
The Andrews-Curtis conjecture, term rewriting
and first-order proofs

A. Lisitsa

Department of Computer Science, University of Liverpool, Liverpool, UK
A.Lisitsa@liverpool.ac.uk

Abstract. The Andrews-Curtis conjecture (ACC) remains one of the
outstanding open problems in combinatorial group theory. In short, it
states that every balanced presentation of the trivial group can be trans-
formed into a trivial presentation by a sequence of simple transforma-
tions. It is generally believed that the conjecture may be false and there
are several series of potential counterexamples for which required sim-
plifications are not known. Finding simplifications poses a challenge for
any computational approach - the search space is unbounded and the
lower bound on the length of simplification sequences is known to be at
least superexponential. Various specialised search algorithms have been
used to eliminate some of the potential counterexamples. In this paper
we present an alternative approach based on automated reasoning. We
formulate a term rewriting system ACT for AC-transformations, and
its translation(s) into the first-order logic. The problem of finding AC-
simplifications is reduced to the problem of proving first-order formulae,
which is then tackled by the available automated theorem provers. We
report on the experiments demonstrating the efficiency of the proposed
method by finding required simplifications for several new open cases.

1 Introduction

The topic of this paper can be described by two expressions: applied auto-
mated reasoning and experimental mathematics. We show how automated first-
order theorem proving and disproving can be used to explore the Andrews-Curtis
conjecture (ACC) [2]. This conjecture remains one of the outstanding open prob-
lems in combinatorial group theory. In short, it states that every balanced pre-
sentation of the trivial group can be transformed into a trivial presentation by a
sequence of simple transformations. It is generally believed that the conjecture
may be false and there are several series of potential counterexamples for which
required simplifications are not known.

For a group presentation 〈x1, . . . , xn; r1, . . . rm〉 with generators xi, and rela-
tors rj , consider the following transformations.

AC1 Replace some ri by r−1i .
AC2 Replace some ri by ri · rj , j 6= i.



AC3 Replace some ri by w · ri · w−1 where w is any word in the generators.
AC4 Re-order the relators.
AC5 Introduce a new generator y and relator y or delete a generator y and

relator y.

We notice that AC4 rule is redundant in a sense that its effect can be achieved
by an application of a sequence of AC1 and AC2 rules. Indeed, for any two
relators ri and rj their transposition . . . ri . . . rj . . . 7→ . . . rj , . . . ri . . . is the result
of the application of the sequence of rules AC2ij AC1i AC2ji AC1j AC2ij AC1i.
As any permutation is a composition of transpositions the statement follows.

Two presentations g and g′ are called Andrews-Curtis equivalent (AC-equiva-
lent) if one of them can be obtained from the other by applying a finite sequence
of transformations of the types (AC1) - (AC4). Two presentations are stably AC-
equivalent if one of them can be obtained from the other by applying a finite
sequence of transformations of the types (AC1) - (AC5).

A group presentation g = 〈x1, . . . , xn; r1, . . . rm〉 is called balanced if n = m,
that is a number of generators is the same as a number of relators. Such n we
call a dimension of g and denote by Dim(g).

Conjecture 1 (Andrews-Curtis [2]).
If 〈x1, . . . , xn; r1, . . . rn〉 is a balanced presentation of the trivial group it is

AC-equivalent to the trivial presentation 〈x1, . . . , xn;x1, . . . xn〉.

The weak form of the conjecture states that every balanced presentation for
a trivial group is stably AC-equivalent (i.e. transformations AC5 are allowed) to
the trivial presentation.

In what follows we will assume that we are dealing with the strong form of
the conjecture unless stated otherwise.

