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We explore an approach to verification of programs via program transformation applied to an in-
terpreter of a programming language. A specialization technique known as Turchin’s supercompi-
lation is used to specialize some interpreters with respect to the program models. We show that
several safety properties of functional programs modeling a class of cache coherence protocols can
be proved by a supercompiler and compare the results with our earlier work on direct verification via
supercompilation not using intermediate interpretation.

Our approach was in part inspired by an earlier work by E. De Angelis et al. (2014-2015) where
verification via program transformation and intermediate interpretation was studied in the context of
specialization of constraint logic programs.
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1 Introduction

We show that a well-known program specialization technique called the first Futamura projection [14,
45, 20] can be used for indirect verification of some safety properties. We consider functional programs
modeling a class of non-deterministic parameterized computing systems specified in a language that
differs from the object programming language treated by the program specializer. Let a specializer
transforming programs be written in a language L and an interpreter IntM of a language M , which
is also implemented in L , be given. Given a program p0 written in M , the task is to specialize the
interpreter IntM (p0,d) with respect to its first argument, while the data d of the program p0 is unknown.

Our interest in this task has been inspired by the following works [3, 5]. The authors work in terms of
constraint logic programming (CLP), where the constraint language is the linear arithmetic inequalities
imposed on integer values of variables. They use partial deduction [25] and CLP program specializa-
tion [11, 4] methods for specializing an interpreter of a C-like language with respect to given programs,
aiming at verification of the C-like imperative specifications with respect to the postconditions defined
in CLP and defining the same functions (relations) as done by the corresponding C-like programs. Addi-
tionally to the CLP program specialization system developed by E. De Angelis et al. and called VeriMAP
[4] they use also external satisfiability modulo theories (SMT) solvers. We would also refer to an earlier
work by J. P. Gallagher et al. [15] proposing a language-independent method for analyzing the imperative
programs via intermediate interpretation by a logic programming language. Note that the transformation
examples given in the papers [15, 11, 4] presenting the above mentioned approaches deal with neither
function nor constructor application stack in the interpreted programs.

In this paper we focus our attention on self-sufficient methods for specialization of functional pro-
grams, aiming at proving some safety properties of the programs. We consider a program specialization
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method called Turchin’s supercompilation [46, 45, 44, 21] and study potential capabilities of the method
for verifying the safety properties of the functional programs modeling a class of non-deterministic
parameterized cache coherence protocols [7]. We use an approach to functional modeling of non-
deterministic computing systems, first presented by these authors in [29, 30, 28]. The simple idea behind
the approach is as follows. Given a program modeling a deterministic computing system, whose be-
havior depends on and is controlled by an input parameter value, let us call for an oracle producing the
input value. Then the meta-system including both the program and the external oracle becomes non-
deterministic one. And vice versa, given a non-deterministic system, one may be concerned about the
behavior of the system only along one possible path of the system evaluation. In such a case, the path
of interest may be given as an additional input argument of the system, forcing the system to follow
along the path. Dealing with an unknown value of the additional parameter one can study any possible
evolution of the system, for example, aiming at verifying some properties of the system.

Viability of such an approach to verification has been demonstrated in previous works using su-
percompilation as a program transformation and analysis technique [29, 30, 28, 31, 22], where it was
applied to safety verification of program models of parameterized protocols and Petri nets models. Fur-
thermore, the functional program modeling and supercompilation have been used to specify and verify
cryptographic protocols, and in the case of insecure protocols a supercompiler was utilized in an inter-
active search for the attacks on the protocols [1, 39]. In these cases the supercompiler has been used for
specializing the corresponding program models, aiming at moving the safety properties of interest from
the semantics level of the models to simplest syntactic properties of the residual programs produced by
the supercompiler. Later this approach was extended by G. W. Hamilton for verifying a wider class of
temporal properties of reactive systems [16, 17].

Given a specializer transforming the program written in a language L and used for program model
verification, in order to mitigate the limitation of the specification language L , in this paper we study po-
tential abilities of the corresponding specialization method for verifying the models specified in another
language M . We analyze the supercompilation algorithms allowing us crucially to remove the interpre-
tation layer and to verify indirectly the safety properties. The corresponding experiments succeeded in
verifying some safety properties of the series of parameterized cache coherence protocols specified, for
example, in the imperative WHILE language by N. D. Jones [19]. Nevertheless, in order to demonstrate
that our method is able to deal with non-imperative interpreted programs, we consider the case when
a modelling language M is a non-imperative subset of the basic language L . On the other hand, that
allows us to simplify the presentation. In order to prove the properties of interest, some of the program
models used in the experiments require one additional supercompilation step (i.e., the corresponding
residual programs should be supercompiled once again1).

The considered class of cache coherence protocols effectively forms a benchmark on which various
methods for parameterized verification have been tried [42, 7, 9, 13, 30, 28, 27]. In [30, 28] we have
applied direct verification via supercompilation approach without intermediate interpretation. The corre-
sponding models of these and others parameterized protocols may be very large and the automatic proofs
of their safety properties may have very complicated structures. See, for example, the structure of the
corresponding proof [31] produced by the supercompiler SCP4 [35, 36, 38] for the functional program
model of the parameterized Two Consumers - Two Producers (2P/2C) protocol for multithreaded Java
programs [2]. Taking that into account, the experiments presented in this paper can also be considered as
a partial verification of the intermediate interpreters IntM (p,d) used in the experiments. That is to say,

1Note that the method presented in the papers [3, 5] mentioned above sometimes requires a number of iterations of the
specialization step and the number is unknown.



56 Verification of Programs via Intermediate Interpretation

a verification of the interpreters with respect to the subset of the input values of the argument p, being
the program models of the cache coherence protocols.

The program examples given in this paper were specialized by the supercompiler SCP4 [35, 36, 38],
which is a program specilalizer based on the supercompilation technique. We present our interpreter
examples in a variant of a pseudocode for a functional program while real supercompilation experiments
with the programs were done in the strict functional programming language Refal [48]2, [49] being both
the object and implementation language of the supercompiler SCP4. One of advantages of using super-
compilation, instead of other forms of partial evaluation or CLP specialization, is the use of Turchin’s
relation (Section 4.2, see also [47, 36, 41]) defined on function-call stacks, where the function calls are
labeled by the times when they are generated by the unfold-fold loop. This relation is responsible for
accurate generalization of the stack structures of the unfolded program configurations. It is based on
global properties of the path in the corresponding unfolded tree rather than on the structures of two
given configurations in the path. Turchin’s relation both stops the loop unfolding the tree and provides
a guidance of how a given call-stack structure has to be generalized. Proposition 1 proven in this paper
shows that a composition of the Turchin and Higman-Kruskal relations may prevent generalization of
two given interpreter configurations encountered inside one big-step of the interpreter. Such a prevention
from generalization is crucial for optimal specialization of any interpreter w.r.t. a given program.

This paper assumes that the reader has basic knowledge of concepts of functional programming,
pattern matching, term rewriting systems, and program specialization.

The contributions of this paper are: (1) We have developed a method aiming at uniform reasoning
on properties of configurations’ sequences that are encountered in specializing an interpreter of a Turing
complete language. (2) In particular, we have proved the following statement. Consider specialization of
the interpreter with respect to any interpreted program from an infinite program set that is large enough to
specify a series of parameterized cache coherence protocols, controlled by a composition of the Turchin
(Section 4.2) and Higman-Kruskal (Section 4.1) relations. Given a big-step of the interpreter to be pro-
cessed by the unfold-fold loop, we assume that neither generalization nor folding actions were done
by this loop up to the moment considered. Then any two non-transitive (Section 4.3) big-step internal
configurations C1,C2 are prevented from both generalization and folding actions. (3) We have shown
that supercompilation controlled by the composition of the relations above is able to verify some safety
properties of the series of parameterized cache coherence protocols via intermediate interpretation of
their program models. Note that these program specifications include both the function call and con-
structor application stacks, where the size of the first one is uniformly bounded on the value of the input
parameter while the second one is not. Unlike VeriMAP [4] our indirect verification method involves no
post-specialization unfold-fold.

