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Abstract: The Bhattacharyya distance is a stochastic measurement between two samples and taking into account their 

probability distributions. The objective of this work is to further generalize the application of the Bhattacharyya distance 

as a novel uncertainty quantification metric by developing an approximate Bayesian computation model updating 

framework, in which the Bhattacharyya distance is fully embedded. The Bhattacharyya distance between sample sets is 

evaluated via a binning algorithm. And then the approximate likelihood function built upon the concept of the distance is 

developed in a two-step Bayesian updating framework, where the Euclidian and Bhattacharyya distances are utilized in 

the first and second steps, respectively. The performance of the proposed procedure is demonstrated with two exemplary 

applications, a simulated mass-spring example and a quite challenging benchmark problem for uncertainty treatment. 

These examples demonstrate a gain in quality of the stochastic updating by utilizing the superior features of the 

Bhattacharyya distance, representing a convenient, efficient, and capable metric for stochastic model updating and 

uncertainty characterization. 

Keywords: uncertainty quantification; stochastic model updating; model validation; Bayesian updating; approximate 

Bayesian computation 

1 Introduction 

It has been widely accepted that uncertainties should be appropriately considered in the campaign of model updating 

and validation. Uncertainty quantification (UQ) metrics are consequently significant to provide an elaborate measurement 

of the uncertainty information in stochastic model updating methodologies. 

In the context of UQ, the system parameters can be categorized according to the involvement of aleatoric or/and 

epistemic uncertainties [1,2]: 

I) parameters without any epistemic uncertainty, appearing as either explicit constants or random variables with fully 

determined uncertainty characteristics such as distribution type, mean, variance; 

II) parameters with only epistemic uncertainty, modeled as constants but with unknown exact value bounded by a given 

interval; 

III) parameters with both aleatoric and epistemic uncertainties, modeled as random variables with only vaguely determined 

uncertainty characteristics.  
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As Category I parameters contain no epistemic uncertainties, they are investigated by neither deterministic nor stochastic 

model updating techniques. The deterministic updating methodologies generally investigate only Category II parameters 

aiming at a single set of crisp parameter values and at generating a single model prediction with maximum fidelity with 

regard to the observation. Comparatively, both Categories II and III parameters are considered by stochastic updating 

methodologies, whose target is not the single set of the parameters themselves, but a reduced space of the epistemic 

uncertainties, e.g. reduced intervals of Category II parameters and reduced bounds of the Cumulative Probability Function 

(CDF) of Category III parameters.  

A wide range of stochastic model updating methodologies has been investigated in the literature, such as perturbation 

methods [3,4], interval updating [5,6] and fuzzy theory [7,8]. No matter which methodology is performed in stochastic 

model updating, it is significant to define a comprehensive UQ metric which is capable of quantifying the uncertain 

discrepancy between two random data samples, e.g. the observed data and the numerical model predictions. 

As an alternative to the classical Euclidian distance, Khodaparast et al. [9] propose to use the Frobenius norm to 

measure the difference between the covariance matrices of the experimental and simulated data. By minimizing the 

objective function combining the Euclidian distance between the means and the Frobenius norm between the variances, 

this approach achieves satisfied updating result for both mean and variance with high efficiency. Another stochastic 

distance concept is the Bhattacharyya distance [10], which has been proposed as a potential UQ metric capable of 

capturing a higher level of statistical information from the investigating variables [11]. This metric is clearly more 

comprehensive for uncertainty treatment, however, its application in stochastic model updating is quite limited in the 

current literature. This limited application is not only caused by a relative high calculation cost but also, more critically, 

caused by its stochastic feature when integrating the product of the probability density functions (PDFs) of the random 

variables (which will be further discussed in Sec. 2.1). The objective of this work is consequently to generalize the 

Bhattacharyya distance as a universal metric for uncertainty treatment by developing a stochastic model updating 

approach, in which the Bhattacharyya distance is fully embedded and actively operated. 

Bi et al. [11] performed a comprehensive comparison among the Euclidian, Mahalanobis, and Bhattacharyya distances 

as updating metrics via a direct Monte Carlo approach. However, this approach is essentially based on a single and non-

directional searching technique with low efficiency. In the case of complex problems with high-dimensional parameter 

space, this approach would fail to search the global solutions. To solve this issue, in this paper, the Bayes’ theorem [1] and 

transitional Markov chain Monte Carlo (TMCMC) algorithm [12] are employed to construct a Bayesian updating 

framework, in which the Bhattacharyya distance is embedded as the metric. In this framework, the approximate Bayesian 

computation (ABC) [13] is proposed to develop an approximate but efficient likelihood function constructed on the 

distance between model predictions and experimental observations. The distance-based ABC is of central importance in 

this framework since it acts as the connection between the Bhattacharyya distance metric and the Bayesian updating tool. 

The present development is particularly motivated by the NASA UQ challenge problem [2], since it has revealed 

directions for improvement of current model updating technologies when they meet real-size practical problems. Herein, 



3 

 

we demonstrate the advantages of the Bhattacharyya distance metric in association with the proposed ABC updating 

approach, specifically on the NASA UQ challenge. We focus on solving Sub-problem A (uncertainty characterization) out 

of the overall challenge problem. Sub-problem A is closely related to model updating, and its results can be significantly 

influenced by different UQ metrics. Three of the works previously published on solving the NASA UQ challenge 

problem, namely the papers by Patelli et al. [14], Ghanem et al. [15], and Safta et al. [16],  are used as reference works to 

assess the updating results. All of these three works are also employing Bayesian updating methodologies. However, since 

the employed UQ metrics and the associated individual updating strategies vary, the results exhibit considerable 

discrepancies. This underlines the significance of using a powerful UQ metric. The proposed approach using the Euclidian 

and the Bhattacharyya distances in sequence as metrics in a two-step updating procedure shows clear advantages in this 

context. 

