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Forecasting the Exchange Rate using Non-linear Taylor Rule Based Models 

1. Introduction 

 The aim of this study is to investigate whether the implementation of the Smooth Transition 

Regression (STR) approach to a Taylor rule model can offer substantial gains in the modelling 

and forecasting of the exchange rate. Since the start of the floating exchange rate era, a number 

of studies have attempted to explain exchange rate movements, although as suggested by Cheung 

et al. (2005), mostly with limited success. Explaining and predicting exchange rate movements 

is an important aspect of monetary policy, particularly as capital flows between international 

asset markets have increased. Recently, a new strand of the exchange rate literature has 

developed a series of models that combine interest rate reaction functions based on the Taylor 

rule and the exchange rate, which has produced more accurate forecasts (Molodtsova and Papell, 

2009; Wang et al., 2016). These models tend to reflect more realistically how monetary policy 

has been conducted or evaluated over the recent past, and offers an alternative interpretation of 

exchange rate dynamics. Although these studies have provided evidence of short-term 

predictability (Molodtsova and Papell, 2009) the results tend to vary across countries and 

different time intervals.  

 Further recent developments in the study of exchange rates and monetary policy in general have 

involved the use of non-linear estimation techniques, which have become prevalent in both the 

literature on Taylor rule models (Qin and Enders, 2008) and modelling of the exchange rate 

(Michael et al., 1997, De Grauwe and Grimaldi, 2005). In addition non-linear exchange rate 

models have also been used successfully for forecasting the exchange rate (Boero and Marrocu, 

2002). As far as we know, there has as yet been no attempt to connect both strands of the literature 
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and use the STR approach on the Taylor rule type exchange rate models, particularly with respect 

to forecasting.  

The main contribution of this study is the estimation and forecasting of the Taylor rule based 

exchange rate model using the STR approach, in particular the Logistic and Exponential STR 

models, having pre-tested for non-linearity in the variables. We also incorporate wealth effects 

into the models to reflect the importance of asset markets to both the Taylor rule and exchange 

rate determination. This study uses real time output data for the estimation of the Taylor rule 

model and includes bilateral exchange rates for Australia, Sweden and the UK with respect to 

the US dollar. A number of different types of non-linear techniques have been used to model the 

exchange rate1, in this study we use the STR models, which were originally applied to 

nonlinearities over the business cycle by  Teräsvirta  and Anderson (1992). Over the recent years, 

it has been applied successfully in many exchange rate studies including Purchasing Power Parity 

(PPP) by Michael et al. (1997) as well as monetary models and Uncovered Interest Parity (UIP) 

by Baillie and Kilic (2006). One appealing feature of the STR methodology is that it requires no 

prior information about the threshold level at which the model changes. Moreover, compared to 

other alternative nonlinear models such as the Markov switching model and threshold 

autoregressive model, the STR family of models allows for a smooth and gradual transition from 

one regime to another instead of sudden jumps between regimes. 

                                                           
1 Examples of incorporating nonlinearities in the modelling of the exchange rate include Bollerslev (1990) who 

allows for time varying conditional variance and covariance of the error term, Engel (1994) who uses a Markov 

switching forecasting model and Rapach and Strauss (2008) who allow for structural breaks in the conditional 

volatility. 
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The theoretical basis for this study is the linear model of the exchange rate by Molodtsova and 

Papell (2009) which has been augmented by the inclusion of wealth effects, including both stock 

prices and house prices. As Case et al. (2005) suggest both have varying degrees of influence on 

the macro-economy. Other studies including Granger et. al. (2000) have analysed wealth effects 

in the form of stock prices and the exchange rate, finding a significant relationship.2 Unlike most 

previous studies with the STR models, we have documented and compared results across 

different models with regard to a large number of macroeconomic transition variables including 

the real exchange rate, output gap, inflation difference, interest rate difference, wealth effect and 

a measure of exchange rate volatility.  All transition variables are contemporaneous, apart from 

the interest rate differential, because exchange rates are determined in financial markets where 

we would not expect much of a lagged effect to occur.  Some studies concentrate on a small 

number of transition variables and then use statistical inference to choose the specific lag for 

each transition variable. For instance, Lutkepohl et al. (1999) chose the variable with the smallest 

p-value in the context of a Lagrange Multiplier (LM) type test of linearity against STR. They test 

a number of potentially lagged and non-lagged transition variables, including different lags, 

finding a non-lagged variable to be the most appropriate. The choice of the most appropriate 

transition variable in this study is based on model specification and diagnostic testing. To 

motivate the use of the STR model, we first run a linearity test on the linear Taylor rule model.   

As with similar studies such as Molodtsova and Papell (2009), the main emphasis of this paper 

is on the out-of-sample forecasting performance of the nonlinear STR type exchange rate models. 

However as with the exchange rate literature as a whole, the use of non-linear models for 

                                                           
2 Wang et al. (2016) have demonstrated the robustness of the linear version of a wealth augmented Taylor rule based 

exchange rate model in terms of both the in-sample and out-of-sample performance relative to the original model. 
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forecasting has produced mixed results (Rapach and Wohar, 2006), with the performance relative 

to the benchmarks varying across different samples as in Pavlidis et al. (2012) or the degree of 

non-linearity in the data as in Enders and Pascalau (2015). In this study, the evaluation of the 

models’ forecasting performance is conducted against different benchmarks including the 

random walk model and the linear Taylor rule based model. The results from estimation and 

forecasting of the nonlinear STR model provide evidence of the nonlinear relationship between 

the exchange rate and economic variables. Moreover, in our study, we have found evidence that 

the STR models outperform the random walk, a simple uncovered interest rate (UIP) model and 

the linear Taylor rule model in out-of-sample forecasting of the exchange rate. 

Following the introduction, Section 2 introduces the STR model and the nonlinear Taylor rule 

exchange rate model and outlines the specification, estimation and forecast evaluation techniques 

used in this study. In Section 3, we estimate the models and compare their in-sample specification 

and out-of-sample forecasting performance. The main conclusions are then drawn in the final 

section. 

2. Material and Methods 

2.1 The Modelling Framework 

We have used the Taylor rule as the basis for the exchange rate model as this type of model tends 

to explain more realistically how monetary policy has been conducted in practise over the recent 

past by most central banks. We have also used it as the linear version of this model has largely 

been more successful at forecasting the exchange rate (Molodtsova and Papell, 2009) relative to 

other exchange rate models, such as the monetary model. The theoretical Taylor rule (Taylor, 

1993) assumes that the nominal interest rate depends on changes in inflation and the output gap. 

Our starting point is the forward-looking Taylor rule (Clarida et al., 1998), where we assume the 
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foreign country targets the exchange rate in its Taylor rule and the interest rate is assumed to 

adjust gradually towards its target level. In addition to this original specification, this study 

extends the model through the addition of a variable representing the effects of wealth on the 

baseline equation, as used in other studies such as Semmler and Zhang (2007). This modified 

Taylor rule is:  

 𝑖𝑡
∗ = 𝜇 + 𝜆𝜋𝑡 +  𝛾𝑦𝑡 + 𝛿𝑤𝑡 + 𝜙𝑞𝑡 (1) 

 𝑖𝑡 = (1 − 𝜌)𝑖𝑡
∗ + 𝜌𝑖𝑡−1 + 𝑣𝑡 (2) 

Where 𝑖𝑡
∗  is the target for the short-term nominal interest rate, πt is the inflation rate, 𝑦𝑡  is the 

output gap, defined as the percent deviation of actual real GDP from an estimate of its potential 

level, 𝑤𝑡 is the asset price, 𝑞𝑡 is the real exchange rate, 𝑖𝑡 is the actual observable interest rate, 𝜌 

denotes the degree of interest rate smoothing and 𝑣𝑡 is the error term also known as the interest 

rate smoothing shock. 