Both variants of the conjecture remain open and challenging problems. Ac-
cording to [4] the prevalent opinion is that the conjecture is false, but no coun-
terexamples have been found so far. There are, however, potential counterex-
amples and even infinite series of potential counterexamples, which provide an
opportunity to use a computational approach to explore the conjecture. Notice,
that if the statement of the conjecture holds for a particular presentation this fact
can be established, at least in principle, by enumeration and application of all
possible sequences of transformations until the trivial presentation is obtained.
Then, in principle, one may attack potential counterexamples for AC-conjecture
by the automated search of the AC-sequences leading to the trivial presentations
(AC-simplifying sequences). Such a search is a computationally difficult and the
search space grows exponentially with the length of the sequences. As it was
noticed in [18], neither total enumeration, nor random search can be effectively
applied here. More efficient search procedure using genetic algorithms has been
proposed in [18] and it was used to show that a well-known potential coun-
terexample 〈x, y|xyxy−1x−1y−1, x2y−3〉 is, in fact, AC-equivalent to the trivial
presentation, and by that it is not a counterexample. Further exploration and
improvement of genetic approach can be found in [20] and [13] where many new
simplifications are presented as well.



In [12] it was shown that a systematic breadth-first search of the tree of
equivalent presentations is a viable alternative to genetic algorithms of [18] which
allowed to show, in particular, that the potential counterexample

〈x, y|xyxy−1x−1y−1, x3y−4〉

is unique up to the AC-equivalence among all balanced presentations of trivial
groups with two generators up to the length 13. This counterexample (AK-3)
is one of the infinite series of presentations proposed by Akbulut and Kirby
[1] and is the smallest for which it is not known whether it is AC-equivalent
to trivial presentation. The paper [16] discusses the implementation aspects of
the breadth-first search for AC-simplifications on high-performance computer
platform using disk-based hash tables. The approach is illustrated by success-
ful search of AC-simplifications for some known non-trivial cases. In [11] an
alternative approach for refuting the potential counterexamples based on the
methods from computational group theory was proposed. In this approach AC-
simplifications are extracted from the results produced by Todd-Coxeter coset
enumeration algorithm, by application of ad hoc techniques. The approach has
been used to find some non-trivial AC-simplifications.

Lower bound on the length of simplifications is known to be superexponen-
tial [7,14]. So the failure to deal AK-3 example by any known computational
approach should not be overestimated, we are still exploring very small part of
the huge search space.

In this paper we propose an alternative approach for testing the groups pre-
sentations as to whether they satisfy the Andrews-Curtis conjecture which is
based on use of term-rewriting systems and first-order logic. We formulate the
term rewriting system ACT for AC-transformations, and its translations into
the first-order logic. The problem of finding AC-simplifications is reduced to the
problem of proving first-order formulas, which is then tackled by the available au-
tomated theorem provers. We show that the approach is competitive by demon-
strating simplifications for a few open cases. An abstract with an announcement
of the proposed method and simplifications of known cases has appeared in [15].

2 ACT Term Rewriting Systems

Let TG be the equational theory of groups defined by the the following equations
in a vocabulary (·, r, e):

– (x · y) · z = x · (y · z)
– x · e = x
– x · r(x) = e

For each n ≥ 2 we formulate a term rewriting system modulo TG, which
captures AC-transformations of presentations of dimension n. We start with
dimension n = 2.

For an alphabet A = {a1, a2} a term rewriting system ACT2 consists the
following rules:



R1L f(x, y)→ f(r(x), y))
R1R f(x, y)→ f(x, r(y))
R2L f(x, y)→ f(x · y, y)
R2R f(x, y)→ f(x, y · x)
R3Li f(x, y)→ f((ai · x) · r(ai), y) for ai ∈ A, i = 1, 2
R3Ri f(x, y)→ f(x, (ai · y) · r(ai)) for ai ∈ A, i = 1, 2

The term rewriting system ACT2 gives rise to the rewrite relation →ACT on
the set of all terms defined in the standard way [3]. For terms t1, t2 in groups
vocabulary we write t1 =G t2 if equality t1 = t2 is derivable in TG. We extend =G

homomorphically by defining f(t1, t2) =G f(s1, s2) iff t1 =G s1 and t2 =G s2.
Denote by [t]G the equivalence class of t wrt =G, that is [t]G = {t′ | t =G t′}.

Then rewrite relation →ACT/G for ACT modulo theory TG is defined [3] as
follows: t→ACT/G s iff there exist t′ ∈ [t]G and s′ ∈ [s]G such that t′ →ACT s′.

