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Abstract. In this paper we deal with verification of safety properties of
term-rewriting systems. The verification problem is translated to a purely
logical problem of finding a finite countermodel for a first-order formula,
which further resolved by a generic finite model finding procedure. A
finite countermodel produced during successful verification provides with
a concise description of the system invariant sufficient to demonstrate a
specific safety property.

We show the relative completeness of this approach with respect to the
tree automata completion technique. On a set of examples taken from the
literature we demonstrate the efficiency of finite model finding approach
as well as its explanatory power.

1 Introduction

The development of general automated methods for the verification of infinite-
state and parameterized systems poses a major challenge. In general, such prob-
lems are undecidable, so one can not hope for the ultimate solution and the
development should focus on the restricted classes of systems and properties.

In this paper we deal with a very general method for verification of safety
properties of infinite-state systems which is based on a simple idea. If an evolu-
tion of a computational system is faithfully modelled by a derivation in a classical
first-order logic then safety verification (non-reachability of unsafe states) can
be reduced to the disproving of a first-order formula. The latter task can be
(partially, at least) tackled by generic automated procedures searching for finite
countermodels.

Such an approach to verification was originated in the research on formal
verification of security protocols [29,28,15] and later has been extended to the
wide classes of infinite-state and parameterised verification tasks. Completeness
of the approach for particular classes of systems (lossy channel systems) and
relative completeness with respect to general method of regular model checking
has been established in [24] and [25] respectively.

Here we continue investigation of the boundaries of applicability of finite
countermodels based method and are looking into verification of safety properties
of term-rewriting systems (TRS). Term-rewriting systems provide with a gen-
eral formalism for specification and verification of infinite-state systems. Several
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general automated methods for verification of safety properties of term-rewriting
systems has been proposed and implemented [12,9,10] with the methods based
on tree automata completion [12,9] playing the major role.

We show that verification via finite countermodels (FCM) approach provides
with a viable alternative to the methods based on the tree automata completion.
We show the relative completeness of FCM with respect to the tree automata
completion methods (TAC).

We illustrate it on a simple example taken from [11]. Consider the TRS
R = {f(x) → f(s(s(x)))} and assume that we want to prove that f(a) 6→∗

f(s(a)). In [11] a simple finite-state abstraction of the set of reachable terms
expressed by the equation E = {s(s(x) = x} is explicitly added to the TRS
and simple analysis of rewriting modulo E is proposed. In FCM approach, the
same problem is translated into disproving of the first-order formula ϕR :=
(∀xR(f(x), f(s(s(x)))) → R(f(a), f(s(a)). The intended meaning of the binary
predicate R here is to encode the reachability relation for the TRS. The finite
countermodel of ϕR, having the size 2 (cardinality of the domain) and essentially
representing the above abstraction, i.e. satisfying s(s(x) = x, can be found by
an automated model finder, e.g. Mace4 in a fraction of a second.

On a series examples taken from the literature we demonstrate practical effi-
ciency of FCM approach using off-the shelf and state of the art implementation of
a finite model finding procedure Mace4 (W. McCune); illustrate the high degree
of automation achievable as well as the explanatory power of the method.

2 Preliminaries

In this paper we use standard terminology for first-order predicate logic and
term-rewriting systems, and the for detailed accounts of these areas the reader
is referred to [8] and to [3], respectively. We remind here only the concepts which
we are going to use in the paper.

2.1 First-order Logic

The first-order vocabulary is defined as a finite set Σ = F ∪ P where F and P
are the sets of functional and predicate symbols, respectively. Each symbol in
Σ has an associated arity, and we have F = ∪i≥0Fi and P = ∪i≥1Pi, where Fi

and Pi consist of symbols of arity i. The elements of F0 are also called constants.
First-order model over vocabularyΣ, or just amodel is a pairM = 〈D, [Σ]D〉

where D is a set called domain of M and [ΣD] denotes the interpretations of all
symbols from Σ in D. For a domain D and a function symbol f of arity n ≥ 1
an interpretation of f in D is a function [f ]D : Dn → D. For a constant c its
interpretation [c]D is an element of D. For a domain D and a predicate symbol
P of arity n an interpretation of P in D is a relation of arity n on D, that is
[P ]D ⊆ Dn. The model M = 〈D, [Σ]D〉 is called finite if D is a finite set.

