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Abstract 5 

Background: Joint modelling of longitudinal and time-to-event data is often advantageous 6 

over separate longitudinal or time-to-event analyses as it can account for study dropout, error 7 

in longitudinally measured covariates, and correlation between longitudinal and time-to-event 8 

outcomes. The current literature on joint modelling focuses mainly on the analysis of single 9 

studies with a lack of methods available for the meta-analysis of joint data from multiple 10 

studies. Methods: We investigate a variety of one-stage methods for the meta-analysis of 11 

joint longitudinal and time-to-event outcome data. These methods are applied to the 12 

INDANA dataset to investigate longitudinally measured systolic blood pressure, with each of 13 

time to death, time to myocardial infarction and time to stroke. Results are compared to 14 

separate longitudinal or time-to-event meta-analyses.  A simulation study is conducted to 15 

contrast separate versus joint analyses over a range of scenarios. Results: The performance of 16 

the examined one-stage joint meta-analytic models varied.  Models that accounted for 17 

between study heterogeneity performed better than models that ignored it.  Of the examined 18 

methods to account for between study heterogeneity, under the examined association 19 

structure, fixed effect approaches appeared preferable, whilst methods involving baseline 20 

hazard stratified by study were least time intensive. Conclusions: One-stage joint meta-21 

analytic models that accounted for between study heterogeneity using a mix of fixed effects 22 

or stratified baseline hazard were reliable, however models examined that included study 23 

level random effects in the association structure were less reliable.   24 
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1 Introduction 28 

Univariate shared random effect joint models for longitudinal and time-to-event data 29 

simultaneously model a single longitudinal and a single time-to-event outcome1.  The model 30 

consists of a longitudinal sub-model and a time-to-event sub-model linked through an 31 

association structure, which quantifies the relationship between the two outcomes.  Many 32 

options are presented in the literature for each sub-model (such as linear mixed effects 33 

models or splines for the longitudinal sub-model, and proportional hazards or accelerated 34 

failure time models for the time-to-event sub-model).  A range of association structures 35 

exist2, including sharing random effects between the sub-models3, sharing the current 36 

longitudinal trajectory (both the fixed and random effects), or sharing the first derivative of 37 

the longitudinal trajectory4.  The research presented here focuses on joint models that concern 38 

a single continuous longitudinal and a single possibly censored time-to-event outcome, linked 39 

using an association structure consisting of shared zero mean random effects with common 40 

association parameter for random effects acting at the same level3. 41 

Joint models for longitudinal and time-to-event data are often employed to account for study 42 

dropout and measurement error in time varying covariates, whilst producing less biased 43 

estimates of study parameters3,5.  An example of their application compared to separate 44 

longitudinal models is presented by Powney et al6, who discuss the MAGNETIC trial7 which 45 



 

 

reported a longitudinal case with missing data where a complete case analysis found no 46 

significant difference between treatment groups, whilst use of joint models to account for 47 

missing data resulted in a statistically significant difference.  A recent review of current 48 

reporting of single study joint analyses by Sudell et al8 identified that the number of 49 

published joint analyses has been increasing over recent years, suggesting a growing resource 50 

of joint datasets.  Examples of single study joint models applied in the literature include 51 

Jacoby et al9, Kolamunnage-Dona et al10, Lloyd-Williams et al11, and Kovanda et al12. 52 

Glass13 defined meta-analysis (MA) as the statistical analysis or pooling of results from 53 

several studies.  Meta-analyses can result in analyses with increased precision and power, 54 

whilst permitting new research questions to be answered.  An individual participant or patient 55 

data meta-analysis (IPD-MA) utilises the original data collected in each study, whereas an 56 

aggregate data meta-analysis (AD-MA) utilises study level results, including those available 57 

in published reports. IPD-MA can be one-stage or two-stage.  A two-stage meta-analysis fits 58 

models to the data from each study included in the meta-analysis, and then uses standard MA 59 

techniques14,15 to pool the study specific parameter estimates.  A one-stage meta-analysis 60 

stores the data from all studies included in the meta-analysis in a single meta-dataset, to 61 

which a single model is fitted (which should account for the clustering of data within studies).   62 

The literature for meta-analyses is extensive14,15, but research into the meta-analysis of joint 63 

longitudinal and time-to-event data is limited to a small number of references8,16.  However, it 64 

is reasonable that if joint modelling is preferred over separate longitudinal or time-to-event 65 

models in certain single study cases (e.g. to account for informative dropout in longitudinal 66 

study designs17 or  when  a time-to-event outcome is influenced by  longitudinal outcomes18),  67 

use of joint models rather than separate methods may also be preferred in a meta-analytic 68 

setting.   69 

Currently, methodological research has mainly focused on joint models applied to single 70 

study datasets (for overviews see5,19), although a limited number of references exist that deal 71 

with multi-centre joint data20, and multi-level joint models21. However, these references did 72 

not specifically investigate the meta-analytic case.  Multi-centre and meta-analytic datasets 73 

are similar, in that they have a structure where individuals are nested within studies or 74 

centres.  However, the number of higher level units differs between cases; meta-analyses 75 

often contain fewer studies, each containing a larger number of individuals, whereas multi-76 

centre datasets often contain a larger number of centres, each containing a comparatively 77 

smaller number of individuals. As such, the spread of data across the different levels is 78 

different for a meta-analytic compared to a multi-centre dataset, leading to potentially 79 

different approaches being required.  This paper extends this methodology by investigating 80 

multi-level joint models specifically for use in meta-analytic datasets.   81 

Recently Sudell et al16 investigated methods for the two-stage MA of joint data.  In this 82 

article, we investigate one-stage models to analyse individual participant multi-study joint 83 

longitudinal and time-to-event data (termed joint IPD).  The results of the one-stage meta-84 

analytic joint models are compared to one-stage separate longitudinal or time-to-event meta-85 

analytic models.  The article begins with a discussion of the methods employed in the 86 

investigation.  The presented methods are then applied to an example dataset.  A simulation 87 

study is then conducted to test the methods under a range of scenarios.  The article concludes 88 

with a discussion of joint modelling methodology in one-stage MA. 89 



 

 

2 Methods for one-stage joint IPD-MA 90 

As mentioned, this research assumes the availability of joint longitudinal and time-to-event 91 

IPD. This IPD is considered to have three nested levels, namely longitudinal measurements at 92 

level 1, nested within individuals at level 2, nested within studies at level 3. The joint models 93 

considered in this research assume a linear mixed effects model for the longitudinal outcome, 94 

and a Cox Proportional Hazards (PH) model with an unspecified baseline hazard for the time-95 

to-event outcome.  The two sub-models are linked through shared zero mean random effects, 96 

with common association parameter (represented using 𝜶 terms) for the random effects acting 97 

at the same level. Unlike joint models for single study data, the proposed models must 98 

account for the clustering of individuals within studies, and model potential heterogeneity 99 

between these studies. 100 

The one-stage joint model follows the structure: 101 

 𝑌𝑘𝑖𝑗 = 𝑿𝟏𝜷𝟏 + 𝒁𝒌𝒊
(𝟐)

𝒃𝒌𝒊
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(1) 

Studies are identified by 𝑘 = 1 … 𝐾, where 𝐾 is the total number of studies in the meta-102 

dataset.  Individuals within each study are represented by 𝑖 = 1 … 𝑛𝑘 where 𝑛𝑘 denotes the 103 

total number of individuals in study 𝑘.  The longitudinal measurement points are identified 104 

using 𝑗 = 1 … 𝑚𝑘𝑖 where 𝑚𝑘𝑖 represents the total number of longitudinal measurements 105 

recorded for individual 𝑖 in study 𝑘. 106 

The longitudinal measurement recorded for individual 𝑖 in study 𝑘 at time-point 𝑗 is 107 

represented by 𝑌𝑘𝑖𝑗, with the longitudinal error term 𝜀𝑘𝑖𝑗.  Fixed effects are represented using 108 

𝜷 terms, with the first element of the subscript identifying the sub-model they belong to (such 109 

that 𝜷𝟏 = 𝛽11, 𝛽12, 𝛽13, … are the longitudinal sub-model fixed effects, and 𝜷𝟐 =110 

𝛽21, 𝛽22, 𝛽23, … are the time-to-event sub-model fixed effects). Random effects are 111 

represented by 𝒃, with individual level (level 2) random effects represented by 𝒃𝒌𝒊
(𝟐)

 and study 112 

level (level 3) random effects by 𝒃𝒌
(𝟑)

.  Design matrices are represented by 𝑿 for the fixed 113 

effects and 𝒁 for the random.  𝑿𝟏 represents the longitudinal sub-model fixed effects design 114 

matrix, and 𝑿𝟐 represents the time-to-event sub-model fixed effects design matrix.  115 

Additionally, 𝒁𝒌𝒊
(𝟐)

 represents the design matrix for the individual level (level 2) random 116 

effects, and 𝒁𝒌
(𝟑)

 represents the design matrix for the study level (level 3) random effects.   117 

The individual level random effects follow distribution 𝒃𝑘𝑖
(2)

~𝑁(𝟎, 𝑫), whilst the study level 118 

random effects follow distribution 𝒃𝑘
(3)

~𝑁(𝟎, 𝑨), and the error terms each follow distribution 119 

𝜀𝑘𝑖𝑗~𝑁(0, 𝜎𝑒
2). The individual level and the study level random effects are considered 120 

independent of each other, and of the error terms. The random effects are intended to 121 

represent how covariate effects differ for units at the respective levels (individuals or studies) 122 

from those estimated for the overall population by the fixed effects, for example how the 123 

individuals contained within a particular study differ from those in the overall population.  As 124 

such, the 𝒁 matrices are assumed to be subsets of the 𝑿𝟏 matrix.  125 

In the time-to-event sub-model, 𝜆0(𝑡) represents the unspecified baseline hazard.  The sub-126 

models are linked through shared zero mean random effects, with common association 127 

parameters 𝛼(2) for the individual level random effects and 𝛼(3) for the study level random 128 



 

 

effects. Note that if a particular component of the joint model is not required (e.g. the study 129 

level random effects), terms involving this component (e.g. 𝒁𝒌
(𝟑)

𝒃𝒌
(𝟑)

) do not appear in the 130 

model. 131 

A range of model groups are investigated, which represent a variety of methods to account 132 

for between study heterogeneity.  The specifications of the model groups are stated in Table 133 

1.  These models involve only longitudinal time (𝑡𝑘𝑖𝑗), a binary treatment assignment variable 134 

(𝑡𝑟𝑒𝑎𝑡𝑘𝑖), and study membership (𝑠𝑡𝑢𝑑𝑦𝑘𝑖) as covariates. However, the models examined 135 

can be easily extended if other covariates are of interest to the MA. Note, instances of 136 

longitudinal time 𝑡𝑘𝑖𝑗 in the association structure term 𝑊2𝑘𝑖(𝑡) (which is present in the time-137 

to-event sub-model) are replaced by the individuals survival time 𝑇𝑆𝑘𝑖. 138 

Model group 0 in Table 1 is a naïve model which does not account for between study 139 

heterogeneity in any way.  This model is presented here to highlight the consequence of 140 

ignoring the clustered nature of multi-study joint data.  Note, any instances of longitudinal 141 

time in the association structure are replaced with the individual’s survival time 142 

(denoted 𝑇𝑆𝑘𝑖, equal to the minimum of their event and censoring times). 143 

Model group 1 accounts for between study heterogeneity using a fixed study membership 144 

variable, along with its interaction with treatment assignment, in both sub-models.  Study 145 

membership is expected to be a factor variable, and so a separate 𝛽13, 𝛽14, 𝛽22 and 𝛽23 146 

parameter will be produced for each study 𝑘 in the meta-analysis (apart from the reference or 147 

baseline study), denoted 𝛽13𝑘, 𝛽14𝑘, 𝛽22𝑘 and 𝛽23𝑘.  The study considered to be the reference 148 

study should be representative of the population of interest. In model group 1, inclusion of 149 

the fixed study membership variable allows calculation of study specific fixed longitudinal 150 

trajectory intercepts (with 𝛽10 representing the fixed intercept for the reference study, and 151 

𝛽10 + 𝛽14𝑘 for non-reference study 𝑘).  Likewise, study specific longitudinal treatment 152 

effects can be calculated (with 𝛽13 representing the fixed longitudinal treatment effect for the 153 

reference study, and 𝛽13 + 𝛽15𝑘 for non-reference study 𝑘).  In the time-to-event sub-model, 154 

the 𝛽22𝑘 parameter represents the difference in risk of an event between study 𝑘, and the 155 

reference study.  The deviation in risk of an event due to treatment group is equal to 𝛽21 for 156 

the reference study, and by 𝛽21 + 𝛽23k for non-reference study 𝑘. 157 

Model group 2 accounts for between study heterogeneity using a fixed study membership 158 

variable in both sub-models, and a study level zero-mean random treatment effect (𝑏1𝑘
(3)

