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Quasicrystals differ from conventional crystals and amorphous materials in that they possess

long–range order without periodicity. They exhibit orders of rotational symmetry which are

forbidden in periodic crystals, such as 5-, 10-, and 12-fold, and their structures can be de-10

scribed with complex aperiodic tilings such as Penrose tilings and Stampfli-Gaehler tilings.

Previous theoretical work explored the structure and properties of a hypothetical 4-fold sym-

metric quasicrystal - the so-called Fibonacci square grid. Here, we show an experimental

realisation of the Fibonacci square grid structure in a molecular overlayer. Scanning tunnel-

ing microscopy reveals that fullerenes (C60) deposited on the 2-fold surface of an icosahedral15

Al–Pd–Mn quasicrystal selectively adsorb atop Mn atoms, forming a Fibonacci square grid.

The site specific adsorption behaviour also offers the potential to generate relatively simple

quasicrystalline overlayer structures with tunable physical properties and demonstrates the

use of molecules as a surface chemical probe to identify atomic species on similar metallic

alloy surfaces.20
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Introduction

Quasicrystalline phases have been observed in a range of materials, including intermetallics1, liq-

uid crystals2, polymers3, 4, colloids5, 6, perovskites7 and overlayer structures of single elements8–11

and molecules12, 13. All of these quasicrystalline bulk and epitaxial phases exhibit forbidden rota-

tional symmetries. In 2002 Lifshitz pointed out that quasicrystals are not exclusively defined in25

terms of possessing forbidden symmetries14. He introduced the Fibonacci square grid, which ex-

hibits 4–fold symmetry, but is quasicrystalline14. The square grid is constructed by superimposing

two orthogonal Fibonacci linear grids (Figure 1a). The Fibonacci linear grid is produced using

short (S) and long (L) sections and certain substitution rules: S→L and L→LS. These conditions

create a sequence: S, L, LS, LSL, LSLLS. . .. When L = τS, where τ is the golden mean (1+
√
5

2
=30

1.618. . .), this sequence models a 1–dimensional quasicrystal. The Fibonacci square grid is con-

stituted by three tiles (S×S, S×L and L×L) highlighted in Figure 1a by different colours. Like

other complex aperiodic tilings, the Fibonacci square grid follows specific rules for tile placement

and frequency, and exhibits τ–inflation symmetry14, i.e. the enlargement or shrinking of dimen-

sional quantities by τ . The theoretical construct was later extended to a cubic Fibonacci tiling in35

three dimensions15. Lifshitz noted at the time that to the best of his knowledge, no alloys or real

quasicrystals existed with the structure of the square or cubic Fibonacci tilings.14.

The physical properties of a hypothetical quasicrystal with the square Fibonacci grid struc-

ture have been explored theoretically, including its electronic, phononic and transport behaviours15–17.

Dallapiccola et al. examined the plasmonic properties of a lithographically fabricated Fibonacci40
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square grid of a sub-micrometre scale18. Similarly, Vardeny et al. studied the photonic properties

of a system with a stacking of slabs of two different periodic materials in a Fibonacci sequence, as

an example of one dimensional quasicrystalline structure19. In this work we present experimental

observation of the Fibonacci square grid in a molecular overlayer system.

Results45

Substrate structure. We used the surface of an intermetallic quasicrystal, icosahedral (i)-Al-Pd-

Mn, as a template for C60 adsorption. The icosahedral quasicrystal possesses 2-, 3- and 5-fold

rotational symmetry axes. Here we have used a surface perpendicular to the 2-fold axis. The sub-

strate surface was prepared as explained in the Methods section. Low energy electron diffraction

(LEED) and scanning tunneling microscopy (STM) were utilised to characterise the surface.50

The analysis of k-vectors of the LEED pattern, Figure 1b, reveals that the surface corresponds

to a bulk termination (Supplementary Note 1). This means that the surface has 2-fold symmetry,

as expected from the bulk. Consistent with the LEED results, fast Fourier transforms (FFTs) of

STM images from the clean surface are also 2-fold (Figure 2a, see further discussion later). STM

images can also be explained as bulk atomic planes. The observation of 2-fold symmetry of the55

surface is in agreement with previous STM results20, 21 (Supplementary Note 2).