The paper is organized as follows. In Section 2 we describe the syntax and semantics of a pseudocode
for a subset of the strict functional language Refal which will be used throughout this paper. We give also
the operational semantics of the subset, defining its “self-interpreter”. In Section 3 we outline our ap-
proach for specifying non-deterministic systems by an example used through this paper. In Section 4 we
shortly introduce an unfold-fold program transformation method known as Turchin’s supercompilation
that is used in our experiments. We describe the strategy controlling the unfold-fold loop. The corre-
sponding relation is a composition of Turchin’s relation and a variant of the Higman-Kruskal relation.
This composition plays a central role in verifying the safety properties of the cache coherence protocols’
models via intermediate interpretation. In Section 5 we prove in a uniform way a number of properties

2The reader is welcome to execute several sample Refal programs and even any program written by the user directly from
the electronic version of the Turchin book.
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of a huge number of the complicated configurations generated by specialization of the self-interpreter
with respect to the given program modeling a cache coherence protocol. The argumentations given in
the section are applicable for the whole series of the protocols mentioned in Section 6. Developing the
method of such argumentations is the main aim of the paper and both Proposition 1 and the proof of this
proposition are the main results of the paper. The statement given in Proposition 1 can be applied to
a wide class of interpreters of Turing complete programming languages. This statement is a theoretical
basis for the explanation why the approach suggested in the paper does succeed in verifying the safety
properties of the series of the cache coherence protocols via intermediate interpretation. Finally, in Sec-
tion 6 we report on some other experimental results obtained by using the approach, discuss the results
presented in the paper, and compare our experiments with other ones done by existing methods.

2 An Interpreter for a Fragment of the SCP4 Object Language

A first interpreter we consider is an interpreter of a subset L of the SCP4 object language, which we
aim to put in between the supercompiler SCP4 and programs modeling the cache coherence protocols to
be verified. We will refer to this interpreter as a “self-interpreter”.

2.1 Language

prog ::= def1 . . . defn Program
def ::= f ( ps1 )⇒ exp1; . . . ; f ( psn )⇒ expn; Function Definition
exp ::= v Variable

| term : exp Cons Application
| f ( exp1, ..., expn ) Function Application
| exp1 ++ exp2 Append Application
| [] Nil

term ::= s.name Symbol-Type Variable
| (exp) Constructor Application
| σ Symbol

ps ::= p1, ..., pn Patterns
p ::= v
| s.name : p
| (p1) : p2

| σ : p
| []

v ::= s.name | e.name Variable

Programs in L are strict term rewriting systems based on pattern matching.
The rules in the programs are ordered from the top to the bottom to be matched. To be closer to

Refal we use two kinds of variables: s.variables range over symbols (i.e., characters and identifiers, for
example, ’a’ and True), while e.variables range over the whole set of the S-expressions.3 Given a rule

3This fragment of Refal is introduced for the sake of simplicity. The reader may think that the syntactic category exp of list
expressions and the parentheses constructor are Lisp equivalents. Actually Refal does not include Cons constructor but, instead
of Cons, Append is used as an associative constructor. Thus the Refal data set is wider as compared with the Lisp data set: the
first one is the set of finite sequences of arbitrary trees, while the second one is the set of binary trees. See [48] for details.
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l⇒ r, any variable of r should appear in l. Each function f has a fixed arity, i.e., the arities of all
left-hand sides of the rules of f and any expression f ( exp1, ..., expn ) must equal the arity of f . The
parentheses constructor (•) is used without a name. Cons constructor is used in infix notation and may
be omitted. The patterns in a function definition are not exhaustive. If no left-hand side of the function
rules matches the values assigned to a call of the function, then executing the call is interrupted and its
value is undefined. In the sequel, the expression set is denoted by E; D and S stand for the data set,
i.e., the patterns containing no variable, and the symbols set, respectively. The name set of the functions
of an arity n is denoted by Fn while F stands for

⋃
∞
n=0Fn. Ve and Vs stand for the e- and s-variable

sets, respectively, and V denotes Ve ∪Vs. For an expression exp Ve(exp), Vs(exp), V (exp) denote the
corresponding variable sets of exp. µv(exp) denotes the multiplicity of v ∈ V in exp, i. e., the number of
all the occurrences of v in exp. exp is called passive if no function application occurs in exp otherwise it
is called an active expression. T stands for the term set, σ stands for a symbol. Given an expression exp
and a variable substitution θ , expθ stands for θ(exp).

2.2 Encoding

In our experiments considered in this paper the protocol program models have to be input values of the
interpreter argument with respect to which the interpreter is specialized. Thus the program models should
be encoded in the data set of the implementation language of the interpreter. The program models used
in this paper are written in a fragment of the language described in Section 2.1, where ++ constructor is
not allowed and only unary functions may appear.

Now we have to define the corresponding encoding function denoted by the underline, where the
function A groups the program rules belonging to the same function as it is shown in the second definition
line.

prog = ( A( prog ) ); Program
f {rules} defs = (f rules ) : defs; Function Definitions
rule; rules = ( rule ) : rules; Rules
f ( pattern ) ⇒ exp = ( pattern ) : ’=’ : ( exp ); Rule
term : exp = term : exp; Here term ::= (exp) | s.name | σ
(exp) = (’*’ exp ); f ( exp ) = (Call f exp ); Applications
e.name = (Var ’e’ name); s.name = (Var ’s’ name); Variables
[] = []; σ = σ ; Nil and Symbol
Note that any pattern is an expression.
Supercompiler SCP4 in its processing dealing with programs as input data uses this encoding func-

tion and utilizes its properties. The image of D under the encoding is a proper subset of D, i. e., D 6= D.
For example, (Var ’s’ name) /∈ D.

2.3 The Interpreter

The self-interpreter used in the experiments is given in Figure 1.
The entry point is of the form Int( (Call s.f e.d), e.P ). Here the first argument is the application

constructor of the main function to be executed. The second argument provides the name of a program to
be interpreted. The encoded source of the program will be returned by a function call of Prog whenever
it is asked by EvalCall. E. g., interpretation of program model Synapse N+1 given in Section 3.1 starts
with the following application Int( (Call Main d0), (Prog Synapse) ), where d0 is an input data given to
program Synapse. Due to the large size of the encoded programs we omit the definition of function Prog.
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Int( (Call s.f e.d), e.P )⇒ Eval( EvalCall( s.f , e.d, e.P ), e.P );

Eval( (e.env) : (Call s.f e.q) : e.exp, e.P )
⇒ Eval( EvalCall( s.f , Eval( (e.env) : e.q, e.P ), e.P ), e.P )++Eval( (e.env) : e.exp, e.P );

Eval( (e.env) : (Var e.var) : e.exp, e.P )⇒ Subst( e.env, (Var e.var) )++Eval( (e.env) : e.exp, e.P );
Eval( (e.env) : (’*’ e.q) : e.exp, e.P )⇒ (’*’ Eval( (e.env) : e.q, e.P )) : Eval( (e.env) : e.exp, e.P );
Eval( (e.env) : s.x : e.exp, e.P )⇒ s.x : Eval( (e.env) : e.exp, e.P );
Eval( (e.env) : [], e.P )⇒ [];

EvalCall( s.f , e.d, (Prog s.n) )⇒ Matching( F, [], LookFor( s.f , Prog( s.n ) ), e.d );