).  159 

Study specific longitudinal trajectory intercepts and log-hazard ratio risks of an event for 160 

each study can be calculated from the fixed effects as for model group 1.  The interpretation 161 

of the study specific random treatment effect 𝑏1𝑘
(3)

is more complex than for separate 162 

longitudinal or time-to-event one-stage MA-models due to its presence in both sub-models.  163 

In the longitudinal sub-model, the 𝑏1𝑘
(3)

 term adjusts the overall population treatment effect 164 

coefficient 𝛽12 to give the observed treatment effect in study 𝑘 of 𝛽12 + 𝑏1𝑘
(3)

.  Through the 165 

association structure, 𝑏1𝑘
(3)

 is present in the time-to-event sub-model.  As such, the population 166 

treatment effect coefficient 𝛽21 is altered to give a study specific estimate of the deviation in 167 

the risk of an event due to treatment group (𝛽21 + 𝛼(3)𝑏1𝑘
(3)

). 168 

Model group 3 accounts for between study heterogeneity solely using study level random 169 

effects, as it involves a study level random intercept (𝑏0𝑘
(3)

) and random treatment effect 170 

(𝑏1𝑘
(3)

). Again, the interpretation of these random effects is more complex than for separate 171 



 

 

one-stage longitudinal or time-to-event MA-models due to their presence in both sub-models 172 

through the association structure.  The study level random intercept 𝑏0𝑘
(3)

 causes the 173 

longitudinal intercept for study 𝑘 to equal 𝛽10+𝑏0𝑘
(3)

, but also 𝛼(3)𝑏0𝑘
(3)

 represents the deviation 174 

in the risk of an event in the 𝑘th study from the population average taken across all studies in 175 

the meta-analysis.  The interpretation of the random treatment effect (𝑏1𝑘
(3)

) is the same as for 176 

model group 2.   177 

Model group 4 has a longitudinal sub-model with the same specification (and so 178 

interpretation) as model group 1. However the baseline hazard in the time-to-event sub-model 179 

is stratified by study (𝜆0𝑘(𝑡)), and the time-to-event sub-model contains only a fixed 180 

treatment assignment term.  As such, between study heterogeneity in the time-to-event model 181 

is captured by the study specific baseline hazards.  182 

Model group 5, accounts for between study heterogeneity in a variety of ways.  A fixed study 183 

membership term is included in the longitudinal sub-model, a study level random treatment 184 

effect (𝑏1𝑘
(3)

)  is present in both sub-models through the association structure, and the baseline 185 

hazard of the time-to-event sub-model is stratified by study.  Each component of the model 186 

has interpretations as already discussed. 187 

In addition to the one-stage joint MA-models, we also fit separate longitudinal and time-to-188 

event one-stage MA-models for the comparison with the joint estimates.  These separate 189 

models have the same specification as the corresponding joint model sub-models, except for 190 

the 𝑊2𝑘𝑖(𝑡) term is removed from the time-to-event one-stage MA-models. 191 

3 Model fitting 192 

The models described in Section 2 were fitted using the Expectation Maximisation (EM) 193 

algorithm22, whose use in single study joint modelling analyses has been described by 194 

Wulfsohn and Tsiatis1 and Rizopoulos4. Starting values for the algorithm were extracted from 195 

initial separate longitudinal and time-to-event model fits (of the same specification as the 196 

corresponding sub-models of the joint model, excluding the association structure).  In the 197 

Expectation or E-step, estimates of functions of random effects were calculated using pseudo-198 

adaptive Gaussian quadrature procedures23, where conditional modes of the random effects 199 

calculated in the initial separate longitudinal model fit were used to calculate appropriate 200 

locations for the abscissa to be used throughout the model fitting process. In the 201 

Maximisation or M-step, these estimated functions of the random effects were used to 202 

calculate maximum likelihood estimates of model parameters.  The derived maximum 203 

likelihood estimators have been made available as Supplemental Material. 204 

4 Software 205 

We developed a flexible R24 code to fit one-stage multi-study joint models described in this 206 

article which will be available as joineRmeta package, the R codes can currently be 207 

downloaded at https://github.com/mesudell/joineRmeta/.  This software is an extension of the 208 

single study joint modelling package joineR25 to the multi-study case.  Example code and 209 

simulated data are available in the supplemental information, demonstrating methods 210 

discussed in this article. 211 

https://github.com/mesudell/joineRmeta/


 

 

5 Application  212 

5.1 Example Data 213 

To investigate the behaviour of the proposed methods in a real world scenario, the methods 214 

were applied to a subset of the INDANA dataset26.  This is a multi-study dataset compiled to 215 

investigate the effect of patient characteristics on the efficacy of pharmacological treatment 216 

for high blood pressure.  The subset analysed here (henceforward referred to as the INDANA 217 

dataset) contains any study identified by the INDANA collaboration26 that supplied both 218 

longitudinal and time-to-event data, and contains 6 studies (EWPHE27, COOP28, STOP29, 219 

SHEP30, MRC131 and MRC232 ).  The INDANA dataset concerns hypertensive patients 220 

assigned to one of two treatment groups; any treatment for hypertension versus placebo, no 221 

treatment or usual care.  Longitudinally measured Systolic and Diastolic Blood Pressure were 222 

available, referred to as SBP and DBP.  Three time-to-event outcomes were measured, 223 

namely time to death, time to myocardial infarction (MI) and time to stroke.   224 

The data contained 9 possible longitudinal time-points at baseline, 6 months, 1 year and 225 

annually thereafter to a maximum of 7 years.  The SHEP study recorded individuals at only 6 226 

measurement times, whilst STOP and MRC1 presented 7 measurement times, with the 227 

remaining studies presenting data at each of the 9 possible measurement times.  Only 228 

longitudinal data recorded prior to an individual’s survival time contributed to the analyses.  229 

Tables of the number of measurements provided by each study at each time point are 230 

available in the supplemental information (supplemental tables S1-S3). 231 

Analyses of SBP and each time-to-event outcome are presented in Tables 2-4.  For EWPHE, 232 

an intention to treat analysis was only possible for fatal endpoints, and so the study only 233 

contributes to the analysis of SBP and time to death. As such, the final dataset examined 234 

contained a maximum of 6 studies totalling at most 29825 individuals.  The exact number of 235 

individuals involved in each analysis is stated in the captions of Tables 2-4.   236 

The aim of this investigation was to illustrate the proposed one-stage joint meta-analytic 237 

models, rather than to investigate potential treatment modifiers.  As such, whilst the 238 

INDANA dataset contained a range of patient covariates that could influence the outcomes, 239 

models in this investigation included only treatment assignment, study membership and the 240 

longitudinal time covariate.   241 

The models of specification shown in Table 1 were fitted to the data for each combination of 242 

outcomes (SBP and each of time to death, time to MI and time to stroke, with longitudinal 243 

outcome 𝑌𝑘𝑖𝑗 = 𝑆𝐵𝑃𝑘𝑖𝑗).  However plots of the longitudinal trajectories for each study 244 

panelled by event type (Supplemental Figures S1-S3) indicated a changepoint early in the 245 

trajectories.  A range of terms were tested to account for non-linearity due to the changepoint 246 

including 𝑡𝑘𝑖𝑗
2 , exp (−𝑡𝑘𝑖𝑗) and exp (−𝑎 ∗ 𝑡𝑘𝑖𝑗). Comparison of the log-likelihoods and AIC 247 

values of the models determined that inclusion of the term exp (−3 ∗ 𝑡𝑘𝑖𝑗) gave the best fit.  248 

Consequently, in addition to the terms stated in Table 1, each longitudinal sub-model also 249 

contained a exp (−3 ∗ 𝑡𝑘𝑖𝑗) term (for clarity, full model specifications for real data analyses 250 

are available in Supplemental Table S4). 251 

In the models examined, a statistically significant negative treatment assignment coefficient 252 

in the time-to-event model would indicate that assignment to any treatment for hypertension 253 

versus placebo, no treatment or usual care significantly reduced the risk of the event in 254 

question.  Model groups 0, 2, 3, 4 and 5 each produce a single global time-to-event treatment 255 



 

 

effect estimate (𝛽21), whilst model group 1 produces study specific treatment effect estimates 256 

(calculated by 𝛽21 for the reference study, and 𝛽21 + 𝛽23𝑘 for non-reference study 𝑘).   257 

A statistically significant negative treatment assignment coefficient in the longitudinal sub-258 

model would indicate that assignment to any treatment for hypertension significantly 259 

decreased SBP.  Model groups 0, 2, 3 and 5 each produce a single global longitudinal 260 

treatment effect estimate (𝛽12), whilst model groups 1 and 4 produce study specific estimates 261 

(calculated by 𝛽12 for the reference study, and 𝛽12 + 𝛽14𝑘 for non-reference study 𝑘).   262 

A statistically significant positive study level association parameter (𝛼(3)) indicates that 263 

individuals in studies with longitudinal outcome values above the corresponding overall 264 

population mean are at higher risk of experiencing the event at a given time point.  A 265 

statistically significant positive individual level association parameter (𝛼(2)) indicates that 266 

individuals with longitudinal values above that predicted by the terms in the longitudinal sub-267 

model (apart from the individual level random effects) are at higher risk of experiencing the 268 

event at a given time point.  Association parameters were only estimated for joint analyses. 269 

5.2 Results from the INDANA dataset meta-analyses 270 

Tables 2-4 present the results of application of model groups 0-5 (as stated in Supplemental 271 

Table S4) to the INDANA dataset.  Graphical representations of these results are shown in 272 

Supplemental Figures S4-S12. 273 

Across all pairwise combinations of outcomes investigated, the estimated treatment effect 274 

from the separate longitudinal one-stage IPD-MA and the joint one-stage IPD-MA 275 

longitudinal sub-model were significant and negative, indicating that assignment to treatment 276 

for hypertension significantly reduced SBP compared to placebo, no treatment or usual care.  277 

The estimated treatment effect from the separate and joint analyses agreed well across model 278 

groups examined, apart from model group 3 (which solely accounted for between study 279 

heterogeneity using study level random effects).  Here the separate results were similar to 280 

those produced by the other model groups, however the results from the joint analysis, whilst 281 

still significant, were much smaller in magnitude than the joint results from the other 282 

modelling groups.  In the separate group 3 model, the study level random effects accounted 283 

for between study heterogeneity in the longitudinal trajectory.  However, in the joint model 284 

they also accounted for between study heterogeneity in the time-to-event sub-model through 285 

their presence in the association structure.  It was important to determine if sharing study 286 

level random effects in this way between sub-models caused bias in covariate estimates, 287 

examined through simulations in Section 5. 288 

Throughout the analyses, the estimated time-to-event treatment coefficient from the joint one-289 

stage IPD-MA models were smaller in magnitude than those from the separate one-stage 290 

IPD-MA model.  However the direction of the results agreed between the separate and the 291 

joint analyses.  For SBP and time to death, the separate and joint analyses agreed in the 292 

significance of results, with a significant reduction in risk of death due to assignment to any 293 

treatment for hypertension estimated only for the STOP trial for model group 1.  For SBP and 294 

time to MI, model groups 0, 2, 3, 4 and 5 for both the separate and joint analyses estimated 295 

significant negative global treatment effect estimates, indicating a significant reduction in risk 296 

of MI due to assignment to treatment for hypertension.  However, for model group 1, only the 297 

study specific estimate for the SHEP trial from the joint analysis was significant. For SBP 298 

and time to stroke, model groups 0, 2, 3, 4 and 5 for both the separate and joint analyses 299 

estimated significant negative global treatment effect estimates, indicating a significant 300 

reduction in risk of stroke due to assignment to treatment for hypertension.  These treatment 301 



 

 

assignment coefficients were larger in magnitude than the results for time to death or time to 302 

MI.  For model group 1, the separate time-to-event model identified study specific significant 303 

treatment effects for COOP and MRC1, however the joint analysis additionally identified 304 

significant effects for SHEP and STOP. 305 

Individual level random effects were included in all model groups examined causing the 306 

individual level association parameter 𝛼(2) to be present in all model groups. For each set of 307 

outcomes examined, all model groups estimated significant positive values for 𝛼(2), 308 

indicating that individuals with SBP values above the corresponding population average are 309 

at higher risk of an event.  We should note that model group 0 consistently estimated 310 

𝛼(2) values of larger magnitude than the other model groups (which were consistent in the 311 

magnitude of 𝛼(2) estimated).  This highlights the importance of accounting for between 312 

study heterogeneity in joint analyses of multi-study data. 313 

Study level random effects were only employed in model groups 2, 3 and 5, meaning that the 314 

study level association parameter 𝛼(3) was only estimated in these model groups.  There was 315 

a noticeable discrepancy between results from model group 3, and model groups 2 or 5.   316 