STM of C60 overlayer. When C60 is deposited on the clean surface at 600 K, a quasicrystalline

network is formed, as shown in Figure 1c. A majority of the C60 molecules (70% of the total

observed) lie at the vertices of a Fibonacci square grid of S = 1.26 nm, L = 2.04 nm. This grid
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is superimposed in Figure 1d (black lines). The remaining minority of C60 can be placed at the60

vertices of a τ–deflated grid. The τ–deflated grid is shown by white lines in Figure 1d, where

L′ = L/τ = S and S ′ = S/τ . The origin of low occupancy of C60 at the τ–deflated vertices will be

discussed later.

We present FFT patterns taken from the clean and C60 dosed surfaces in Figure 2a,b. For the

calculation of the C60 pattern, the substrate was filtered out so that only the molecular film made65

a contribution to the FFT. Spots with equal k-vectors are highlighted by circles, indicating 1st and

2nd order spots. The FFT spots for the substrate (Figure 2a) and C60 (Figure 2b) appear at the same

k-vectors but their intensity distribution is different. The real space values corresponding to the

k-vectors of FFTs are related to the length scales of L and S.

The Fibonacci square grid structure of the C60 overlayer is confirmed by comparing the FFT70

of the STM image with the reciprocal space transform of the Fibonacci square grid (Figure 2c).

A grid of S (=1.26 nm) and L (=2.04 nm) lengths was chosen to allow for a direct comparison to

the experimental FFT results. The pattern fits extremely well with the FFT of the C60 overlayer

(Figure 2c).

We also compare autocorrelation functions that are calculated from the STM image and from75

a model Fibonacci square grid. Figure 2d is the autocorrelation function of the C60 molecules in

the STM image shown in Figure 1c. Similar to the FFT of the C60 molecules (2b), the contribution

from the substrate in STM was removed so that the autocorrelation function arises solely from

the C60 molecules. Figure 2e shows the autocorrelation function of a perfect grid, i.e., a point
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object is placed at every vertex of a Fibonacci square grid of S = 1.26 nm and L = 2.04 nm. The80

size of grid used to calculate the autocorrelation was 50 nm × 50 nm, but we have shown only a

section for comparison. As expected, spots in the autocorrelation function of the model grid form

a perfect Fibonacci square grid. In agreement with the model, the autocorrelation function of the

STM image can also be mapped by a Fibonacci square grid. The tile lengths of the grid are also S

and L. This means that C60 molecules at the τ–deflated grid do not contribute to the autocorrelation85

pattern. This is expected, as only a fraction of the τ–deflated vertices are occupied by C60. In a

perfect Fibonacci square grid, the number of vertices in the τ–deflated grid is τ 2 times the number

of vertices in the original grid. The relative density of vertices of the τ–deflated grid that do not

overlap with the original grid is thus τ 2-1 = τ , i.e., there are ∼162% more than the vertices of the

original grid. However, only ∼8% of these vertices are occupied by C60 as observed by STM and90

therefore, these molecules do not produce additional features in the autocorrelation pattern. The

low occupancy of C60 at the τ–deflated Fibonacci square grid is consistent with the low density of

Mn atoms at the τ–deflated grid derived from the model structure.

Discussion

The specific adsorption sites of the molecules will now be considered. For this, we present the95

atomic structure of the 2-fold surface of the i-Al-Pd-Mn quasicrystal in Figure 3a,b. The structure

corresponds to high density planes of the bulk atomic model proposed by Boudard et al.22. The

STM images of the substrate are consistent with these atomic planes (see Supplementary Note 2).

Following direct measurement from the STM data (Figure 1c) and comparison with theoretical
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autocorrelation results (Figure 2e), the size of the C60 Fibonacci grid is known. This grid (S =100

1.26 nm, L = 2.04 nm) fits with the separations of the Mn atoms in the surface plane (Figure 3a,b),

suggesting that individual C60 molecules adsorb directly on top of these Mn atoms. Aluminium

adsorption sites are ruled out, as although Al atoms are separated by similar S and L lengths, the

Al density at the surface would provide too many adsorption sites – producing a disordered film.