We assume that the reader is familiar with the standard definitions of first-
order formula, first-order sentence, satisfactionM |= ϕ of a formula ϕ in a model



M, deducibility (derivability) Φ ⊢ ϕ of a formula ϕ from a set of formulae Φ.
We also use the existence of complete finite model finding procedures for the
first-order predicate logic [4,26], which given a first-order sentence ϕ eventually
produce a finite model for ϕ if such a model exists.

2.2 Term-rewriting systems and tree automata

To define a term-rewriting system we fix a finite set of functional symbols F ,
each associated with an arity and a set of variables X . T (F ,X ) and T denote the
set of terms and ground terms, respectively, defined in the standard way using
F and X . The set of variables of a term t is denoted by V ar(t). A substitution
is a function σ : X → T (F ,X ), which can be extended homomorphically in a
unique way (and keeping the name) to σ : T (F ,X ) → T (F ,X ). Application of
a substitution σ to a term t we denote by tσ.

A term-rewriting system R is a set of rewrite rules l → r where l, r ∈
T (F ,X ), l 6∈ X and V ar(r) ⊆ V ar(l). The notion of a subterm is defined in
a standard way. One-step rewriting relation ⇒R⊆ T (F ,X )×T (F ,X ) is defined
as follows: t1 ⇒R t2 holds iff t2 is obtained from t1 by replacement of a sub-
term lσ of t1 with a subterm rσ for some rewriting rule (l → r) in R and some
substitution σ. The reflexive and transitive closure ⇒R is denoted by ⇒∗

R.
Definitions of tree automata we borrow largely from []. Let Q be a finite

set of symbols called states which we formally treat as functional symbols of
arity 0 (constants). We assume Q ∩ F = ∅. Elements of T (F ∪ Q) are called
configurations.

Definition 1. (Transitions) A transition is a rewrite rule c → q, where c is
a configuration, i.e. c ∈ T (F ∪ Q), and q ∈ Q. A normalized transition is a
transition c → q where c = f(q1, . . . , qn), f is a functional symbol of arity n
from F , q, q1, . . . qn ∈ Q. An ǫ-transition c→ q is such that c ∈ Q.

Definition 2. (Tree automata) A (bottom-up, non-deterministic, finite) tree au-
tomaton is a quadruple A = 〈F,Q,Qf , ∆〉, where Qf ⊆ Q is a set of final (ac-
cepting) states and ∆ is a set of normalized transitions and of ǫ-transitions.

Transitions∆ ofA induce the rewriting relation on T (F∪Q) which is denoted
by ⇒∆ or ⇒A.

Definition 3. (Recognized language) The tree language recognized by A in a
state q is L(A, q) = {t ∈ T (F) | t ⇒∗

A q}. The language recognized by A is
L(A) = ∪q∈Qf

L(A, q).

Example 1. (Tree automaton and recognized language) Let F = {f, a, b} and
A = 〈F , Q,Qf , ∆〉, where Q = {q1, q2}, Qf = {q1}, and ∆ = {f(q1) → q1, a →
q1, b→ q2, q2 → q1}. Then L(A, q1) = T (f, a, b), that is the set of all terms build
on {f, a, b}, and L(A, q2) = {b}.

Deterministic bottom-up tree automata have the same expressive power as
non-deterministic bottom-up tree automata, that is they recognize the same
classes of term languages. In what follows we assume that automata are deter-
ministic, unless otherwise specified.



3 Safety via finite countermodels

3.1 Basic verification problem

The main verification problem we consider in this paper is as follows.

Problem 1.

Given: Tree automata AI and AU , a term-rewriting system R
Question: Does ∀t1 ∈ L(AI) ∀t2 ∈ L(AU ) t1 6⇒∗

R t2 hold?

In applications, we assume that the states of a computational system to be
verified are represented by terms, the system evolution (computation) is rep-
resented by R; tree automata AI and AU provide with finitary specifications
of the (infinite, in general) sets of allowed initial states and the sets of unsafe
states, presented by L(AI) and L(AU ), respectively. Under such assumptions,
safety of the system is equivalent to the positive answer on the question of the
Problem 1.

Modifications of the basic problem will be considered later.