In Sec. 2 we describe the theoretical and methodological basis of the Bhattacharyya distance evaluation and the 

Bayesian model updating. Sec. 3 outlines the novel developments of the distance-based ABC likelihood function, and the 

proposed two-step ABC updating framework. The principle and illustrative applications are detailed in Sec. 4, using a 

simple spring-mass example for illustration, and in Sec. 5, concentrating on to the demonstration of the performance of 

the framework on the highly challenging NASA UQ problem. Conclusions are drawn in Sec. 6. 

2 Theories and Methods 

2.1 Formulations of the Bhattacharyya Distance in UQ 

In the context of stochastic model updating with UQ, the investigating system is characterized using three components: 

input parameters 𝛉, output features x, and simulator ℎ(∙): 

 𝐱 = ℎ(𝛉) (1) 

where 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑚]; 𝛉 = [𝜃1, 𝜃2, … , 𝜃𝑛]; m and n are respectively the number of outputs and inputs. The simulator 

is usually presented as either a sophisticated code package (e.g. finite element model) or a simplified function (e.g. 

response surface model). 

The uncertainties of the system are first characterized by uncertain parameters in various categories (refer Sec. 1), and 

then, propagated through the simulator into uncertain outputs or features presenting various forms of uncertainty as well, 

e.g. probabilistic distributions, intervals, and fuzzy sets. In general, independently of the form of the uncertainties, 

randomly sampled values of parameters and features are used in UQ algorithms. Suppose the required size of the samples 

is 𝑁𝑠𝑖𝑚, the simulator h is executed 𝑁𝑠𝑖𝑚 times to generate the simulated feature sample 𝐗𝑠𝑖𝑚 ∈ ℝ𝑁𝑠𝑖𝑚×𝑚: 

 𝐗𝑠𝑖𝑚 = [𝐱1, 𝐱2, … , 𝐱𝑚]; 

 𝐱𝑖 = [𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑁𝑠𝑖𝑚𝑖]𝑇 ,    ∀𝑖 = 1, … , 𝑚. (2) 

In addition to the simulated features, observed features are required as the target of model updating. Suppose the 

observation size is 𝑁𝑜𝑏𝑠, the sample set  of the observed features has a similar structure as Eq. (2), where only the number 



4 

 

of rows is changed: 𝐗𝑜𝑏𝑠 ∈ ℝ𝑁𝑜𝑏𝑠×𝑚. The objective of stochastic model updating can be expressed as to minimize the 

discrepancy between 𝐗𝑜𝑏𝑠  and 𝐗𝑠𝑖𝑚 , considering not only their means but also their dispersion information such as 

variances and covariance, by updating the uncertainty characteristics of parameters.  

 In the following, more attention is given to the possible metrics capable to capture the discrepancy between 𝐗𝑜𝑏𝑠 and 

𝐗𝑠𝑖𝑚. The very classical metric based on the Euclidian distance concept is expressed as: 

 𝑑𝐸(𝐗𝑜𝑏𝑠, 𝐗𝑠𝑖𝑚) = √(𝐗𝑜𝑏𝑠 − 𝐗𝑠𝑖𝑚)(𝐗𝑜𝑏𝑠 − 𝐗𝑠𝑖𝑚)𝑇 (3) 

where 𝐗∎ is the row vector of the means of the features. The Euclidian distance is a point-to-point distance more generally 

used in the deterministic updating methodologies where a single-simulation-single-observation procedure is utilized. In 

the presence of random samples, it is more desirable to employ a more comprehensive metric capable to account for not 

only the effect of the mean but also the variance, covariance, and even the difference in distribution shape.  

The Bhattacharyya distance is thus proposed herein as a stochastic metric measuring the degree of overlap between 

distributions of two random variables. The Bhattacharyya distance is defined as  

 𝑑𝐵(𝐗𝑜𝑏𝑠, 𝐗𝑠𝑖𝑚) = − log [∫ √𝑝𝑜𝑏𝑠(𝑥)𝑝𝑠𝑖𝑚(𝑥)d𝑥
𝕩

] (4) 

where 𝑝∎(𝑥) is the PDF of the sample; 𝕩 is the m-dimensional space, implying ∫ ∎d𝑥
𝕩

 is the integration performed over 

the whole feature space. Note that, for most systems, the number of features is 𝑚 > 1, thus the integration is performed on 

multi-dimensional joint PDFs. This operation can be quite time consuming and complex especially in high-dimensional 

feature space and requires a highly detailed knowledge of the distributional characteristics, achievable only through a high 

number of observations. As a matter of fact, one of the classical methods to estimate PDF from a finite data sample is the 

kernel density estimation (KDE) [17]. However, a converged estimation in KDE is usually unavailable because of the 

very limited number of observations, especially for applications where experiments are difficult or expensive. In such 

situations, the so-called binning algorithm is proposed to evaluate the probability mass function (PMF) of a discrete 

distribution, so that the discrete Bhattacharyya distance is used instead. The PMF is a function which maps the possible 

values of a discrete random variable to probabilities of their occurrence [18]. The Bhattacharyya distance between two 

discrete distributions using two discrete PMFs is evaluated as [19] 

 𝑑𝐵(𝐗𝑜𝑏𝑠 , 𝐗𝑠𝑖𝑚) = −log {∑ … ∑ √𝑝𝑜𝑏𝑠(𝑏𝑖1,𝑖2,…,𝑖𝑚
)𝑝𝑠𝑖𝑚(𝑏𝑖1,𝑖2,…,𝑖𝑚

)
𝑛𝑏𝑖𝑛
𝑖1=1

𝑛𝑏𝑖𝑛
𝑖𝑚=1 } (5) 

where 𝑝∎(𝑏𝑖1,𝑖2,…,𝑖𝑚
) is the PMF value of the bin 𝑏𝑖1,𝑖2,…,𝑖𝑚

. The bin has m subscripts because it is generated under a m-

dimensional joint-PMF space.  