Model group 3 contained both a study level random intercept and treatment effect, whereas 317 

model groups 2 and 5 contained only a study level random treatment effect.  Model group 3 318 

estimated a significant positive study level association parameter across all three sets of 319 

analyses (with interpretation that studies with SBP values above the population average were 320 

at higher risk of an event).  However as noted earlier, for the joint analysis, estimated 321 

parameters from model group 3 were inconsistent with the results produced by the other 322 

model groups.  Model groups 2 and 5 estimated insignificant 𝛼(3) values across the three sets 323 

of analyses, which were different in magnitude to model group 3, and had wide confidence 324 

intervals.  These results motivated a simulation study to investigate when use of shared study 325 

level random effects may be recommended. 326 

6 Simulation Investigations 327 

In practice meta-analyses involve data with very different characteristics to those displayed in 328 

our real data example. For example, associations between the longitudinal and time-to-event 329 

outcomes may be different in significance and / or magnitude.  The number of studies 330 

included in the meta-analysis might differ.  There might be a different level of variability or 331 

heterogeneity between studies involved in the meta-analysis.  To assess the behaviour of the 332 

models stated in Table 1 under a range of these different conditions, a range of simulation 333 

investigations were conducted.  These simulations can be split into three main sets: 334 

Simulation Set 1 investigates the models under different levels of association, Simulation Set 335 

2 investigates differing numbers of studies included in the meta-analysis, and Simulation Set 336 

3 investigates differing levels of between study heterogeneity. During the simulation 337 

investigations data was firstly simulated using the models and methods discussed in Section 338 

6.1. The models stated in Table 1 were then fitted to each simulated dataset, the results of 339 

which are presented in Section 6.2. 340 

6.1 Data Simulation 341 

Data for each set of simulations was simulated under the same model structure, but with 342 

different model parameter values, which we will now describe.  For each set of simulations, 343 

for each scenario, 1000 datasets were simulated. 344 

For each dataset within each set of simulations, multi-study joint data was generated 345 

containing a single continuous normally distributed longitudinal outcome and a single 346 

censored time-to-event outcome.  The number of included studies varies between simulation 347 



 

 

sets, however each simulated study contained 500 individuals randomised equally to two 348 

treatment groups.   A maximum of 10 longitudinal measurements at times 0, 0.25, 0.5, 1, 1.5, 349 

2, 2.5, 3, 3.5, 4 were permitted, with measurements recorded only up to the individual’s 350 

survival time (𝑇𝑆𝑘𝑖).  Data for all studies was simulated simultaneously, with any between 351 

study heterogeneity generated through specification of the distribution of study level random 352 

effects.  The longitudinal data was simulated under equation (2): 353 

 𝑌𝑘𝑖𝑗 = 𝛽10 + 𝛽11𝑡𝑘𝑖𝑗 + 𝛽12𝑡𝑟𝑒𝑎𝑡𝑘𝑖 + 𝑏0𝑘𝑖
(2)

+ 𝑏1𝑘𝑖
(2)

𝑡𝑘𝑖𝑗 + 𝑏0𝑘
(3)

+ 𝑏1𝑘
(3)

𝑡𝑟𝑒𝑎𝑡𝑘𝑖 + 𝜀𝑘𝑖𝑗 

 

(2) 

In equation (2), the longitudinal outcome 𝑌𝑘𝑖𝑗 follows a linear mixed effects model containing 354 

fixed intercept, time and treatment assignment terms (with coefficients 𝛽10, 𝛽11 and 𝛽12), 355 

individual level random intercept and slope terms (𝑏0𝑘𝑖
(2)

 and 𝑏1𝑘𝑖
(2)

), study level random 356 

intercept and treatment effect terms (𝑏0𝑘
(3)

 and 𝑏1𝑘
(3)

) and an error term 𝜀𝑘𝑖𝑗.  The random 357 

effects follow multivariate normal distributions, with individual level random effects 358 

distributed 𝒃𝑘𝑖
(2)

~𝑁(𝟎, 𝑫), and study level random effects distributed 𝒃𝑘
(3)

~𝑁(𝟎, 𝑨).  The 359 

random effects are independent of each other, and of the error terms, which are considered to 360 

be independently and identically distributed 𝜀𝑘𝑖𝑗~𝑁(0, 𝜎𝑒
2).   361 

The simulation of time-to-event data under a proportional hazards model with time varying 362 

covariates is described by Bender et al33 and Austin34. In these simulations, the time-to-event 363 

data was generated under equation (3), where 𝜆0(𝑡) is an unspecified baseline hazard: 364 

 𝜆𝑘𝑖(𝑡) = 𝜆0(𝑡) exp(𝛽21𝑡𝑟𝑒𝑎𝑡𝑘𝑖 + 𝑊2𝑘𝑖(𝑡)) 

𝑊2𝑘𝑖(𝑡) = 𝛼(2)𝑊1𝑘𝑖(𝑡) = 𝛼(2)(𝑏0𝑘𝑖
(2)

+ 𝑏1𝑘𝑖
(2)

𝑇𝑆𝑘𝑖) + 𝛼(3)(𝑏0𝑘
(3)

+ 𝑏1𝑘
(3)

𝑡𝑟𝑒𝑎𝑡𝑘𝑖) 

(3) 

As a time varying covariate is present in the time-to-event sub-model (the individual level 365 

random time term 𝑏1𝑘𝑖
(2)

, present through the association structure), event times are simulated 366 

under a Gompertz distribution, as it has a baseline hazard that can vary over time.  367 

Consequently, individual event times 𝑇𝐸𝑘𝑖 are generated under equation (4), (where 368 

𝒁𝒌𝒊
(𝟑)

𝒃𝒌
(𝟑)

= 𝑏0𝑘
(3)

+ 𝑏1𝑘
(3)

𝑡𝑟𝑒𝑎𝑡𝑘𝑖): 369 

 
𝑇𝐸𝑘𝑖 =

1

𝛼(2)𝒃𝟏𝒌𝒊
(𝟐)

+𝜃1

log [1 +
(𝛼(2)𝑏1𝑘𝑖

(2)
+𝜃1)(− log(𝑈𝑘𝑖))

exp(𝜃0+𝛽21𝑡𝑟𝑒𝑎𝑡𝑘𝑖 +𝛼(2)𝑏0𝑘
(2)

+𝛼(3)(𝒁𝒌𝒊
(𝟑)

𝒃𝒌
(𝟑)

))
]  

  

(4) 

In equation (4), 𝑈𝑘𝑖 is an individual specific realisation from a Uniform 𝑈(0,1) distribution.  370 

The parameters 𝜃0 (the exponential of which is the scale parameter of a Gompertz 371 

distribution) and 𝜃1 (the shape parameter of a Gompertz distribution) are used along with the 372 

coefficients in the model to control the distribution of the event times.   373 

The event times 𝑇𝐸𝑘𝑖 were specified to be Gompertz distributed with mean 𝜇0 = 3 and 374 

standard deviation 𝜎0 = 0.5.  Using the extreme value distribution (as recommended by 375 

Bender et al33, with 𝛾 ≈ 0.5772  representing Euler’s constant), this lead to the parameters 376 

controlling the event times distributions to be set to: 377 

𝜃1 =
𝜋

√6𝜎0

=
𝜋

(0.5)√6
 ≈  2.5651 378 



 

 

𝜃0 = log(𝜃1 exp(−𝛾 − 𝜇0𝜃1)) = log(𝜃1 exp(−𝛾 − 3𝜃1)) ≈  −7.330517 379 

A Gompertz distribution has increasing hazard for a positive shape parameter, constant 380 

hazard for a shape parameter equal to 0 (equivalent to an exponential distribution), and a 381 

decreasing hazard for negative shape parameters.  Under the above model, the probability 382 

density function of the event times takes form: 383 

 𝑓0(𝑡) = 𝜅 exp(𝜃1𝑡) exp (
𝜅

𝜃1
(1 − exp(𝜃1𝑡))), where 𝜅 = exp 𝜃0 

(5) 

If the shape parameter is negative, if time is allowed to tend towards infinity, there is a non-384 

zero probability of living forever.  As such, in the function used to simulate event times 385 

(available in the aforementioned joineRmeta package), when the Gompertz distribution is 386 

employed event times are simulated under a two step process. First, for each individual 𝑖 387 

within study 𝑘, the following two conditions are checked (using the realization from the 388 

𝑈(0,1) distribution, 𝑈𝑘𝑖). 389 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 1: (𝜃1 + 𝛼(2)𝑏1𝑘𝑖
(2)

) < 0 390 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 2: 𝑈𝑘𝑖 < exp (
exp (𝜃0 + 𝛼(2)𝑏0𝑘𝑖

(2)
)

𝜃1 + 𝛼(2)𝑏1𝑘𝑖
(2)

) 391 

If the conditions are both true, the individual is automatically assigned an event time of 392 

infinity, otherwise their event time is generated under equation (4).   393 

The censoring times were simulated under an exponential distribution with parameter 𝜆𝑐𝑒𝑛𝑠. 394 

As such, individual censoring times 𝑇𝐶𝑘𝑖  are generated using equation: 395 

 
𝑇𝐶𝑘𝑖 =

−log(𝑈𝑘𝑖)

𝜆𝑐𝑒𝑛𝑠
 

(6) 

The event rate of the simulated data was controlled through the censoring process. Due to the 396 

volume of planned simulations, only datasets with a “low” (~25%) event rate were generated.  397 

A range of censoring parameters were tested to obtain datasets with mean event rate at 25%, 398 

leading to setting 𝜆𝑐𝑒𝑛𝑠 = exp(−0.426). The survival time for each individual was the 399 

minimum of their censoring and event times (𝑇𝑆𝑘𝑖 = min (𝑇𝐸𝑘𝑖, 𝑇𝐶𝑘𝑖)). 400 

All data used in the simulation studies were simulated under the models shown in equations 401 

(2) and (3), although certain parameter values were altered between different sets of 402 

simulations.  Parameter values in the simulation sets were chosen such that deviations of 403 

different methods from the true parameters values would be clearly discernible. A summary 404 

of the values used for the different sets of simulations is given in Table 5. All simulation 405 

groups utilised the same fixed effect and error term variance values (𝛽10 = 1, 𝛽11 = 3, 𝛽12 =406 

2, 𝛽21 = 3, 𝜎𝑒
2 = 0.01).  Additionally, throughout different sets of simulations, the individual 407 

level random effects covariance matrix 𝑫 remained constant (defined in Table 5).  However 408 

the remaining aspects of the datasets (association parameters, number of included studies, 409 

level of between study heterogeneity) varied between simulation sets.  These aspects are 410 

stated in Table 5, and are briefly discussed in the following sections.  Throughout, both 411 

separate longitudinal or time-to-event one stage MA and joint one stage MA were conducted, 412 

to compare the two approaches, 413 



 

 

6.1.1 Simulation Set 1: Varying levels of association 414 

In practice, the magnitude of the association between the longitudinal and time-to-event 415 

outcomes at the individual and the study level of the data could impact the performance of the 416 

model groups defined in Section 2.  Consequently, we performed a simulation investigation 417 

to assess the effect of varying magnitudes of association at different levels. 418 

The individual level association parameter 𝛼(2) and the study level association parameter 𝛼(3) 419 

were permitted to take values 0, 0.5 and 1, giving a total of 9 unique scenarios.  The number 420 

of included studies in each dataset equalled 5, whilst the study level random effects 421 

covariance matrix 𝑨 (Table 5) remained constant across scenarios. 422 

6.1.2 Simulation Set 2: Varying numbers of studies included in the meta-analysis 423 

The models introduced in Section 2 that include study level random effects may not reliably 424 

estimate the distribution of the study level random effects unless the number of studies 425 

included in the meta-analysis is large.  In addition, models including fixed interaction terms 426 

between study membership and treatment group may become unwieldy or difficult to 427 

estimate as the number of included studies increases.  To investigate this, simulations were 428 

conducted comparing one-stage analyses of joint data for datasets containing 5, 10 or 15 429 

studies. 430 

During this set of simulations, the association parameters were held constant across scenarios 431 

(with 𝛼(2) =  𝛼(3) = 0.5).  Additionally, the study level random effects covariance matrix 𝑨 432 

(Table 5) remained constant across scenarios. 433 

6.1.3 Simulation Set 3: Varying levels of between study heterogeneity 434 

Finally, the level of between study heterogeneity could affect the behaviour of the different 435 

one-stage models described in Section 2. As such, the third set of simulations alters the study 436 

level random effects covariance matrix 𝑨 across different scenarios, to increase or reduce 437 

between study heterogeneity.  Values taken for 𝑨, labelled 𝑨𝟏, 𝑨𝟐 and 𝑨𝟑 are specified in 438 