3.2 Translation of the basic verification problem

In this subsection we show how to reduce the basic verification problem to
the problem of disproving of a formula from classical first-order predicate logic.
First, we define the translation ΦR of a term-rewriting system R over T (F ,X )
into a set of first-order formulae in the vocabulary F ∪ {R}, where R is a new
binary predicate symbol. Let ΦR = Φr

R ∪ ΦF , where Φ
r
R = {R(l, r) | (l → r) ∈

R} and ΦF is the set of the following formulae, which are all assumed to be
universally closed and where x1, . . . xi, . . . xn, x

′

i are distinct variables:

1. R(x, y) ∧R(y, z) → R(x, z) transitivity axiom

2. R(xi, x
′

i) → R(f(x1, . . . , xi, . . . xn), f(x1, . . . , x
′

i, . . . xn)) for every n-ary func-
tional symbol f from F and every position i: 1 ≤ i ≤ n

congruence axioms

Under such a translation first-order derivabiliy faithfully models rewriting in
R as the following proposition shows.

Proposition 1. For ground terms t1, t2 ∈ T (F) if t1 ⇒∗
R t2 then ΦR ⊢

R(t1, t2).

Proof. Due to the transitivity of R specified in ΦR it is sufficient to show that
if t1 ⇒R t2 then ΦR ⊢ R(t1, t2). Assume t1 ⇒ t2 then t2 is obtained from
t1 by the replacement of some subterm lσ of t1 with a subterm rσ for some
(l → r) ∈ R and some substitution σ. Consider two sequences of subterms
τ0 = lσ, τ1, . . . , τk = t1 and ρ0 = rσ, ρ1, . . . , ρk = t2 with the property that τi
is an immediate subterm of τi+1 within t1 and ρi is an immediate subterm of



ρi+1 within t2, i = 0, . . . , k. Then we show by easy induction on i that ΦR ⊢
R(τi, ρi) for i = 0, . . . , k. Indeed, for i = 0 we have R(τ0, ρ0) ≡ R(lσ, rσ) is a
ground instance of R(l, r) ∈ Φr

R and therefore ΦR ⊢ R(τ0, ρ0). For the step of
induction, assume ΦR ⊢ R(τi, ρi). Notice that by construction of sequences of
τ ’s and ρ’s τi+1 and ρi+1 should have the same outermost functional symbol f
and coincide everywhere apart of subterms τi and ρi. Let τi+1 = f(. . . , τi, . . .)
and ρi+1 = f(. . . , ρi, . . .). Then we have R(τi, ρi) → R(τi+1, ρi+1) is a ground
instance of one of the formulae in Φr

R. So we have ΦR ⊢ R(τi, ρi) → R(τi+1, ρi+1)
and by inductive assumption ΦR ⊢ R(τi, ρi). It follows ΦR ⊢ R(τi+1, ρi+1). The
induction step is completed. We have ΦR ⊢ R(τk, ρk), which is ΦR ⊢ R(t1, t2)

Now we define a first-order translation of a tree automaton.
Let A = 〈F , QI , Qf , ∆〉 be a tree automaton. let ΣA be the following first-

order vocabulary:

– constants for all elements of Q;
– all functional symbols from F ;
– a binary predicate symbol R;

Let ΦA to be the set of first-order formulae in vocabulary ΣA defined as
ΦA = Φ∆∪ΦF , where Φ∆ = {R(c, q) | (c→ q) ∈ ∆} and ΦF is as defined above.

As the following proposition shows first-order logic derivations from ΦA faith-
fully simulate the work of the automaton A

Proposition 2. (Adequacy of automata translation)
If t ∈ L then ΦA ⊢ ∨q∈Qf

R(t, q)

Proof. The statement of the proposition follows immediately from Definitions 2
and 3 and Proposition 1.

Now we are ready to define the translation of the basic verification problem.
Assume we are given an instance P = 〈AI ,R,AU 〉 of Problem 1, with a term-
rewriting system R over T (F ,X ) and tree automata AI = 〈F , QI , QfI , ∆I〉,
AU = 〈F , QU , QfU , ∆U 〉. Assume also (without loss of generality) that sets F ,
QI and QU are disjoint.