In order to calculate the PMF, the binning algorithm consists of the following steps. An example of a two-dimensional 

case following this binning algorithm is illustrated in Fig. 1. 
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Fig. 1: Schematic of the binning algorithm for a two-dimensional case 

1) Define the common interval 𝐼𝑖  of both 𝐗𝑜𝑏𝑠  and 𝐗𝑠𝑖𝑚  according to the ith feature 𝐱𝑖 , ∀i = 1, … , 𝑚 , by finding the 

general maximum and minimum of 𝐱𝑖 in both 𝐗𝑜𝑏𝑠 and 𝐗𝑠𝑖𝑚; 

2) Within the defined interval, decide the number of bins 𝑛𝑏𝑖𝑛 ≅ ⌈
max (𝑁𝑠𝑖𝑚,𝑁𝑜𝑏𝑠)

10
⌉, where ⌈∎⌉ denotes the upper integer of 

the investigating values; 

3) Count the joint probability mass for each bin 𝑝∎(𝑏𝑖1,𝑖2,…,𝑖𝑚
). Note that the total number of bins in the joint-PMF space 

is 𝑁𝑏𝑖𝑛 = 𝑛𝑏𝑖𝑛
𝑚. 

The principle of the 𝑛𝑏𝑖𝑛 in Step 2) is that a smaller 𝑛𝑏𝑖𝑛 leads to a smaller value of the Bhattacharyya distance. In the 

extreme case when 𝑛𝑏𝑖𝑛 = 1, Eq. (5) would always return the value 𝑑𝐵(𝐗𝑜𝑏𝑠, 𝐗𝑠𝑖𝑚) = 0 for arbitrary 𝐗𝑜𝑏𝑠 and 𝐗𝑠𝑖𝑚. This 

principle requires that 𝑁𝑠𝑖𝑚 or 𝑁𝑜𝑏𝑠 should be at least larger than 10, however, this is a practical requirement for 𝑁𝑠𝑖𝑚 in 

most applications.  

Regarding the 𝑁𝑜𝑏𝑠, it is a common obstacle for any stochastic updating approach that the number of observations can 

be quite limited. To overcome this issue, Ref. [11] proposes is a random sampling method to obtain the so-called semi-
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experimental sample. Suppose an observation sample with quite reduced size is available in practical applications, the first 

step of this random sampling method is to estimate the mean and variance of this small sample. The second step is to 

assume a suitable distribution of the observation population. Based on the Law of Large Number and general engineering 

experience, the most classical assumption could be the Gaussian distribution. Some other distribution types can also be 

proposed according to the property of the application. As long as the mean, variance, and distribution type are determined, 

the random sampling can be performed to generate a large sample, which still involves the distributional property of the 

original small observation sample, and also with sufficient data points in this semi-experimental sample. 

The Bhattacharyya distance is applicable to any sample set regardless of its distribution function. This makes it 

especially appropriate for stochastic model updating where the distributions of the features cannot be exactly determined. 

Another advantage of the metric is that it provides a scalar measurement for all the features simultaneously, which fulfill 

the expectation as an elaborate, quantifiable, and uniform measurement of multiple uncertain features. However, the 

Bhattacharyya distance’s quantification of the distance in terms of the means or center of mass of the sets is not as direct 

as with the Euclidian distance. As a matter of fact, as long as two sample sets have no overlap, the Bhattacharyya distance 

return a value that is infinite, and is therefore insensitive to the relative position of the center of mass of these two samples. 

This drawback of the Bhattacharyya distance will be further discussed in Sec. 3.  

2.2 Bayesian Model Updating 

The stochastic nature of the Bhattacharyya distance makes it difficult to be implemented by the deterministic updating 

tools, e.g. the derivative-based optimizations [11]. Therefore, the well-known Bayesian updating framework along with 

the ABC method is proposed, employing the Bhattacharyya distance as an updating metric. The foundation of Bayesian 

updating is  

𝑃(𝛉|𝐗𝒐𝒃𝒔) =
𝑃𝐿(𝐗𝑜𝑏𝑠|𝛉)𝑃(𝛉)

𝑃(𝐗𝑜𝑏𝑠)
                                                                             (6) 

with the key elements in Bayes’ theorem: 

 𝑃(𝛉) is the prior distribution representing the initial knowledge about the parameters 𝛉; 

 𝑃(𝛉|𝐗𝑜𝑏𝑠) is the posterior distribution representing the updated knowledge based on the observation data; 

 𝑃(𝐗𝑜𝑏𝑠) is the normalization factor ensuring the posterior distribution integrates to 1; 

 𝑃𝐿(𝐗𝑜𝑏𝑠|𝛉) is the likelihood function of 𝐗𝑜𝑏𝑠 for an instance of the parameters 𝛉. 

One challenging component of the Bayesian updating framework is the normalization factor 𝑃(𝐗𝑜𝑏𝑠), also known as 

evidence, as the direct integration of the posterior PDF over the whole parameter space is quite difficult or even 

intractable for very peaked or multi-modal distributions [20]. As a well-known simulation algorithm, the Transitional 

Markov Chain Monte Carlo (TMCMC) [12] along with the Metropolis-Hasting algorithm [21] are employed as an 

effective updating tool. This algorithm is essentially an iterative approach sampling from a series of intermediary PDFs 

which progressively converge to the posterior distribution. The jth intermediary PDF is expressed as  
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 𝑃𝑗 ∝ 𝑃𝐿(𝐗𝑜𝑏𝑠|𝛉)𝛽𝑗𝑃(𝛉) (7) 

where the exponent of the likelihood 𝛽𝑗 is the so-called reduction coefficient. Its value starts from 𝛽0 = 0 in the first 

iteration and progressively increases until reaches 𝛽𝑚 = 1 in the last step. 𝛽𝑗 is adaptively computed from the samples of 

the previous step. Markov chains with the Metropolis-Hasting algorithm propagates new samples starting from these with 

higher intermediary likelihood values, allowing for sampling from very complex posterior distributions. The readers are 

referred to Refs. [12,22] for details of TMCMC algorithm, and more applications of this algorithm can be found in fields 

from stochastic model updating [16,23] to structural health monitoring [24].  