Substituting (1) into (2) gives the following equation for the actual short-term interest rate: 

 𝑖𝑡 = (1 − 𝜌)(𝜇 + 𝜆𝜋𝑡 + 휁𝑦𝑡 + 𝛿𝑤𝑡 + 𝜙𝑞𝑡) + 𝜌𝑖𝑡−1 + 𝑣𝑡 (3) 

 Considering the US as the domestic country and equation (3) as the interest rate reaction function 

for the foreign country; the monetary policy reaction function for the US is the same as in 

equation (3) with ϕ = 0.  

To derive the Taylor rule based exchange rate equation, we follow the approach used by 

Molodtsova and Papell (2009). Letting ~ denote the foreign country variables, the interest rate 

differential is constructed by subtracting the Taylor rule equation for the foreign country from 

that of the domestic country, the US: 
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𝑖𝑡 − 𝑖̃𝑡 = α0 + (β𝑢𝜋𝜋𝑡 − β𝑓𝜋�̃�𝑡) + (β𝑢𝑦𝑦𝑡 − β𝑓𝑦�̃�𝑡) + (β𝑢𝑤𝑤𝑡 −

β𝑓𝑤�̃�𝑡) − β𝑞�̃�𝑡 + 𝜌𝑢𝑖𝑡−1 − 𝜌𝑓𝑖̃𝑡−1 + 휂𝑡, 
    (4) 

where 𝑢 and 𝑓 are subscripts corresponding to the U.S. and the foreign country respectively, 

α0 = 𝜇(1 − 𝜌), βπ = λ(1 − ρ), βy = ζ(1 − ρ) and βw = δ(1 −  ρ) for both countries and βq =

 ϕ(1 − ρ) for the foreign country.  

Assuming that the UIP holds along with rational expectations:  

 𝐸(∆𝑠𝑡+1) = (𝑖𝑡 − 𝑖̃𝑡)                   (5) 

Substituting (4) into (5) produces the following Taylor rule exchange rate equation: 

 

∆𝑠𝑡+1 = α0 + β𝑢𝜋𝜋𝑡 − β𝑓𝜋�̃�𝑡 + β𝑢𝑦𝑦𝑡 − β𝑓𝑦�̃�𝑡 + β𝑢𝑤𝑤𝑡 − β𝑓𝑤�̃�𝑡

− β𝑞�̃�𝑡 + 𝜌𝑢𝑖𝑡−1 − 𝜌𝑓𝑖̃𝑡−1 + 휂𝑡 
(6) 

Where 𝑠𝑡 is the natural log of the U.S. nominal exchange rate, defined as the US dollar per unit 

of foreign currency, so that an increase in 𝑠𝑡 represents a depreciation of the US dollar.  A further 

homogenous model was also estimated, where the two respective central banks are assumed to 

react identically to changes in inflation, the output gap, the wealth effect and that the interest rate 

smoothing coefficients are equal.3 This in effect restricts the foreign coefficients to being equal 

to the domestic ones, so that βuπ = βfπ ≡ βπ, βuy = βfy ≡ βy, βuw = βfw ≡ βw and ρu = ρf ≡

𝛽𝑖. Therefore, the modified form of the Taylor rule model is as follows: 

 
∆𝒔𝒕+𝟏 = 𝜶𝟎 + 𝜷𝝅(𝝅𝒕 − �̃�𝒕) + 𝜷𝒚(𝒚𝒕 − �̃�𝒕) + 𝜷𝒘(𝒘𝒕 − �̃�𝒕) − 𝜷𝒒�̃�𝒕

+ 𝜷𝒊(𝒊𝒕−𝟏 − �̃�𝒕−𝟏) + 𝜼𝒕 
      (7) 

                                                           
3 Estimation and forecasting have been conducted for both homogenous and non-homogenous models, In general, 

we found the homogenous model generates better forecasts overall so we report these results. 
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The STR model for variable ∆𝐬𝐭+𝟏, has the following specification: 

 ∆𝒔𝒕+𝟏 = 𝝓𝟎 +  𝛟𝟏
′𝒛𝒕 + (𝜽𝟎 + 𝛉𝟏

′𝐳𝐭) ∙ 𝑮(𝒉𝒕;  𝜸, 𝒄) + 𝜺𝒕    

 

 

 (8)     

 

 

where 𝐳𝐭 = (𝝅𝒕 − �̃�𝒕 , 𝒚𝒕 − �̃�𝒕 , 𝒘𝒕 − �̃�𝒕, �̃�𝒕, 𝒊𝒕−𝟏 − �̃�𝒕−𝟏) ′,  𝛟𝟏 = (𝝓𝝅, 𝝓𝒚, 𝝓𝒘, 𝝓𝒒, 𝝓𝒊 ) ′.  

𝛉𝟏 = (𝜽𝝅, 𝜽𝒚, 𝜽𝒘, 𝜽𝒒, 𝜽𝒊) ′. The error term 𝒖𝐭 is assumed to be n.i.d. with zero mean and 

constant variance 𝛔𝟐, 𝑮 is the transition function, 𝒉𝒕 is the transition variable and 𝛄 is the 

transition parameter, also known as the speed of transition, which determines how quickly the 

transition between regimes occurs and is restricted by 𝛄 > 𝟎. 𝒄 denotes a particular threshold 

level and corresponds to the value of the transition variable where the transition takes place.  

Both γ and c are estimated by the model.   

Following Granger and Teräsvirta (1993), we use two alternative functional forms of the 

transition function in the context of the STR: 

- Logistic Function: 

 𝑮(𝒉𝒕;  𝜸, 𝒄) =
𝟏

𝟏 + 𝐞𝐱𝐩 [−𝜸(𝒉𝒕 − 𝒄)]
      (9) 

   

- Exponential Function: 

 𝑮(𝒉𝒕;  𝜸, 𝒄) = 𝟏 − 𝒆𝒙𝒑[−𝜸(𝒉𝒕 − 𝒄)𝟐]      (10) 

 

 



9 
 
 

There are a number of potential sources of non-linearity in both the monetary policy and the 

exchange rate. For monetary policy they include nonlinearities in the Phillips Curve (Nobay and 

Peel, 2000). The justification for non-linearity in the exchange rate includes the effect of central 

bank intervention (Reitz et al., 2011), speculative restrictions (Baillie and Kilic, 2006) and 

heterogeneous trading behaviour (Sarantis, 1999). 

 The STR procedure (Teräsvirta 1994, Dijk et al. 2002) applied to this setting allows the 

transition to catch any smooth changes in our Taylor rule exchange rate model. The model 

assumes there are at least two regimes with different sets of coefficients and a transition variable 

which determines the movements across the regime. 

