied for damper coefficients identification, stabilising the results with respect to both frequency range and numbers of spectral lines.

The paper is organised as follow: in § 2 the parametric experimental setup of the test rig is presented. The basic concept of the layers approach, its integration with the Chen-Ju-Tsuei method and the proposed stabilisation diagram for viscous damping matrix identification are explained and discussed in §3-5. The results of experimental damping localisation and quantification on the test rig are shown in §6. Finally considerations on the presented method and practical suggestions for its application are given in the conclusions.

2. Experimental setup

The test rig is a three degrees of freedom lumped mass-damper-spring system with plate-like springs, shown in Fig. 1. Each mass is connected to the ground through a “ground spring” and linked with its nearest neighbour through a “coupling spring”. The system possesses only translational degrees of freedom, one for each mass and numbered 1-2-3 from left to right in Fig. 1. Air dashpots act between the first and the second degrees of freedom and on the third degree of freedom. Due their topology, 
[image: image6.wmf]12

c

 is a relative damper and 
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 an absolute damper. The working dashpots dissipate energy from the system, i.e. with fixed ends as shown in Fig 2 (top). From Fig 2 (bottom) it is clear that when disconnected, the absolute damper 
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 is not part of the system, while the relative damper 
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 simply becomes an addition mass attached to the second degree of freedom. A more detailed description of the undamped test rig can be found in [18-19].
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Figure 1 – Three degrees of freedom parametrically damped test rig.
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Figure 2 – Dampers acting on the system (top) and excluded (bottom):
Relative damper 
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 (left) and absolute damper 
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 (right).

The system is said to be parametric because the dashpots damping values are continuously adjustable. Four different levels of damping were chosen for the relative damper 
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, while the absolute damper 
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 was maintained constant at a moderately high level of dissipation. In total ten different configurations of the system with different levels and distributions of the damping were tested: undamped system (without any air dashpots working), only absolute damping working (D3 configuration), only relative damper working in four different level (D12 L1-4 configurations), and finally both absolute and relative dampers working, with the relative damper in four different configurations (D3 & D12 L1-4 configurations).
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Figure 3 – Experimental arrangement. a) Laboratory setup: A - test rig; B - laser displacement DoF 1; C - laser displacement DoF 2; D - laser displacement DoF 3. b) Schematic setup.

Experimental roving-hammer modal analysis was carried out on the system, using LMS SCADAS III and Test.Lab. For each degree of freedom the receptance was obtained by averaging the receptances obtained from 5 separate impacts using a PCB 086C03 instrumented hammer. System responses were measured with three displacement laser sensors (Keyence LK-500 and LK-G402 and Micro-Epsilon OptoNCDT 1402-100), one for each system degree of freedom (Fig. 3). The system was completely monitored in terms of accelerations and dynamic forces at each of the dampers, but these measurements were not used in the identification process.
The expected damping values in each configuration were obtained by testing each damper separately, away from the test rig. The dampers were tested, fixed at one end with a known mass attached to the other, as shown in Fig. 4-a. The time necessary for executing a known stroke 
[image: image18.wmf]h

 of the damper was measured and the damping value computed from a mass-damper model. The test was repeated for both damper extension and retraction, as in the scheme of Fig. 4-a, with computed damping values reported in Fig. 4-b. The difference between extension and retraction is mainly due to time measurement accuracy and friction in the retraction phase due to the spherical joints. The mean values between extension and retraction were considered as reference damping values, and although nonlinear effects might be present to some degree they were not considered in the present study.
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Figure 4 – a) Schematic of the dampers test setup: extension - retraction,

b) Expected damping coefficients values.

3. Damping matrix by the layers method

The layers method takes its name from the way in which the damping matrix of a system can be decomposed as the sum of a finite number of elementary damping matrices. Each of these damping matrices is called a “layer” of the complete matrix: the superposition of all the layers results in the complete damping matrix,
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where 
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is the number of layers.