3 Approximate Bayesian Computation with Stochastic Distance Metrics  

The likelihood is the key component in a Bayesian updating framework, since it quantifies the degree of relevance of a 

model with a given instance of parameters, by representing the possibility of the observations. Under the assumption of 

independence between observations, the likelihood in Eq. (6) is theoretically defined as  

 𝑃𝐿(𝐗𝑜𝑏𝑠|𝛉) = ∏ 𝑃(x𝑘|𝛉)𝑁𝑜𝑏𝑠
𝑘=1  (8) 

where 𝑃(x𝑘|𝛉) is the probability density value at xk, for a given instance of the parameters 𝛉. Note that, the PDF should 

be estimated respectively for every 𝛉 instance. However, the total number of 𝛉 instances is generally large throughout a 

complete Bayesian updating procedure, see e.g. Refs. [14,16]. In addition, even in a single PDF estimation, the classical 

method such as KDE requires also a large number of simulated features. Consequently, an analytical formula of the 

likelihood as in Eq. (8) demands a huge number of model evaluations, and for complex simulators with high-dimensional 

parameter/feature, it can be almost impossible to evaluate. 

The Approximate Bayesian Computation (ABC) method [25,26] is utilized to overcome the above obstacle by 

replacing the full likelihood with an approximate and efficient function containing the information of the observations and 

the instance of 𝛉. In this context, it is natural to construct the approximate likelihood employing the distance metrics. 

Various functional formulas have been investigated in the literature for the ABC method, such as the Gaussian [24], sharp 

[16], and Epanechnikov [27] functions. Nevertheless, the basic principle of distance-based ABC development is that the 

proposed likelihood formulae should return a high value when the distance metric is small, while the formulae penalizes 

the 𝛉 instance when its corresponding distance metric is large. In this work, the approximate likelihood based on the 

Gaussian function and is proposed as  

𝑃𝐿(𝐗𝑜𝑏𝑠|𝛉) ∝ 𝑒𝑥𝑝 {−
𝑑2

𝜀2}                                                                                      (9) 

where d is the distance metric; 𝜀  is the so-called width factor, which is a pre-defined coefficient controlling the 

centralization degree of the posterior distribution of the parameter. Based on a series of tests in various applications, 𝜀 is 

determined to lie in the interval [10−3, 10−1] [14]. A smaller 𝜀 corresponds to a more peaked posterior distribution which 

is more likely to converge to the true value but requires more calculation for convergence. When 𝜀 is much smaller than 
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the identified lower bound, integration and sampling from such very peaked posterior distribution would be very 

computationally expensive, or even intractable.  

The distance-based ABC likelihood proposed in Eq. (9) serves as a convenient connection between the novel distance 

metrics and the Bayesian updating procedure with significantly reduced calculation cost, while the updating precision is 

not negatively affected as it will be demonstrated in the example sections. More importantly, the distance-based ABC 

formula provides a uniform framework for either deterministic or stochastic updating, simply driven by the employed 

metric is Euclidian or Bhattacharyya distance. 

The overall two-step ABC updating framework is illustrated in Fig. 2. It is specially designed to cope with the 

drawback of the Bhattacharyya distance as mentioned in Sec. 2.1. Before performing the ABC updating, the initial 

distance between 𝐗𝑜𝑏𝑠 and 𝐗𝑠𝑖𝑚 is assessed. If the initial 𝐗𝑠𝑖𝑚 is too far from 𝐗𝑜𝑏𝑠, the Bhattacharyya distance evaluated 

in Eq. (4) will be infinite, and thus cannot be directly utilized for the distance-based likelihood. In this case, a preliminary 

step is employed to ensure the feasibility of the overall framework, i.e. to force an overlap between 𝐗𝑜𝑏𝑠 and 𝐗𝑠𝑖𝑚. Step I 

is equivalent to a deterministic updating procedure with the target to update only the mean of the parameter, while the 

comprehensive uncertainty characteristics of the parameter are further updated in Step II via the stochastic updating with 

Bhattacharyya distance-based likelihood. 

 

Fig. 2: Schematic of the two-step ABC updating procedure 
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4 Principle and illustrative application of the ABC updating procedure 

4.1 Problem description 

The two-step strategy of the proposed ABC updating with both the Euclidian and Bhattacharyya distances as metrics is 

demonstrated on a three Degree of Freedom (DOF) spring-mass system shown in Fig. 3. This numerical system has been 

utilized in Ref. [3,4,28] for various model updating approaches, however, its parameters and uncertainty characteristics 

are here altered to demonstrate the capabilities of the proposed approach. The stiffness coefficients k1, k2 and k3 are the 

uncertain parameters to be investigated, while the remaining parameters (i.e. k4 to k6 and the three masses m1 to m3) are 

fixed constants: k4-6=5.0N/m, m1=0.7kg, m2=0.5kg, and m3=0.3kg. The three natural frequencies f1, f2 and f3 are taken as 

the investigating outputs whose uncertainty are driven by the uncertain parameters k1-k3. Both aleatoric and epistemic 

uncertainties are involved in this system and are included by modeling k1-k3 as independent Gaussian random variables, 

where the mean and standard deviation are not fixed but unknowns lying within given intervals. According to the 

parameter categorization in Sec. 1, k4-k6 and m1-m3 belong to Category I while k1-k3 are Category III parameters. The 

intervals of the means µ and standard deviations 𝜎 associated to k1-k3 are detailed in Table 1. 

 The target of the updating procedure 𝐗𝑜𝑏𝑠 is a set of features of the frequencies f1-f3 obtained by assigning target 

values to the parameter means and variances, as shown in Table 1. The size of the observation sample is 𝑁𝑜𝑏𝑠 = 100, 

generated by evaluating the model 100 times with parameters sampled from their assigned Gaussian distributions with the 

target means and variances.  