Table 5, representing cases for no between study heterogeneity, and then two increasing 439 

levels of between  study  heterogeneity. 440 

During this simulation set, across all scenarios 5 studies were simulated for each dataset, with 441 

association parameters held constant across scenarios at 𝛼(2) =  𝛼(3) = 0.5. 442 

6.1.4 Models fitted to Simulated Data 443 

Model groups 0 through 5 (as defined in Table 1) were fitted to each of the datasets simulated for each 444 

scenario within each set of simulations.  As the data was simulated under a joint model of structure 445 

from Model Group 3, the results of fitting examples of Model Group 3 to the data could be expected 446 

to provide less biased results than the other model groups. 447 

6.1.5 Reporting of Simulation Results 448 

For model groups that estimated study specific parameters (the longitudinal treatment effect 449 

in model groups 1 and 4, and the time-to-event treatment effect in model group 1), overall 450 

pooled effects have been reported by combining study specific estimates using methods 451 

equivalent to conducting a random effects MA of study level results14,35.  Results are reported 452 

as the mean estimate produced across studies (SE between simulation estimates) [coverage], 453 

where SE is the standard error (the standard deviation) of the produced estimates. As defined 454 

by Burton et al36, and using a significance level of 𝛾 = 0.05, coverage is calculated as the 455 

proportion of times the 100(1 − 𝛾)% confidence intervals for parameter estimate 𝛽̂𝑣, defined 456 



 

 

by  𝛽̂𝑣 ± 𝑍1−𝛾/2𝑆𝐸(𝛽̂𝑣), includes the “true” value of parameter 𝛽 that the data was simulated 457 

under (where 𝑍1−𝛾/2 ≈ 1.96 for significance level 0.05, and 𝑣 takes values 1 to total number 458 

of simulations performed, here 1000).  Where parameters are not estimated for a model group 459 

(e.g. 𝛼(3) for model groups not including study level random effects) an NA is printed.    The 460 

total number of successful model fits are also reported.  As the joint models were fitted using 461 

the EM algorithm22, separate longitudinal and time-to-event models were automatically fitted 462 

to determine suitable starting values for the algorithm.  Consequently, the number of failed 463 

fits were equal for the separate and joint model analyses. 464 

6.2 Results of Simulation Investigations 465 

6.2.1 Results of Simulation Set 1: Differing levels of association 466 

The results of Simulation Set 1 are presented in Tables 6-7.  Graphical representations of the 467 

mean estimates displayed in Tables 6-7 are provided in Supplementary Figures S13-S16, with 468 

representations of the point estimates from each simulation given in Supplemental Figures 469 

S17-S28.  Across the scenarios investigated, most model groups showed a high proportion of 470 

successful model fits (99.9% or over).  However model group 1 experienced more failed fits 471 

when 𝛼(3) ≠ 0 (94.2%, 97.7% and 99.8% model fit success rate). 472 

Longitudinal treatment effect (𝛽12) 473 

Throughout Simulation Set 1, the mean pooled longitudinal treatment effect estimate was 474 

similar in magnitude between the separate and joint one-stage analyses.  The coverage for 475 

model group 0 was poor for both the separate and joint analyses, however the coverage for 476 

the remaining model groups for the separate longitudinal one-stage MA-model was 477 

consistently high.  Conversely the joint one-stage MA-model results displayed high coverage 478 

for models that did not include study level random effects, but low coverage across all levels 479 

of association for any model group that involved study level random effects.  The reason for 480 

the comparable mean estimates, but differing coverage, between the separate and joint one-481 

stage MA-models, is identifiable through examination of the results from each separate 482 

scenario (Supplemental Figures S17-S28).  The confidence intervals for 𝛽12 for joint one-483 

stage models involving study level random effects were quite narrow, leading to poor 484 

coverage even though the point estimates are clustered about the “true” value of 𝛽12. 485 

Time-to-event treatment effect (𝛽21) 486 

For all scenarios investigated in Simulation Set 1, the width of confidence intervals for 487 

estimates of 𝛽21 increased for both separate and joint analyses, as 𝛼(3) increased in 488 

magnitude.  The results from separate or joint analyses for model group 0 (which ignored 489 

between study heterogeneity) were poor when there was non-zero association.   490 

When individual level association was zero, the estimates produced by the separate analyses 491 

for 𝛽21 were close to their “true” value of 3, however the separate analyses underestimated 492 

𝛽21 when 𝛼(2) was non-zero. For the separate analyses, for 𝛼(2) = 0, coverage for 𝛽21 493 

estimates decreased as study level association increased, however, when 𝛼(2) ≠ 0, coverage 494 

was close to 0. 495 

For the joint analyses, for any model group that accounted for between study heterogeneity in 496 

some way (model groups 1-5) the mean estimates were close to the “true” value of 𝛽21 for all 497 

model groups, however model groups 2, 3 and 5 displayed mean estimates diverging from the 498 

“true” value of 𝛽21 as the magnitude of the “true” 𝛼(3) value increased.  Coverage was good 499 



 

 

across all scenarios for model group 1.  For the remaining model groups, coverage decreased 500 

as the magnitude of the “true” 𝛼(3) value increased, although coverage was good for joint 501 

models from any of model groups 1 to 5 when 𝛼(3) = 0. 502 

Association Parameters (𝛼(2), 𝛼(3)) 503 

The individual level association parameter 𝛼(2) was poorly estimated by model group 0. 504 

However the estimates of 𝛼(2) were close to the “true” parameter value for model groups 1, 505 

2, 4 and 5, with good coverage.  However for model group 3, which solely accounted for 506 

between study heterogeneity using study level random effects, where the “true” 𝛼(2) was 507 

non-zero, as the magnitude of 𝛼(3) increased from zero, the mean parameter estimate 508 

decreased in magnitude, with corresponding decrease in coverage.   509 

The estimation of the study level association parameter was poor in model groups 2 and 5, 510 

with large coverage values explained by wide confidence intervals (Supplemental Figures 511 

S22-S24).  Mean estimates of 𝛼(3) were closer to the “true” values in model group 3 although 512 

were still underestimated.  Coverage for all model groups that estimated 𝛼(3) decreased as the 513 

value of the “true” 𝛼(3) increased. 514 

Summary 515 

Under a one-stage joint model containing a single longitudinal and single time-to-event 516 

outcome, with association structure sharing both individual and study level random effects 517 

(when present), with common association parameter at each level, separate time-to-event 518 

one-stage MA-models appeared to behave poorly when 𝛼(2) ≠ 0, however joint one-stage 519 

MA-models displayed issues when study level random effects were shared between sub-520 

models.  521 

6.2.2 Results of Simulation Set 2: Differing numbers of included studies 522 

The results of Simulation Set 2 are presented in Table 8.  Graphical representations of the 523 

mean estimates displayed in Table 8 are provided in Supplementary Figures S29-S32, with 524 

representations of the point estimates from each simulation given in Supplemental Figures 525 

S33-S36. The proportion of successful model fits was 99.9% or above for all model groups 526 

for all scenarios investigated. 527 

Longitudinal treatment effect (𝛽12) 528 

Across all scenarios investigated, for both the separate and the joint analyses, the mean 529 

estimate for the longitudinal treatment effect 𝛽12 was close to the “true” value of 2.  530 

Coverage was poor for both the separate and joint analyses for model group 0, which ignores 531 

between study heterogeneity.  Coverage was consistently good for the separate analyses in 532 

the remaining model groups, and good for joint models from model groups 1 and 4.  However 533 

coverage was poor from joint models for model groups involving study level random effects. 534 

Time-to-event treatment effect (𝛽21) 535 

For the time-to-event treatment effect 𝛽21, we saw mean estimates from the joint analyses 536 

closer to the “true” value of 3 for the joint analyses than the separate.  Coverage for the 537 

separate analyses was below 6% for all scenarios investigated, whilst coverage for the joint 538 

models appeared best for model group 1 (above 85%), followed by model groups 4 and 5 539 

(above 69%).  Coverage was noticeably lower for model group 0, which ignored between 540 



 

 

study heterogeneity, and coverage decreased for model groups 2 and 3 as the number of 541 

included studies increased.   542 

Association parameters (𝛼(2), 𝛼(3)) 543 

The mean estimate for the individual level association was close to the “true” value of 0.5 for 544 

model groups 1-5, with slightly worse estimates from model group 0.  Coverage was good for 545 

model groups 1, 2, 4 and 5.  However coverage decreased with increasing number of studies 546 

for model group 0 and 3. 547 

Study level association was poorly estimates in model groups 2 and 5, with estimates closer 548 

to the “true” value of 0.5 for model group 3.  However coverage was consistently poor, and 549 

decreased with increasing number of included studies. 550 

Summary 551 

Under a one-stage joint model containing a single longitudinal and single time-to-event 552 

outcome, with association structure sharing both individual and study level random effects, 553 

with common association parameter at each level, there appeared to be little benefit of 554 

increasing number of included studies.  However this result may not hold for other 555 

association structures e.g. just sharing individual level random effects between studies.  556 

6.2.3 Results of Simulation Set 3: Differing levels of between study heterogeneity  557 

The results of Simulation Set 3 are presented in Table 9.  Graphical representations of the 558 

mean estimates displayed in Table 9 are provided in Supplementary Figures S37-S40, with 559 

representations of the point estimates from each simulation given in Supplemental Figures 560 

S41-S44. There were issues with model fitting for a large proportion of simulations for model 561 

groups involving study level random effects when there was no between study heterogeneity 562 

(𝑨 = 𝑨𝟏), however otherwise the proportion of successful fits was 99.8% or over. 563 

Longitudinal treatment effect (𝛽12) 564 

Across scenarios investigated, the mean estimated longitudinal treatment effect produced by 565 

both the separate and joint one-stage MA-model were close to the “true” parameter values.  566 

Coverage of estimates produced by model group 0 was good from both the separate and the 567 

joint one-stage MA-models when no between study heterogeneity existed, however coverage 568 

decreased as between study heterogeneity increased.  For the remaining model groups, 569 

coverage was consistently good for the separate analyses, but joint analyses involving study 570 

level random effects displayed decreasing coverage as between study heterogeneity 571 

increased.   572 

Time-to-event treatment effect (𝛽21) 573 

Throughout the scenarios investigated, the time-to-event treatment effect was consistently 574 

underestimated by the separate analyses compared to the joint (which displayed estimates 575 

closer to the “true” value of the parameters).  Models involving study level random effects 576 

showed estimates diverging slightly from the “true” value as between study heterogeneity 577 

increased.  Coverage was consistently good for model group 1, however the remaining model 578 

groups displayed decreasing coverage as between study heterogeneity increased. 579 

Association parameters (𝛼(2), 𝛼(3)) 580 



 

 

The mean estimate for individual level association 𝛼(2) was good for model groups 1, 2, 4 581 

and 5, with corresponding high coverage.  However model groups 0 and 3 showed mean 582 

estimates increasingly below the true value, with corresponding decreasing coverage as 583 

between study heterogeneity increased.   584 

Mean estimates for study level association 𝛼(3) was poor for model groups 2 and 5, and 585 

closer to the true value for model group 3.  Coverage was good for model groups 2 and 5 for 586 

the case of no between study heterogeneity, and decreased as between study heterogeneity 587 

increased. However examination of Supplemental Figure S44 indicates that wide confidence 588 

intervals explained the higher coverage at no between study heterogeneity, with the width of 589 

confidence intervals decreasing as between study heterogeneity increases.  Coverage was 590 

relatively constant but not good for model group 3 across examined levels of between study 591 

heterogeneity. 592 

Summary 593 

Under a one-stage joint model containing a single longitudinal and single time-to-event 594 

outcome, with association structure sharing both individual and study level random effects, 595 

with common association parameter at each level, model group 1 appeared to be the most 596 

consistently reliable modelling option.  However, as noted earlier, this result may not hold for 597 

other joint model specifications.  598 

7 Discussion 599 

In this research, we have presented and investigated a variety of models for use when 600 

analysing multi-study joint longitudinal and time-to-event data.  Analyses of single study 601 

joint datasets are increasing8. Ensuring availability of appropriate methods for the meta-602 

analysis of such data is vital, in order to maximise use of available data and better inform 603 

healthcare decisions.   604 

We have examined a range of the possible modelling options, however other combinations of 605 

the approaches discussed here to account for between study heterogeneity are also possible.  606 

Each of the model groups examined present a range of advantages and disadvantages.  607 

Models that use fixed effects to account for between study heterogeneity estimate 𝐾 − 1 608 

parameters for each term involving study membership (one for each study apart from the 609 

reference study).  As such, results may not be generalisable to external studies, and the 610 

number of parameters estimated quickly increases as the number of studies included in the 611 

meta-analysis increases.  However such methods do allow calculation of effect sizes within 612 

each study (although this is not a primary aim of meta-analyses). 613 

Conversely, use of study level random effects accounts for between study heterogeneity, but 614 

study specific effect estimates are not generally automatically provided (unless the estimates 615 

of the random effects can be extracted from models fitted).  However this should not be an 616 

issue, as meta-analyses aim to pool data rather than provide study specific estimates.  The 617 

number of parameters to be fitted due to study level random effects does not increase as the 618 

number of included studies increases. However the distribution of the random effects may be 619 

poorly estimated unless a large number of studies are included in the meta-analysis. 620 