We define translation of P as ΦP = ΦAI
∪ΦAU

∪ΦR. By the above definitions
we then also have ΦP = ΦF∪Φ∆I

∪Φ∆U
∪Φr

R. We further define the translation of
(negation of) correctness condition from P as a formula ψP = ∃x∃y∨qi∈QI ,qu∈QU

R(x, qi) ∧R(x, y) ∧R(y, qu).
The following proposition and corollary serves as a formal underpinning of

the proposed verification method.

Proposition 3. (Correctness of the translation)
Let P be an instance of the basic verification problem as detailed above. Then

if P has a negative answer then ΦP ⊢ ψP

Proof. The statement of the proposition immediately follows from Definitions 2
and 3 and Propositions 1 and 2.



By contraposition we have the following

Corollary 1. If ΦP 6⊢ ψP the instance P has a positive answer and the safety
property holds.

3.3 FCM method

By FCM (finite countermodels) verification method we understand the following.
Given an instance P = 〈AI ,R,AU 〉 of the basic verification problem, translate
it into a set of first-order formulae ΦP and a formula ψP as described above.
Then apply a generic finite model finding procedure to find a countermodel for
ΦP → ψP . If a countermodel found the safety property is established and the
instance P has got a positive answer.

3.4 Relative completeness

In this section we show the relative completeness of FCM with respect to ver-
ification methods based on tree automata completion techniques (TAC). More
precisely, we show that if safety of TRS can be demonstrated by TAC, it can be
demonstrated by FCM too.

Given an instance P of basic verification problem (Problem 1) verification
by TAC approach would proceed as follows. Starting from AI and R completion
procedure yields an automaton A∗ wich describes, in general, an overapproxi-
mation of the set of terms reachable in R from L(AI)), that is L(A∗) ⊇ {t |
∃t0 ∈ L(AI) t0 →∗

R t}. Further, the check of whether L(A∗) ∩ L(AU ) = ∅ is
performed and, if it holds, the safety is established.

Exact description by of the set of all reachable terms in a term-rewriting
system by a tree automaton not always possible. The main direction in the
development of TAC methods is a development of more efficient and more precise
approximations methods.

Theorem 1. Let P = 〈AI ,AU ,R〉 be a basic verification problem and there
exists a tree automaton A∗ = 〈F , Q∗, Q∗

f , ∆
∗〉 such that L(A∗) ⊇ {t | ∃t0 ∈

L(AI) t0 →∗
R t} and L(A∗) ∩ L(AU ) = ∅. Then there exists a finite model M

such that M |= ΦP ∧ ¬ψP (i.e M is a countermodel for ΦP → ψP ).

Proof. Assume the conditions of the theorem hold. Define the domain D of the
required model: D = Q⊥

I ×Q⊥
∗ ×Q⊥

U , where Q
⊥
I = QI ∪ {⊥}.

Define interpretations of contants [c] = 〈aI , a∗, aU 〉, where
ax = q if (c, q) ∈ ∆x, or ax = ⊥ otherwise, x ∈ {I, ∗, U}.

For a functional symbols f of arity n ≥ 1 define its interpretation [f ] : Dn →
D as follows

[f ](〈a1I , a
1
∗, a

1
U 〉, . . . , 〈a

n
I , a

n
∗ , a

n
U 〉) = 〈aI , a∗, aU 〉, where for all x ∈ {I, ∗, U},

either (f(a1x, a
2
x, . . . a

n
x) → ax) ∈ ∆x, or ax = ⊥, otherwise.

Once we defined the interpretations of all functional symbols (including con-
stants) any ground term t gets its interpretation [t] ∈ D in a standard way. Then



it is an easy consequence of definitions that [t] is a triple of states of automata
AI , A∗, AU , respectively, into which they get working on the input t. More for-
mally, if [t] = 〈aI , a∗, aU 〉, then for all x ∈ {I, ∗, U} either t ⇒∗

x ax ∈ Qx, or
there is no such q ∈ Qx that t⇒∗

x q, and then t⇒∗
x ax = ⊥.

Define the interpretation [R] ⊆ D ×D of R as follows.

[R] = {〈[t1], [t2]〉 | t1, t2 are ground in D, t1 ⇒∗ t2}

where ⇒ denotes ⇒R ∪ ⇒∆I
∪ ⇒∆U

Now we are going to show that in a such defined model M we have ΦP ∧¬ψP

satisfied. Recall ΦP = ΦF ∪ Φ∆I
∪ Φ∆U

∪ Φr
R.