 

Fig. 3: The three degree-of-freedom spring mass system 

Table 1: Parameters and epistemic inputs of the uncertain mass-spring system 

Category Parameter Uncertainty characteristic 
Target value of 

epistemic input 

III 

k1 Gaussian, 𝜇1 ∈ [3.0, 7.0], 𝜎1 ∈ [0.0, 0.5] 𝜇1 = 4.0, 𝜎1 = 0.3 

k2 Gaussian, 𝜇2 ∈ [3.0, 7.0], 𝜎2 ∈ [0.0, 0.5] 𝜇2 = 5.0, 𝜎2 = 0.1 

k3 Gaussian, 𝜇3 ∈ [3.0, 7.0], 𝜎3 ∈ [0.0, 0.5] 𝜇3 = 6.0, 𝜎3 = 0.2 

I k4-k6, m1-m3 Deterministic, no updating required -- 

In additional to the target values in Table 1, a single set of initial values is set to be a possible realization of means and 

standard deviations different from the target values (but also within the prior intervals), in order to show how the 
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imprecise model can produce outputs far from the observation sample. The initial values are presented herein only for 

demonstration purpose as illustrated in Figs. 4 and 6. The Bayesian updating is not really started from the initial values, 

but from the prior distributions of the epistemic inputs, as shown in the 3rd column of Table 1. The corresponding initial 

and observation output samples of f1 and f2 are illustrated in Fig. 4. In the following figures, an estimated ellipse is 

provided for each scatter to assist the comparison of the distributional properties among the samples. This ellipse is 

obtained as a contour of a fitted distribution based on the scatter, using the Gaussian Mixture Modelling (GMM) 

algorithm [29]. In the following context, the height level of this contour is defined as 0.05 times of the maximal value of 

the fitted PDF. Here the height level ratio (0.05) falls within the interval [0, 1]. Clearly, a larger ratio (i.e. 0.1) leads to a 

smaller contour of the PDF. The determination of this ratio is flexible for different applications, as long as a clear 

differentiation among the samples is achieved. A similar usage of the ellipse and scatter can be found in Refs. [4,28]. 

As shown in Fig. 4, the objective of model updating herein is clearly no longer a single updated point with maximum 

fidelity to a single observation point, but the updated means and standard deviations of the parameter distributions which 

can represent an output sample as similar as the observational one. To achieve this objective, both the Euclidian and 

Bhattacharyya distances are employed as metrics in the ABC updating procedure. 

 

Fig. 4: The observation sample and initial sample in the plane of the 1st and 2nd frequencies 

4.2 Step I: Updating with the Euclidian Distance Metric 

There are six epistemic inputs in the updating procedure, i.e.  {𝜇𝑖 , 𝜎𝑖}, 𝑖 = 1, … , 3, whose prior distributions are set to 

be uniform based on the intervals in Table 1. When the Euclidian distance is taken as the metric, the geometric distance 

between the centre of mass of the samples is measured, while the dispersion and distribution information of the samples 

cannot be considered. Hence the results of Step I conform the expection in Sec. 3 that only the parameter means is 
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updated. As shown in Fig. 5, the posterior distributions of 𝜇1-𝜇3  accurately converge to the target values, while the 

posterior distributions of 𝜎1-𝜎3 does not exhibt distinct changes compared with their prior uniform distributions.  

   

Fig. 5: The posterior distributions of the six inputs after updating with Euclidian distance 

Table 2: Updated inputs using both Euclidian and Bhattacharyya distances as metrics 

Input Target value 
Updated value 

with Euclidian metric with Bhattacharyya metric 

𝜇1 4.0 4.0314 4.0386 

𝜇2 5.0 5.0124 5.0102 

𝜇3 6.0 6.0262 6.0253 

𝜎1 0.3 -- 0.3067 

𝜎2 0.1 -- 0.0937 

𝜎3 0.2 -- 0.1773 

 

Table 2 presents the updated values of 𝜇1-𝜇3 which are obtained by estimating the means of the posterior distributions. 

As the distributions of 𝜎1-𝜎3 are not clearly changed, the first updating step with the Euclidian distance metric is proved to 

be incapable of updating the variance. In this section, the width coeeficient in ABC is set as 𝜀 = 0.01, and totally eight 

TMCMC iterations are executed to reach convergence. The initial, second (i.e. Sample iter.#2), and final (i.e. Sample 

iter.#8) samples are presented in Fig. 6. As explained in Sec. 4.1, the initial sample is generated based on a single set of 

initial value of the epistemic inputs to show how the imprecise model can produce outputs far from the observation 

sample. However, the intermediate samples (e.g. Sample iter#2) are no longer randomly generated, but obtained from a 

certain set of epistemic inputs, which are estimated as the mathematical expectations of the intermediate-posterior 

distributions after each iteration.   
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Fig. 6: The updated samples with Euclidian distance 

As shown in Fig. 6, the effect of this updating step is to progressively shift the initial sample toward the observation 

sample. The centre point of the final sample coincides well with the centre of mass of the observations, thus the Euclidian 

distance metric has been minimized, corresponding to the maximization of the likelihood. Notice, however, as the 

parameter variances remain unchanged, the orientation and dispersion of Sample iter.#8 remain different from the 

observations and unchanged from the initial samples. Therefore, a more comprehensive metric is required in the second 

updating step to further reduced the discrepancy between Sample iter.#8 and the observation sample. 

4.3 Step II: Updating with the Bhattacharyya Distance Metric 

This section presents the second updating step where the Bhattacharyya distance is employed. The posterior 

distributions obtained in the first step are taken as prior distributions in this step. After 11 TMCMC iterations, the finally 

updated posterior distributions of the six inputs are obtained, as illustrated in Fig. 7. The mean values of these 

distributions are listed in the last column of Table 2. Considering the means 𝜇1 -𝜇3 , the updated values with the 

Bhattacharyya distance metric are similar to the values with the Euclidian metric. However, the posterior distributions of 

𝜇1-𝜇3 in Fig. 7 are much more peaked than the ones in Fig. 5. This is caused by the treatment to introduce the outcome of 

the first step as the input of the second step, such that the distributions of 𝜇1-𝜇3 are further updated to be more centralized 

to the target values. 