Using this technique three fundamental conditions can be easily imposed on the damping matrix: 1) if the system is known to be stable, also the damping matrix should be locally and globally stable and therefore each elementary matrix/layer must be stable; 2) damping can act only between degrees of freedom physically linked, therefore only “layers” involving physically linked degrees of freedom should be used, 3) for classical linear system each elementary matrix/layer must be symmetric. The result is the identification of a generic non-proportional viscous damping matrix respecting physical and topological constraints. In particular the first condition results in a constraint, not only of semi-definiteness, but also of strict positivity of equivalent damping coefficients for each layer.
Each layer is the expanded elementary matrix in the assembled system, 
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where 
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 are respectively the damping coefficient value, the localisation matrix and the elementary matrix of the 
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The elementary damping matrix can represent relative damping elements or absolute damping elements. In the first case the damper is located between two system degrees of freedom, in the second case the damper acts from ground to one single system degree of freedom.

The elementary matrices for relative and absolute dampers may be expressed as,
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where 
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 is the relative damper elementary matrix and 
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 is the absolute damper element.

The localisation matrix for the 
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 absolute  damper at the 
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 degree of freedom is defined as,
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For the 
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 relative damper connected between the 
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 degrees of freedom, the localisation matrix is given by,
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Now allowing for multiple dampers (absolute and relative) with the same damping coefficients and re-writing Eq. (1), the non-proportional viscous damping matrix may be written as,
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where 
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 and 
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 denote respectively the number of absolute and relative damping coefficients. The number of repetitions of absolute and relative dampers having the same damping coefficient (i.e. 
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Defining the vector of the unknowns damping coefficients as,
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where 
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are two column vectors containing respectively the absolute and relative damper coefficients, Eq. (6) becomes,
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Defining the absolute 
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then Eq. (8) may be re-arranged in the form,
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(10)
or more compactly as,
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with the obvious definition of the matrix 
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The layers method is very flexible and can be combined with different identification methods to ensure physical results. The stability of the elementary matrices is guaranteed by the condition 
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, the topological coherence of the damping matrix is ensured using layers involving only physically linked degrees of freedom, and finally the symmetry of the resulting damping matrix is guaranteed by the symmetry of elementary matrices.
4. Damping matrix identification

In this context the layers method is combined with the work of Chen et al. [11] who showed that the damping matrix may be directly identified from experimental system receptance matrix according to the formula,
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where 
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[image: image66.wmf](

)

w

G

 is the transformation matrix between the undamped matrix 
[image: image67.wmf](

)

w

N

H

 and the complex damped receptance matrix 
[image: image68.wmf](

)

w

C

H

. It was shown that the undamped matrix 
[image: image69.wmf](

)

w

N

H

 and the transformation matrix 
[image: image70.wmf](

)

w

G

 may be expressed as,


[image: image71.wmf](

)

(

)

(

)

(

)

[

]

(

)

w

w

w

w

w

C

I

C

R

C

I

C

R

N

H

H

H

H

H

1

-

+

=


(13)



[image: image72.wmf](

)

(

)

(

)

[

]

1

-

-

=

w

w

w

C

R

C

I

H

H

G


(14)

where 
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In practice, when using experimental measurements, the evaluation of damping matrix 
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 requires the computation of the undamped receptance matrix 
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or in compact form as,
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with the obvious definition of matrices 
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Substituting Eq. (11) in Eq. (16) leads to,
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and by rearrangement to,
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where
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All other terms in 
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Then, by writing Eq. (18) in compact form,
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with the obvious definition of 
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Eq. (21) is generally an overdetermined problem. Multiplying the both side of Eq. (21) by 
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Determining the damping coefficients for each pattern may then be cast as an optimisation problem, subject to the constraint that 
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which may be solved using the algorithm described by Lawson and Hanson [25].