Equation (8) combined with transition function (9) jointly define the logistic STR (LSTR) model 

and Equation (8) with transition function (10) forms an exponential STR (ESTR) model. 

Different functional forms of G(ℎt;  γ, c) correspond to different types of exchange rate switching 

behaviour.  

For the LSTR model, the transition function is a monotonically increasing function of ℎt. 

Therefore, the LSTR models describe relationships that change relative to the level of the 

threshold variable. Given that G(ℎ𝑡;  γ, c) is continuous and bounded between zero and one, the 

combined nonlinear coefficients 𝜙0 +  ϕ1
′ + 휃0 + 휃1 ∙ G(ℎ𝑡;  γ, c) will change monotonically 

from 𝜙𝟎 +  ϕ1
′ to (𝜙𝟎 +  ϕ1

′ + 휃0 + 휃1) according to different values of ℎt. When ℎt − c →

+∞, G(ℎt;  γ, c) → 1 and coefficients become 𝜙𝟎 +  ϕ1
′ + 휃𝟎 + 휃1 ; when  ℎt − c → −∞, 

G(ℎt;  γ, c) → 0 and the coefficients become 𝜙𝟎 +  ϕ1
′
. In contrast to the logistic function, the 

exponential function is symmetric and U-shaped around c. It describes a form of dynamic 

behaviour which is the same for the high values of the transition variables as it is for low values. 
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The transition function G(ℎ;  γ, c) → 1 both as  ℎ𝑡 − 𝑐 → −∞ and ℎ𝑡 − 𝑐 → +∞ and the 

coefficient in this approach becomes (𝜙𝟎 +  ϕ1
′ + 휃𝟎 + 휃1). In the case of ℎ𝑡 = 𝑐,  

𝐺(ℎ𝑡;  𝛾, 𝑐) = 0 , the coefficients become 𝜙𝟎 +  ϕ1
′ .  

2.2 The Modelling Strategy 

When testing for possible nonlinearity in the Taylor rule based exchange rate model, we use the 

procedure developed by Granger and Teräsvirta (1993) and Teräsvirta (1994). This modelling 

approach consists of three steps: specification, estimation and evaluation. 

The Taylor rule STR model we study takes the following form: 

 ∆𝒔𝒕+𝟏 = 𝝓𝟎 +  𝛟𝟏
′𝒛𝒕 + (𝜽𝟎 + 𝛉𝟏

′𝐳𝐭) ∙ 𝑮(𝒉𝒕;  𝜸, 𝒄) + 𝜺𝒕    (11) 

 

where G(. ) acts as the transition function;  𝐳t = (  𝜋𝑡 − �̃�𝑡 , 𝑦𝑡 − �̃�𝑡 ,    �̃�𝑡,   𝑖𝑡−1 − 𝑖̃𝑡−1, 𝑤𝑡 −

�̃�𝑡) is the vector of regressors in the above models. The vector 𝛟𝟏 = ( βπ, βy, βi , βw, βq) and 

𝛉𝟏 = ( βπ
∗ , βy

∗ , βi
∗, βw

∗ , βq
∗ ) contain the parameters from the linear and nonlinear parts of the 

model. We have chosen six different transition variables in the nonlinear estimation. These are 

the output gap, interest rate differential, inflation differential, wealth effect differential, real 

exchange rate and exchange rate volatility.4   

                                                           
4 The nonlinearity in the Taylor rule exchange rate model may arise from either the Taylor rule part or the exchange 

rate. Therefore, the hypothesis of nonlinearity in the model can be tested simply by evaluating the setting in the 

functional form of the interest rate reaction function and exchange rate. The exchange rate volatility is used as a 

transition variable to study how the model is related to market risk by including a risk premium within the nonlinear 

part of the model. 
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After selecting the predetermined transition variable, we follow the approach proposed by 

Teräsvirta (1994), replacing the transition function 𝑮(𝒉𝒕;  𝜸, 𝒄) by a suitable Taylor series 

approximation in testing for the null of linearity against the alternative STR model. These tests 

are conducted through estimating the following auxiliary regression: 

 ∆𝑠𝑡+1 = 𝛿0
′ 𝒛𝑡 + ∑ 𝛿𝑗

′�̃�𝑡ℎ𝑡
𝑗

+ 휀𝑡
∗

3

𝑗=1

 (12) 

Where z̃t is the vector of variables in zt without the constant; ht is one of the elements of zt. The 

null hypothesis is of linearity (H0):  δ1 = δ2 = δ3 = 0; whilst the alternative hypothesis is at 

least one of δj ≠ 0, j = 1,2,3. As suggested by Teräsvirta (1994), F-versions of the LM test 

statistics are employed as these have better size properties than the χ2-statistic.5  

Once the null hypothesis of linearity is rejected in favour of STR nonlinearity, we can choose 

the appropriate form of the transition function. The decision is based on testing the order of the 

polynomial in the auxiliary regression (12). Granger and Teräsvirta (1993) and Teräsvirta (1994) 

proposed the following sequence of null hypotheses:  

 𝐻03:  𝛿3 = 0 (13) 

 𝐻02:  𝛿2 = 0 𝑔𝑖𝑣𝑒𝑛 𝛿3 = 0 (14) 

 𝐻01:  𝛿1 = 0 𝑔𝑖𝑣𝑒𝑛 𝛿3 = 0, 𝛿2 = 0 (15) 

According to Teräsvirta (1994), the decision rules for choosing between LSTR and ESTR models 

are the following: We compare the p-value of the three F-tests, if the p-value of the test 

                                                           
5 In small or moderate sized samples, the χ2-statistic may be heavily oversized (Dijk et al. (2002)).  
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corresponding to  H02 is the smallest among the three, then we select the ESTR model; otherwise 

a LSTR model is chosen.  

Both the LSTR and ESTR model are estimated using NLLS with a grid search for the parameters 

𝛾 and 𝑐 with respect to the nonlinear optimization, in this case the result yielding the minimum 

RSS. For the 𝛾 estimation, we scale the transition function, by dividing it using the standard 

deviation of ℎ𝑡 (i.e. �̂�𝑠 ) for the LSTR models and by the variance of  ℎ𝑡 (i.e. �̂�𝑠
2) in the case of 

ESTR. The transition function is standardised to make it easier to compare the estimates of the 

transition parameters across different equations.6  

For the purpose of assessing the statistical adequacy of the STR models in this study we follow 

Eitrheim and Teräsvirta (1996) who propose an LM test for the null hypothesis of no error 

autocorrelation and LM-type tests for the null of no remaining nonlinearity and that of parameter 

constancy. Following Sarantis (1999) we also run the Jarque-Bera test for normality in the errors, 

as well as a test for ARCH effects. 