We have

– M |= ΦF (by definition of rewriting and definition of [R])
– M |= Φ∆I

∪ Φ∆U
∪ Φr

R (by definition of [R])

To show M |= ¬ψP assume the opposite i.e M |= ψP that is
M |= ∃x∃y ∨qi∈QI ,qu∈QU

R(x, qi) ∧ R(x, y) ∧ R(y, qu). That means there are
a, b ∈ D such that (a, [qi]) ∈ [R], (a, b) ∈ [R], (b, [qu]) ∈ [R]. Consider the
ground terms τ1 and τ2 such that [τ1] = a and [τ2] = b. We have τ1 ∈ L(AI),
τ1 ⇒∗ τ2, τ2 ∈ L(AU ). It follows that τ2 ∈ L(A∗) ∩ L(AU ) which contradicts to
the assumption of the theorem on emptiness of L(A∗) ∩ L(AU ).

Note 1. The above model construction serves only the purpose of proof and it
is not efficient in practical use of the method. Instead we assume that the task
of model construction is delegated to a generic finite model building procedure.

3.5 Variations on a theme

Theorem 1 provides with a lower bound for the verifying power of FCM method
applied to a basic verification problem. In this section we consider practically
important variations of the basic verification problem which allow simplified
translations and more efficient verification.

Finitely based sets of terms In many cases of safety verification tasks for
TRS the sets of initial and/or unsafe terms are given not by tree automata, but
rather described as the sets of ground instances of terms from a given finite set
of terms. More precisely, let B be a finite set of terms in a vocabulary F and
g(B) = {τ | ∃t ∈ B ∧ τ = tθ; θ is ground }. It is easy to see that for the finite B
g(B) is a regular set.

Consider the following modification of the basic verification problem.

Problem 2.

Given: Finite sets of terms BI and BU , a term-rewriting system R
Question: Does ∀t1 ∈ g(BI) ∀t2 ∈ g(BU ) t1 6⇒∗

R t2 hold?



Let P = 〈BI ,R, BU 〉 be an instance of the Problem 2.
The translation ΦR of the term rewriting system R is defined in 3.2.
The translation of (negation of) correctness condition from P is defined as

ψP = ∃x̄ ∨t1∈g(BI ),t2∈g(BU ) R(t1, t2).
Now we have the following analogue of Proposition 3

Proposition 4. (Correctness of the translation)
Let P be an instance of the basic verification problem as detailed above. Then

if P has a negative answer then ΦR ⊢ ψP

Rewriting strategies Another simplification of the translation may come from
the restrictions on the rewriting strategies in TRSs. If rewriting can only be ap-
plied at the outer level, i.e. redex can be only the whole term, not its proper
subterm, then the first-order translation of an TRS can be simplified by us-
ing unary reachability predicate R(−) instead of binary R(−,−). The intended
meaning of R(t) is “term t is reachable from some of the initial terms (using out-
ermost strategy)”. We omit the obvious details of translation (axiomatization of
R) and rather refer to an Example 3. Notice, that congruence axioms are not
needed in this case and it was observed empirically that their absence makes the
countermodel search more efficient.

4 Experiments

In this section we present three examples of application of FCM method for
safety verification and compare the results with the results of alternative methods
reported in the literature.

4.1 Parity of n2

Example 2.
The following verification task is taken from [12,10].
Let Pn2 = 〈AI ,R,AU 〉 be an instance of basic verification task. Term rewrit-

ing system R consists of the following rewriting rules

– plus(0, x) → x

– plus(s(x), y) → s(plus(x, y))
– times(0, x) → 0
– times(s(x), y) → plus(y, times(x, y))
– square(x) → times(x, x)
– even(0) → true

– even(s(0)) → false

– even(s(x)) → odd(x))
– odd(0) → false

– odd(s(0)) → true

– odd(s(x)) → even(x)



– even(square(x)) → odd(square(s(x)))
– odd(square(x)) → even(square(s(x)))