Claim (on formalization). The notion of rewrite relation →ACT/G captures ad-
equately the notion of AC-rewriting, as defined in Section 1 that is for presen-
tations p1 and p2 we have p1 →∗AC p2 iff tp1

→∗ACT/G . Here tp denotes a term
encoding of a presentation p, that is for p = 〈a1, a2 | t1.t2〉 we have tp = f(t1, t2).

The term rewriting system ACT2 can be simplified without changing the
transitive closure of the rewriting relation. Reduced term rewriting system rACT2

consists of the following rules:

R1L f(x, y)→ f(r(x), y))
R2L f(x, y)→ f(x · y, y)
R2R f(x, y)→ f(x, y · x)
R3Li f(x, y)→ f((ai · x) · r(ai), y) for ai ∈ A, i = 1, 2

Proposition 1. Term rewriting systems ACT2 and rACT2 considered modulo
TG are equivalent, that is →∗ACT2/G

and →∗rACT2/G
coincide.

Proposition 2. For ground t1 and t2 we have t1 →∗ACT2/G
t2 ⇔ t2 →∗ACT2/G

t1, that is →∗ACT2/G
is symmetric.

Now we present two variants of translations of ACT2 into first-order logic
with an intention to use automated theorem proving to show AC-equivalence.

2.1 Equational Translation

Denote by EACT2
an equational theory TG∪rACT= where rACT= includes the

following axioms (equality variants of the above rewriting rules):

E-R1L f(x, y) = f(r(x), y))
E-R2L f(x, y) = f(x · y, y)
E-R2R f(x, y) = f(x, y · x)
E-R3Li f(x, y) = f((ai · x) · r(ai), y) for ai ∈ A, i = 1, 2



Proposition 3. For ground terms t1 and t2 t1 →∗ACT2/G
t2 iff EACT2

` t1 = t2

Proof (sketch) By Proposition 2 t1 →∗ACT2/G
t2 ⇔ t2 ↔∗ACT2/G

t1. By Birkhoff’s
theorem [5,19,8] the latter condition is equivalent to EACT2 |= t1 = t2 and
therefore EACT2 ` t1 = t2.

In a variant of the equational translation the axioms E−R3Li are replaced
by “non-ground" axiom E−RLZ : f(x, y) = f((z · x) · r(z), y) and the corre-
sponding analogue of Proposition 3 holds true.

2.2 Implicational Translation

Denote by IACT2 the first-order theory TG ∪ rACT→2 where rACT→2 includes
the following axioms:

I-R1L R(f(x, y))→ R(f(r(x), y)))
I-R2L R(f(x, y))→ R(f(x · y, y))
I-R2R R(f(x, y))→ R(f(x, y · x))
I-R3Li R(f(x, y))→ R(f((ai · x) · r(ai), y)) for ai ∈ A, i = 1, 2

Proposition 4. For ground terms t1 and t2 t1 →∗ACT2/G
t2 iff IACT2

` R(t1)→
R(t2)

Similarly to the case of equational translation “non-ground” axiom I-R3Z:
R(f(x, y))→ R(f((z · x) · r(z), y)) can be used instead of I-R3Li with a corre-
sponding analogue of Proposition 4 holding true.

2.3 Higher Dimensions

For dimensions n > 2 the rewriting systems ACTn, their reduced versions
rACTn, their equational and implicational translations can be formulated such
that the analogues of Propositions 3 and 4 hold true. To cut a long story short
we show here only an equational translation rACT=

3 (“non-ground” variant):
f(x, y, z) = f(r(x), y, z) f(x, y, z) = f(x, r(y), z)
f(x, y, z) = f(x, y, r(z)) f(x, y, z) = f(x · y, y, z)
f(x, y, z) = f(x · z, y, z) f(x, y, z) = f(x, y · x, z)
f(x, y, z) = f(x, y · z, z) f(x, y, z) = f(x, y, z · x)
f(x, y, z) = f(x, y, z · y) f(x, y, z) = f((v · x) · r(v), y, z)
f(x, y, z) = f(x, (v · y) · r(v), z) f(x, y, z) = f(x, y, (v · z) · r(v)).