3. Results and Discussion 

3.1 Data 

 Throughout our empirical investigation we use quarterly data which consists of the exchange 

rate returns measured in log-differences, and the Taylor rule based economic fundamentals for 

the United Stated, the United Kingdom, Sweden and Australia. The variables are πt the inflation 

                                                           
6 This is also recommended by Granger and Teräsvirta (1993) and Teräsvirta (1994). They have argued that scaling 

the transition variable by its own standard deviation before empirical estimation not only speeds up the convergence 

but also improves the stability of the nonlinear least squares estimation algorithm.  
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rate, 𝑦𝑡 the output gap, defined as the percent deviation of actual real GDP from an estimate of 

its potential level, 𝑤𝑡 is the asset price7, 𝑞𝑡 is the real exchange rate and 𝑖𝑡 is the actual observable 

interest rate.  United Stated, the United Kingdom, Sweden and Australia are selected because of 

the availability of the wealth data, especially for housing and also as a result of their strong 

housing markets. Due to data availability, the time period for these countries differs depending 

on the measure of the wealth effect. When stock prices represent the wealth effect, the data ranges 

from 1979Q1 to 2008Q4, whereas when house prices are used, the data is from 1980Q1 to 

2008Q4 (data from 1975 to 1979 is used to generate the output gap). As a measure of wealth, 

stock prices have been chosen to represent the wealth effect for the UK and Australia8. This is 

because they have particularly strong equity markets, whereas in Sweden they are of less 

importance compared to the banking system, therefore house prices were found to be the most 

appropriate wealth effect for Sweden. 

All variables, except interest rates, are expressed in logarithms. The inflation rate is the annual 

inflation rate calculated using the CPI over the previous 4 quarters and real GDP is used to 

measure the level of output. As in other studies, the output gap is constructed as the percentage 

change of actual output from a quadratic trend, using an expanding window as in Molodtsova et 

al. (2008), in addition the wealth effect is measured as a wealth gap, constructed in the same way 

as the output gap using the quadratic trend. Therefore for the first vintage 1979:Q1, the trend is 

                                                           
7 Stock prices and house prices are used as a proxy for wealth and have been employed to analyse the wealth effect 

in the context of exchange rate models. The data are measured as deviation of natural log of stock price or house 

price from a quadratic trend.  

8 This is based on the linear estimation of the model, in which stock prices were found to be the most significant 

determinant for these two countries. Results available on request. 
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calculated using data from 1975:Q1 to 1978:Q4. For each subsequent vintage, we update the 

trend by one quarter. The real foreign/U.S. exchange rate is calculated as the percentage 

deviation of the nominal exchange rate from the target defined by PPP (i.e.,  �̃�𝑡 = 𝑠𝑡 − (𝑝𝑡 −

𝑝𝑡
∗), where 𝑝𝑡 and 𝑝𝑡

∗ are natural logarithms for U.S. and foreign price levels, respectively, as 

measured by respective CPI levels). Money market rates are used as a measure of short-term 

interest rates. The nominal exchange rate is defined as the U.S. dollar price of foreign currency 

and is taken as the end-of-month exchange rate and as in Ince (2014).  

Studies by Molodtsova et al. (2008), among others, have highlighted the importance of real-time 

data for the purpose of Taylor rule-based exchange rate forecasting. Real-time data are based on 

vintages of data that are available to researchers at each point in the time that the forecasting 

exercise is run (i.e., before data revisions are applied). The real time output data was collected 

from the OECD Real-Time Data and Revisions Dataset and the Real Time Dataset for the OECD 

– Dallas Fed9. Exchange rate volatility is measured using the conditional volatility series 

produced from a GARCH (1, 1) model which has been widely used to proxy the risk premium. 

All the data, other than the real time data were obtained from Thomson DataStream and the 

International Monetary Fund International Statistics (IMF). The quarterly closing prices of the 

main stock market indexes are used to represent equity prices in each country. House price 

indices are taken from Oxford Economics and measure the quarterly house price.  

In addition a further test on the UK/US model was conducted using the data up to 2015. This 

included using the shadow policy rate of Wu and Xia (2016)10, the use of this variable overcomes 

the problem of the near zero bound policy rate after 2008. This enables us to assess whether there 

                                                           
9 The data can be found at: http://stats.oecd.org/mei/default.asp?rev=1 
10 We would like to thank a referee for suggesting the use of this dataset. The data is available at 

https://sites.google.com/site/jingcynthiawu/home/wu-xia-shadow-rates.  
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is evidence of non-linearity over a time period including the recent financial crisis and whether 

the model is able to outperform other models during the crisis period. However, Table 2 suggests 

that there is little evidence of non-linearity, as the only case in which non-linearity is found 

involves the use of volatility as the transition variable. We note that there is evidence of 

autocorrelation in this test11. The plots of all data used in this study appear in Figure 1.  

3.2 Nonlinear estimation results 

Table 1 contains the p-values of the LM tests for the full sample (we use the whole sample for 

this test) as the estimation of the model and subsequent forecasting is done using a non-linear 

approach. The first column reports the results of the tests for linearity against non-linearity based 

on the STR models for each transition variable considered12 (i.e. H0 ). The following columns 

show the results of the model selection tests, which determine whether we use the LSTR or the 

ESTR approach (i.e. H01,  H02,  H03 ) and the subsequent non-linear model specification. 

According to Teräsvirta (1994), since it is possible for the three hypotheses ( H01,  H02,  H03) to 

be simultaneously rejected, we have selected the one with the strongest level of rejection (i.e. 

lowest p-value). The results provide evidence in favour of a nonlinear specification for the Taylor 

rule based exchange rate model, although the result is sensitive to the transition variable. We 

proceed to use the specifications where we find evidence of non-linearity and in addition pass 

the diagnostic tests prior to considering the model for forecasting. By excluding the 

                                                           
11Despite evidence of autocorrelation, the forecasts from this longer dataset are included with the results, 

showing that it outperforms the benchmark forecast models. . 

12 All variables were initially tested for non-stationarity using the Ng and Perron (2001) test, which suggested all 

were stationary at the 5% level of significance. Also these tests exclude the dummy variables, when the dummy 

variables were added it made little difference to the results so are not reported. 



16 
 
 

specifications that failed the diagnostic tests, we are able to reduce the number of models for 

forecasting. For each country, there is evidence of nonlinearity based on the transition variables 

considered. As mentioned in the STR literature, the final decision on this can be postponed to 

the evaluation stage of the modelling strategy as in Teräsvirta (1994, 1996) and Dijk et al. (2002). 

In this study, we will follow the recommendation of Teräsvirta (1994). To be selected as a model 

for the out-of-sample forecasting, the model needed to provide evidence of non-linearity and 

pass the diagnostic tests. The decision regarding the best performing model will then be made 

based on the model evaluation and forecasting performance.  

We have conducted a number of diagnostic tests on the non-linear LSTR models, in order to 

verify their statistical adequacy. We run the Jarque-Bera normality test for the residuals. 

Following Eitrheim and Teräsvirta (1996), the Breusch-Godfrey LM test has been used to test 

for first and fourth order autocorrelation in the errors. This includes the LM (1) and LM (4) tests 

in which the null is of no first and up to forth order autocorrelation. To test for ARCH effects we 

run the ARCH-LM (1) test in which the null is no first order residual ARCH effect. The test for 

no remaining nonlinearity examines whether there is any remaining nonlinearity in the model 

after the initial non-linearity has been controlled for using the STR specifications described 

above. For parameter constancy, we again follow Eitrheim and Teräsvirta (1996), whose 

approach is to test the null of parameter constancy against three alternative hypotheses: 𝐻1:  the 

parameters change monotonically over time; 𝐻2: that the change is symmetric with respect to an 

unknown point in time; 𝐻3, change is possibly non monotonic but not necessarily symmetric. 