The tree automaton AI recognizes the set of initial terms. It has the set of
states QI = {s0, s1, s2}, the set of the final states QIf = {s0} and the set of
rewriting rules ∆I = {even(s1) → s0, square(s2) → s1, 0 → s2} It is easy to see
that L(AI) = {even(square(0))}

The tree automaton AU recognizes the set of unsafe terms. It has the set of
states QU = QUf

= {q0} and the set of rewriting rules ∆U = {false→ q0}.
So the question of the verification problem Pn2 is whether false is reachable

from even(square(0)).
First-order translation ΦP of Pnn consists of the following formulae:

– R(plus(0, x), x)
– R(plus(s(x), y), s(plus(x, y)))
– R(times(0, x), 0)
– R(times(s(x), y), plus(y, times(x, y)))
– R(square(x), times(x, x))
– R(even(0), t)
– R(even(s(0)), f)
– R(even(s(x)), odd(x))
– R(odd(0), f)
– R(odd(s(0)), t)
– R(odd(s(x)), even(x))
– R(even(square(x)), odd(square(s(x))))
– R(odd(square(x)), even(square(s(x))))
– R(x, y) ∧R(y, z) → R(x, z)
– R(x, y) → R(even(x), even(y))
– R(x, y) → R(odd(x), odd(y))
– R(x, y) → R(plus(x, z), plus(y, z))
– R(x, y) → R(plus(z, x), plus(z, y))
– R(x, y) → R(times(x, z), times(y, z))
– R(x, y) → R(times(z, x), times(z, y))
– R(x, y) → R(square(x), square(y))
– R(0, s2)
– R(even(s1), s0)
– R(square(s2), s1)
– R(f, q0)

The formula ψP : ∃x∃y(R(x, s0) ∧ R(x, y) ∧ R(y, q0) expresses the negation
of correctness condition.

The finite model finder Mace4 has found a finite countermodel for ΦP → ψP

(i.e a finite model for ΦP ∧¬ψP ) in 0.03s (see further details in 4.4). The domain
D of the model is a two element set {0, 1}. Interpretations of constants: [f ] =
[q0] = [s1] = [s2] = 0; [s0] = [t] = 1. Interpretations of functions: [even](0) = 1,
[even](1) = 0; [odd](0) = 0, [odd](1) = 1; [s](0) = 1, [s](1) = 0; [square](0) = 0;



[square](1) = 1; [plus](x,y) = (x+ y)mod2; [times](x,y) = x× y. Interpretation
of reachability relation: [R] = {(0, 0), (1, 1)}.

Notice that verification is done here automatically. This can be contrasted
with the verification of the same system by a tree completion algorithm imple-
mented in Timbuk system [9], where an user interaction was required to add an
approximation equation s(s(x)) = x manually. In [10] an automated verification
of the same system was reported using Horn Clause approximation technique.
The system was specified as a Horn Clause program and the verification followed
by producing a model for the program which contained 53 elements. The above
model produced by Mace4 within FCM approach provides with much more con-
cise explanation of why the safety holds: interpretation of any ground term (0
or 1) is an invariant for reachability in TRS, [even(square(0))] = 1 and [f ] = 0.

4.2 Readers-writers system verification

In this subsection we consider the example of a readers-writers system verifica-
tion taken from [5,11].

Example 3.
In the TRS specifying the system the only outermost rewriting is possible, so

for the translation we use monadic reachability predicate. Furthermore, both the
set of initial terms and the set of unsafe terms are finitely based. The vocabulary
consists the constant 0, unary functional symbol s (for successor) and binary
functional symbol state.

The rules are as follows

– state(0, 0) → state(0, s(0))
– state(x, 0) → state(s(x), 0)
– state(x, s(y)) → state(x, y)
– state(s(x), y) → state(x, y)

The set of initial terms is I = {state(0, 0)}.
The set of unsafe terms U is finitely based with the base

B = {state(s(x), s(y)), state(x, s(s(y)))}.
The first-order translation Φ consists the conjunction of the following formu-

lae

– R(state(0, 0))
– R(state(0, 0)) → R(state(0, s(0)))
– R(state(x, 0)) → R(state(s(x), 0))
– R(state(x, s(y))) → R(state(x, y))
– R(state(s(x), y)) → R(state(x, y))

The formula ψ ≡ ∃x∃yR(s(x), s(y))∨R(x, s(s(y))) expresses the negation of
the correctness condition.