Additionally, model groups with a common baseline hazard across studies assume 621 

proportional hazards across all studies included in the meta-analysis.  However, model groups 622 

that stratify the baseline hazard by study assume proportional hazards within but not across 623 

studies.  This may be a more reasonable assumption, especially if the demographics of the 624 

studies differ.   625 



 

 

The simulation investigation displayed poor performance for models that ignored any 626 

between study heterogeneity present in the data.  Consequently, it is clear that accounting for 627 

any between study heterogeneity present in multi-study joint data is vital.  The most 628 

consistently well-performing model group was model group 1, which accounted for between 629 

study heterogeneity using fixed study membership and interaction between study membership 630 

and treatment assignment in both sub-models.  The remaining model groups for the joint 631 

analyses showed issues under various scenarios.  As the coverage was good for separate 632 

models for any model group that accounted for between study heterogeneity, the poor 633 

coverage in the joint analyses for model groups 2, 3 and 5 may be due to the dual use of the 634 

study level random effects to account for between study heterogeneity and account for study 635 

level behaviour in the link between the longitudinal and time-to-event outcomes.  It may be 636 

that this dual use is not possible, unless an unrealistically large number of studies are 637 

included in the meta-analysis.   638 

Whilst point estimates were similar in magnitude between the separate and joint analyses for 639 

the longitudinal treatment effect, we note bias in the estimates of the time-to-event treatment 640 

effect from separate analyses where a non-zero association between the longitudinal and 641 

time-to-event outcomes is present.  This behaviour has previously been noted in single study 642 

cases by Guo and Carlin18, and in two-stage joint MA analyses by Sudell et al16, our research 643 

confirms that this issue persists for one-stage analyses.  This behaviour may be comparable to 644 

the established situation where omission of covariates from Cox models causes bias in 645 

estimated effect parameters37-39.  The 𝑊2𝑘𝑖(𝑡) term is included in the joint time-to-event sub-646 

model, but is not present in the separate time-to-event sub-model.  Where association is 647 

present (i.e. where 𝛼(2) ≠ 0 or 𝛼(3) ≠ 0), the joint analyses model risk of an event associated 648 

with the longitudinal outcome through the 𝑊2𝑘𝑖(𝑡) term.  This term (which has an effect on 649 

risk of an event when association is present) is not included in the separate time-to-event 650 

model, giving a possible explanation for the observed biased treatment effect estimates.  As 651 

noted in Sudell et al16, similar behaviour was not observed between the separate and joint 652 

longitudinal analyses as the model specifications for the longitudinal trajectory are identical 653 

in both cases.  As such, it is recommended that joint one-stage MA-models are used in place 654 

of separate time-to-event one-stage MA-models where significant association exists.  This 655 

can be assessed prior to analyses through plotting of the longitudinal trajectories panelled by 656 

event type16; differences between the trajectories between those censored and experiencing an 657 

event can indicate presence of such an association.  658 

The models investigated utilised an unspecified baseline hazard in the time-to-event sub-659 

model.  Hseih et al40 noted that when unspecified baseline hazards are used in a joint model, 660 

standard errors should be obtained through bootstrapping procedures to avoid their 661 

underestimation.  As such, the time commitment to perform bootstrapping procedures on 662 

large meta-datasets was considerable.  Performing bootstrapping procedures on a standard 663 

computing environment took several days for the real dataset.  Consequently bootstraps were 664 

performed in parallel using the University of Liverpool’s HTCondor system (see41, 665 

https://research.cs.wisc.edu/htcondor/, and http://condor.liv.ac.uk/ which was also used to run 666 

the simulations), with the results compiled using purpose written code rather than relying on 667 

single computer bootstrapping procedures.  Researchers using large datasets without coding 668 

experience or access to such computer systems may experience issues conducting large scale 669 

joint data meta-analyses. 670 

In our clinical example, we assume common association parameters across treatment groups.  671 

However, in reality, the association between the longitudinal blood pressure and risk of an 672 

event could differ between those assigned to any treatment for hypertension versus those 673 

https://research.cs.wisc.edu/htcondor/
http://condor.liv.ac.uk/


 

 

assigned to placebo, no treatment or usual care42.  In single study cases, association structures 674 

involving interactions between baseline covariates and the association parameters have been 675 

presented2,4, however this association structure has not yet been investigated in meta-analytic 676 

joint models. 677 

The research presented here prompts a range of future areas of research.  Investigation of 678 

one-stage joint MA-models with varying association structures, including sharing only 679 

individual level random effects or sharing the current value of the longitudinal trajectory, is 680 

vital.  Additionally, it is vital to investigate alternative modelling options, such as alternative 681 

baseline hazard specifications, with could reduce model fitting times by removing the 682 

necessity of bootstrapping. Also, in our simulation study, we assumed common longitudinal 683 

measurement schedules across the included studies, identical numbers of individuals 684 

recruited to each study, and common association parameter across studies.  Further 685 

simulation investigations varying these aspects could provide additional useful information 686 

for future joint data meta-analyses. 687 

In conclusion, this research indicates the benefit of the one-stage meta-analysis of joint 688 

longitudinal and time-to-event data where significant association exists between the 689 

longitudinal and time-to-event outcomes.  Given the current research, it is recommended that 690 

analyses do not rely on models that share study level random effects between sub-models.  691 

Further research into one-stage joint MA-models is required. 692 
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Model 

Group 
Model component Equation 

0 Longitudinal Sub-Model 𝑌𝑘𝑖𝑗 = 𝛽10 + 𝛽11𝑡𝑘𝑖𝑗 + 𝛽12𝑡𝑟𝑒𝑎𝑡𝑘𝑖 

            +𝑏0𝑘𝑖
(2)

+ 𝑏1𝑘𝑖
(2)

𝑡𝑘𝑖𝑗 + 𝜀𝑘𝑖𝑗 

 Time-to-event Sub-

Model 

𝜆𝑘𝑖(𝑡) =  𝜆0(𝑡) exp(𝛽21𝑡𝑟𝑒𝑎𝑡𝑘𝑖 + 𝑊2𝑘𝑖(𝑡)) 

 Association Structure 𝑊2𝑘𝑖(𝑡) = 𝛼(2)(𝑏0𝑘𝑖
(2)

+ 𝑏1𝑘𝑖
(2)

𝑇𝑆𝑘𝑖) 

1 Longitudinal Sub-Model 𝑌𝑘𝑖𝑗 = 𝛽10 + 𝛽11𝑡𝑘𝑖𝑗 + 𝛽12𝑡𝑟𝑒𝑎𝑡𝑘𝑖 

            +𝛽13𝑠𝑡𝑢𝑑𝑦𝑘𝑖 + 𝛽14𝑡𝑟𝑒𝑎𝑡𝑘𝑖 ∗ 𝑠𝑡𝑢𝑑𝑦𝑘𝑖  

            +𝑏0𝑘𝑖
(2)

+ 𝑏1𝑘𝑖
(2)

𝑡𝑘𝑖𝑗 + 𝜀𝑘𝑖𝑗 

 Time-to-event Sub-

Model 

𝜆𝑘𝑖(𝑡) =  𝜆0(𝑡) exp(𝛽21𝑡𝑟𝑒𝑎𝑡𝑘𝑖 + 𝛽22𝑠𝑡𝑢𝑑𝑦𝑘𝑖

+ 𝛽23𝑡𝑟𝑒𝑎𝑡𝑘𝑖 ∗ 𝑠𝑡𝑢𝑑𝑦𝑘𝑖 + 𝑊2𝑘𝑖(𝑡)) 

 Association Structure 𝑊2𝑘𝑖(𝑡) = 𝛼(2)(𝑏0𝑘𝑖
(2)

+ 𝑏1𝑘𝑖
(2)

𝑇𝑆𝑘𝑖) 

2 Longitudinal Sub-Model 𝑌𝑘𝑖𝑗 = 𝛽10 + 𝛽11𝑡𝑘𝑖𝑗 + 𝛽12𝑡𝑟𝑒𝑎𝑡𝑘𝑖 

            +𝛽13𝑠𝑡𝑢𝑑𝑦𝑘𝑖 

            +𝑏0𝑘𝑖
(2)

+ 𝑏1𝑘𝑖
(2)

𝑡𝑘𝑖𝑗 

            +𝑏1𝑘
(3)

𝑡𝑟𝑒𝑎𝑡𝑘𝑖 + 𝜀𝑘𝑖𝑗 

 Time-to-event Sub-

Model 

𝜆𝑘𝑖(𝑡) =  𝜆0(𝑡) exp(𝛽21𝑡𝑟𝑒𝑎𝑡𝑘𝑖 + 𝛽22𝑠𝑡𝑢𝑑𝑦𝑘𝑖 + 𝑊2𝑘𝑖(𝑡)) 

 Association Structure 𝑊2𝑘𝑖(𝑡) = 𝛼(2)(𝑏0𝑘𝑖
(2)

+ 𝑏1𝑘𝑖
(2)

𝑇𝑆𝑘𝑖) + 𝛼(3)(𝑏1𝑘
(3)

𝑡𝑟𝑒𝑎𝑡𝑘𝑖) 

3 Longitudinal Sub-Model 𝑌𝑘𝑖𝑗 = 𝛽10 + 𝛽11𝑡𝑘𝑖𝑗 + 𝛽12𝑡𝑟𝑒𝑎𝑡𝑘𝑖 

             +𝑏0𝑘𝑖
(2)

+ 𝑏1𝑘𝑖
(2)

𝑡𝑘𝑖𝑗 

            +𝑏0𝑘
(3)

+ 𝑏1𝑘
(3)

𝑡𝑟𝑒𝑎𝑡𝑘𝑖 + 𝜀𝑘𝑖𝑗 

 Time-to-event Sub-

Model 

𝜆𝑘𝑖(𝑡) =  𝜆0(𝑡) exp(𝛽21𝑡𝑟𝑒𝑎𝑡𝑘𝑖 + 𝑊2𝑘𝑖(𝑡)) 

 Association Structure 𝑊2𝑘𝑖(𝑡) = 𝛼(2)(𝑏0𝑘𝑖
(2)

+ 𝑏1𝑘𝑖
(2)

𝑇𝑆𝑘𝑖)

+ 𝛼(3)(𝑏0𝑘
(3)

+ 𝑏1𝑘
(3)

𝑡𝑟𝑒𝑎𝑡𝑘𝑖) 

4 Longitudinal Sub-Model 𝑌𝑘𝑖𝑗 = 𝛽10 + 𝛽11𝑡𝑘𝑖𝑗 + 𝛽12𝑡𝑟𝑒𝑎𝑡𝑘𝑖 

             +𝛽13𝑠𝑡𝑢𝑑𝑦𝑘𝑖 + 𝛽14𝑡𝑟𝑒𝑎𝑡𝑘𝑖 ∗ 𝑠𝑡𝑢𝑑𝑦𝑘𝑖 

             +𝑏0𝑘𝑖
(2)

+ 𝑏1𝑘𝑖
(2)

𝑡𝑘𝑖𝑗 + 𝜀𝑘𝑖𝑗 

 Time-to-event Sub-

Model 

𝜆𝑘𝑖(𝑡) =  𝜆0𝑘(𝑡) exp(𝛽21𝑡𝑟𝑒𝑎𝑡𝑘𝑖 + 𝑊2𝑘𝑖(𝑡)) 

 Association Structure 𝑊2𝑘𝑖(𝑡) = 𝛼(2)(𝑏0𝑘𝑖
(2)

+ 𝑏1𝑘𝑖
(2)

𝑇𝑆𝑘𝑖) 

5 Longitudinal Sub-Model 𝑌𝑘𝑖𝑗 = 𝛽10 + 𝛽11𝑡𝑘𝑖𝑗 + 𝛽12𝑡𝑟𝑒𝑎𝑡𝑘𝑖 

+𝛽13𝑠𝑡𝑢𝑑𝑦𝑘𝑖 

+𝑏0𝑘𝑖
(2)

+ 𝑏1𝑘𝑖
(2)

𝑡𝑖𝑚𝑒𝑘𝑖𝑗 

+𝑏1𝑘
(3)

𝑡𝑟𝑒𝑎𝑡𝑘𝑖 + 𝜀𝑘𝑖𝑗 

 Time-to-event Sub-

Model 

𝜆𝑘𝑖(𝑡) =  𝜆0𝑘(𝑡) exp(𝛽21𝑡𝑟𝑒𝑎𝑡𝑘𝑖 + 𝑊2𝑘𝑖(𝑡)) 

 Association Structure 𝑊2𝑘𝑖(𝑡) = 𝛼(2)(𝑏0𝑘𝑖
(2)

+ 𝑏1𝑘𝑖
(2)

𝑇𝑆𝑘𝑖) + 𝛼(3)(𝑏1𝑘
(3)

𝑡𝑟𝑒𝑎𝑡𝑘𝑖) 