Rejection of either one of the null hypotheses 𝐻1, 𝐻2 and 𝐻3 indicates parameter non-constancy, 

otherwise the parameters are time-invariant. Tables 3 and 4 suggest that for all three countries 

the diagnostic tests are predominantly passed, although in a couple of cases for all the countries 

there is evidence of higher order autocorrelation, including the test for the UK using the whole 



17 
 
 

data sample and for the restricted data set using the interest rate as the transition variable. Due to 

the sensitivity of the estimation of these models to the presence of autocorrelation, we have 

proceeded to the out-of-sample forecasts in those cases where the diagnostic tests were passed. 

3.3 Modelling the Transition   

Based on the findings of non-linearity with certain transition variables, Figures 2 shows plots of 

the transition functions over time during our sample period. The change in the parameters, which 

depend on different transition variables, can be viewed as an indicator of the overall economic 

conditions or the monetary policy stance. To save space we have only reported the interest rate 

differential plots which are common to Sweden and Australia, and the volatility plots for the UK, 

as this allows us to demonstrate the results from the LSTAR model as well as ESTAR models. 

For the UK, the first evidence of any transition is during the early 1980s, reflecting an era of 

relatively volatile exchange rates, with a move to zero around 1992 during the ERM crisis, when 

the UK was forced out. From this Figure, it is interesting to note that the transition functions 

between 1994 and 2008 are mostly close to unity, representing a period of relative stability for 

the UK currency.  

For Sweden, the main change in parameters and the frequent shift of transition functions ends 

around 1994. This pattern reflects Swedish economic policy at the time, which experienced 

substantial interventions in the foreign exchange markets during the fixed rate regime period (i.e. 

before 1990). Following the banking crisis, there was a policy realignment within the Swedish 

economy in early 1990. It is also noticeable that between 1990 and 1994, the transition functions 

attained values mostly in the upper regime with values close to unity, this reflects the severe 

banking and subsequent financial and economic crises experienced by Sweden in the early 90s. 

Similar to the plots of the UK and Sweden, the estimated transition function for Australia 
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frequent shifts between regimes and large changes in parameters have occurred mostly before 

Australia adopted floating exchange rates at the end of 1983. 

Overall, the nonlinear specification improves upon the linear one by explaining some of the 

variation in the exchange rate related to the extreme peaks of various transition variables. In 

some respects the results follow the study of Bruggemann and Riedel (2011) on interest rate 

reaction functions in which they find that non-linearity tends to set in when the economy goes 

into a recessionary time period, often in conjunction with a financial crisis, especially for the 

UK. Another potential reason for the finding of non-linearity is that the Taylor rule tends to hold 

when the inflation rate is above a certain threshold value. The transition functions over time 

indicate that transition between regimes with large changes in parameters occurred most 

frequently prior to the introduction of the floating exchange rate system and inflation targeting. 

This is because the nonlinear Taylor type exchange rate relationships are based on Taylor rule 

interest rate models which are mainly used in studying the change and setting of monetary policy. 

As monetary policy has not greatly changed after the introduction of the floating system, so the 

same is the case with the exchange rate. Figures 3 present the estimated transition function of the 

LSTR and ESTR models, as before the interest differential is used for Sweden and Australia, 

whilst volatility is used for the UK, this demonstrates the number of observations above and 

below the threshold. These figures provide evidence of strong nonlinear behaviour for these 

models and give supportive evidence for the smooth change between two extreme regimes in 

most of the cases, especially with the ESTR models. For the LSTR model, when volatility is the 

transition variable, the estimated threshold is above the halfway point between the regimes. 

Therefore, almost all of the observations belong to the left hand tail of the transition function as 

is seen from the figure. The value of the transition function has remained close to zero for most 

of the volatility values. Thus a linear model could do almost as good a job as the LSTR model. 
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However, since the LSTR model had a better fit and there is evidence of nonlinearity shown in 

both the figure and the test, the result is reported here. 

3.4 Out-of-sample forecasting  

  The non-linear STR models are now analysed in terms of their out-of-sample forecasting 

performance, including all the transition variables which produced evidence of non-linearity and 

passed all the diagnostic tests as well as the longer dataset using the shadow interest rate 

(volatility15). This is done by comparing each nonlinear specification’s forecasting performance 

with those of the equivalent linear model, a non-linear uncovered interest rate parity based model 

(UIP) as well as with the random walk, which is the standard benchmark when forecasting 

exchange rates. The UIP model has been adopted as a comparison as it is a standard exchange 

rate model, which has previously been modelled using non-linear approaches, as noted by Baillie 

and Kilic (2006). Firstly, all models were re-estimated up to 1999Q4 and these estimates were 

used to generate a set of rolling forecasts for 2000Q1 to 2008Q4. Each out-of-sample forecast is 

constructed using all the data up to the forecasting period. So, in total, we obtain 36 forecasts for 

each model. 

 The mean square prediction error (MSPE) is adopted as the measure of the forecast performance 

of these models as it is the most commonly used criterion for deciding on which one from a set 

of models has the best forecasting accuracy. For non-nested models, a commonly used test of 

significance is the Diebold and Mariano (1995) and West (1996) MSE-t test (DMW test), as well 

as the McCracken (2007) out-of-sample F-type test of equal MSE. However, because the Taylor 

rule exchange rate model used here is a nested model, the test properties are likely to be 
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different13. In the case of nested models, a number of forecast performance evaluation criteria 

have become popular, such as the Clark and West (2006) (henceforth, CW) test, the Clark and 

McCracken’s (2001) encompassing test, the modified Diebold and Mariano (1995) 

encompassing test, as suggested by Harvey et al. (1998)14 and the fluctuation test developed by 

Giacomini and Rossi (2010). The latter test evaluates the fluctuations in the relative predictive 

abilities of the models throughout the span of the data. This test can be viewed as a plot of the 

standardized sample path of the relative measure of the local performance (difference in MSFEs), 

with the respective critical values. When the critical value schedule is crossed it suggests the 

model outperforms the competitor at this specific time point.  

 Tables 6 and 7 present the results for the out-of-sample forecasts, based on the transition 

variables that produce evidence of non-linearity and pass the diagnostic tests. As is evident from 

these results the non-linear Taylor rule based model outperforms all the alternative specifications 

considered, including with the longer dataset using the shadow interest rate. The MSPEs are 

below unity in every specification, showing that for the countries studied, the non-linear STR 

model is producing more accurate forecasts than the equivalent linear models, UIP model and 

random walk. The subsequent columns contain the test statistics described above, which measure 

forecast performance, where the benchmark model is nested. The CW statistics with respect to 

both benchmarks, provide evidence that the null hypothesis of equal forecasting accuracy can be 

                                                           
13 According to Clark and McCracken (2001) and a further study by McCracken (2007) these statistics are not 

distributed normally for two forecasts from a nested model. In addition Clark and McCracken (2012) show the 

distributions of the MSE-t and MSE-F statistics are non-standard when models are nested. This means that using 

standard normal critical values results in poorly sized tests.  