This is also true for Pd sites.105

The Mn-based adsorption model is further strengthened by the Fibonacci square grid struc-

ture of the C60 overlayer and the substrate model structure. We present a block of the atomic

structure of the i-Al-Pd-Mn quasicrystal, simultaneously displaying the 5-fold and 2-fold planes -

Figure 3c. For clarity we have shown only Mn atoms in the model. Mn atoms are located at the

centre of pseudo-Mackay clusters, the building blocks of the i-Al-Pd-Mn quasicrystal23. The 5-fold110

surface intersects the centre of the clusters and the Mn atoms can be mapped with a Penrose P1

tiling. The edge length of the tiling is∼ 0.77nm, which is confirmed by STM24. The 2-fold surface

terminates at specific planes of the P1 tiling, such that Mn atoms form a Fibonacci square grid. A

few remaining Mn atoms are located at τ -deflated positions. Two of these planes are marked in

Figure 3c. However, Al and Pd atoms at the surface plane do not form a Fibonacci square grid.115

They show 2-fold symmetry.

A comparison between the detailed structure of the C60 overlayer observed by STM, and Mn

atomic positions in the model structure, also indicates that Mn atoms are the bonding sites. Figure

3a shows S×S and S×L tiles from the model whose vertices are decorated with C60. An additional
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C60 molecule occupies at an S/τ (0.77 nm) deflated position. The inset on Figure 3a is an STM120

image of the corresponding motif. In the model, the S/τ Mn position is too close to its nearest Mn

neighbour to allow neighbouring C60 molecules to adsorb without significant molecule–molecule

interaction. The steric interaction between neighbouring C60 at these positions thus results in a

slight spatial displacement away from the Mn adsorption sites. This displacement translates into

the autocorrelation function, where some spots are displaced from the perfect Fibonacci grid pro-125

ducing deformed squares, see a marked distorted square in Figure 2d. However, these τ–deflated

positions can also be occupied without C60–C60 displacement, as Figure 3b shows. Here, C60

molecules occupy Mn sites that create inverted Fibonacci sequences (again, inset is an STM mo-

tif). These positions may also contribute to the deformation of the experimental autocorrelation

spots, as they simultaneously represent two inverted square grid tiles (S×S and S×L). In addition,130

the density of Mn atoms at τ -deflated positions is very low in the model structure, compared to

their density at the original grid. This is consistent with the low density of C60 at the τ -deflated

grid.

C60 is an excellent electron acceptor25 and Mn is electron–rich12. Therefore, a strong elec-

tronic molecule–substrate interaction at Mn sites is expected. Such behaviour was previously135

observed for Bi and Si on the 5-fold surface of i-Al-Pd-Mn, where the adsorbates were observed to

bond to Mn atoms9, 26. Similarly, C60 was found to bond to Fe on the fivefold i-Al-Cu-Fe surface13.

The i-Al–Cu–Fe quasicrystal and i-Al–Pd–Mn have a very similar structure27.

In conclusion, we have shown that C60 molecules form a Fibonacci square grid on the 2-fold
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surface of i-Al–Pd–Mn. The observation of such a structure extends the quasicrystal family be-140

yond the forbidden symmetry systems previously observed. More generally, the sparse density of

the minority constituents of complex metallic alloys presents a unique adsorption landscape for the

construction of molecular arrangements on a chosen scale; for example, this methodology could

permit the construction of a molecular magnet array of chosen magnetic behaviour. Addition-

ally, understanding the propagation of waves inside 5–, 10-, and 12-fold quasicrystalline lattices145

as waveguides is an attractive problem due to the nearly isotropic Brillouin zones. However, it is

a rather intractable one. A suitably constructed simplified Fibonacci square grid structure could

therefore provide a useful stepping-stone to the understanding of complex phenomena such as the

formation of photonic quasicrystals19. We have also shown that C60 can be utilised as a chemi-

cal probe that can tag unique adsorption sites of a complex structure, and thus provide an insight150

into the surface structure. This technique can of course be extended to other quasicrystalline and

complex metallic alloy surface structures, providing that the experimental conditions are adequate;

primarily the surface must have a unique or sparse enough adsorption network to provide mean-

ingful topographic data.