Matching( F, e.old, ((e.p) :’=’ : (e.exp)) : e.def , e.d )
⇒Matching( Match( e.p, e.d, ([]) ), e.exp, e.def , e.d );

Matching( (e.env), e.exp, e.def , e.d )⇒ (e.env) : e.exp;
Match( (Var ’e’ s.n), e.d, (e.env) )⇒ PutVar( (Var ’e’ s.n) : e.d, (e.env) );
Match( (Var ’s’ s.n) : e.p, s.x : e.d, (e.env) )

⇒Match( e.p, e.d, PutVar( (Var ’s’ s.n) : s.x, (e.env) ) );
Match( (’*’ e.q) : e.p, (’*’ e.x) : e.d, (e.env) )

⇒Match( e.p, e.d, Match( e.q, e.x, (e.env) ) );
Match( s.x : e.p, s.x : e.d, (e.env) )⇒ Match( e.p, e.d, (e.env) );
Match( [], [], (e.env) )⇒ (e.env);
Match( e.p, e.d, e.fail )⇒ F;

PutVar( e.assign, (e.env) )⇒ CheckRepVar( PutV( (e.assign), e.env, [] ) );
PutV( ((Var s.t s.n) : e.val), ((Var s.t s.n) : e.pval) : e.env, e.penv )

⇒ (Eq( e.val, e.pval )) : ((Var s.t s.n) : e.pval) : e.env;
PutV( (e.assign), (e.passign) : e.env, e.penv )

⇒ PutV( (e.assign), e.env, (e.passign) : e.penv );
PutV( (e.assign), [], e.penv )⇒ (T) : (e.assign) : e.penv;

CheckRepVar( (T) : e.env )⇒ (e.env);
CheckRepVar( (F) : e.env )⇒ F;

Eq( s.x : e.xs, s.x : e.ys )⇒ Eq( e.xs, e.ys );
Eq( (’*’ e.x) : e.xs, (’*’ e.y) : e.ys )⇒ ContEq( Eq( e.x, e.y ), e.xs, e.ys );
Eq( [], [] )⇒ T;
Eq( e.xs, e.ys )⇒ F;

ContEq( F, e.xs, e.ys )⇒ F;
ContEq( T, e.xs, e.ys )⇒ Eq( e.xs, e.ys );

LookFor( s.f , (s.f : e.def ) : e.P )⇒ e.def ;
LookFor( s.f , (s.g : e.def ) : e.P )⇒ LookFor( s.f , e.P );

Subst( ((Var s.t s.n) : e.val) : e.env, (Var s.t s.n) )⇒ e.val;
Subst( (e.assign) : e.env, e.var )⇒ Subst( e.env, e.var );

Figure 1: Self-Interpreter
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EvalCall( (Call s.f e.d), e.P ) asks for the definition of function s.f , calling LookFor, and initiates
matching the data given by e.d against the patterns of the definition rules. In order to start this pattern
matching, it imitates a fail happening in matching the data against a previous nonexistent pattern.

Function Matching runs over the definition rules, testing the result of matching the input data (e.d)
against the current pattern considered. In the case if the result is F the function calls function Match,
asking for matching the input data against the next rule pattern. The environment e.env is initialized by
[]. If the pattern matching succeeds then Matching returns (e.env) : e.exp, where expression e.exp is
the right-hand side of the current rule and the environment includes the variable assignments computed
by the pattern matching. Function Match is trying to match the input data given in its second argument,
step by step, against the pattern given in its first argument. It computes the environment containing the
variable substitution defined by the matching. If a variable is encountered then function PutVar calls
PutV looking for an assignment to the same variable and, if such an assignment exists, the function tests
a possible coincidence of the new and old values assigned to the variable. The third rule of function
Match deals with the tree structure, calling this function twice.

Function Eval passes through an expression given in its second argument. The second Eval rule deals
with a variable and calls function Subst looking the environment for the variable value and replacing the
variable with its value.

We intend to specialize interpreter Int with respect to its second argument. The corresponding source
code of the self-interpreter may be found in http://refal.botik.ru/protocols/Self-Int-Refal.zip.

3 Specifying Cache Coherence Protocols
We illustrate our method [30, 28] for specifying non-deterministic systems by an example used through
this paper. The Synapse N+1 protocol definition given below is borrowed from [6]. The parameterized
version of the protocol is considered and counting abstraction is used in the specification. The protocol
has to react to five external non-deterministic events by updating its states being three integer counters.
The initial value of counter invalid is parameterized (so it could be any positive integer), while the other
two counters are initialized by zero. The primed state names stand for the updated state values. The
empty updates mean that nothing happened.

(rh) dirty+ valid ≥ 1 → . (wh1) dirty≥ 1 → .
(rm) invalid ≥ 1 → dirty′ = 0,valid′ = valid +1, invalid′ = invalid +dirty−1 .
(wh2) valid ≥ 1 → valid′ = 0,dirty′ = 1, invalid′ = invalid +dirty+ valid−1 .
(wm) invalid ≥ 1 → valid′ = 0,dirty′ = 1, invalid′ = invalid +dirty+ valid−1 .

Specification of Safety Properties Any state reached by the protocol should not satisfy any of the two
following properties: (1) invalid ≥ 0,dirty≥ 1,valid ≥ 1 ; (2) invalid ≥ 0,dirty≥ 2,valid ≥ 0 .

3.1 Program Model of the Synapse N+1 Cache Coherence Protocol

The program model of Synapse N+1 protocol is given in Figure 2. The idea behind the program spec-
ifications modeling the reactive systems is given in Introduction 1 above. The finite stream of events is
modeled by a time value. The time ticks are labeled by the events. The counters’ values are specified in
the unary notation. The unary addition is directly defined by function Append, i.e., without referencing
to the corresponding macros. Function Loop exhausts the event stream, step by step, and calls for Test
verifying the safety property required from the protocol. Thus function Main is a predicate. Note that
given input values the partial predicate terminates since the event stream is finite. The termination is
normal, if the final protocol state asked by the input stream is reachable one, otherwise it is abnormal.

http://refal.botik.ru/protocols/Self-Int-Refal.zip
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Main( (e.time) :(e.is) )⇒ Loop( (e.time) : (Invalid I e.is) :(Dirty ) :(Valid ) );

Loop( ([]) :(Invalid e.is) :(Dirty e.ds) :(Valid e.vs) )
⇒ Test( (Invalid e.is) : (Dirty e.ds) : (Valid e.vs) );

Loop( (s.t : e.time) : (Invalid e.is) :(Dirty e.ds) :(Valid e.vs) )
⇒ Loop( (e.time) : Event( s.t : (Invalid e.is) : (Dirty e.ds) : (Valid e.vs) ) );

Event( rm : (Invalid I e.is) :(Dirty e.ds) :(Valid e.vs) )
⇒ (Invalid Append( (e.ds) : (e.is) )) : (Dirty ) :(Valid I e.vs);

Event( wh2 : (Invalid e.is) :(Dirty e.ds) :(Valid I e.vs) )
⇒ (Invalid Append( (e.vs) : (Append( (e.ds) : (e.is) )) )) : (Dirty I) : (Valid );

Event( wm : (Invalid I e.is) :(Dirty e.ds) :(Valid e.vs) )
⇒ (Invalid Append( (e.vs) : (Append( (e.ds) : (e.is) )) )) : (Dirty I) : (Valid );

Append( ([]) :(e.ys) )⇒ e.ys;
Append( (s.x : e.xs) :(e.ys) )⇒ s.x : Append( (e.xs) : (e.ys) );

Test( (Invalid e.is) :(Dirty I e.ds) :(Valid I e.vs) )⇒ False;
Test( (Invalid e.is) :(Dirty I I e.ds) :(Valid e.vs) )⇒ False;
Test( (Invalid e.is) :(Dirty e.ds) :(Valid e.vs) )⇒ True;