The system can be then successfully verified by an FCM method. The search
for the countermodel for Φ→ ψ took 0.01s and the model found is as follows.



The domain D of the model is a three element set {0, 1, 2}; [s](0) = 1, [s](1)
= 2, [s](2) = 2; [R] = {(0, 0), (0, 1), (1, 0), (2, 0)}.

Notice that no additional information is needed for FCM method to au-
tomatically verify the reader-writer system. That may be contrasted with the
verification using tree automata completion approach (Timbuk 3.0 system), re-
ported in [11] where an equational abstraction rule s(s(x)) = s(s(0)) should be
manually added to the TRS for the successful verification.

4.3 Reverse function

In this section we consider a verification problem from [12]. The problem here is
to show that list reverse function satisfies the following property: if in a list all
symbols ‘a’ are before all symbols ‘b’ then after reversing there are no ‘a’ before
‘b‘.

Example 4.
Vocabulary F consists of one 0-ary functional (constant) sumbol 0 and three

binary symbols app, cons, rev.
The automaton recognizing is initial terms is defined asAI = 〈F , QI , QfI , ∆I〉,

where F is as defined above; QI = {qrev, qlab, qlb, qa, qb}; QfI = {qrev}; ∆I

contains

– rev(qlab) → qrev

– cons(qa, qlab) → qlab

– 0 → qlb

– a→ qa

– 0 → qlab

– cons(qa, qlb) → qlab

– cons(qb, qlb) → qlb

– b→ qb

The automaton recognizing unsafe terms is defined asAU = 〈F , QU , QfU , ∆U 〉,
where F is as above; QU = {qlab1, qlb1, q1, qa, qb}, QfU = {qlab1}; ∆U contains

– cons(qa, qlab1) → qlab1
– cons(qa, qlb1) → qlab1
– cons(qa, q1) → q1
– a→ qa

– 0 → q1
– cons(qb, qlab1) → qlab1
– cons(qb, q1) → qlb1
– cons(qb, q1) → q1
– b→ qb

The term-rewriting system R consists of the following rules

– app(0, x) → x



– app(cons(x, y), z) → cons(x, app(y, z))
– rev(0) → 0
– rev(cons(x, y)) → app(rev(y), cons(x, 0))

First-order translation ΦP consists of the following formulae.

– R(rev(qlab), qrev)
– R(cons(qa, qlab), qlab)
– R(0, qlb)
– R(a, qa)
– R(0, qlab)
– R(cons(qa, qlb), qlab)
– R(cons(qb, qlb), qlb)
– R(b, qb)
– R(cons(qa, qlab1), qlab1)
– R(cons(qa, qlb1), qlab1)
– R(cons(qa, q1), q1)
– R(0, q1)
– R(cons(qb, qlab1), qlab1)
– R(cons(qb, q1), qlb1)
– R(cons(qb, q1), q1)
– R(b, qb)
– R(app(0, x), x)
– R(app(cons(x, y), z), cons(x, app(y, z)))
– R(rev(0), 0)
– R(rev(cons(x, y)), app(rev(y), cons(x, 0)))
– (R(x, y) ∧R(y, z)) → R(x, z)
– R(x, x)
– R(x, y) → R(rev(x), rev(y))
– R(x, y) → R(cons(z, x), cons(z, y))
– R(x, y) → R(cons(x, z), cons(y, z))
– R(x, y) → R(app(z, x), app(z, y))
– R(x, y) → R(app(x, z), app(y, z))

The formula ψP : ∃x∃y((R(rev(x), qrev) ∧ R(y, qlab1)) ∧ R(rev(x), y) ex-
presses the negation of the correctness condition.

For this standard encoding Mace4 has failed to find a countermodel for ΦP →
ψP within 40000s. However after removing the congruence axiom R(x, y) →
R(rev(x), rev(y)) Mace4 has found the model of size 3 (cardinality of the do-
main) in 0.06s. (see further details in [21]. The absence of such a congruence ax-
iom means that no rewriting of proper subterms of rev(. . .) is allowed. One can
either easily argue that in TRS given above no such rewriting possible anyway,
or, remaining in a pure automated verification scenario, just accept verification
modulo restrictions on the rewriting strategy. This can be contrasted with the
verification of the same system in [12] using tree automata completion technique,
which required interactive approximation.