The proposed approach reduces significantly the number of unknowns with respect to the classical Chen-Ju-Tsuei method. From Eqs. (8) and (9) it is clear that for each pattern it is necessary to compute only one unknown, instead of identifying three different damping coefficients for each elementary matrix of each pattern (two elements on the diagonal and one out-of-diagonal element), guaranteeing only the symmetry.
5. Stabilised damping matrix identification
There are two aspects of the solution of the layered damping matrix coefficients in Eq. (18), namely that a solution should exit and that it should be a stable solution. The approach described in § 4 is implemented within a band consisting of 
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 equally-spaced spectral lines on the measured (damped) receptance matrix centred on a peak and arranged symmetrically. The total number of spectral lines in Eq. 15 is seen to be 
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and the frequency interval between consecutive lines may then be written as,
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The range r and number of spectral lines k may be chosen independently.
A qualitative example of the frequency intervals 
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 and the spread of the spectral line within the intervals are shown in Fig. 5. In the example three frequency intervals are shown (
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Figure 5 – a) frequency intervals, b) Spectral lines location changing 
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The damping identification from Eq. (24) is based upon the matrix of undamped receptances
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 is the ith resonance frequency of the undamped system. An example is the case 
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 in Fig. 5-b: a spectral line is exactly on the resonance of the undamped system.
Fig. 6 shows as discrete points those (k, r) pairs that cause the matrix V to become singular. When these points are connected by the dash-dotted lines shown in the figure, it is seen that each line becomes an asymptote to one of three vertical lines, one for each of the three undamped natural frequencies of the example system. The undamped natural frequency will be greater than the peak of the damped receptance and therefore it is possible that the upper limit of the range (i.e. the kth spectral line) corresponds exactly with an undamped natural frequency. In this case 
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 becomes infinite and the matrix V is singular. Since, for the same range, r, irrespective of the number of spectral lines, the kth line always defines the upper limit of the range, it is apparent that the coincidence of the range upper limit with an undamped natural frequency defines the three vertical lines in Fig. 6. If the upper limit of r is less than 
[image: image118.wmf]1

N

w

 , then the system is guaranteed to be stable and to confirm this, it can be seen that there are no discrete points to the left of the first vertical line. The points to the right occur then 
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 is included within the range.
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Figure 6 – Singularity diagram in terms of (r, k).

The same grid of (k, r) points as shown in Fig.6 may also be used to test the stabilisation of solutions. Not to be confused with the singularity of matrix V, a stabilisation diagram is produced to test for the divergence of damping coefficient solutions. Thus, a total of 
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 stabilisation diagrams are obtained. At a particular (k, r) location a damping coefficient solution is compared to those solutions obtained at the eight (k, r) points surrounding the (k, r) location in question. If the variation of the considered point with respect to all it neighbours is less than a tolerance 
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, then the point is deemed to be stable and defined as such by,
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where 
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 is a logical matrix related to the identified coefficient 
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A global stabilisation diagram can be obtained by the Boolean “AND” operator for the complete set of 
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 stabilisation diagrams, such that
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Commonly an area of stability is obtained, usually with quite similar identified damping coefficient values for all the stable 
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 are the points that guarantee the smallest normalised residuum 
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 of the optimisation problem,
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Thus an identification map can be constructed for each identified damping coefficient in terms of the couple 
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 showing the normalised residuum.

6.  Experimental viscous damping identification

The method described is applied for the localisation and quantification of the damping matrix, based on test data from the experimental test rig in all ten different configurations described in §2. Tests carried out on the individual dampers in isolation, also described in §2 allows for the validation of the identified damping matrix terms at different levels of damping, from the quasi-undamped case to very high damping levels, and with different configurations of the relative or absolute dashpots. The identified results in the different configurations should be invariant for the various configurations and also in agreement with the expected values.

The receptances used for the identification method were synthesised from the experimental complex modal parameters,
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where 
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are the complex eigenvalues , mode shapes and modal constant estimated by identification using the Polymax algorithm [20]. A good synthesis of the receptance is necessary to obtain reliable identification results, therefore when necessary Maximum Likelihood estimation of a Modal Model (MLMM) [21] with proper conditions [22-24] were used to optimise the modal parameter identification, especially for the more heavily damped configurations.
The assumption of a viscous damping model is considered to be justified for the following reasons: 1) from a physical point of view only viscous damping is present in the form of air-dashpots; 2) from an analytical point of view, the entire set of configurations presents a low non-viscosity index (Adhikari and Woodhouse [4]) and should take a value of zero for a perfect viscously damped system. The 
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 index is applicable only when all the mode shapes of the system are available, as is the case for the analysed lumped system. All the results for different configurations appear to be almost perfectly viscous. The maximum index of non-viscosity is 
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 in the D12 L1 configuration. The levels of non-viscosity for each configuration are reported in Table 1.