Table 1: Specification of one-stage model groups examined 807 



 

 

Table 2: One-stage joint and separate model results for analysis of SBP and time to death by model group (dataset contains 29825 individuals, 2082 events, and 162574 longitudinal 808 
measurements) 809 

SBP and time to Death 

Model 

Group 

Longitudinal Treatment Effect Parameter(s) Time-to-Event Treatment Effect Parameter(s) Association parameters 
 Separate Model  

Results 

Joint Sub-Model  

Results 

 Separate Model 

Results 

Joint Sub-Model 

Results 

 Joint Sub-Model 

Results 

0 𝛽12 -9.52 (-9.90, -9.13) -9.52 (-9.92, -9.19) 𝛽21 -0.09 (-0.17, 0.00) -0.02 (-0.13, 0.07) 𝛼(2) 0.032 (0.029, 0.035) 

1 

𝛽12𝐶𝑂𝑂𝑃 -10.03 (-11.74, -8.33) -10.04 (-12.39, -7.91) 𝛽21𝐶𝑂𝑂𝑃 -0.07 (-0.18, 0.04) 0.02 (-0.37, 0.41) 

𝛼(2) 0.013 (0.009, 0.019) 

𝛽12𝐸𝑊𝑃𝐻𝐸 -13.15 (-16.56, -9.74) -13.15 (-15.24, -11.10) 𝛽21𝐸𝑊𝑃𝐻𝐸 -0.13 (-0.35, 0.09) -0.03 (-0.31, 0.25) 

𝛽12𝑀𝑅𝐶1 -7.78 (-9.57, -5.99) -7.78 (-8.17, -7.42) 𝛽21𝑀𝑅𝐶1 -0.06 (-0.48, 0.37) 0.00 (-0.16, 0.15) 

𝛽12𝑀𝑅𝐶2 -10.72 (-11.10, -10.34) -10.72 (-11.33, -10.07) 𝛽21𝑀𝑅𝐶2 -0.07 (-0.51, 0.37) -0.01 (-0.16, 0.16) 

𝛽12𝑆𝐻𝐸𝑃 -8.30 (-9.06, -7.55) -8.31 (-8.88, -7.75) 𝛽21𝑆𝐻𝐸𝑃 -0.16 (-0.56, 0.23) -0.11 (-0.31, 0.09) 

𝛽12𝑆𝑇𝑂𝑃 -14.16 (-14.91, -13.40) -14.16 (-15.40, -12.93) 𝛽21𝑆𝑇𝑂𝑃 -0.54 (-0.95, -0.13) -0.49 (-0.95, -0.14) 

2 𝛽12 -10.62 (-12.68, -8.57) -10.63 (-11.18, -9.97) 𝛽21 -0.08 (-0.17, 0.00) -0.05 (-0.15, 0.04) 
𝛼(2) 0.013 (0.008, 0.018) 

𝛼(3) 0.000 (-0.043, 0.052) 

3 𝛽12 -10.67 (-12.67, -8.67) -2.70 (-3.09, -2.42) 𝛽21 -0.09 (-0.17, 0.00) -0.05 (-0.14, 0.03) 
𝛼(2) 0.011 (0.007, 0.016) 

𝛼(3) 0.052 (0.049, 0.055) 

4 

𝛽12𝐶𝑂𝑂𝑃 -10.03 (-11.74, -8.33) -10.04 (-12.31, -8.07) 

𝛽21 -0.08 (-0.17, 0.00) -0.06 (-0.13, 0.03) 𝛼(2) 0.013 (0.008, 0.017) 

𝛽12𝐸𝑊𝑃𝐻𝐸 -13.15 (-16.56, -9.74) -13.15 (-15.32, -11.19) 

𝛽12𝑀𝑅𝐶1 -7.78 (-9.57, -5.99) -7.78 (-8.23, -7.43) 

𝛽12𝑀𝑅𝐶2 -10.72 (-11.10, -10.34) -10.72 (-11.36, -10.11) 

𝛽12𝑆𝐻𝐸𝑃 -8.30 (-9.06, -7.55) -8.30 (-8.94, -7.59) 

𝛽12𝑆𝑇𝑂𝑃 -14.16 (-14.91, -13.40) -14.15 (-15.25, -12.90) 

5 𝛽12 -10.62 (-12.68, -8.57) -10.63 (-11.17, -10.06) 𝛽21 -0.08 (-0.17, 0.00) -0.06 (-0.14, 0.03) 
𝛼(2) 0.013 (0.006, 0.017) 

𝛼(3) 0.000 (-0.039, 0.048) 



 

 

SBP and time to MI 

Model 

Group 

Longitudinal Treatment Effect Parameter(s) Time-to-Event Treatment Effect Parameter(s) Association parameters 

 
Separate Model  

Results 

Joint Sub-Model 

Results 
 

Separate Model 

Results 

Joint Sub-Model 

Results 
 

Joint Sub-Model 

Results 

0 𝛽12 -9.45 (-9.84, -9.07) -9.46 (-9.82, -8.98) 𝛽21 -0.16 (-0.28 -0.04) -0.13 (-0.24, -0.02) 𝛼(2) 0.027 (0.023, 0.031) 

1 

𝛽12𝐶𝑂𝑂𝑃 -10.18 (-11.88, -8.48) -10.18 (-12.65, -8.08) 𝛽21𝐶𝑂𝑂𝑃 -0.13 (-0.26, 0.00) 0.11 (-0.43, 0.53) 

𝛼(2) 0.020 (0.013, 0.025) 

𝛽12𝑀𝑅𝐶1 -7.80 (-11.20, -4.41) -7.80 (-8.22, -7.35) 𝛽21𝑀𝑅𝐶1 -0.22 (-0.47, 0.03) -0.03 (-0.21, 0.14) 

𝛽12𝑀𝑅𝐶2 -10.78 (-11.16, -10.40) -10.79 (-11.44, -10.13) 𝛽21𝑀𝑅𝐶2 -0.37 (-0.91, 0.16) -0.18 (-0.44, 0.06) 

𝛽12𝑆𝐻𝐸𝑃 -8.39 (-9.15, -7.64) -8.40 (-8.96, -7.72) 𝛽21𝑆𝐻𝐸𝑃 -0.48 (-1.01, 0.06) -0.29 (-0.57, -0.07) 

𝛽12𝑆𝑇𝑂𝑃 -14.28 (-15.03, -13.52) -14.28 (-15.99, -13.02) 𝛽21𝑆𝑇𝑂𝑃 -0.39 (-0.94, 0.16) -0.21 (-0.78, 0.23) 

2 𝛽12 -10.25 (-12.48, -8.01) -10.25 (-10.84, -9.65) 𝛽21 -0.16 (-0.27, -0.04) -0.12 (-0.25, -0.01) 
𝛼(2) 0.019 (0.013, 0.026) 

𝛼(3) -0.036 (-0.105, 0.027) 

3 𝛽12 -10.35 (-12.55, -8.16) -2.54 (-2.88, -2.16) 𝛽21 -0.16 (-0.28, -0.04) -0.13 (-0.25, -0.01) 
𝛼(2) 0.019 (0.013, 0.025) 

𝛼(3) 0.034 (0.028, 0.038) 

4 

𝛽12𝐶𝑂𝑂𝑃 -10.18 (-11.88, -8.48) -10.20 (-12.25, -7.94) 

𝛽21 -0.16 (-0.27, -0.04) -0.12 (-0.26, -0.01) 𝛼(2) 0.019 (0.013, 0.025) 

𝛽12𝑀𝑅𝐶1 -7.80 (-11.20, -4.41) -7.81 (-8.23, -7.33) 

𝛽12𝑀𝑅𝐶2 -10.78 (-11.16, -10.40) -10.78 (-11.46, -10.22) 

𝛽12𝑆𝐻𝐸𝑃 -8.39 (-9.15, -7.64) -8.39 (-9.00, -7.79) 

𝛽12𝑆𝑇𝑂𝑃 -14.28 (-15.03, -13.52) -14.28 (-15.67, -13.08) 

5 𝛽12 -10.25 (-12.48, -8.01) -10.25 (-10.76, -9.65) 𝛽21 -0.16 (-0.27, -0.04) -0.12 (-0.24, -0.01) 
𝛼(2) 0.019 (0.013, 0.025) 

𝛼(3) -0.036 (-0.098, 0.034) 

Table 3: One-stage joint and separate model results for analysis of SBP and time to MI by model group (dataset contains 28977 individuals, 1124 events, and 157923 longitudinal 810 
measurements) 811 



 

 

SBP and time to stroke 

Model 

Group 

Longitudinal Treatment Effect Parameter(s) Time-to-Event Treatment Effect Parameter(s) Association parameters 

 
Separate Model 

Results 

Joint Sub-Model 

Results 
 

Separate Model 

Results 

Joint Sub-Model 

Results 
 

Joint Sub-Model  

Results 

0 𝛽12 -9.43 ( -9.82, -9.05) -9.44 (-9.87, -9.08) 𝛽21 -0.46 (-0.60, -0.32) -0.39 (-0.53, -0.27) 𝛼(2) 0.044 (0.040, 0.048) 

1 

𝛽12𝐶𝑂𝑂𝑃 -9.98 (-11.68, -8.28) -9.98 (-11.84, -7.76) 𝛽21𝐶𝑂𝑂𝑃 -0.53 (-0.73, -0.33) -0.46 (-1.08, -0.01) 

𝛼(2) 0.034 (0.027, 0.041) 

𝛽12𝑀𝑅𝐶1 -7.79 (-11.20, -4.39) -7.79 (-8.18, -7.39) 𝛽21𝑀𝑅𝐶1 -0.56 (-0.96, -0.16) -0.55 (-0.86, -0.28) 

𝛽12𝑀𝑅𝐶2 -10.74 (-11.12, -10.36) -10.74 (-11.50, -10.10) 𝛽21𝑀𝑅𝐶2 -0.23 (-0.96, 0.49) -0.22 (-0.49, 0.06) 

𝛽12𝑆𝐻𝐸𝑃 -8.39 (-9.14, -7.63) -8.40 (-9.00, -7.83) 𝛽21𝑆𝐻𝐸𝑃 -0.41 (-1.04, 0.23) -0.40 (-0.61, -0.17) 

𝛽12𝑆𝑇𝑂𝑃 -14.24 (-15.00, -13.49) -14.25 (-15.71, -12.88) 𝛽21𝑆𝑇𝑂𝑃 -0.59 (-1.22, 0.03) -0.59 (-1.06, -0.16) 

2 𝛽12 -10.19 (-12.41, -7.96) -10.19 (-10.75, -9.60) 𝛽21 -0.46 (-0.60, -0.32) -0.40 (-0.57, -0.27) 
𝛼(2) 0.034 (0.026, 0.042) 

𝛼(3) -0.077 (-0.189, 0.003) 

3 𝛽12 -10.29 (-12.48, -8.11) -2.52 (-2.93, -2.15) 𝛽21 -0.46 (-0.60, -0.32) -0.40 (-0.55, -0.26) 
𝛼(2) 0.030 (0.023, 0.038) 

𝛼(3) 0.056 (0.051, 0.060) 

4 

𝛽12𝐶𝑂𝑂𝑃 -9.98 (-11.68, -8.28) -9.97 (-12.30, -7.48) 

𝛽21 -0.46 (-0.60, -0.32) -0.40 (-0.52, -0.28) 𝛼(2) 0.034 (0.026, 0.042) 

𝛽12𝑀𝑅𝐶1 -7.79 (-11.20, -4.39) -7.79 (-8.18, -7.36) 

𝛽12𝑀𝑅𝐶2 -10.74 (-11.12, -10.36) -10.75 (-11.41, -10.04) 

𝛽12𝑆𝐻𝐸𝑃 -8.39 (-9.14, -7.63) -8.40 (-9.06, -7.69) 

𝛽12𝑆𝑇𝑂𝑃 -14.24 (-15.00, -13.49) -14.24 (-15.65, -12.92) 

5 𝛽12 -10.19 (-12.41, -7.96) -10.19 (-10.70, -9.66) 𝛽21 -0.46 (-0.60, -0.32) -0.40 (-0.55, -0.29) 
𝛼(2) 0.034 (0.027, 0.041) 

𝛼(3) -0.076 (-0.171, 0.005) 

Table 4: One-stage joint and separate model results for analysis of SBP and time to stroke by model group (dataset contains 28985 individuals, 808 events, and 157834 longitudinal 

measurements) 

 



 

 

 
Simulation Set 1: Varying association 

parameters 

Simulation Set 2: Varying number of 

included studies 

Simulation Set 3: Varying level of 

between study heterogeneity 

Number of included studies 5 5, 10, 15 5 

Number of individuals within each 

study 500 500 500 

Measurement times 0, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 0, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 0, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 