Figure 2: Model of the Synapse N+1 cache coherence protocol

4 On Supercompilation
In this paper we are interested in one particular approach in program transformation and specialization,
known as supercompilation4. Supercompilation is a powerful semantics-based program transformation
technique [44, 46] having a long history well back to the 1960-70s, when it was proposed by V. Turchin.
The main idea behind a supercompiler is to observe the behavior of a functional program p running on
a partially defined input with the aim to define a program, which would be equivalent to the original
one (on the domain of the latter), but having improved properties. Given a program and its parameter-
ized entry point, supercompilation is performed by an unfold-fold cycle unfolding this entry point to a
potentially infinite tree of all its possible computations. It reduces the redundancy that could be present
in the original program. It folds the tree into a finite graph of states and transitions between possible
parameterized configurations of the computing system. And, finally, it analyses global properties of the
graph and specializes this graph with respect to these properties (without additional unfolding steps).5

The resulting program definition is constructed solely based on the meta-interpretation of the source pro-
gram rather than by a (step-by-step) transformation of the program. The result of supercompilation may
be a specialized version of the original program, taking into account the properties of partially known
arguments, or just a re-formulated, and sometimes more efficient, equivalent program (on the domain of
the original).

Turchin’s ideas have been studied by a number of authors for a long time and have, to some extent,
been brought to the algorithmic and implementation stage [38]. From the very beginning the development

4From supervised compilation.
5See also Appendix to the extended version of this paper [34].
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of supercompilation has been conducted mainly in the context of the programming language Refal [35,
36, 37, 48]. A number of model supercompilers for subsets of functional languages based on Lisp
data were implemented with the aim of formalizing some aspects of the supercompilation algorithms
[21, 23, 44]. The most advanced supercompiler for Refal is SCP4 [35, 36, 38].

The verification system VeriMAP [4] by E. De Angelis et al. [3, 5] uses nontrivial properties of
integers recognized by both CLP built-in predicates and external SMT solvers. We use also a nontriv-
ial property of the configurations. The property is the associativity of the built-in append function ++

supported by the supercompiler SCP4 itself6, rather than by an external solver.

4.1 The Well-Quasi-Ordering on E

The following relation is a variant of the Higman-Kruskal relation and is a well-quasi-ordering [18, 24]
(see also [26]).

Definition 1 The homeomorphic embedding relation ∝ is the smallest transitive relation on E satisfying
the following properties, where f ∈ Fn, α,β ,τ,s, t, t1, . . . , tn ∈ E and α,β ,τ ∈T .
(1) ∀x,y ∈ Ve. x ∝ y,∀u,v ∈ Vs. u ∝ v; (2) [] ∝ t, t ∝ t, t ∝ f ( t1, . . ., t, . . . , tn ), t ∝ (t), t ∝ α : t;
(3-4) if s ∝ t and α ∝ β , then both (s) ∝ (t),α:s ∝ β : t and f ( t1, . . . , s, . . . , tn ) ∝ f ( t1, . . ., t, . . . , tn ).

Note that the definition takes into account function append, since its infix notation exp1 ++ exp2

stands for append( exp1, exp2 ). We use relation ∝ modulo associativity of ++ and the following
equalities term : exp1 = term ++ exp1, exp ++ []= exp and [] ++ exp = exp.

Given an infinite sequence of expressions t1, . . . , tn, . . ., relation ∝ is relevant to approximation of
loops increasing the syntactical structures in the sequence; or in other words to looking for the regular
similar cases of mathematical induction on the structure of the expressions. That is to say the cases, which
allow us to refer one to another by a step of the induction. An additional restriction separates the basic
cases of the induction from the regular ones. The restriction is: ∀σ .([]) 6∝ (σ) & ∀v ∈ Vs.([]) 6∝ (v).

We impose this restriction on the relation ∝ modulo the equalities above and denote the obtained
relation as 4. It is easy to see that such a restriction does not violate the quasi-ordering property. Note
that the restriction may be varied in the obvious way, but for our experiments its simplest case given
above is used to control generalization and has turned out to be sufficient. In the sequel, t1 ≺ t2 stands
for the following relation t1 4 t2 and t1 6= t2, which is also transitive.

Definition 2 A parameterized configuration is a finite sequence of the form
let e.h = f1( exp11, . . . , exp1m ) in . . . let e.h = fk( expk1, . . . , expkj ) in expn+1, where expn+1 is
passive, for all i > 1 µe.h(fi( . . . )) = µe.h(expn+1) = 1, and µe.h(f1( . . . )) = 0; for all i and all j variable
e.h does not occur in any function application being a sub-expression of expij. In the sequel, we refer to
such a function application fi( . . . ) given explicitly in the configuration as an upper function application.

The configurations represent the function application stacks, in which all constructors’ applications
not occurring in arguments of the upper function applications are moved to the rightmost expressions.
Every expression of L can be rewritten into an equivalent composition of the configurations connected
with let-construct (see Section 5.1 for an example). Here the append ++ is treated as a complex con-
structor7 , rather than a function. The rightmost expression is the bottom of the stack. Since the value
of e.h is reassigned in each let in the stack, for brevity sake, we use the following presentation of the

6As well as by the real programming language in terms of which the experiments described in this paper were done.
7I.e., we use nontrivial properties of configurations containing the append ++. See the remark given in the footnote on p. 57.
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configurations:
f1( exp11, . . . , exp1m ), . . . , fk( expk1, . . . , expkj ), expn+1, where variable e.h is replaced with bullet
•. I.e., the bullet is just a placeholder. The last expression may be omitted if it equals •. An example
follows: f ( a : e.xs ++ e.ys ), g( • ++ e.ys, (Var b c), [] ), f ( s.x : • ), s.x : • ++ t( s.x : e.zs ), • .

4.2 The Well-Disordering on Timed Configurations

Let a program to be specialized and a path starting at the root of the tree unfolded by the unfold-fold
loop widely used in program specialization be given. The vertices in the path are labeled by the program
parameterized configurations. These configurations form a sequence. Given a configuration from such a
sequence and a function application from the configuration, we label the application by the time when it is
generated by the unfold-fold loop. Such a labeled function application is said to be a timed application.
A configuration is said to be timed if all upper function applications in the configuration are timed.
Given a timed configuration, all its timed applications have differing time-labels. Given two different
configurations C1,C2, if the unfold-fold loop copies an upper function application from C1 and uses this
copy in C2, then C1,C2 share this timed application. In the sequel, a sequence of the timed configurations
generated by the unfold-fold loop is also called just a path. In this section we define a binary relation /
on the timed configurations in the path. The relation is originated from V. F. Turchin [47] (see also [36,
40, 41]). It is not transitive8, but like the well-quasi-ordering it satisfies the following crucial property
used by supercompilation to stop the loop unfolding the tree. For any infinite path C1,C2, . . . , Cn, . . .
there exist two timed configurations Ci,C j such that i < j and Ci / C j (see [47, 41]). For this reason we
call relation / a well-disordering relation. In the sequel, the time-labels are denoted with subscripts.

Definition 3 Given a sequence of timed configurations C1, . . . Cn, . . .; Ci and C j are elements of the
sequence such that i < j and Ci ::= f 1

t1( . . . ), . . . , f k
tk( . . . ),exp1, C j ::= g1

τ1
( . . . ), . . . , gm

τm
( . . . ),exp2,

where f s
ts and gq

τq , 1≤ s≤ k and 1≤ q≤ m, stand for function names f s, gq labeled with times ts and τq,
respectively, and exp1,exp2 are passive expressions.