Table 1 – Non-viscosity index for each configuration.
	Confn.
	undamped
	D3
	D12 L1
	D12 L2
	D12 L3
	D12 L4
	D3 & D12 L1
	D3 & D12 L2
	D3 & D12 L3
	D3 & D12 L4
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	0.0049
	0.0023
	0.0028
	0.0025
	0.0058
	0.0046
	0.0071
	0.0023
	0.0026
	0.0018


To apply the layers approach it is necessary to select the elements to be identified. In this case, assuming no prior knowledge of the damper locations, is clear that 5 layers must be chosen: three absolute damping layers, representing the absolute damping arising from the links between the ground and each of the three masses, and two relative dampers arising from the link between the degrees of freedom 1 and 2 and degrees of freedom 2 and 3. No direct link is considered between degrees of freedom 1 and 3, which would not be physical.

In the following section a complete example of all the stabilised layers method result details is presented for the configuration D12 L3. The damping coefficients and errors map show similar behaviour for all the other cases. The identified damping matrices of all the ten configurations, and the results comparison are presented in § 6.2.
6.1 Configuration D12 L3.
In the D12 L3 configuration of the system only the relative dampers is acting on the system, while the absolute damper is removed from the system. The system synthesised receptances are in very good agreement with the experimental one, as shown in Fig. 7. The system is seen to be considerably damped when compared to the undamped configuration, represented by solid black lines for the experimental data and dotted black lines for the synthesised ones in Fig. 7.
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Figure 7 – a) – f) Experimental and synthesised receptances of the system in configuration D12 L3: undamped system (grey lines) and damped system (coloured lines).

In Fig. 8 the auto-receptance at the first degree of freedom is presented together with its undamped receptance 
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 determined from equation (13). The denominator of the undamped receptances is shown in Fig. 9, where the zero crossings of the denominator are the undamped natural frequencies of the system. The range that just locates a vertical lines (as in Fig. 6) may be expressed as,
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The vertical asymptote coordinates were found at 
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. The singularity diagram is shown as a function of 
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 in Fig. 10, in which its behaviour is seen to be perfectly in agreement with what is expected from the analysis in §5.
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Figure 8 – Experimental and undamped receptances (1,1).
Figure 9 – Undamped receptance denominator.
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Figure 10 – Singularity diagram.

The identified damping coefficients and their regions of stabilisation are mapped onto the
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 plane in Fig. 11-15. The value of the tolerance used to distinguish stable point is 1% of the identified damping value 
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. The expected asymptotes are highlighted in dashed vertical lines and the stabilisation diagrams show stable and unstable regions of 
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 shown respectively in green and red. In Fig. 11 the damping coefficient of the absolute damper acting of the first mass is identified, shown to be stable and very low (close to zero damping) for every combination of 
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. This is an expected result because there is no absolute damper acting on the first mass. In Fig. 12 the absolute damper acting on the second degree of freedom is shown. In this case the identified values are stable within frequency ranges between the first and the second asymptotes, close to the first vertical asymptote on the right. The identified value is low but different from zero. The same consideration is valid for the damping coefficient value related to the absolute damper acting on the third degree of freedom, as shown in Fig. 13.
The damping coefficient value for the first relative damper in Fig. 14 is well identified and stable between the first two asymptotes, whereas elsewhere in the diagram damping values are not stable and very different from to the expected one. The relative damper coefficient between the second and the third degree of freedom in Fig. 15 is low and stable in the region between the first two asymptotes. All the identified damping values were found to be similar to the expected values in the stable regions.
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Figure 11 – a) Damping coefficient 
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, b) stabilisation diagram.
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Figure 12 – a) Damping coefficient 
[image: image160.wmf]2

c

, b) stabilisation diagram.
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Figure 13 – a) Damping coefficient 
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, b) stabilisation diagram.
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Figure 14 – a) Damping coefficient 
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, b) stabilisation diagram.
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Figure 15 – a) Damping coefficient 
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, b) stabilisation diagram.