Longitudinal fixed effect parameters 

(𝛽
10

, 𝛽
11

, 𝛽
12

) 
𝛽

10
= 1, 𝛽

11
= 3, 𝛽

12
= 2 𝛽

10
= 1, 𝛽

11
= 3, 𝛽

12
= 2 𝛽

10
= 1, 𝛽

11
= 3, 𝛽

12
= 2 

Time-to-event fixed effect 

parameters (𝛽
21

) 
𝛽

21
= 3 𝛽

21
= 3 𝛽

21
= 3 

Individual level association 

parameter (𝛼(2)) 
𝛼(2) = (0, 0.5, 1) 𝛼(2) = 0.5 𝛼(2) = 0.5 

Individual level random effects 

covariance matrix (𝐷) 
𝐷 = (

1 0.5
0.5 1.5

) 𝐷 = (
1 0.5

0.5 1.5
) 𝐷 = (

1 0.5
0.5 1.5

) 

Study level association parameter 

(𝛼(3)) 
𝛼(3) = (0, 0.5, 1) 𝛼(3) = 0.5 𝛼(3) = 0.5 

Study level random effects 

covariance matrix (𝐴) 

𝐴 = (
1 0.5

0.5 1.5
) 𝐴 = (

1 0.5
0.5 1.5

) 

𝐴1 = (
0 0

0 0
) 

𝐴2 = (
1 0.5

0.5 1.5
) 

𝐴3 = (
2 1

1 3
) 

Error term variance (𝜎𝑒
2) 0.01 0.01 0.01 

Parameters controlling event time 

distribution (𝜃0, 𝜃1) 
𝜃1 =

𝜋

(0.5)√6
  

𝜃0 = log(𝜃1 exp(−𝛾 − 3𝜃1)) 

 

𝜃1 =
𝜋

(0.5)√6
  

𝜃0 = log(𝜃1 exp(−𝛾 − 3𝜃1)) 

 

𝜃1 =
𝜋

(0.5)√6
  

𝜃0 = log(𝜃1 exp(−𝛾 − 3𝜃1)) 

 

Parameter controlling survival time 

distribution (𝜑) 
exp(−0.426) exp(−0.426) exp(−0.426) 

Table 5: Parameters used when simulating data for simulation investigations



 

 

 

 
Association 

Parameters 
Number of 

successful 

model fits 

Longitudinal Treatment Effect  

(𝛽12 = 2) 

Time-to-event treatment effect  

(𝛽21 = 3) 
Association Parameters 

 𝛼(2) 𝛼(3) Separate model Joint Model Separate Model Joint Model Joint Model 𝛼(2) Joint Model 𝛼(3) 

G
ro

u
p
 0

 

0 0 1000 2.02 (0.53) [18.6] 2.02 (0.53) [17.9] 3.02 (0.15) [95.4] 3.02 (0.15) [94.7] 0.00 (0.01) [93.4] NA 

0 0.5 1000 2.00 (0.56) [17.6] 2.00 (0.56) [16.6] 2.50 (0.35) [24.5] 2.57 (0.32) [31.1] 0.06 (0.04) [18.6] NA 

0 1 1000 2.00 (0.55) [17.0] 2.00 (0.55) [15.9] 1.93 (0.48) [5.6] 2.04 (0.46) [7.5] 0.10 (0.06) [12.2] NA 

0.5 0 1000 2.00 (0.56) [17.2] 2.00 (0.56) [16.6] 1.63 (0.11) [0.0] 2.46 (0.26) [14.8] 0.36 (0.07) [5.5] NA 

0.5 0.5 1000 2.01 (0.55) [18.5] 2.01 (0.55) [17.0] 1.57 (0.18) [0.0] 2.74 (0.29) [43.5] 0.46 (0.04) [49.7] NA 

0.5 1 1000 1.97 (0.55) [18.9] 1.97 (0.55) [18.0] 1.45 (0.25) [0.0] 2.35 (0.46) [15.5] 0.48 (0.06) [45.9] NA 

1 0 1000 1.99 (0.55) [18.7] 1.99 (0.55) [17.5] 1.11 (0.09) [0.0] 1.84 (0.38) [2.0] 0.57 (0.15) [0.5] NA 

1 0.5 1000 2.04 (0.55) [19.7] 2.04 (0.55) [18.5] 1.12 (0.14) [0.0] 2.29 (0.42) [13.2] 0.76 (0.11) [4.7] NA 

1 1 1000 1.97 (0.55) [18.0] 1.97 (0.55) [16.9] 1.13 (0.21) [0.0] 2.34 (0.55) [18.3] 0.84 (0.12) [22.1] NA 

G
ro

u
p
 1

 

0 0 1000 2.02 (0.53) [87.1] 2.02 (0.53) [89.3] 3.04 (0.20) [75.0] 3.04 (0.15) [85.5] 0.00 (0.01) [93.8] NA 

0 0.5 1000 2.00 (0.55) [87.1] 2.00 (0.55) [88.2] 3.02 (0.54) [57.3] 3.05 (0.27) [84.3] 0.00 (0.01) [93.0] NA 

0 1 942 2.01 (0.55) [87.9] 2.01 (0.55) [87.9] 2.98 (0.98) [55.1] 3.05 (0.49) [82.9] 0.00 (0.01) [95.2] NA 

0.5 0 1000 2.00 (0.56) [86.4] 2.00 (0.56) [87.5] 1.64 (0.17) [0.0] 3.03 (0.14) [86.3] 0.51 (0.02) [92.6] NA 

0.5 0.5 1000 2.01 (0.55) [86.2] 2.01 (0.55) [87.5] 1.69 (0.47) [6.0] 3.04 (0.26) [85.0] 0.51 (0.02) [92.8] NA 

0.5 1 977 1.97 (0.55) [86.7] 1.97 (0.55) [87.3] 1.79 (0.86) [27.1] 3.02 (0.46) [87.1] 0.51 (0.02) [88.3] NA 

1 0 1000 1.99 (0.55) [88.8] 1.99 (0.55) [89.3] 1.12 (0.15) [0.0] 3.04 (0.14) [86.7] 1.02 (0.03) [87.8] NA 

1 0.5 1000 2.04 (0.54) [87.4] 2.04 (0.54) [87.9] 1.12 (0.33) [0.1] 3.06 (0.28) [82.3] 1.02 (0.03) [83.2] NA 

1 1 998 1.97 (0.54) [87.2] 1.97 (0.54) [87.7] 1.16 (0.59) [3.3] 3.09 (0.52) [82.9] 1.03 (0.04) [75.6] NA 

G
ro

u
p

 2
 

0 0 1000 2.02 (0.53) [89.4] 2.02 (0.53) [10.1] 3.03 (0.15) [95.4] 3.04 (0.15) [93.7] 0.00 (0.01) [94.1] -0.002 (0.24) [98.7] 

0 0.5 1000 2.00 (0.55) [88.3] 2.00 (0.55) [10.1] 3.11 (0.28) [65.1] 3.11 (0.28) [64.7] 0.00 (0.01) [94.2] 0.039 (0.23) [38.1] 

0 1 1000 2.01 (0.55) [87.8] 2.01 (0.55) [9.7] 3.26 (0.51) [32.4] 3.26 (0.51) [33.5] 0.00 (0.02) [94.0] 0.067 (0.26) [8.5] 

0.5 0 999 2.00 (0.56) [87.3] 2.00 (0.56) [10.0] 1.64 (0.11) [0.0] 3.03 (0.14) [93.9] 0.50 (0.02) [94.9] 0.003 (0.24) [99.1] 

0.5 0.5 1000 2.01 (0.55) [87.3] 2.01 (0.55) [11.0] 1.76 (0.21) [0.0] 3.10 (0.27) [62.5] 0.51 (0.02) [93.7] 0.045 (0.55) [32.3] 

0.5 1 1000 1.98 (0.55) [87.9] 1.98 (0.55) [12.0] 2.01 (0.42) [3.4] 3.22 (0.47) [39.3] 0.51 (0.03) [86.7] 0.072 (0.27) [7.8] 

1 0 1000 1.99 (0.55) [89.3] 1.99 (0.55) [11.3] 1.11 (0.09) [0.0] 3.05 (0.14) [92.7] 1.02 (0.03) [90.6] -0.012 (0.32) [99.2] 

1 0.5 1000 2.04 (0.54) [87.8] 2.04 (0.54) [12.0] 1.18 (0.15) [0.0] 3.10 (0.28) [62.5] 1.01 (0.04) [91.6] 0.026 (0.30) [28.6] 

1 1 999 1.97 (0.54) [87.6] 1.97 (0.54) [10.7] 1.35 (0.30) [0.0] 3.24 (0.52) [35.7] 1.01 (0.04) [88.2] 0.049 (0.24) [5.4] 
Table 6: Simulation Group 1 (varying levels of association) results for model groups 0-2.  Results reported as mean parameter estimate (SE between simulation estimates) [coverage].   



 

 

 

 
Association 

Parameters 

Number of 

successful 

model fits 

Longitudinal Treatment Effect   

(𝛽12 = 2) 

Time-to-event treatment effect  

(𝛽21 = 3) 
Association Parameters 

 𝛼(2) 𝛼(3)  Separate model Joint Model Separate Model Joint Model Joint Model 𝛼(2) Joint Model 𝛼(3) 

G
ro

u
p
 3

 

0 0 1000 2.02 (0.53) [89.5] 2.02 (0.53) [11.0] 3.02 (0.15) [95.4] 3.03 (0.15) [94.1] 0.00 (0.01) [94.1] -0.002 (0.06) [96.4] 

0 0.5 1000 2.00 (0.55) [88.3] 2.00 (0.56) [11.2] 2.50 (0.35) [24.5] 2.90 (0.28) [67.6] 0.00 (0.01) [94.5] 0.429 (0.17) [44.8] 

0 1 1000 2.01 (0.55) [87.9] 2.01 (0.55) [10.3] 1.93 (0.48) [5.6] 2.67 (0.49) [37.2] 0.00 (0.02) [97.3] 0.753 (0.32) [24.7] 

0.5 0 1000 2.00 (0.56) [87.3] 2.00 (0.56) [10.7] 1.63 (0.11) [0.0] 3.02 (0.14) [94.8] 0.50 (0.02) [96.1] -0.001 (0.06) [96.6] 

0.5 0.5 999 2.01 (0.55) [87.4] 2.01 (0.55) [11.4] 1.57 (0.18) [0.0] 2.88 (0.27) [62.9] 0.48 (0.03) [83.2] 0.427 (0.17) [42.8] 

0.5 1 1000 1.98 (0.55) [87.9] 1.98 (0.55) [12.7] 1.45 (0.25) [0.0] 2.64 (0.44) [35.6] 0.44 (0.04) [45.3] 0.744 (0.31) [23.2] 

1 0 1000 1.99 (0.55) [89.3] 1.99 (0.55) [11.6] 1.11 (0.09) [0.0] 3.04 (0.14) [92.7] 1.01 (0.03) [92.1] -0.001 (0.05) [96.7] 

1 0.5 1000 2.04 (0.54) [87.8] 2.04 (0.54) [13.4] 1.12 (0.14) [0.0] 2.88 (0.29) [62.7] 0.97 (0.04) [79.8] 0.431 (0.17) [44.9] 

1 1 1000 1.97 (0.54) [87.5] 1.97 (0.54) [11.4] 1.13 (0.21) [0.0] 2.65 (0.49) [33.6] 0.88 (0.07) [31.1] 0.754 (0.32) [23.1] 

G
ro

u
p
 4

 

0 0 1000 2.01 (0.53) [87.1] 2.01 (0.53) [89.3] 3.02 (0.15) [95.8] 3.02 (0.15) [94.9] 0.00 (0.01) [94.2] NA 

0 0.5 1000 2.00 (0.55) [87.1] 2.00 (0.55) [87.8] 3.03 (0.28) [72.5] 3.03 (0.28) [71.7] 0.00 (0.01) [94.3] NA 

0 1 1000 2.01 (0.55) [87.9] 2.01 (0.55) [87.9] 3.08 (0.47) [44.8] 3.08 (0.47) [46.1] 0.00 (0.01) [96.2] NA 

0.5 0 1000 2.00 (0.56) [86.4] 2.00 (0.56) [87.3] 1.66 (0.11) [0.0] 3.02 (0.14) [94.8] 0.50 (0.02) [96.1] NA 

0.5 0.5 1000 2.01 (0.54) [86.5] 2.01 (0.54) [87.5] 1.73 (0.20) [0.0] 3.04 (0.26) [69.7] 0.50 (0.02) [95.2] NA 

0.5 1 1000 1.98 (0.55) [86.9] 1.97 (0.55) [87.8] 1.87 (0.35) [1.1] 3.08 (0.43) [47.1] 0.50 (0.03) [91.7] NA 

1 0 1000 1.99 (0.55) [88.8] 1.99 (0.55) [89.3] 1.13 (0.09) [0.0] 3.03 (0.14) [93.7] 1.01 (0.03) [93.0] NA 

1 0.5 1000 2.04 (0.54) [87.4] 2.04 (0.54) [88.0] 1.17 (0.15) [0.0] 3.06 (0.28) [65.6] 1.01 (0.04) [93.8] NA 

1 1 1000 1.98 (0.54) [87.5] 1.97 (0.54) [87.8] 1.29 (0.26) [0.0] 3.16 (0.49) [42.3] 1.00 (0.04) [88.8] NA 

G
ro

u
p

 5
 

0 0 1000 2.00 (0.53) [89.8] 2.00 (0.53) [9.6] 3.02 (0.15) [95.8] 3.03 (0.15) [94.9] 0.00 (0.01) [94.6] -0.010 (0.25) [99.0] 