If k≤m, δ = m−k and ∃l .(1 < l ≤ k) such that ∀s .(0≤ s≤ k− l) f l+s
tl+s

= gδ+l+s
τδ+l+s

(i.e., f l+s = gδ+l+s

and tl+s = τδ+l+s hold), f l−1
tl−1
6= gδ+l−1

τδ+l−1
, and ∀s .(0 < s < l) f s

ts ' gs
τs

(i.e., f s = gs), then Ci / C j.
We say that configurations Ci, C j are in Turchin’s relation Ci / C j. This longest coincided suffix of the

configurations are said to be the context, while the parts equal one to another modulo their time-labels
are called prefixes of the corresponding configurations.

The idea behind this definition is as follows. The function applications in the context never took a
part in computing the configuration C j, in this segment of the path, while any upper function application
in the prefix of Ci took a part in computing the configuration C j. Since the prefixes of Ci,C j coincide
modulo their time-labels, these prefixes approximate a loop in the program being specialized. The prefix
of Ci is the entry point in this loop, while the prefix of C j initiates the loop iterations. The common
context approximates computations after this loop. Note that Turchin’s relation does not impose any
restriction on the arguments of the function applications in Ci,C j.

For example, consider the following two configurations C1 ::= f4(. . .), f3(. . .), g2(. . .), t1(. . .), •
and C2 ::= f10(. . .), f7(. . .), g5(. . .), . . . , t1(. . .), • , then C1 / C2 holds. Here the context is t1(. . .),
the prefix of C1 is f4(. . .), f3(. . .), g2(. . .), and the prefix of C2 is f10(. . .), f7(. . .), g5(. . .), where the
subscripts of the application names stand for the time-labels. See also Appendix to the extended version
of this paper [34] for a detailed example regarding Turchin’s relation.

8See Appendix to the extended version of this paper [34] for an example demonstrating the nontransitivity of relation / .
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4.3 The Strategy Controlling the Unfolding Loop

Now we describe the main relation controlling the unfold-fold loop. That is to say, given a path starting at
the root of the unfolded tree, and two timed configurations C1,C2 in the path such that C1 was generated
before C2, this relation stops the loop unfolding the tree and calls the procedures responsible for folding
this path. These tools, firstly, attempt to fold C2 by a previous configuration and, if that is impossible,
then attempt to generalize this configuration pair. The relation is a composition of relations / and 4. It
is denoted with / ◦4 and is a well-disordering (see [47, 41]).

Thus we are given two timed configurations C1,C2 from a path, such that C1 is generated before C2,
and C2 is the last configuration in the path. If relation C1 / C2 does not hold, then the unfold-fold loop
unfolds the current configuration C2 and goes on. In the case relation C1 / C2 holds, these configurations
are of the forms (see Section 4.2 for the notation used below):
C1 = f 1

t1( . . . ), . . . , f l−1
tl−1

( . . . ), f l
tl ( . . . ), . . . , f k

tk( . . . ),exp1,
C2 = f 1

τ1
( . . . ), . . . , f l−1

τl−1
( . . . ),gl

τl
( . . . ), . . . , gm

τm
( . . . ), f l

tl ( . . . ), . . . , f k
tk( . . . ),exp2, where the context

starts at f l
tl ( . . . ). Let Cp

i stand for the prefix of Ci, and Cc
i stand for the context of Ci followed by expi.

Now we compare the prefixes as follows. If there exists i (1 ≤ i < l) such that f i
ti( . . . ) 4 f i

τi
( . . . )

does not hold, then C2 is unfolded and the unfold-fold loop goes on. Otherwise, the sub-tree rooted in C1
is removed and the specialization task defined by the C1 is decomposed into the two specialization tasks
corresponding to Cp

1 and Cc
1. Further the attempts to fold Cp

2 by Cp
1 and Cc

2 by Cc
1 do work. If some of

these attempts fail, then the corresponding configurations are generalized. Note that the context may be
generalized despite the fact that it does not take a part in computing the current configuration C2, since a
narrowing of the context parameters may have happened.

A program configuration is said to be a transitive configuration if one-step unfolding of the config-
uration results in a tree containing only the vertices with at most one outgoing edge. For example, any
function application of the form f (d1, . . . ,dn), where any di ∈ D, is transitive. For the sake of simplicity,
in the experiments described in this paper, the following strategy is used. The unfold-fold loop skips all
transitive configurations encountered and removes them from the tree being unfolded. In the sequel, we
refer to the strategy described in this section, including relation / ◦4, as the / ◦4-strategy.

5 Indirect Verifying the Synapse N+1 Program Model
In this section we present an application of our program verification method based on supercompilation of
intermediate interpretations. In general the method may perform a number of program specializations9,
but all the cache coherence protocol program models that we have tried to verify by supercompiler SCP4
require at most two specializations.

Given a program partial predicate modeling both a cache coherence protocol and a safety property of
the protocol, we use supercompilation aiming at moving the property hidden in the program semantics
to a simple syntactic property of the residual program generated by supercompilation, i.e., this syntactic
property should be easily recognized. In the experiments discussed in this paper we hope the correspond-
ing residual programs will include no operator return False;. Since the original direct program model
terminates on any input data (see Section 3.1), this property means that the residual predicate never re-
turns False and always True. Thus we conclude the original program model satisfies the given safety
property. In the terms of functional language L presented in Section 2.1 the corresponding syntactic

9I. e., the iterated ordinary supercompilation, which does not use any intermediate interpretation, of the residual program
produced by one indirect verification.
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property is “No rule’s right-hand side contains identifier False”.10

We can now turn to the program modeling the Synapse N+1 protocol given in Section 3.1. In order
to show that the Synapse program model is safe, below we specialize the self-interpreter Int (see Section
2.3) with respect to the Synapse program model rather than the program model itself. Since program
Synapse terminates, the self-interpreter terminates when it interprets any call of the Main entry function
of Synapse. Since Synapse is a partial predicate, the calls of the form Int((Call Main e.d), (Prog Synapse)),
where e.d takes any data, define the same partial predicate. Hence, the self-interpreter restricted to
such calls is just another program model of protocol Synapse N+1. This indirect program model is
much more complicated as compared with the direct model. We intend now to show that supercompiler
SCP4 [35, 36, 38] is able to verify this model. Thus our experiments show potential capabilities of
the method for verifying the safety properties of the functional programs modeling some complex non-
deterministic parameterized systems. In particular, the experiments can also be considered as a partial
verification of the intermediate interpreter used. In other words, verifying the interpreter with respect
to a set of the interpreted programs that specify the cache coherence protocols. This specialization
by supercompilation is performed by following the usual unfold-fold cycle controlled by the / ◦ 4-
strategy described in Section 4.3. Note that this program specification includes both the function call and
constructor application stacks, where the size of the first one is uniformly bounded on the value of the
input parameter while the second one is not.

We start off by unfolding the initial configuration Int( (Call Main e.d), (Prog Synapse) ), where the
value of e.d is unknown. The safety property will be proved if supercompilation is able to recognize all
rules of the interpreted program model, containing the False identifier, as being unreachable from this
initial configuration.

In our early work [28] we have given a formal model of the verification procedure above by super-
compilation. Let a program model and its safety property be given as described above, i.e., a partial pro-
gram predicate. Given an initial parameterized configuration of the partial predicate, it has been shown
that the unfold-fold cycle may be seen as a series of proof attempts by structural induction over the pro-
gram configurations encountered during supercompilation aiming at verification of the safety property.
Here the initial configuration specifies the statement that we have to prove. There are too many program
configurations generated by the unfold-fold cycle starting with the initial configuration given above and
the self-interpreter configurations are very large. As a consequence it is not possible to consider all the
configurations in details. We study the configurations’ properties being relevant to the proof attempts
and the method for reasoning on such properties.