More attention is paid to the results of 𝜎1 -𝜎3 , whose posterior distributions in Fig. 7 are significantly updated 

compared with their prior uniform distributions. The estimated means of these posterior distributions are also listed in 

Table 2, and it is shown that the updated values are quite close to the target. A representation of the updating process of 

the standard deviations is illustrated in Fig. 8. Sample iter.#0 is the starting sample in this step, identical to the last sample 

of the updating with the Euclidian distance (compare to Fig. 6). While the center of mass of the samples in iter.#0 and the 
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observation sample were already coincident with each other, their orientations and dispersions remain different. In the 

following iterations, the intermediary sample, e.g. sample iter.#2, is rotated toward to the orientation of the observations, 

and the dispersion is also reduced progressively. After the iterative updating process, the final sample shows a distribution 

identical to the target sample, implying the Bhattacharyya distance metric has successfully captured the dispersion 

information of the observations and the model predictions. 

 

Fig. 7: The posterior distributions of the six inputs after updating with Bhattacharyya distance 

 

Fig. 8: The updated samples with Bhattacharyya distance 
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4.4 Summary 

This example presented the combined application of the Euclidian and Bhattacharyya distances as updating metrics in 

a two-step ABC updating procedure. These two steps have the uniform framework and the only difference between them 

is the approximate likelihood constructed using the Euclidian or Bhattacharyya distance. The Bhattacharyya distance is 

demonstrated to be a more comprehensive UQ metric with the capability to recreate wholly the distribution of the target 

observations. However, a significant drawback of the Bhattacharyya distance is revealed in situations, e.g. in Fig. 4, where 

the initial sample is completely apart from the observation sample; that is to say, when the PDFs of these two samples 

have no superposition. In this situation, the value of the Bhattacharyya distance is always infinite regardless the varying 

discrepancies between these two samples. 

Consequently, the two-step procedure is designed to overcome this drawback of the Bhattacharyya distance by 

employing the Euclidian distance in the first step to shift the initial sample toward the observation sample, and then to 

capture the actual distribution of the outputs in the second step. As a consequence, it is a good practice that a deterministic 

updating is used as a precondition of any stochastic updating. In other words, the classical Euclidian distance metric using 

the prediction and observation means should be kept as the backbone in any stochastic updating procedure.  

5 The NASA UQ challenge problem 

5.1 Problem Description 

In this section, the NASA UQ challenge problem is investigated to demonstrate the capabilities of the Bhattacharyya 

distance metric in model updating for complex applications. The schematic in Fig. 9 illustrates the general structure of 

Subproblem A out of the overall problem including the model parameters, output, and the proposed UQ metrics. 

 

Fig. 9: Schematic of the NASA UQ challenge Subproblem A  

As shown in Fig. 9, the system model is provided in a black-box, which evaluates a scalar output x using five 

parameters: p1-p5. According to the parameter categorization in Sec. 1, Table 3 presents the detailed uncertainty 

characterization of the parameters. p1, p4, and p5 are Category III parameters with both aleatoric and epistemic 
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uncertainties, p2 belongs to Category II with only epistemic uncertainty and p3 is assumed to obey a fully prescribed 

uniform distribution with explicit mean and variance. During model updating, only p1, p2, p4, and p5 are considered and p3 

is omitted as it involves only aleatoric uncertainties, which are irreducible. The updating inputs relative to epistemic 

uncertainty of the parameters are listed in the last column of Table 3. In the following context, the “inputs” specifically 

refer to the epistemic uncertainty characteristics 𝜃1-𝜃8, while the “parameters” denote the variables p1-p5 used by the 

black-box model to evaluate the output x.  

There are two observation sets of the output x, both containing 25 values respectively. Both samples are corresponding 

to a set of prescribed (but unknown in the original introduction of the problem) values of 𝜃1-𝜃8. Three published works 

[14–16] on the NASA UQ challenge problem are referred here for a comparison to assess the feasibility and potential 

superiority of the Bhattacharyya distance metric in association with the ABC updating framework. Note that, in the 

original NASA UQ challenge problem, there were different tasks in Subproblem A, where the first 25 observations (x1) 

are supposed to be used for model updating in Task 1, and the remaining (x2) for model validation in Task 2. And in Task 

3, all the 50 observations are used for model updating to improve the result. However, in this work, the first two tasks are 

skipped and only Task 3 is addressed, since the comparison of the results using 25 or 50 observations is not the focus 

herein. Instead, we pay more attention on the difference performances of the Euclidian and Bhattacharyya distance-based 

metrics, which is fully compared in the following section.   

Table 3: The uncertain parameters of Subproblem A in the NASA UQ challenge problem 

Category Parameter Uncertainty characteristics Epistemic input 

III 

p1 
Unimodal Beta, 𝜇1 ∈ [0.6, 0.8] 

                           𝜎1
2 ∈ [0.02, 0.04] 

𝜃1 = 𝜇1, 𝜃5 = 𝜎1
2 

p4, p5 
Gaussian, 𝜇𝑖 ∈ [−5.0, 5.0], 𝜎𝑖

2 ∈ [0.0025, 4.0],  

                 𝜌 ∈ [−1.0, 1.0], i = 4, 5 

𝜃3 = 𝜇4, 𝜃4 = 𝜇5, 

𝜃6 = 𝜎4
2, 𝜃7 = 𝜎5

2, 𝜃8 = 𝜌 

II p2 Constant, 𝑝2 ∈ [0.0, 1.0] 𝜃2 = 𝑝2 

I p3 Uniform, 𝜇3 = 0.5, 𝜎3
2 = 1/12 -- 

5.2 Results Assessment 

The two-step ABC updating procedure is executed to successively employ Euclidian and Bhattacharyya distances as 

the metrics. As a matter of fact, the initial sample of simulated output, based on the given initial input intervals, has 

enough overlap with the observation sample. Hence the Step I in Fig. 2 is not necessary for this problem. Nevertheless, 

these two steps are still completely executed in this example to demonstrate how the Euclidian distance alone, i.e. a mean-

value only updating, is not enough. The detailed results of these two steps are compared in Sec. 5.2.1, so that the 

Bhattacharyya distance’s advantage upon the Euclidian distance is further revealed. The final result after the second step 

is also compared with the published results to assess the feasibility and potential improvements. A more comprehensive 
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assessment of the outcome is performed in Sec. 5.2.2 employing the now available true values of the inputs and p-boxes 

of the updated output. 