14 The DMW and CW tests do not necessarily lead to the same result. The CW tests for the regression coefficient 

being zero instead of if the sample MSPE from the model-based forecast is less than the sample MSPE from the 

benchmark forecast. The non-nested test results are available from the authors on request. 



21 
 
 

rejected. When the benchmark is the random walk, we notice that the STR specifications 

outperform the random walk model in almost all cases at the 5% significant level. This result for 

the UK/US exchange rate is similar to Pavlidis et al. (2012), who find that the non-linear models 

outperform the equivalent linear models, although they used a different approach. When 

comparing the forecasting performance of the STR specifications with the linear models and 

UIP, Overall we find that for every specification where there is evidence of nonlinearity, the non-

linear model usually outperforms the linear model in terms of forecasting accuracy at the 5% 

significance level .The only cases in which the non-linear model doesn’t significantly outperform 

the linear model is with the Australian data. It therefore appears that the out-of-sample 

forecasting performance of the STR specifications is more accurate than both the equivalent 

linear specifications, a UIP model and the random walk.  

Finally, Figures 4 present the Giacomini and Rossi (2010) fluctuation test results from the 

forecasts of the exchange rates over all three currencies and the relevant transition variables. 

Overall the results from these Taylor rule based exchange rate models do not outperform the 

linear models over the entire range of the sample considered, although the failure is limited to a 

number of specific short time periods, where the currencies experienced excessive volatility, 

such as the time period at the end of the sample when the 2008 financial crisis began. In addition 

there are some country specific events that affected the forecast performance, such as the banking 

crisis in Sweden in the early 1990s and the collapse in commodity prices in the late 1990s which 

affected the Australian currency.  

 

4 Conclusion 

This study analyses the forecasting performance of the non-linear Taylor rule based exchange 

rate model, complementing recent research which has found that the linear version of this model 
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outperforms a random walk. Using quarterly data on dollar-sterling, dollar-Swedish krona and 

dollar-Australian exchange rates over the period 1979 to 2008, we find evidence of nonlinearities 

in the exchange rate with respect to several macroeconomic determinants, suggesting that the 

Taylor rule exchange rate models can be improved in some cases by consideration of regime 

changes.  

The presence and form of the non-linearity and the transition process appears to vary across the 

countries studied, reflecting the differences in these economies. In general, the interest rate 

differential has been found to be an important source of nonlinearities in exchange rates for all 

the countries studied. For both Sweden and Australia, the ESTR model with interest rate 

differences as the transition variable delivers a well specified model, which prevails over other 

nonlinear models. For the UK’s exchange rate, the estimation results based on the output gap 

and volatility as the transition variable generally give the best specification. Comparing to the 

benchmarks of the random walk and the linear Taylor rule models the STR models appear to 

have better out-of-sample predictive performance which can be viewed as strong evidence in 

favour of the use of the non-linear Taylor rule model in this field of economic research. 

 Given the importance of predicting and explaining exchange rate movements for monetary 

policy, the main implication of the study is that using a non-linear approach to modelling and 

forecasting can produce better outcomes than the more conventional linear approaches, 

suggesting when forecasting exchange rates non-linear models need to be used in conjunction 

with the linear approach, depending on economic conditions and specific countries. In addition 

the inclusion of wealth effects within the model adds to the previous evidence showing that 

possibly as a result of increased capital movements between international financial markets, asset 

prices have an important effect on exchange rates. Future research in this area could consider 
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alternative non-linear approaches to modelling and a wider selection of potential transition 

variables  
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 Table 1 linearity tests on the Taylor rule model using data 1980Q1 -2008Q4  

 Transition 
variable 

𝑯𝟎 𝑯𝟎𝟏 𝑯𝟎𝟐 𝑯𝟎𝟑 Type of 
model 

UK  𝝅𝒕 − �̃�𝒕 0.4604 0.1971 0.6014 0.2564 Linear 

 𝒚𝒕 − �̃�𝒕 0.0684 0.2012 0.0252 0.3290 ESTR 

 𝒊𝒕−𝟏 − �̃�𝒕−𝟏 0.0476 0.1726 0.0922 0.1009 ESTR 

 𝒘𝒕(𝒔) − �̃�𝒕(𝒔) 0.8035 0.9047 0.9463 0.3011 Linear 

 𝒘𝒕(𝒉) − �̃�𝒕(𝒉) 0.6793 0.7974 0.8248 0.3151 Linear 

  �̃�𝒕 0.2130 0.2814 0.3063 0.1920 Linear 

 volatility 0.0115 0.0629 0.1292 0.0122 LSTR 

Sweden  𝝅𝒕 − �̃�𝒕 0.0025 0.4906 0.0406 0.0048 LSTR 

 𝒚𝒕 − �̃�𝒕 0.0966 0.0692 0.1328 0.1767 LSTR 

 𝒊𝒕−𝟏 − �̃�𝒕−𝟏 0.0000 0.0677 0.0000 0.1204 ESTR 

 𝒘𝒕(𝒔) − �̃�𝒕(𝒔) 0.9078 0.8308 0.9358 0.6467 Linear 

 𝒘𝒕(𝒉) − �̃�𝒕(𝒉) 0.0212 0.1815 0.1276 0.0193 LSTR 

  �̃�𝒕 0.0001 0.0651 0.0040 0.0006 LSTR 

 volatility 0.0000 0.0134 0.0071 0.0005 LSTR 

Australia  𝝅𝒕 − �̃�𝒕 0.0017 0.0028 0.0063 0.0311 LSTR 

 𝒚𝒕 − �̃�𝒕 0.0001 0.0041 0.0001 0.0458 ESTR 

 𝒊𝒕−𝟏 − �̃�𝒕−𝟏 0.0124 0.1436 0.0020 0.3039 ESTR 

 𝒘𝒕(𝒔) − �̃�𝒕(𝒔) 0.8540 0.2432 0.6367 0.9234 Linear 

 𝒘𝒕(𝒉) − �̃�𝒕(𝒉) 0.0026 0.0023 0.0014 0.1669 ESTR 

  �̃�𝒕 0.1157 0.6482 0.7459 0.1090 Linear 

 volatility 0.4839 0.2983 0.5433 0.3531 Linear 

Notes: the table presents p-values of the linearity test after introducing dummy variables in the models for which 

the null hypothesis of linearity is tested against the alternative of the STR model; bold values correspond to rejection 

of the null at the 10% level. When the 𝑯𝟎 is rejected against a certain alternative hypothesis, we proceed with the 

estimation of the corresponding STR model. In cases that the  𝑯𝟎 is rejected against more than one of the alternative 

hypotheses considered (𝑯𝟎𝟏, 𝑯𝟎𝟐, and 𝑯𝟎𝟑) we proceed to the estimation of the STR model corresponding to the 

alternative hypothesis for which the p-value is the lowest. 