5.1 On Meta-Reasoning

Let a program P0 written in L and a function application f (d0), where d0 ∈ D is its input data, be
given. Let π0 stand for expression (Prog NP0), where NP0 is the program name. The unfolding loop
standing alone produces a computation path C0,C1, . . . ,Cn, . . . starting off f (d0). If f (d0) terminates then
the path is finite C0,C1, . . . ,Ck. In such a case, for any 0 ≤ i < k Ci is a configuration not containing
parameters, while Ck is either a passive expression, if partial function f is defined on the given input
data, or the abnormal termination sign ⊥ otherwise. The unfolding iterates function step(·) such that

10Actually False is never encountered at all in any residual program generated by repeated launching the supercompiler SCP4
verifying the cache coherence protocol models considered in this paper. I.e., the property is simpler than the formulated one.

Given a safety property required from a protocol, in order to look for witnesses violating the property, the method above can
be extended by deriving False by unfolding, using a specializer in an interactive mode. See [31, 32, 33, 39] for examples of
bugged protocols and the corresponding witnesses constructed by means of the supercompiler SCP4.



66 Verification of Programs via Intermediate Interpretation

step(Ci) =Ci+1.
Now let us consider the following non-parameterized configuration K0 = Eval(([]) : f ( d0 ),π0) of

the self-interpreter. If f (d0) terminates then the loop unfolding the configuration K0 results in the encoded
passive configuration produced by the loop unfolding f (d0).

K1 = step( K0 ) = Eval( EvalCall( f , Eval( ([]) : d0, π0 ), π0 ), π0 ) ++ Eval( ([]) : [], π0 )
Expression K1 is not a configuration. According to the strategy described in Section 2.3 the unfolding

has to decompose expression K1 in a sequence of configurations connected by the let-variables. This
decomposition results in{

Eval( ([]) : d0, π0 ), EvalCall( f , • , π0 ), Eval( • , π0 ), •
}
,

let e.x = • in { Eval( ([]) : [], π0 ), e.x ++ • }, where e.x is a fresh parameter.
Hence, considering modulo the arguments, the following holds. Given a function-call stack element

f , this step maps the interpreted stack element to this segment of the interpreting function-call stack
represented by the first configuration above, when this stack segment will be computed then its result
is declared as a value of parameter e.x and the last configuration will be unfolded. Note that (1) these
two configurations separated with the let-construct will be unfolded completely separately one from the
other, i.e., the first configuration becomes the input of the unfolding loop, while the second configuration
is postponed for a future unfolding call; (2) built-in function append ++ is not inserted in the stack at
all, since it is treated by the supercompiler as a kind of a special constructor, which properties are known
by the supercompiler handling this special constructor on the fly. The sequence step(Ki), . . . , step(K j−1)
between two consecutive applications step(Ki), step(K j) of the first Eval rewriting rule unfolds the big-
step of the interpreter, interpreting the regular step corresponding to the application of a rewriting rule of
the f definition interpreted.

Given an expression exp to be interpreted by the interpreter, exp defines the current state of the P0

function-call stack. Let C be the configuration representing this stack state (see Section 2.3). Let f (exp1)
be the application on the top of the stack. Then the current step(Ki) corresponding to the application of
the first Eval rewriting rule maps f to the stack segment Eval1, EvalCall2, Eval3 of the interpreter, con-
sidering modulo their arguments, and this stack segment becomes the leading segment of the interpreting
function-call stack. The remainder of the interpreted stack is encoded in the arguments of Eval3, Eval4.

This remark allows us to follow the development of these two stacks in parallel. Given the following
two parameterized configurations f (exp1) and Eval((expenv) : f ( exp1 ),π0) we are going to unfold these
configurations in parallel, step by step. The simpler logic of unfolding f (exp1) will provide hints on the
logic of unfolding Eval((expenv) : f ( exp1 ),π0).

Now we consider the set of the configuration pairs that may be generated by the unfold-fold loop and
are in the relation / ◦4.

5.2 Internal Properties of the Interpreter Big-Step
In this section we consider several properties of the configurations generated by the unfold-fold loop
inside one big-step of the self-interpreter. In order to prove indirectly that the program model is safe, we
start off by unfolding the following initial configuration Int( (Call Main e.d), (Prog Synapse) ), where
the value of e.d is unknown. Let πs stand for (Prog Synapse).

Consider any configuration Cb generated by the unfold-fold loop and initializing a big-step of the
interpreter. Firstly, we assume that Cb is not generalized and no configuration was generalized by this
loop before Cb. In such a case, Cb is of the form Eval( (env) : arg, πs ), EvalCall( f , • , πs ), Eval( • , πs ), . . .

where arg stands for the formal syntactic argument taken from the right-hand side of a rewriting rule
where f ( arg ) originates from, env ::= ( var : val ) : env | [], var ::= s.n | e.n, and val stands for a
partially known value of variable var. Since application f ( arg ) is on the top of the stack, argument arg
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includes no function application. As a consequence, the leading Eval application has only to look for
variables and to call substitution Subst if a variable is encountered.

Thus, excluding all the transitive configurations encountered before the substitution, we consider the
following configuration:

{
Subst( env, (Var vart.n) ), •

}
, let e.x1 = • in

{{
Eval( (env) : arg1, πs ),•

}
,

let e.x2 = • in
{

EvalCall( f , e.x1 ++ e.x2, πs ), Eval( • , πs ), . . .
} }

where e.x1, e.x2 are fresh parameters, arg1 stands for a part of arg above to be processed, and vart.n

denotes the type and the name of the variable encountered.
We turn now to the first configuration to be unfolded. All configurations unfolded, step by step,

from the first configuration are transitive (see Section 4.3) since Subst tests only types and names of the
environment variables. Function Subst is tail-recursive and returns value val asked for.

We skip transforming these transitive configurations and continue with the next one.{
Eval( (env) : arg1, πs ), •

}
, let e.x2 = • in

{
EvalCall( f , val ++ e.x2, πs ), Eval( • , πs ), . . .

}
By our assumption above, the loop unfolding this first configuration never generates a function applica-
tion. So the leading configuration proceeds to look for the variables in the same way shown above.

When arg is entirely processed and all variables occurring in arg are replaced with their partially
known values from the environment, then the current configuration looks as follows:

EvalCall( f , arg2, πs ), Eval( • , πs ), . . .
Here expression arg2 is argθ , were θ is the substitution defined by environment env. I. e., arg2 may
include parameters standing for unknown data, while arg does not. Any application of EvalCall function
is one-step transitive. Recalling πs, we turn to the next configuration:

Prog( Synapse ), LookFor( f , • ), Matching( F, [], • , arg2 ), Eval( • , πs ), . . .
Prog( Synapse ) returns the source code of the interpreted program Synapse, while the LookFor

application returns the definition of the function called by the interpreter, using the known name f .
Skipping the corresponding transitive configurations, we have:

Matching( F, [], ((p1 ) :’=’ : (exp1 )) : defr1 , arg2 ), Eval( • , πs ), . . .
Here the third Matching argument is the f definition, where p1, exp1, defr1 stand for the pattern, the right-
hand side of the first rewriting rule of the definition, and the rest of this definition, respectively. This
Matching application transitively initiates matching the parameterized data arg2 against pattern p1 and
calls another Matching application. This second Matching application is provided with the f definition
rest and arg2 for the case this pattern matching will fail. The next configuration is as follows.

Match( p1 , arg2, ([]) ), Matching( •, exp1, defr1 , arg2 ), Eval( • , πs ), . . .(X)

Remark 1 By now all the configurations generated by the unfolding loop were transitive. The steps pro-
cessing syntactic structure of the function application considered might meet constructor applications.
These constructor applications are accumulated in the second EvalCall argument. The analysis above
did not use any particular property of the interpreted program despite the fact that the source code of the
interpreted program has been received and processed.