A preferred 
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 couple may be chosen from the global stabilisation diagram 
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 and the error map, as shown in Fig. 16. The global stabilisation diagram is the Boolean operator of all the five elementary stabilisation diagrams 
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. It is seen that the identification is globally stable in a region close to the first asymptote. In the same region also the normalised residuum reaches a minimum value. The optimal identification couple 
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, corresponding to the blue cross in Fig. 16. The error is extremely low.
The identified damping matrix is shown in Fig. 17, with damping coefficient values of the 5 layers in Table 2. The spatial distribution of the damping is perfectly identified and also the damping values are in very good agreement with the expected ones.
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Figure 16 – a) Normalised residuum and b) global stabilisation diagram.
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Figure 17– Identified viscous damping matrix.
	Table 2 – Identified dampers values.

Damper
Value [N / (m/s)]

c1

0.0000

c2
2.1946

c3
0.2879

c12
15.5820

c23
0.8241




6.2 Parametric system identification

Identification was carried out for all the ten configurations of the parametric system. The identified values of the absolute and relative dampers c3 and 
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 are expected to be almost the same in all the configurations in which they are present. In the entire set of the system configurations the obtained undamped receptances were found to be very similar and the damping coefficient maps and stabilisation diagrams were found to be similar to those shown previously.
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Figure 18 – Identified damping matrices of the ten configurations.

In Fig. 18 the identified damping matrices of all the ten configurations are shown, where the sizes of the coloured squares are proportional to the logarithm of the corresponding damping matrix term. The first row includes all the configurations with the absolute dampers present and with increasing levels for the relative damper. In the second row only the relative damper is present.

The comparison of the results between the configurations shows consistent results. The identified absolute viscous damping coefficient value is almost the same in the entire set of configurations in which it is present. The identified relative damping coefficient increase as expected with the increasing levels of damping set on the air dashpot. Moreover in those configurations in which the relative damper is set at the same level (3rd to 5th sub-figures on the two rows), the identified damping matrix terms are almost the same.

The normalised residuum error is very low in all the configurations, the maximum error is 
[image: image180.wmf]%
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 = 0.116% in the configuration D12 L4, the only exception being the undamped configuration in which the error result is very high. This is due to the fact that the method is trying to identify a damping matrix in an almost undamped structure, and is an unrepresentative result. Although dissipation is predominantly due the air dashpots, the internal damping of the structure is also identified, i.e. damping between the second and third degrees of freedom or small amount of absolute damping on each degree of freedom.
The identified viscous damping coefficients values are found to be in very good agreement with expected values (from separate tests described in §2) in Fig. 19. The expected trend is perfectly identified, only the D12 L4 configuration presents a significantly greater difference in both the relative and absolute dampers. Regarding the relative damper, the difference is possibly due to the overestimation of the expected value in L4 dissipation level during the separate air dashpot testing, where Fig. 4-b shows a difference between estimated values depending upon the direction of motion. The identification of the absolute damper may be influenced by the much higher damping level of the relative damper.
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Figure 19 – Expected and identified dashpot viscous damping coefficients values in the ten configurations.

Conclusion

The identification of viscous damping coefficients for parametric air dashpots assembled in a three degree of freedom system has been carried out by the Stabilised Layers Method, which introduces a physical connectivity constraint so that the viscous damping matrix is represented by the sum of defined number of damping layers. This approach allows one to identify the viscous damping matrix closest to the real topology of the system from the infinity of energy-equivalent solutions. When the method is applied to experimental results, damping value maps and stabilisation diagrams are developed based on a number of spectral lines within a frequency band arranged symmetrically around the peaks of measured receptances (where the damping effect is most pronounced). The method has been validated showing a good accuracy in the identification of ten different damper configurations and levels for a lumped parameter system. Both relative and absolute dampers are identified, localised and quantified. The results are consistent across different setups and in good agreement with independently measured values. In the present experimental example the best range in which the quantification provides suitable values is between the first two vertical asymptotes (created when the kth spectral line coincides with an undamped natural frequency), and is confirmed in all the configurations analysed.
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