 

Table 2 Linearity test on Taylor rule model using data 1980Q1 -2015Q4 

 Transition 

variable 

𝑯𝟎 𝑯𝟎𝟏 𝑯𝟎𝟐 𝑯𝟎𝟑 Type of 

model 

UK  𝝅𝒕 − �̃�𝒕 0.2830 0.0351 0.1355 0.7463 Linear 

 𝒚𝒕 − �̃�𝒕 0.3006 0.4972 0.4511 0.1858 Linear 

 𝒊𝒕−𝟏 − �̃�𝒕−𝟏 0.1567 0.0841 0.3265 0.1008 Linear 

 𝒘𝒕(𝒔) − �̃�𝒕(𝒔) 0.4389 0.9935 0.6774 0.1730 Linear 

 𝒘𝒕(𝒉) − �̃�𝒕(𝒉) 0.7609 0.9315 0.7240 0.5787 Linear 

  �̃�𝒕 0.5077 0.5877 0.3419 0.7091 Linear 

 volatility 0.0315 0.1925 0.1362 0.0506 LSTR 

Notes: The shadow policy rate of Wu and Xia (2016) is used here which allows for the estimation of the UK/US 

model using quarterly data from 1980 to 2015.
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Table 3. Diagnostic results for the nonlinear Taylor rule model 

 Panel A: UK Panel B: Sweden 

Model ESTR ESTR LSTR LSTR LSTR LSTR ESTR LSTR LSTR LSTR 

Transition variable (𝒔𝒕) 

 

𝒚𝒕 − �̃�𝒕 

 

𝒊𝒕−𝟏 − �̃�𝒕−𝟏 

 

Volatility 

(-15Q4) 

Volatility 

(-08Q4) 
 𝝅𝒕 − �̃�𝒕 𝒚𝒕 − �̃�𝒕 𝒊𝒕−𝟏 − �̃�𝒕−𝟏 𝒘𝒕 − �̃�𝒕(𝒉)  �̃�𝒕 volatility 

Residual Tests  

JB 0.241 0.893 0.732 0.441 0.843 0.604 0.427 0.234 0.941 0.848 

ARCH-LM(1) 0.311 0.436 0.190 0.235 0.710 0.737 0.785 0.507 0.669 0.823 

LM(1) 0.539 0.215 0.152 0.245 0.298 0.370 0.196 0.040** 0.525 0.103* 

LM(4) 0.075* 0.002** 0.004** 0.121 0.475 0.491 0.261 0.075* 0.702 0.079* 

Remaining  Nonlinearity  

 𝝅𝒕 − �̃�𝒕 0.9673 0.8992 0.4060 0.8749 0.901 0.552 0.968 0.958 0.941 0.969 

𝒚𝒕 − �̃�𝒕 0.5169 0.5982 0.7457 0.3917 0.804 0.891 0.091* 0.170 0.274 0.294 

𝒊𝒕−𝟏 − �̃�𝒕−𝟏 0.7177 0.9758 0.5391 0.9546 0.211 0.216 0.242 0.271 0.777 0.871 

𝒘𝒕 − �̃�𝒕(𝒔) 0.9892 0.9171 0.6703 0.9283 0.264 0.850 0.252 0.656 0.994 0.985 

 �̃�𝒕 0.2750 0.7606 0.6702 0.8182 0.685 0.510 0.264 0.513 0.559 0.920 

volatility 0.3407 0.8215 0.2743 0.6586 0.375 0.022 0.470 0.172 0.062* 0.474 

Parameter Constancy   

𝑯𝟏 0.316 0.369 0.661 0.919 0.418 0.999 0.228 0.103 0.348 0.154 

𝑯𝟐 0.517 0.613 0.317 0.331 0.498 0.958 0.782 0.864 0.026** 0.546 

𝑯𝟑 0.402 0.995 0.340 0.734 0.090* 0.063* 0.148 0.018** 0.687 0.751 

Notes: numbers in this table are 𝑝-values. ** and * represent rejection of the null at the 5% and 10% significance levels, respectively. JB denotes the Jarque-Bera test for the 
null of the normality of residuals. The Breusch-Godfrey LM test, is used to test for serial correlation in the errors. LM (1) and LM (4) denote the null of no first and forth order 
serial correlation. ARCH-LM (1) denotes the null of no first order residual heteroskedasticity. The test for no remaining linearity examines whether there exists some remaining 
nonlinearity in the process after the initial non-linearity has been controlled for. The parameter constancy test is the version proposed by Eitrheim and Teräsvirta (1996), in 

the context of which the null of parameter constancy is tested against three alternative hypotheses: 𝑯𝟏:  the parameters change monotonically over time; 𝑯𝟐: that the 

change is symmetric with respect to an unknown point in time; 𝑯𝟑, change is possibly non monotonic but not necessarily symmetric. 
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Table 4. Diagnostic results for the nonlinear Taylor rule model – 

Australia  

Model ESTR ESTR LSTR ESTR 

Transition 

variable (𝒔𝒕) 
𝒊𝒕−𝟏 − �̃�𝒕−𝟏 

𝒘𝒕

− �̃�𝒕(𝒉) 
 𝝅𝒕 − �̃�𝒕 

𝒚𝒕

− �̃�𝒕 

Residual Tests  

JB 0.659 0.503 0.522 0.662 

ARCH-

LM(1) 

0.675 0.708 0.897 0.984 

LM(1) 0.216 0.161 0.301 0.196 

LM(4) 0.346 0.150 0.024* 0.211 

Remaining  Nonlinearity  

 𝝅𝒕 − �̃�𝒕 0.962 0.962 0.964 0.442 

𝒚𝒕 − �̃�𝒕 0.225 0.878 0.547 0.964 

𝒊𝒕−𝟏 − �̃�𝒕−𝟏 0.821 0.943 0.985 0.983 

𝒘𝒕 − �̃�𝒕(𝒔) 0.954 0.165 0.820 0.957 

 �̃�𝒕 0.680 0.860 0.656 0.751 

volatility 0.796 0.062 0.746 0.598 

Parameter Constancy   

𝑯𝟏 0.779 0.059 0.632 0.751 

𝑯𝟐 0.100 0.144 0.138 0.159 

𝑯𝟑 0.116 0.530 0.214 0.746 

Note: see table 3 notes.  

 

Table 5. Diagnostic results for the nonlinear URIP model with  
𝒊𝒕−𝟏 − �̃�𝒕−𝟏 as transition variable 

 

 UK UK Sweden Australia 

Sample 80Q1:08Q4 80Q1:15Q4 80Q1:08Q4 80Q1:08Q4 

Model LSTR LSTR LSTR ESTR 

Residual Tests 

JB 0.808 0.072* 0.126 0.613 

ARCH-LM(1) 0.157 0.137 0.635 0.949 

LM(1) 0.696 0.056* 0.832 0.880 

LM(4) 0.062* 0.011** 0.628 0.176 

Remaining  Nonlinearity 

𝒊𝒕−𝟏 − �̃�𝒕−𝟏 0.969 0.926 0.665 0.948 

Parameter Constancy  

𝑯𝟏 0.465 0.927 0.583 0.254 

𝑯𝟐 0.494 0.906 0.576 0.228 

𝑯𝟑 0.425 0.737 0.584 0.188 

Note: see table 3 notes.  
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Table. 6. Forecasting results 

Notes: Panel A presents the comparison between the nonlinear model and the random walk, whereas Panel B presents the comparison between the nonlinear model with wealth 

effect and the linear model with wealth effect. Significance levels at 90% and 95% are denoted by one and two stars respectively. The Theil’s U are the ratios of the MSPE 

between the nonlinear Taylor rule and corresponding benchmark, a value less than 1 means the nonlinear Taylor rule has a smaller MSPE. For CW statistics, the null hypothesis 

is rejected if the statistic is greater than +1.282 (for a one side 0.10 test) or +1.645 (for a one side 0.05 tests). The critical value for MSE-t, MSE-F, ENC-F and ENC-t are 

obtained from Clark and McCracken (2001) and McCracken (2004).  