Now we start to deal with function Match playing the main role in our analysis. In order to unfold
the configurationX, we have now to use some particular properties of the interpreted program.

Since for any pattern p1 in program Synapse and any v ∈ V µv(p1) < 2 holds, Proposition 1 below
implies that the unfold-fold loop never stops unfolding the configuration X until the Match application
on the top of the stack will be completely unfolded to several passive expressions, step by step. These
expressions will appear on different possible computation paths starting at the configuration above. Skip-
ping the steps unfolding the tree rooted in this stack-top configuration, we turn to the configurations that
appear on the leaves of this tree. Each path starting at the top configuration leads to a configuration of
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one of the following two forms. These configurations are transitive:
Matching( (env1), exp1, defr1 , arg3 ), Eval( • , πs ), . . .
Matching( F, exp1, defr1 , arg3 ), Eval( • , πs ), . . .

In the first case, the pattern matching did succeed and function Matching replaces the current function
application with the right-hand side of the chosen rewriting rule, provided with the constructed environ-
ment. The big-step being considered has been finished. In order to launch the next big-step, interpreter
Int has now to update the top of the interpreting function application stack.

In the second case, the pattern matching fails and function Matching once again calls Match, aiming
to match the parameterized data against the pattern of the next rewriting rule of function f . The next
configuration is of the form X above, in which the third Matching argument value is decremented with
the rewriting rule has been considered. If this value is empty and cannot be decremented, then, according
to the language L semantics, see Section 2.1, we have the abnormal deadlock state and the interpreter
work is interrupted. Starting off from this configuration, the unfold-fold loop proceeds in the way shown
above.

Proposition 1 For any pattern p0 such that for any v ∈ V µv(p0) < 2 and any parameterized passive
expression d, the unfold-fold loop, starting off from configuration Match( p0 , d, ([]) ) and controlled by
the / ◦4-strategy, results in a tree program11 such that any non-transitive vertex in the tree is labeled by a
configuration of the form Match( pi , di, (envi) ), . . . . Given a path in the tree and any two configurations
Mi, Mj of the forms Match( pi , di, (envi) ), . . . and Match( pj , dj, (envj) ), . . . , respectively, belonging
to the path, such that Mj is a descendant of Mi, then pj ≺ pi holds.
Proof If all descendants of configuration Match( p0 , d, ([]) ) are transitive then the unfold-fold loop
results in a tree being a root and this tree satisfies the property required. Now consider non-transitive
descendants of Match( p0 , d, ([]) ) that may be generated by the unfold-fold loop before the first
generalization or folding action happened. The patterns of the PutV rewriting rules never test unknown
data, hence any application of PutV is transitive. Since for any v ∈ V relation µv(p0)< 2 holds, function
Eq will be never applied and the application of CheckRepVar is transitive. As a consequence, all the
non-transitive descendants are of the forms Match( pi , di, (envi) ), . . . . Only the paths originated by
applications of the 2-nd, 3-rd, 4-th Match rewriting rules may contain configurations of such forms.

Consider a configuration Match( pi , di, (envi) ), . . . . Below Mi denotes such a configuration. Since
pi is a constant, one-step unfolding this configuration by the 2-nd rewriting rule leads to configuration
PutVar( s.n : ds, (envi) ), Match( pi+1 , di+1, • ), . . . such that pi+1 is a proper part of pi, in which at
least one constructor is removed. Hence, pi+1 ≺ pi holds. Since the PutVar application is transitive, a
number of unfolding steps lead transitively to Match( pi+1 , di+1, (envi+1) ), . . . such that pi+1 ≺ pi.

One-step unfolding the configuration Match( pi , di, (envi) ), . . . by the 3-rd rewriting rule leads to
configuration Match( pi+1 , di+1, (envi) ), Match( pi+2 , di+2, • ), . . . such that pi+1 and pi+2 are proper
parts of constant pi. Hence, pi+1 ≺ pi and pi+2 ≺ pi hold.

One-step unfolding the configuration Match( pi , di, (envi) ), . . . by the 4-th rewriting rule leads to
configuration Match( pi+1 , di+1, (envi) ), . . . such that pi+1 is a proper part of pi, in which at least one
constructor is removed. Hence, pi+1 ≺ pi holds.

Now consider any two configurations of the forms Match( pi , di, (envi) ), . . . and
Match( pj , dj, (envj) ), . . . such that the second configuration belongs to a path originating from the first
one and is encountered before any generalization. Hence, pi and pj are constants.

Given a configuration C, the length of C, denoted by lnc(C), is the number of the upper function
applications in C. (See Definition 2 above.)

11I.e., without any function application, except an entry point of this residual program.
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If lnc(M j) < lnc(Mi) then Mi 6 M j and the Turchin relation prevents M j, Mi from generalization
and M j from any folding action. (See Section 4.3.)

If lnc(M j)≥ lnc(Mi) and Mi / Mj then we consider the first shortest configuration Mk in the path seg-
ment being considered. By definition of the stack, Match( pk , dk, • ) is from Mi and Match( pj , dj, (envj))

is a descendent of Match( pk , dk, (envk) ).
Since Match( pk , dk, • ) took a part in computing M j, it is the last function application of the

stack prefix defined by the following Turchin relation Mi / M j, which holds. On the other hand, by
the reasoning given above, for any p jl from the prefix of M j, defined by this Turchin relation, p jl ≺ pk

holds, and, as a consequence, the following relation Match( pjl , djl , (envjl) ) ≺ Match( pk , dk, • )
holds. According to the / ◦ 4-strategy this relation prevents M j, Mi from generalization and M j from
any folding action. (See Section 4.3.) The proposition has been proven. �

5.3 Dealing with the Interpreter Function-Application Stack
Firstly, assume that no generalization happened in the unfold-fold loop up to now. Given a right-hand
side exp0 of a rewriting rule returned by function Matching as described in Section 5.2, then the following
configuration has to map, step by step, the segment of the interpreted function-application stack, that is
defined by known exp0, on the top of the interpreting stack: Eval( (env) : exp0 , πs ), . . .

According to the call-by-value semantics, function Eval looks for the function application, whose
right bracket is the leftmost closing bracket, in completely known exp0. It moves from left to right along
exp0, substitutes transitively the values of the variables encountered, as shown in Section 5.2, pushes
the interpreted function application in the interpreting stack, mapping it into an EvalCall application,
whenever the interpreted application should be pushed in the interpreted stack. See Section 5.1 for the
details. Finally the depth first EvalCall application initiates the next big-step.

Since for any pattern p of program Synapse and any v ∈ V µv(p) < 2 holds, all applications of Eq,
ContEq and PutV are transitive. This note together with Proposition 1 implies Proposition 2 below.

Let pi stand for sub-patterns of a pattern of program Synapse, argi and def stand for partially known
parameterized expressions and several, maybe zero, rewriting rules being a rest of a function definition
of Synapse, respectively. Let exp stand for the right-hand side of a rewriting rule from this definition.
env ::= ( var : val ) : env | [], var ::= s.n | e.n , and val stands for a partially known value of variable
var. Let Int0 denote Int( (Call Main e.d), πs ), where the value of e.d is unknown.