Methods155

Surface and thin film preparation. A 2–fold Al–Pd–Mn quasicrystal was polished with succes-

sively finer grades of diamond paste from 6 µm down to 0.25 µm, before solvent washing with

methanol in an ultrasonic bath. Upon insertion into ultra–high vacuum (UHV) the sample was

cleaned by several sputter–anneal cycles (30 minutes sputtering, 2 hours anneal at 900 K) to form
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a flat surface. Surface ordering and cleanliness was assessed with low energy electron diffraction160

(LEED). Scanning tunneling microscopy (STM) was used to investigate local atomic and molec-

ular arrangements. C60 was deposited using thermal evaporation, while the substrate was held at

600 K. The surface was exposed to the source at a rate of 0.1 monolayer (ML) per minute. A range

of molecular coverages were investigated.

Data availability165

The main data supporting the findings of this study are included in this article and its Supple-

mentary information files. Additional STM data are available from the corresponding author upon

request.
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Figure 1: Fibonacci square grid, LEED and STM. (a) The Fibonacci square grid, with highlighted con-

stituent tiles (blue: L×L, red: S×S, and green: S×L). The centre of rotation of 4-fold symmetry is marked

by a circle. (b) Low energy electron diffraction pattern (60 eV, inverted for clarity) from the clean 2–fold

surface of the icosahedral (i) Al–Pd–Mn quasicrystal. Diffraction spots are τ–scaled in the primary 2–fold

axes (highlighted with white circles), with two reciprocal space lengths indicated: a=(14.1±0.3) nm−1 and

b=(22.5±0.3) nm−1. (c) Quasicrystalline C60 on the 2–fold i-Al–Pd–Mn quasicrystal as imaged by scan-

ning tunneling microscopy. Scale bar represents 4 nm. (d) Image (c) overlaid with a Fibonacci square grid

of S = 1.26 nm, L = 2.04 nm (black lines) to highlight the ordering of C60. A τ -deflated Fibonacci square

grid of L′ = L/τ = S and S′ = S/τ is shown by white lines on the right-hand side. Note that the original

grid overlaps with the τ–deflated grid.
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Figure 2: Fast Fourier transform and autocorrelation function. (a) Fast Fourier transform (FFT) of

a scanning tunneling microscopy (STM) image of the clean surface, demonstrating 2-fold symmetry. (b)

FFT of the C60 molecules of Figure 1c. (c) FFT generated from a Fibonacci square grid, showing 4-fold

symmetry. Spots of the first two orders of diffraction are highlighted by circles of different colours. FFTs in

(a) and (b) are displayed with the same k-vector scale, while the scale of (c) is arbitrary. (d) Autocorrelation

function of the STM image of the C60 overlayer of Figure 1c. A distorted square is marked. (e) Autocorre-

lation function taken from point objects at the vertices of a Fibonacci square grid of S = 1.26nm, L = 2.04

nm. Scale bars in (d) and (e) represent 1 nm.
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Figure 3: Adsorption sites. (a), (b) Comparison between C60 motifs observed by scanning tunneling

microscopy (STM) and the model structure of icosahedral (i)-Al-Pd-Mn. Model structures showing C60

adsorbed atop Mn atoms, forming S×S and S×L tiles. Two images are taken from two different sections

of the surface plane in order to illustrate common STM features. The insets in (a) and (b) are sections of

the STM image from Figure 1c. The inset in (a) shows an additional C60 adsorbed at a τ -deflated position,

which appears as a squashed (i.e. non–circular) molecule. Al = blue, Pd = yellow, Mn = red, and C60 =

green. Atoms in different layers are presented in different sizes, with the largest in the top layer. Scale bars

in (a) and (b) represent 1 nm. (c) A block of the model structure of i-Al-Pd-Mn displaying 5-fold (pink)

and 2-fold (cream) planes, with C60 adsorbed atop Mn atoms. The orientation of C60 is arbitrary. Only Mn

atoms are shown for clarity. There are three equivalent 2-fold axes in icosahedral quasicrystal, which are

orthogonal to each other: two of them are in the surface plane and the third is perpendicular to the surface

plane. These directions are indicated by arrows. An STM image is superimposed for comparison.
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