0 0.5 1000 2.00 (0.55) [88.3] 2.00 (0.55) [9.5] 3.03 (0.28) [72.5] 3.04 (0.28) [73.2] 0.00 (0.01) [94.3] 0.045 (0.24) [45.8] 

0 1 1000 2.01 (0.55) [87.8] 2.01 (0.55) [9.5] 3.08 (0.47) [44.8] 3.08 (0.47) [46.0] 0.00 (0.01) [95.9] 0.067 (0.27) [12.2] 

0.5 0 999 2.00 (0.56) [87.3] 2.00 (0.56) [10.0] 1.66 (0.11) [0.0] 3.02 (0.14) [94.3] 0.50 (0.02) [95.5] 0.003 (0.26) [98.6] 

0.5 0.5 999 2.04 (0.58) [84.8] 2.04 (0.58) [10.6] 1.74 (0.20) [0.0] 3.04 (0.26) [70.2] 0.50 (0.02) [94.8] 0.030 (0.23) [41.3] 

0.5 1 1000 1.98 (0.55) [87.9] 1.98 (0.55) [11.6] 1.87 (0.35) [1.1] 3.09 (0.43) [48.3] 0.50 (0.03) [91.5] 0.071 (0.29) [10.3] 

1 0 1000 1.99 (0.55) [89.3] 1.99 (0.55) [11.1] 1.13 (0.09) [0.0] 3.04 (0.14) [93.6] 1.01 (0.04) [92.6] -0.014 (0.39) [99.1] 

1 0.5 1000 2.04 (0.54) [87.8] 2.04 (0.54) [12.3] 1.17 (0.15) [0.0] 3.07 (0.28) [66.2] 1.01 (0.04) [93.0] 0.027 (0.36) [37.4] 

1 1 999 1.97 (0.54) [87.6] 1.97 (0.54) [10.4] 1.29 (0.26) [0.0] 3.16 (0.50) [41.6] 1.00 (0.04) [88.9] 0.047 (0.26) [8.2] 
Table 7: Simulation Group 1 (varying levels of association) results for model groups 3-5.  Results reported as mean parameter estimate (SE between simulation estimates) [coverage].  



 

 

 Number of 

included 

studies 

Number of 

successful 

model fits 

Longitudinal Treatment Effect  

(𝛽12 = 2) 

Time-to-event treatment effect 

(𝛽21 = 3) 
Association Parameters 

 Separate model Joint Model Separate Model Joint Model 
Joint Model  

(𝛼(2) = 0.5) 

Joint Model  

(𝛼(3) = 0.5) 

G
ro

u
p
 0

 

5 1000 2.01 (0.55) [18.5] 2.01 (0.55) [17.0] 1.57 (0.18) [0.0] 2.74 (0.29) [43.5] 0.461 (0.04) [49.7] NA 

10 1000 2.00 (0.38) [19.5] 2.00 (0.38) [18.8] 1.54 (0.12) [0.0] 2.69 (0.22) [28.4] 0.457 (0.03) [31.3] NA 

15 1000 2.01 (0.31) [22.6] 2.01 (0.31) [20.1] 1.54 (0.10) [0.0] 2.66 (0.18) [14.6] 0.452 (0.03) [17.5] NA 

G
ro

u
p
 1

 

5 1000 2.01 (0.55) [86.2] 2.01 (0.55) [87.5] 1.69 (0.47) [6.0] 3.04 (0.26) [85.0] 0.506 (0.02) [92.8] NA 

10 1000 2.00 (0.38) [92.2] 2.00 (0.38) [92.6] 1.69 (0.50) [3.2] 3.04 (0.18) [89.6] 0.507 (0.01) [88.0] NA 

15 1000 2.01 (0.31) [93.9] 2.01 (0.31) [93.5] 1.69 (0.47) [1.9] 3.04 (0.15) [91.7] 0.506 (0.01) [86.0] NA 

G
ro

u
p
 2

 

5 1000 2.01 (0.55) [87.3] 2.01 (0.55) [11.0] 1.76 (0.21) [0.0] 3.10 (0.27) [62.5] 0.505 (0.02) [93.7] 0.045 (0.55) [32.3] 

10 1000 2.00 (0.38) [92.2] 2.00 (0.38) [9.8] 1.76 (0.15) [0.0] 3.11 (0.19) [59.1] 0.506 (0.02) [90.4] 0.035 (0.12) [5.3] 

15 1000 2.01 (0.31) [93.3] 2.01 (0.31) [12.2] 1.76 (0.12) [0.0] 3.10 (0.15) [56.4] 0.505 (0.01) [90.6] 0.029 (0.09) [0.5] 

G
ro

u
p
 3

 

5 999 2.01 (0.55) [87.4] 2.01 (0.55) [11.4] 1.57 (0.18) [0.0] 2.88 (0.27) [62.9] 0.481 (0.03) [83.2] 0.427 (0.17) [42.8] 

10 1000 2.00 (0.38) [92.2] 2.00 (0.38) [12.2] 1.54 (0.12) [0.0] 2.83 (0.19) [52.5] 0.474 (0.02) [60.9] 0.426 (0.10) [38.2] 

15 1000 2.01 (0.31) [93.3] 2.01 (0.31) [13.9] 1.54 (0.10) [0.0] 2.80 (0.16) [39.3] 0.471 (0.02) [39.5] 0.416 (0.08) [29.5] 

G
ro

u
p
 4

 

5 1000 2.01 (0.54) [86.5] 2.01 (0.54) [87.5] 1.73 (0.20) [0.0] 3.04 (0.26) [69.7] 0.501 (0.02) [95.2] NA 

10 1000 2.00 (0.38) [92.2] 2.00 (0.38) [92.3] 1.73 (0.14) [0.0] 3.04 (0.18) [69.7] 0.502 (0.02) [94.0] NA 

15 1000 2.01 (0.31) [93.9] 2.01 (0.31) [93.5] 1.73 (0.11) [0.0] 3.03 (0.15) [70.6] 0.501 (0.01) [94.8] NA 

G
ro

u
p
 5

 

5 999 2.04 (0.58) [84.8] 2.04 (0.58) [10.6] 1.74 (0.20) [0.0] 3.04 (0.26) [70.2] 0.501 (0.02) [94.8] 0.030 (0.23) [41.3] 

10 1000 2.00 (0.38) [92.2] 2.00 (0.38) [10.7] 1.73 (0.14) [0.0] 3.04 (0.18) [69.2] 0.503 (0.02) [93.9] 0.038 (0.12) [9.2] 

15 1000 2.01 (0.31) [93.3] 2.01 (0.31) [12.3] 1.73 (0.11) [0.0] 3.03 (0.15) [69.5] 0.501 (0.01) [93.6] 0.032 (0.10) [1.4] 
Table 8: Simulation Group 2 (varying numbers of included studies).  Results reported as mean parameter estimate (SE between simulation estimates) [coverage].  



 

 

 1 

 
Study level 

covariance 

matrix 

Number of 

successful 

model fits 

Longitudinal Treatment Effect   

(𝛽12 = 2) 

Time-to-event treatment effect  

(𝛽21 = 3) 
Association Parameters 

 
Separate model Joint Model Separate Model Joint Model 

Joint Model  

(𝛼(2) = 0.5) 

Joint Model  

(𝛼(3) = 0.5) 

G
ro

u
p
 0

 

𝐴 = 𝐴1 1000 2.00 (0.04) [95.2] 2.00 (0.04) [94.8] 1.63 (0.11) [0.0] 3.01 (0.14) [93.7] 0.502 (0.02) [93.4] NA 

𝐴 = 𝐴2 1000 2.01 (0.55) [18.5] 2.01 (0.55) [17.0] 1.57 (0.18) [0.0] 2.74 (0.29) [43.5] 0.461 (0.04) [49.7] NA 

𝐴 = 𝐴3 1000 1.99 (0.79) [17.3] 1.99 (0.79) [16.1] 1.52 (0.22) [0.0] 2.57 (0.40) [28.0] 0.435 (0.06) [32.8] NA 

G
ro

u
p
 1

 

𝐴 = 𝐴1 1000 2.00 (0.04) [97.2] 2.00 (0.04) [96.6] 1.65 (0.18) [0.0] 3.03 (0.14) [87.5] 0.506 (0.02) [91.7] NA 

𝐴 = 𝐴2 1000 2.01 (0.55) [86.2] 2.01 (0.55) [87.5] 1.69 (0.47) [6.0] 3.04 (0.26) [85.0] 0.506 (0.02) [92.8] NA 

𝐴 = 𝐴3 998 2.00 (0.79) [88.4] 1.99 (0.79) [88.4] 1.69 (0.63) [13.3] 3.05 (0.35) [85.9] 0.508 (0.02) [90.5] NA 

G
ro

u
p
 2

 

𝐴 = 𝐴1 76 2.01 (0.04) [100.0] 2.00 (0.04) [97.4] 1.64 (0.12) [0.0] 3.05 (0.15) [93.4] 0.512 (0.02) [93.4] -0.377 (8.86) [100.0] 

𝐴 = 𝐴2 1000 2.01 (0.55) [87.3] 2.01 (0.55) [11.0] 1.76 (0.21) [0.0] 3.10 (0.27) [62.5] 0.505 (0.02) [93.7] 0.045 (0.55) [32.3] 

𝐴 = 𝐴3 1000 2.00 (0.79) [88.5] 1.99 (0.79) [7.9] 1.85 (0.29) [0.0] 3.16 (0.35) [50.7] 0.508 (0.02) [90.7] 0.027 (0.16) [15.2] 

G
ro

u
p
 3

 

𝐴 = 𝐴1 201 2.00 (0.03) [97.0] 2.00 (0.03) [45.3] 1.63 (0.11) [0.0] 3.02 (0.14) [44.3] 0.505 (0.02) [44.3] 0.380 (2.64) [47.3] 

𝐴 = 𝐴2 999 2.01 (0.55) [87.4] 2.01 (0.55) [11.4] 1.57 (0.18) [0.0] 2.88 (0.27) [62.9] 0.481 (0.03) [83.2] 0.427 (0.17) [42.8] 

𝐴 = 𝐴3 1000 2.00 (0.79) [88.5] 2.00 (0.79) [8.6] 1.52 (0.22) [0.0] 2.78 (0.36) [47.3] 0.464 (0.03) [65.1] 0.403 (0.16) [31.8] 

G
ro

u
p
 4

 

𝐴 = 𝐴1 1000 2.00 (0.04) [97.2] 2.00 (0.04) [96.7] 1.67 (0.11) [0.0] 3.01 (0.14) [94.7] 0.502 (0.02) [95.3] NA 

𝐴 = 𝐴2 1000 2.01 (0.54) [86.5] 2.01 (0.54) [87.5] 1.73 (0.20) [0.0] 3.04 (0.26) [69.7] 0.501 (0.02) [95.2] NA 

𝐴 = 𝐴3 1000 2.00 (0.79) [88.4] 1.99 (0.79) [88.6] 1.78 (0.26) [0.0] 3.06 (0.33) [56.9] 0.502 (0.02) [93.6] NA 

G
ro

u
p

 5
 

𝐴 = 𝐴1 53 2.00 (0.04) [100.0] 2.00 (0.04) [100.0] 1.66 (0.12) [0.0] 3.04 (0.17) [94.3] 0.509 (0.02) [96.2] -1.343 (6.03) [100.0] 

𝐴 = 𝐴2 999 2.04 (0.58) [84.8] 2.04 (0.58) [10.6] 1.74 (0.20) [0.0] 3.04 (0.26) [70.2] 0.501 (0.02) [94.8] 0.030 (0.23) [41.3] 

𝐴 = 𝐴3 1000 2.00 (0.79) [88.5] 1.99 (0.79) [7.8] 1.78 (0.26) [0.0] 3.07 (0.33) [56.4] 0.503 (0.02) [93.5] 0.030 (0.17) [19.8] 
Table 9: Simulation Group 3 (varying levels of between study heterogeneity).  Results reported as mean parameter estimate (SE between simulation estimates) [coverage].  Matrices 2 
𝑨𝟏, 𝑨𝟐 and 𝑨𝟑 represent increasing study heterogeneity (exact matrix definitions available in Table 5) 3 
 4 
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