5.2.1 Comparison with the published results  

Fig. 10 illustrated a detailed comparison between the posterior histograms with the Euclidian and Bhattacharyya 

distance metrics. The samples and estimated PDFs with the Euclidian distance metric are denominated with the suffix 

“_ED”, while the ones with the Bhattacharyya distance metric are denominated with the suffix “_BD”.  

 

 
Fig. 10: Posterior distributions with the Euclidian and Bhattacharyya distances, PDFs are estimated via KDE 
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Considering the results with the Euclidian distance metric, only the posterior distributions of 𝜃1 and 𝜃4 are obviously 

updated. The distributions of the other inputs, especially the last four concerning the variances and correlation, remain 

approximately uniform and unchanged. As already proved in the previous example, only the input directly involved in the 

determination of the center of the mass of the samples, namely 𝜃1 and 𝜃4 herein, can be updated with the Euclidian 

distance metric. Similar histograms or PDFs, especially for the variances and correlation, are obtained in the works of 

Patelli et al. [14] and Ghanem et al. [15], implying the variance information is difficult to be updated by the classical 

Bayesian approaches with classic distance metrics. 

As done previously, the posterior distributions of the first step are employed as prior distributions for the second step 

involving the Bhattacharyya distance. Fig. 10 clearly illustrates the further updated histograms and PDFs after the second 

step, showing clear improvements from the results of the first step, not only for the variances (i.e. 𝜃5 and 𝜃7) but also for 

the means/constant (i.e. 𝜃2, 𝜃3, and 𝜃4). Especially for 𝜃4, the very discrepant PDF_ED and PDF_BD demonstrate that the 

Bhattacharyya distance metric is capable of calibrating (or correcting) the mean distributions when the results with the 

Euclidian distance metric are inappropriate. This phenomenon is different from the results in the 3-DOF example where 

the means and variances appear to be independent as they are successively updated in the first and second steps with the 

Euclidian and Bhattacharyya distance metrics, respectively. This difference is caused by the special distribution of the 

observation sample in this problem. The observation sample in the 3-DOF example is unimodal, while in the NASA 

challenge problem it is bimodal (refer to Fig. 9). The bimodal distribution results in interdependence between the mean 

and variance when evaluating the Bhattacharyya distance, which is one of the challenging features of this problem. 

The final results with the Bhattacharyya distance metric are very similar to what was obtained by Safta et al. [16] 

except for 𝜃4 (i.e. the mean of 𝑝5). For this input, the posterior distribution in Ref. [16] extremely converges to the lower 

bound, while the result herein is bimodal with one mode close to the lower bound and a second, more predominant, mode 

near the center of the interval. A potential explanation of this discrepancy is that the NASA UQ challenge problem 

contains multiple parameters with highly variating uncertainty characteristics, but end up with only one scalar output. This 

multi-input-single-output problem is more likely to produce non-unique solutions, as demonstrated by the fact that most of 

the published literature on this problem, e.g. Ref. [14–16], do not converge to a unique solution. Nevertheless, the 

proposed ABC approach with the Bhattacharyya distance metric demonstrates its ability on variance updating and 

capturing the complex non-linear relationship between inputs and outputs.  

With regards the comparison of the computational expenses of the employed method, more attention is paid to the 

work of Safta et al. [16] since it shows very similar and highly accurate results. Safta’s method employed the full 

likelihood in Eq. (8). In order to evaluate the PDF of the output x for each instance of 𝛉, a large number of simulated 

sample is required. As reported in Ref. [16], the simulation size for each PDF estimation is at least 𝑁𝑠𝑖𝑚 = 105, and 

totally 2 × 1011 model evaluations are executed in the complete updating process, leading to a huge computational burden 

in Safta’s method. Consequently, Ref. [16] also proposes an ABC treatment to replace the expensive full likelihood and 

use an approximate likelihood based on the Euclidian norm of selected sample statistics such as mean or/and quantiles. 
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However, in Safta’s ABC approach, the approximated likelihood’s ability of variance updating is not as obvious as the 

full likelihood (see figure 8 in Ref. [16]). 

Comparatively, the ABC approach in this paper has a simple principle, employing only one distance metric in the 

Bayesian approach, but using the Bhattacharyya distance instead of the Euclidian distance in the ABC likelihood. 

Moreover, the evaluation of the Bhattacharyya distance in this example utilizes a sample with 𝑁𝑠𝑖𝑚 = 103. The overall 

procedure takes in total 1.3 × 107 model evaluations the TMCMC algorithm is converged. Hence the calculation amount 

has been significantly reduced compared with Safta’s method by a factor 104  while achieving similar updating 

performances. 

 

5.2.2 True values of the inputs and p-boxes of the output 

 In this paper, the updated values of 𝜃1-𝜃8 are obtained from their posterior distributions, and their correctness is 

assessed according to the recently released true values† as shown in Table 4. The posterior histograms are converted to 

distributions with KDE and are normalized so that their maximums are equal to one, as shown in Fig. 11. With this 

procedure, the posterior distributions are interpreted as Fuzzy sets [8], so that different levels of confidence will result to 

interval values of increased width. The “crisp” updated values of 𝜃1-𝜃8 are determined as the values corresponding to the 

maximum of the PDFs, i.e., the value corresponding to an alpha-level of 1. Therefore, these updated values are 

denominated as maximal probability (max-p) values in Table 4, together with the relative errors with respects to the true 

values. The max-p values of 𝜃2 and 𝜃4 are omitted in Table 4, since their posterior distributions remain approximately 

uniform as shown in Fig. 11, mainly because the output is insensitive to 𝜃2 and 𝜃4, which has been addressed by the 

previously published works [14–16] in other sub-tasks of the NASA UQ challenge problem [2]. 