4.4 Experimental results

In the experiments we used the finite model finder Mace4[26] within the package
Prover9-Mace4, Version 0.5, December 2007. It is not the latest available version,
but it provides with convenient GUI for both the theorem prover and the finite
model finder. The system configuration used in the experiments: Microsoft Win-
dows XP Professional, Version 2002, Intel(R) Core(TM)2 Duo CPU, T7100 @
1.8Ghz 1.79Ghz, 1.00 GB of RAM. The time measurements are done by Mace4
itself, upon completion of the model search it communicates the CPU time used.
The table below lists the parameterised/infinite state protocols together with the
references and shows the time it took Mace4 to find a countermodel and verify
a safety property. The time shown is an average of 10 attempts. ∞ means not
return in 40000s.

Problem Reference Time
Parity of n2 [12] 0.3s
Readers-Writers [11] 0.01s
Reverse [12] ∞
Reverse (no congruence for rev) II Example 4 0.06s

5 Related work

5.1 Discussion and Related work

The verification of safety properties for term-rewriting systems using tree au-
tomata completion techniques has been addressed in [12,9,11]. The paper [10]
presents a method based on encoding both term-rewriting system and tree au-
tomata into Horn logic and application of the static analysis techniques to com-
pute a tree automaton accepting an approximation of the set of reachable terms.
The main conceptual difference between these approaches and FCM presented
in this paper, is that in [12,9,11,10] the safety verification is performed in two
stages: first, a tree automaton approximating all reachable terms is obtained and
it depends only on TRS but not on the safety property, and, second, an inter-
section of the language of this automaton with the language of unsafe states is
computed. FCM method we presented here operates in one stage and computing
regular approximations (in terms of finite countermodels) is done for concrete
safety properties. It has its disadvantage that the results of the verification of
a TRS can not be re-used for the verification of different safety properties for
the same TRS. On the other hand this disadvantage is compensated by a higher
degree of automation and higher explanatory power of FCM methods as our ex-
perimental results suggest. Another advantage of FCM is its flexibility. Rewriting
modulo theory can be easily incorporated into a general FCM framework and
previous work on FCM illustrates this point. In [24] dealing with the verification
of lossy automata and cache coherence protocols, rewriting modulo first-order
specifications of automata and modulo simple arithmetics, was used. In [25] the



translation of regular model checking into FCM framework, the associativity of
a monoid multiplication was explicitly specified.

As mentioned Section 1 the approach to verification using the modeling of
protocol executions by first-order derivations and together with countermodel
finding for disproving was introduced within the research on the formal analysis
of cryptographic protocols. It can be traced back to the early papers by Wei-
denbach [29] and by Selinger [28]. In [29] a decidable fragment of Horn clause
logic has been identified for which resolution-based decision procedure has been
proposed (disproving by the procedure amounts to the termination of saturation
without producing a proof). It was also shown that the fragment is expressive
enough to encode cryptographic protocols and the approach has been illustrated
by the automated verification of some protocols using the SPASS theorem prover.
In [28], apparently for the first time, explicit building of finite countermodels has
been proposed as a tool to establish correctness of cryptographic protocols. It
has been illustrated by an example, where a countermodel was produced manu-
ally, and the automation of the process has not been discussed. The later work
by Goubault-Larrecq [15] has shown how a countermodel produced during the
verification of cryptographic protocols can be converted into a formal induction
proof. Also, in [15] different approaches to model building have been discussed
and it was argued that an implicit model building procedure using alternating
tree automata is more efficient in the situations when no small countermodels
exist. Very recently, in the paper [19] by J. Jurgens and T. Weber, an exten-
sion of Horn clause logic was proposed and the soundness of a countermodel
finding procedure for this fragment has been shown, again in the context of
cryptographic protocol verification.

The work we reported in this paper differs from all the approaches mentioned
previously in two important aspects. Firstly, to the best of our knowledge, none
of the previous work addressed verification via countermodel finding applied
outside of the area of cryptographic protocols (that includes the most recent
work [17] we are aware of). Secondly, the (relative) completeness for the classes
of verification tasks has not been addressed in previous work.
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