3 Automated Proving and Disproving for ACC
Exploration

Propositions 3 and 4 (and their analogues) suggest a way of using automated
reasoning for exploration of ACC. For any concrete pair of presentations p1 and
p2, to establish whether they are AC-equivalent one can formulate a theorem



proving/disproving tasks of the form EACTn
` tp1

= tp2
, or IACTn

` R(tp1
) →

R(tp2) (EACTn 6` tp1 = tp2 , or IACTn 6` R(tp1)→ R(tp2)).
Unfortunately disproving by finite countermodel model finding has its fun-

damental limitations in the context of ACC. Based on the results of [6] it cannot
be used to disprove ACC. At the same time one can get some non-trivial results
on necessity of some of the rules for simplification, both in solved cases and
non-solved cases. For example we have:

Proposition 5. To simplify AK-3 (if at all it is possible) one really needs con-
jugation with both generators a and b.

We have used finite model builder Mace4 [17] to build countermodels of sizes
12 and 6 respectively for the cases where either of the conjugation rules was
missing.

3.1 Theorem Proving for Simplification

Known Cases We have applied automated theorem proving using Prover9
prover[17] to confirm that all cases eliminated as potential counterexamples in
[16,12,18,11,13] can be eliminated by our method too.

New Cases Using automated theorem proving we were able to eliminate the
following potential counterexamples for ACC, which are all irreducible cycli-
cally presented groups [10] whose status was open to the best of our knowl-
edge [13,10,9]. We use notation of [9] to refer to these examples. We also follow
the standard convention to use capital letters A,B,C . . . to denote inverse of
a, b, c, . . . respectively.

Dim = 2
T14 〈a, b | ababABB, babaBAA〉
T28 〈a, b | aabbbbABBBB, bbaaaaBAAAA〉
T36 〈a, b | aababAABB, bbabaBBAA〉
T62 〈a, b | aaabbAbABBB, bbbaaBaBAAA〉
T74 〈a, b | aabaabAAABB, bbabbaBBBAA〉

Dim = 3
T16 〈a, b, c | ABCacbb,BCAbacc, CABcbaa〉
T21 〈a, b, c | ABCabac,BCAbcba, CABcacb〉
T48 〈a, b, c | aacbcABCC, bbacaBCAA, ccbabCABB〉
T88 〈a, b, c | aacbAbCAB, bbacBcABC, ccbaCaBCA〉
T89 〈a, b, c | aacbcACAB, bbacBABC, ccbaCBCA〉

Dim = 4
T96 〈a, b, c, d | adCADbc, baDBAcd, cbACBda, dcBDCab〉
T97 〈a, b, c, d | adCAbDc, baDBcAd, cbACdBa, dcBDaCb〉
We were able to prove corresponding formulas in both equational and (vari-

ants of) implicational translations. The proofs for implicational translations are



more transparent and more amenable for simplifying transformations extrac-
tions. The proofs generated by Prover9 for implicational translations are essen-
tially sequences of atomic formulas of the from R(r1, r2) (for Dim =2) which en-
compass simplification sequences of presentations 〈a, b | r1, r2〉. All such atomic
formulas produced with the references to the applied clauses which encode partic-
ular rules from (AC1)-(AC3). In the Appendix we show a simplification extracted
manually from the proof for T16 (Dim = 3) presentation.

4 Conclusion

As it was noticed in [18] neither total enumeration, nor random search can be
effectively applied to disproving the Andrews-Curtis conjecture. We have shown
in this paper that systematic, goal-oriented search implemented in automated
theorem proving procedures provides an interesting and viable alternative.

Furthermore, although finite model finding can not be used directly to dis-
prove AC-conjecture, it can be a tool for establishing non-derivability for syb-
systems of transformations.

We have published all computer-generated proofs online1.

References

1. Selman Akbulut and Robion Kirby. A potential smooth counterexample in dimen-
sion 4 to the Poincare conjecture, the Schoenflies conjecture, and the Andrews-
Curtis conjecture. Topology, 24(4):375–390, 1985.

2. J. Andrews and M.L. Curtis. Free groups and handlebodies. Proc. Amer. Math.
Soc., 16:192–195, 1965.

3. Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, New York, NY, USA, 1998.

4. Gilbert Baumslag, Alexei G. Myasnikov, and Vladimir Shpilrain. Open problems in
combinatorial group theory. Second edition, volume 296, pages 1–38. Amer. Math.
Soc., Providence, RI, 2002.