A more comprehensive assessment of the result is performed by estimating the p-boxes of the output. The initial 

intervals of 𝜃1-𝜃8 result in a large p-box of the output, representing a large epistemic uncertainty space. The objective of 

model updating in this problem is to reduce the epistemic intervals of the inputs, so that the p-box of the output is 

accordingly reduced. In the ideal case, when the true input values are achieved from a perfect updating process, the 

resulting p-box would be reduced to a precise CDF curve, which should perfectly coincide with the observation CDF of 

the output. Based on the above motivation, three alpha-levels (namely 0.5, 0.75, and 0.9) are set for the normlized PDFs in 

as shown in Fig. 11. Table 4 presents the 0.9-level intervals (i.e., the higher confidence level), which are significantly 

reduced compared with the initial intervals.  

 

                                                      

† Data available online at https://uqtools.larc.nasa.gov/nda-uq-challenge-problem-2014 [retrieved 2017] 
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Fig. 11: Three truncation levels of the normalized posterior PDFs of 𝜃1-𝜃8 

 

Table 4: The updated results of the epistemic inputs with Bhattacharyya metric 

Input Initial interval True value Max-p valuesa 
0.9-level 

intervals 

𝜃1: 𝜇1 [0.6, 0.8] 0.6364 0.6901 (8.438) [0.6783, 0.7097] 

𝜃2: 𝑝2 [0, 1] 1 0.9666(-3.34) [0.9399, 0.9902] 

𝜃3: 𝜇4 [-5, 5] 4 4.1734 (4.335) [3.4493, 4.5812] 

𝜃4: 𝜇5 [-5, 5] -1.5 -1.2316(17.9) [-1.5306, -0.9106] 

𝜃5: 𝜎1
2 [0.02, 0.04] 0.0356 0.0394 (10.67) [0.0387, 0.0397] 

𝜃6: 𝜎4
2 [0.0025, 4] 0.04 -- [0.4190, 2.7209] 

𝜃7: 𝜎5
2 [0.0025, 4] 0.36 0.4258 (18.72) [0.2157, 0.6914] 

𝜃8:  𝜌 [-1, 1] 0.5 -- [-0.4370, 0.7008] 

                                     aPercent errors in the parentheses, with the absolute mean error as 10.57%. 

The resulting p-boxes with the three alpha-levels are illustrated in Fig. 12. The p-box_ori represents the original 

epistemic uncertainty space, and it is significantly reduced by the Bayesian updating approach as compared with the 

updated p-boxes with different alpha-levels. An integrative comparison of Figs. 11 and 12 shows that the higher the alpha-

level, the smaller the input epistemic interval, and furthermore, the narrower the resulting p-box of the output. Even so, 
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the narrowest p-box with 0.9-level can still envelop the observational CDF. This outcome clearly demonstrates feasibility 

of the Bhattacharyya distance metric in stochastic model updating and uncertainty characterization.  

 
Fig. 12: Updated p-boxes with different alpha-levels compared with the smoothed CDF of the 50 observation 

5.3 Summary 

Discrepant results in the current literature clearly demonstrate the complexity and non-unique nature of the NASA UQ 

problem, which presents a more challenging task than the 3-DOF example in Sec. 4. The challenging nature of the NASA 

UQ problem is addressed by the following aspects: 

1) The parameters involve multiple uncertainty models such as undetermined constants, undetermined variables with 

various distribution types; 

2) The five-parameter-one-output problem (and the complicated functional relationship thereof) is more likely to 

produce non-unique solutions; 

3) The bimodal distribution of the output leads to interdependence between the parameter means and variances; 

4) The parameters have extremely different sensitivities, which can disturb the updating procedure.  

Despite the above difficulties, the Bhattacharyya distance is proved to be a powerful UQ metric in the ABC updating 

approach. The selected published works and the recently released true values of the NASA UQ challenge problem provide 

a reliable assessment of the results, from which the summaries are concluded as follows. 

I) The Euclidian distance metric fails to solve this challenging problem, while the Bhattacharyya distance metric provides 

satisfied result for both mean and variance updating; 

II) The ABC updating framework with the Bhattacharyya distance metric provides similar (or better) results compared 

with the published approach employing the full likelihood, and the calculation cost is significantly reduced;  
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III) To exactly represent the true input values is an arduous (even unnecessary) task. However, the assessment of output p-

boxes presents desirable outcome which fulfills the objective, i.e. to minimize the epistemic uncertainty space 

according to the available observation data.   

6 Conclusions and perspectives 

The Bhattacharyya distance is demonstrated to be a powerful UQ metric as a key ingredient of the proposed two-step 

ABC model updating framework. The comparison with the published works on NASA UQ challenge problem 

demonstrates the feasibility of the novel UQ metric for stochastic updating and uncertainty characterization. The 

approximate likelihood function built upon the concept of the distance acts as a convenient connection between the 

stochastic Bayesian updating framework and various distance-based metrics. The Bhattacharyya distance metric, designed 

as a universal tool, can simply replace the Euclidian distance metric in the stochastic Bayesian updating framework, as a 

stochastic counterpart to the deterministic concept. 

Despite the advantage on uncertainty characterization, the Bhattacharyya distance metric is not appropriate to be used 

in an exclusive manner as revealed in the 3-DOF example. It needs to be complemented by the Euclidian distance metric 

in a two-step approach in order to achieve high-quality results. That is to say, the classically Euclidian distance together 

with observational means should be the primary consideration even in stochastic updating processes.  

One of the perspectives of the Bhattacharyya distance as a UQ metric is to perform the stochastic sensitivity analysis, 

by quantifying and ranking the importance of input parameters, according to the uncertainty properties of the system 

outputs. This issue requires a comprehensive UQ metric to how much the uncertainty space of the outputs can be reduced, 

when the epistemic uncertainty space of the parameters is reduced. Another challenging perspective focuses on the 

imprecision of the experimental data. The Bhattacharyya distance in this work is based on histograms of the data samples 

with fixed bins. However, imprecision on data would need to be captured by the histogram with unfixed bins, and the 

counting numbers in each bin would also be changeable. This situation requires the Bhattacharyya distance to provide an 

interval-valued quantity, but no long a fixed value as utilized in this current work. This extension of the Bhattacharyya 

distance to cope with imprecision on data will be addressed in the future work.  
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