Proposition 2 Let the unfold-fold loop be controlled by the / ◦4-strategy. Let it start off from the initial
configuration Int0. Then the first generalized configuration generated by this loop, if any, will generalize
two configurations of the following form and any configuration folded, before this generalization, by a
previous configuration is of the same form, where n > 0,

Match( p1 , arg1, (env) ), . . . , Match( pn , argn, • ), Matching( •, exp, def , arg0 ), Eval( • , πs ), ...(¶)

Now consider any application of the form Match( p1 , arg1, (env) ) staying on the stack top. Let
Match1 denote this application. Only the third rewriting rule of Match increases the stack. In this case
the next state after the stack ¶ is of the form Match3, Match2 . . .. Then, by Proposition 1, along any
path originating from Match2 the application Match2 is not replaced until application Match3 will be
completely unfolded. Hence, for any stack state of the form fi, . . . , Match2, . . . on such a path, where fi

denotes any function application, the following relation Match2, . . . 6 fi, . . . , Match2, . . . holds. That
proves the following corollary using the notation given above.
Corollary 1 Given a timed application Matchingt0( •, exp, def , arg0 ), any two timed configurations of
the form . . . , Matchingt0( •, exp, def , arg0 ), Eval( • , πs ), . . . can neither be generalized nor folded
one by the other.
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Since any application Matching( . . ., exp, def , ) decreases, step by step, the list def of the rewriting
rules, the following corollary holds.

Corollary 2 Given a big-step of Int, a timed pair expt1 , deft1
12, and a timed application

Matchingτ0( •, expt1 , deft1 , arg0 ) inside this big-step, then any two timed configurations of the form
. . . , Matchingτi( •, expti , defti , arg0 ), Eval( • , πs ), . . . can neither be generalized nor folded one by
the other.

Given a function definition F and a rewriting rule r of the definition, let expF,r stand for the right-
hand side of r, while defF,r stand for the rest of this definition rules following the rule r. The following
is a simple syntactic property of the Synapse program model given in Section 3.

For any F1,F2 ∈ {Main,Loop,Event,Append,Test} and for any two distinct rewriting rules r1,r2(5.1)

of F1,F2, respectively, (expF1,r1 ,defF1,r1) 6= (expF2,r2 ,defF2,r2) holds.

That together with Corollaries 1, 2 imply:

Proposition 3 Given two configurations C1 and C2 of the form ¶ to be generalized or folded one by
the other. Then (1) C1 and C2 cannot belong to the same big-step of Int; (2) there are two functions
F1, F2 of a cache coherence protocol model from the series mentioned in Section 6 (and specified in the
way shown in Section 3) and rewriting rules r1,r2 of F1,F2, respectively, such that (expF1,r1 ,defF1,r1) =
(expF2,r2 ,defF2,r2), where functions F1, F2 and rules r1,r2 may coincide, respectively.

Remark 2 Proposition 3 depends on Property 5.1. Nevertheless, the restriction imposed by 5.1 is very
weak and the most of programs written in L satisfy 5.1. It can easily be overcome by providing the
interpreting function Matching with an additional argument that is the interpreted function name. The
second statement of this proposition is crucial for the expectation of removing the interpretation over-
heads. Despite the fact that the reasoning above follows the Synapse program model, it can be applied
to any protocol model used in our experiments described in this paper.

We conclude that any configuration encountered by the loop unfolding the given big-step is neither
generalized with another configuration generated in unfolding this big-step nor folded by such a config-
uration.

5.4 On Generalizing the Interpreter Configurations

The unfold-fold loop processes the paths originating from the initial configuration Int0, following the
corresponding interpreted paths. The latter ones are processed according to the order of the rewriting
rules in the Synapse function definitions. The configuration Int0 is unfolded according to the Main
function definition of the interpreted program. Application of this function leads transitively to the
following function application: Loop( (time) :(Invalid I is) :(Dirty ) :(Valid ) ). The interpreter has to
match this call against the left-hand side of the first rewriting rule of the Loop definition. The first
corresponding pattern is: ([]) :(Invalid e.is) :(Dirty e.ds) :(Valid e.vs).

The pattern matching processes the pattern and argument from the left to the right, by means of
function Match. The known part of the tree structure is mapped into the interpreting stack by the third
rule of Match. The number of Match applications in the stack is increased by this rewriting rule.

In the given context of specialization the values of time and is are unknown. Hence, the prefix of this
stack that is responsible for matching the argument constant structure on the left-hand side of time will

12Here we use the notation given above and the timed expressions, which are defined in the same way as the timed applica-
tions (Section 4.2).
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transitively disappear and the unfolding loop will stop at the configuration of the following form
Match( [], time, ([]) ), Match( p2 , arg2, • ), Matching( •, exp, def , arg0 ), Eval( • , πs ), •.

Here the leading Match application meets the unknown data time and has to match it against [] given in
the first argument. The environment in the third argument is empty since no variable was still assigned
up to now. The second Match application is responsible for matching the suspended part of the input
data arg2 against the rest p2 of the pattern. I. e., arg2 equals (Invalid I is) :(Dirty ) :(Valid ) and p2 equals
(Invalid e.is) :(Dirty e.ds) :(Valid e.vs).

Now we note that the arguments of all applications of the recursive Loop and Append functions have
exactly the same constant prefix as considered above. That leads to the following proposition.

Proposition 4 Let the unfold-fold loop be controlled by the / ◦4-strategy. Let it start off from the initial
configuration Int0. Then the first generalized configuration generated by this loop, if any, will generalize
two configurations of the following forms and any configuration folded, before this generalization, by a
previous configuration is of the same form

Match( [], arg1, ([]) ), Match( p2 , arg2, • ), Matching( •, exp, def , arg0 ), Eval( • , πs ), . . .

In the given context of specialization Turchin’s relation plays a crucial role in preventing the encoun-
tered configurations from generalization (see Proposition 1). It never forces decomposing the generalized
configurations as might do, in general (see Section 4.2). Both the crucial configurations of the unfolding
history leading to verification of this program model and some properties of the corresponding general-
ized configurations may be found in the extended version of this paper published as a preprint [34].

6 Conclusion
We have shown that a combination of the verification via supercompilation method and the first Futamura
projection allows us to perform verification of the program being interpreted. We discussed the crucial
steps of the supercompilation process involved in the verification of a parameterized cache coherence
protocol used as a case study. In the same way we were able to verify all cache coherence protocols
from [7, 8], including MSI, MOSI, MESI, MOESI, Illinois University, Berkley RISC, DEC Firefly,
IEEE Futurebus+, Xerox PARC Dragon, specified in the interpreted language L . Furthermore, we were
able to verify the same protocols specified in the language WHILE [19]. The complexity of involved
processes is huge and further research is required for their better understanding.

Our experimental results show that Turchin’s supercompilation is able to verify rather complicated
program models of non-deterministic parameterized computing systems. The corresponding models used
in our experiments are constructed on the base of the well known series of the cache coherence protocols
mentioned above. So they might be new challenges to be verified by program transformation rather than
an approach for verifying the protocols themselves. This protocol series was early verified by Delzanno
[7] and Esparza et al. [10] in abstract terms of equality and inequality constraints. Using unfold-fold
program transformation tools this protocol series was early verified by the supercompiler SCP4 [29, 30,
28, 31] in terms of a functional programming language, several of these protocols were verified in terms
of logic programming [43, 12]. One may consider the indirect protocol models presented in this paper
as a new collection of tests developing the state-of-the-art unfold-fold program transformation.

The intermediate interpreter considered in this paper specifies the operational semantics of a Turing-
complete language L . We have proved several statements on properties of the configurations generated
by the unfold-fold cycle in the process specializing Int with respect to the cache coherence protocols
specified as shown in Section 3. The main of them is Proposition 1. Some of these properties do not
depend on specific protocols from the considered series, i. e., they hold for any protocol specified in
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the way shown in Section 3. That allows us to reason, in a uniform way, about a huge number of
complicated configurations. Note that the programs specifying the protocols include both the function
call and constructor application stacks, where the size of the first one is uniformly bounded on the value
of the input parameter while the second one is not.

As a future work, we would like to address the issue of the description of suitable properties of
interpreters to which our uniform reasonings demonstrated in this paper might be applied.

Acknowledgements: We would like to thank Antonina Nepeivoda and anonymous reviewers for help-
ing to improve this work.
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