 

  

     Panel A: Random Walk  Linear Model (adjusted Taylor rule) 

Country 
Transition 

variable 
MSPE CW ENC-F ENC-t MSE-F MSE-t 

Theil's 

U 
CW ENC-F ENC-t MSE-F MSE-t 

UK 𝒚𝒕 − �̃�𝒕 0.002 2.811** 62.149** 4.313** 8.760** 0.577** 0.628 2.351** 3.349* 1.184* 0.226* 0.044* 

  
volatility 

0.002 3.554** 134.593** 5.025** 75.388** 2.515** 0.512 2.247** 21.594** 3.100** 20.500** 1.826** 

  
volatility15 

0.002 2.499** 74.128** 4.622** 7.111** 0.328** 0.518 4.120** 65.859** 4.408** 12.984** 0.600** 

Sweden 𝒊𝒕−𝟏 − �̃�𝒕−𝟏 
0.004 2.717** 143.647** 3.438** 89.353** 1.932** 0.479 3.599** 5.684** 1.952** 12.263** 1.160** 

   𝝅𝒕 − �̃�𝒕 0.004 1.829** 29.531** 3.460** -5.614** 
-
0.284** 

0.486 3.445** 9.919** 1.811** 24.345** 1.162** 

   𝒚𝒕 − �̃�𝒕 0.003 2.078** 197.632** 3.697** 135.635** 2.268** 0.425 3.091** 8.423** 1.637** 0.220** 0.023** 

  volatility 
0.004 2.078* 47.911** 3.077** 27.558** 1.225** 0.499 3.401** 101.265** 1.002** 158.734** 1.001** 

Australia 𝒊𝒕−𝟏 − �̃�𝒕−𝟏 
0.002 1.677** 83.556** 2.140** 31.829** 0.605** 0.464 1.523* 10.528** 3.317** 6.704** 1.239** 

  𝒚𝒕 − �̃�𝒕 
0.001 2.216** 77.310** 1.888** 38.603** 0.704** 0.261 1.942** 3.410** 1.568** 1.743** 0.343** 

  𝒘𝒕 − �̃�𝒕(𝒉) 0.002 1.479* 74.386** 1.999** 19.521** 0.400** 0.391 1.486* 59.285** 3.136** 20.717** 0.686** 
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Table. 7. Forecasting results 

  Panel A: Linear Model (Standard Taylor rule) Panel B: Nonlinear UIP 

Country 
Transition 

variable 

Theil's 

U 
CW ENC-F ENC-t MSE-F MSE-t 

Theil's 

U 
CW ENC-F ENC-t MSE-F MSE-t 

UK 
𝒚𝒕 − �̃�𝒕 0.674 2.765** 13.003** 1.974** 5.175** 1.005** 1.06 2.966** 63.029** 4.747** 21.797** 1.200** 

volatility 
0.548 2.503** 21.588** 2.899** 10.680** 0.880** 0.86 1.705** 62.118** 5.121** 9.505** 0.572** 

  
volatility15 

0.566 2.951** 68.591** 4.451** 15.017** 0.677** 0.8 2.492** 78.956** 5.351** 20.963** 0.976** 

Sweden 𝒊𝒕−𝟏 − �̃�𝒕−𝟏 
0.511 3.422** 10.079** 1.306* 9.650** 0.793** 0.95 1.648** 167.365** 3.494** 129.691** 2.384** 

  𝝅𝒕 − �̃�𝒕 0.519 3.253** 6.061** 3.028** 6.002** 1.893** 0.96 1.693** 37.887** 2.937** 5.646** 0.259** 
 

 𝒚𝒕 − �̃�𝒕 0.453 3.087** 19.300** 2.628** 8.920** 0.746** 0.84 2.609** 222.406** 3.295** 179.865** 2.407** 

  volatility 
0.532 3.273** 109.660** 1.002** 170.398** 1.001** 0.99 0.998 560.941** 1.020** 487.477** 0.880** 

Australia 𝒊𝒕−𝟏 − �̃�𝒕−𝟏 
0.472 1.443* 39.667** 3.998** 2.178** 0.133** 0.73 1.893** 79.858** 1.665** 41.333** 0.657** 

 𝒚𝒕 − �̃�𝒕 
0.266 1.775** 75.783** 2.058** 57.402** 1.191** 0.41 1.039 84.691** 1.673** 48.705** 0.735** 

  𝒘𝒕 − �̃�𝒕(𝒉) 0.398 1.406* 8.916** 1.573** 14.950** 0.977** 0.62 1.535* 80.773** 1.776** 27.941** 0.480** 

Notes: Panel A presents the comparison between the nonlinear model and the linear model, whereas Panel B presents the comparison between the nonlinear model and the non-

linear UIP model. Significance levels at 90% and 95% are denoted by one and two stars respectively. The Theil’s U are the ratios of the MSPE between the nonlinear Taylor 

rule and corresponding benchmark, a value less than 1 means the nonlinear Taylor rule has a smaller MSPE. For the CW statistics, the null hypothesis is rejected if the statistic 

is greater than +1.282 (for a one side 0.10 test) or +1.645 (for a one side 0.05 tests). The critical value for MSE-t, MSE-F, ENC-F and ENC-t are obtained from Clark and 

McCracken (2001) and McCracken (2004). 



32 
 
 

Figure 1. Plots of the data  
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Figure 2. Estimated transition function over time  

 
 

 

Figure 3. Estimated Transition Function 
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Figure 4.  Fluctuation tests for the forecasts 

 

 
 

Notes: this figure reports Giacomini and Rossi’s (2010) Fluctuation test statistics (in absolute value) implemented using the Clark and West’s (2006) statistics for comparing 

forecasts of the Non-linear Taylor rule exchange rate model relative to the Linear Taylor rule exchange rate models as the benchmark (solid line). The dashed line denotes the 

one-sided 5% critical value of the Fluctuation test statistic. If the estimated test statistic is below this line, the Taylor rule exchange rate model with stock prices forecasts 

significantly better than its benchmark. 
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Appendix 

Linearity tests on the UIP model using data 1980Q1 -2008Q4 

Transition variable 

(𝒊𝒕−𝟏 − �̃�𝒕−𝟏) 
𝑯𝟎 𝑯𝟎𝟏 𝑯𝟎𝟐 𝑯𝟎𝟑 Type of 

model 
UK08 0.0910* 0.0045** 0.0467 0.6951 LSTR 

UK15 0.0985* 0.9332 0.2032 0.0128** LSTR 

Sweden 0.0014** 0.0010** 0.0017 0.0627 LSTR 

Australia 0.0942* 0.9180 0.0023** 0.0422 ESTR 

Note: See Table 