5. Garrett Birkhoff. On the structure of abstract algebras. In Mathematical proceed-
ings of the Cambridge philosophical society, volume 31, pages 433–454. Cambridge
Univ Press, 1935.

6. Alexandre V. Borovik, Alexander Lubotzky, and Alexei G. Myasnikov. The Fini-
tary Andrews-Curtis Conjecture, pages 15–30. Birkhäuser Basel, Basel, 2005.

7. M. R. Bridson. The complexity of balanced presentations and the Andrews-Curtis
conjecture. ArXiv e-prints, April 2015.

8. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan van
Leeuwen, editor, Formal Models and Semantics, volume B of Handbook of Theo-
retical Computer Science, pages 243–320. Elsevier, Amsterdam, 1990.

9. Martin Edjvet and Jerry Swan. Irreducible cyclically presented groups.
https://www.maths.nottingham.ac.uk/personal/pmzme/Irreducible-
Cyclically-Presented-Groups.pdf, 2005–2010.

1 https://zenodo.org/record/1248986
DOI: 10.5281/zenodo.1248986



10. Martin Edjvet and Jerry Swan. On irreducible cyclic presentations of the trivial
group. Experimental Mathematics, 23(2):181–189, 2014.

11. George Havas and Colin Ramsay. Andrews-Curtis and Todd-Coxeter proof words.
Technical report, in Oxford. Vol. I, London Math. Soc. Lecture Note Ser, 2001.

12. George Havas and Colin Ramsay. Breadth-first search and the Andrews-Curtis
conjecture. International Journal of Algebra and Computation, 13(01):61–68, 2003.

13. Krzysztof Krawiec and Jerry Swan. Ac-trivialization proofs eliminat-
ing some potential counterexamples to the andrews-curtis conjecture.
www.cs.put.poznan.pl/kkrawiec/wiki/uploads/Site/ACsequences.pdf, 2015.

14. B. Lishak. Balanced finite presentations of the trivial group. ArXiv e-prints, April
2015.

15. Alexei Lisitsa. First-order theorem proving in the exploration of Andrews-Curtis
conjecture. TinyToCS, 2, 2013.

16. Stephen B. McCaul and R. Sean Bowman. Fast searching for Andrews-Curtis
trivializations. Experimental Mathematics, 2006:193–197, 2006.

17. W. McCune. Prover9 and mace4. http://www.cs.unm.edu/~mccune/prover9/,
2005–2010.

18. Alexei D. Miasnikov. Genetic algorithms and the Andrews-Curtis conjecture. In-
ternational Journal of Algebra and Computation, 09(06):671–686, 1999.

19. David A. Plaisted. In Dov M. Gabbay, C. J. Hogger, and J. A. Robinson, editors,
Handbook of Logic in Artificial Intelligence and Logic Programming (Vol. 1), chap-
ter Equational Reasoning and Term Rewriting Systems, pages 274–364. Oxford
University Press, Inc., New York, NY, USA, 1993.

20. Jerry Swan, Gabriela Ochoa, Graham Kendall, and Martin Edjvet. Fitness land-
scapes and the andrews-curtis conjecture. IJAC, 22(2), 2012.

Appendix

4.1 Technical details

We used Prover9 and Mace4 version 0.5 (December 2007) [17] and one of two
system configurations:

A) AMD A6-3410MX APU 1.60Ghz, RAM 4 GB, Windows 7 Enterprise
B) Intel(R) Core(TM) i7-4790 CPU 3.60Ghz, RAM 32 GB, Windows 7 En-

terprise

Table 1. Time to prove simplifications for system configuration B)

T14 T28 T36 T62 T74 T16 T21 T48 T88 T89 T96 97
Dim 2 2 2 2 2 3 3 3 3 3 4 4

Equational 6.02s 6.50s 7.18s 24.34s 57.17s 12.87s 11.98s 34.63s 57.69s 17.50s 114.05s 115.10s
Implicational 1.57s 2.46s 1.34s 22.50s 6.29s 1.61s 1.45s 2.17s 1.97s 2.14s 102.34s 89.65s

Implicational GC t/o t/o t/o t/o t/o 3.76s 1.61s t/o 0.86s 0.75s t/o t/o

“t/o” stands for timeout in 200s; “GC” means encoding with ground conju-
gation rules; all other encodings are with non-ground conjugation rules.



4.2 AC-trivialization for T16

Initial presentation:
〈a, b, c | ABCacbb,BCAbacc, CABcbaa〉

Simplification:
〈ABCacbb,BCAbacc, CABcbaa〉
x,y,z→x,y,azA−−−−−−−−−−→ 〈ABCacbb,BCAbacc, aCABcba〉
x,y,z→x,y,zx−−−−−−−−→ 〈ABCacbb,BCAbacc, aCABacbb〉
x,y,z→x,y,bzB−−−−−−−−−→ 〈ABCacbb,BCAbacc, baCABacb〉
x,y,z→x,y,zy−−−−−−−−→ 〈ABCacbb,BCAbacc, bac〉
x,y,z→x,y,czC−−−−−−−−−→ 〈ABCacbb,BCAbacc, cba〉
x,y,z→x′,y,z−−−−−−−−→ 〈BBCAcba,BCAbacc, cba〉
x,y,z→x,y,z′

−−−−−−−−→ 〈BBCAcba,BCAbacc,ABC〉
x,y,z→xz,y,z−−−−−−−−→ 〈BBCA,BCAbacc,ABC〉
x,y,z→x′,y,z−−−−−−−−→ 〈acbb,BCAbacc,ABC〉 x,y,z→x,y,z′

−−−−−−−−→ 〈acbb,BCAbacc, cba〉
x,y,z→x,y,azA−−−−−−−−−−→ 〈acbb,BCAbacc, acb〉 x,y,z→x,y,z′

−−−−−−−−→ 〈acbb,BCAbacc,BCA〉
x,y,z→x,y,zx−−−−−−−−→ 〈acbb,BCAbacc, b〉 x,y,z→x,y,z′

−−−−−−−−→ 〈acbb,BCAbacc,B〉
x,y,z→xz,y,z−−−−−−−−→ 〈acb,BCAbacc,B〉 x,y,z→xz,y,z−−−−−−−−→ 〈ac,BCAbacc,B〉
x,y,z→x,y′,z−−−−−−−−→ 〈ac, CCABacb,B〉 x,y,z→x,yz,z−−−−−−−−→ 〈ac, CCABac,B〉
x,y,z→x,y′,z−−−−−−−−→ 〈ac, CAbacc,B〉 x,y,z→x,y,z′

−−−−−−−−→ 〈ac, CAbacc, b〉
x,y,z→x′,y,z−−−−−−−−→ 〈CA,CAbacc, b〉
x,y,z→x,yx,z−−−−−−−−→ 〈CA,CAbacA, b〉 x,y,z→x,y′,z−−−−−−−−→ 〈CA, aCABac, b〉
x,y,z→x,yx,z−−−−−−−−→ 〈CA, aCAB, b〉 x,y,z→x,yz,z−−−−−−−−→ 〈CA, aCA, b〉
x,y,z→x′,y,z−−−−−−−−→ 〈ac, aCA, b〉 x,y,z→x,yx,z−−−−−−−−→ 〈ac, a, b〉
x,y,z→x,y′,z−−−−−−−−→ 〈ac,A, b〉 x,y,z→x,yx,z−−−−−−−−→ 〈ac, c, b〉
x,y,z→x,y′,z−−−−−−−−→ 〈ac, C, b〉 x,y,z→xy,y,z−−−−−−−−→ 〈a,C, b〉
x,y,z→x,yz,z−−−−−−−−→ 〈a,Cb, b〉 x,y,z→x,y′,z−−−−−−−−→ 〈a,Bc, b〉
x,y,z→x,y,zy−−−−−−−−→ 〈a,Bc, c〉 x,y,z→x,y,z′

−−−−−−−−→ 〈a,Bc,C〉
x,y,z→x,yz,z−−−−−−−−→ 〈a,B,C〉 x,y,z→x,y,z′

−−−−−−−−→ 〈a,B, c〉
x,y,z→x,y′,z−−−−−−−−→ 〈a, b, c〉


	 The Andrews-Curtis conjecture, term rewriting and first-order proofs 

