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Abstract

We conduct an empirical investigation into the economic implications of aggregate liquidity
shocks, through the lens of monetary aggregates, in harmony with conventional monetary
policy shocks in an estimated time-varying parameter VAR model. Our results suggest that
the transmission of aggregate liquidity shocks changes substantially throughout time with
the magnitude of these shocks increasing during recessions. We provide statistically sig-
nificant evidence in favour of asymmetric contributions of these shocks to macroeconomic
fluctuations during the implementation of Quantitative Easing relative to the Great Reces-
sion. During this period, aggregate liquidity shocks explain, on average, 32% and 47% of
the variance in real GDP and inflation at business cycle frequency, respectively.
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1 Introduction

The importance of liquidity for the real economy, and the different transmission channels, has
received considerable attention within the literature and more so over the last decade when
standard macroeconomic models faced considerable criticism for their inability to understand
or even predict events related to financial crises (McKibbin and Stoeckel, 2018). But as former
Economic Counsellor and Director of Research at the International Monetary Fund Olivier
Blanchard notes, “no model can be all things to all people” (Blanchard (2018), p.43). From
a theoretical perspective, Kiyotaki and Moore (2012) and Shi (2015) examine the impact of
liquidity shocks using DSGE models. Within these models, liquidity shocks are defined as a
sudden decline in the resaleability of assets. From an empirical perspective, Baumeister et al.
(2008) investigate the impact of “excess liquidity shocks” for the Euro area. In particular,
excess liquidity is captured through broad money, expressed as a deviation from an equilibrium
value, and show that these shocks have significant implications for the real economy; particularly
output and prices.

In light of the 2008 Recession, and the emergence of unconventional monetary policies such
as Quantitative Easing (QE), it is becoming increasingly important to understand how liquidity
affects the real economy. This issue is far from trivial as hinted, for instance, by Bank of England
Governor Mark Carney in his September 2016 Report to the Treasury Committee by noting
that “The Bank’s enquiries team has received and responded to almost 1000 letters to the Bank
about monetary policy from members of the public.”1 Specifically, unconventional monetary
policies involve the central bank buying assets in order to stimulate investment; ultimately
feeding through into output. As discussed in Joyce et al. (2012), increases in liquidity follow
from a ‘portfolio balancing channel’ that relies on the assumption of imperfect substitutability
among assets in the economy. On an aggregate scale, the sale of long-term government bonds to
the central bank (i.e. the Bank of England) causes an increase investor cash holdings, as well as
a rise in the amount of notes and circulation. Thus, one would expect an injection of liquidity
into the economy to yield surging growth rates of monetary aggregates. Recent studies such
as Gambacorta et al. (2014) and Weale and Wieladek (2016) have modelled unconventional
monetary policies using data starting post-2008. However, there seems to be little focus on
the role of liquidity and money growth which would permit researchers to appraise liquidity
throughout time with some historical context.

The main contribution of our paper is to explore the economic impact of aggregate liquidity
shocks through the lens of monetary aggregates in a structural vector autoregressive (VAR)
model. We identify an aggregate liquidity shock in conjunction with a monetary policy shock,
in the spirit of Rubio-Ramirez et al. (2010) and Baumeister and Peersman (2013a), using a com-
bination of contemporaneous sign restrictions and a single zero restriction in a fully generalised
framework (Koop et al., 1996). We apply our identification strategy in a structural Bayesian
time-varying parameter VAR and investigate the impact of aggregate liquidity shocks for the
UK economy from 1955 to 2016.

We summarise our results into three main points: first, we document considerable time-
1Available from https://www.bankofengland.co.uk/-/media/boe/files/about/people/mark-carney/

mark-carney-annual-report-2016.pdf?la=en&hash=5FC922C67810E874F196765A0F22273C08A88976
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variation in the transmission of aggregate liquidity shocks for real GDP growth, inflation, and
the interest rate. Both real GDP growth and inflation become more sensitive to these shocks
during recessionary periods. Second, aggregate liquidity shocks are economically significant
and vary considerably over our sample; particularly for inflation. Third, we report substan-
tial differences in the contribution of identified aggregate liquidity shocks to the variance of
macroeconomic fundamentals over different frequencies. Following the impact of the Great Re-
cession, aggregate liquidity shocks contribute 32% and 47% toward the variance of real GDP
and inflation at business cycle frequency, respectively.

Our paper is related to various streams of literature. First, we contribute to the empirical
analysis of liquidity shocks. Ellington et al. (2017) and Ellington (2018) provide substantial
evidence in favour of a time-varying response of GDP growth to liquidity shocks stemming from
asset markets in the US and UK, respectively. On an aggregate scale using measures of money,
Baumeister et al. (2008) and Adalid and Detken (2007) examine the effects of liquidity shocks,
and the influence of these shocks on asset price boom and busts, respectively. The former
document considerable time-variation in the impact of excess liquidity shocks for the Euro
area using an array of different monetary measures. Structural shocks are identified adopting
the traditional Cholesky decomposition with money ordered last implying a lagged response of
macroeconomic variables. Our work builds on Baumeister et al. (2008), by imposing a set of
contemporaneous and zero restrictions on macroeconomic variables.

Second, structural identification of conventional monetary policy shocks using sign restric-
tions has received considerable attention in the literature following the seminal papers by Canova
and De Nicoló (2002) and Uhlig (2005). However, in response to the Great Recession, central
banks in the US, UK, Japan and Euro area pursued alternative unconventional expansionary
monetary policies. In particular, the authorities made continual attempts to inject liquidity
into the economy through the implementation of asset purchase facilities known as Quantita-
tive Easing (QE); see for example, the discussion of Martin and Milas (2012), and Cukierman
(2013). Combined with interest rates tending toward their respective zero lower bounds, these
expansionary monetary policies cannot be picked up in traditional monetary policy rules.

Studies such as Weale and Wieladek (2016) have made important contributions toward iden-
tifying unconventional monetary policy shocks in structural VAR models. Recent extensions
allowing simultaneously for sign and zero restrictions are Baumeister and Benati (2013) and
Gambacorta et al. (2014). These studies adopt this approach to identify unconventional mone-
tary policy shocks in a time-varying parameter VAR (TVP VAR) and a panel VAR, respectively.
Whilst our paper is not the first to implement this strategy, to the best of our knowledge, we are
the first to propose an aggregate liquidity shock in conjunction with a conventional monetary
policy shock using sign restrictions that are economically plausible.

Third, we contribute to the growing literature recognising that time-varying parameters,
covariances, and variances between macroeconomic fundamentals is essential to embed in econo-
metric models (see e.g. Primiceri (2005) and Cogley and Sargent (2005)). A byproduct of this
literature are an array of empirical studies, such as Canova and Gambetti (2009), Benati and
Mumtaz (2007), and Benati (2008), that estimate macro-econometric models to examine the
“good policy or good luck” hypothesis. In general, results are not conflicting; the decline in
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macroeconomic volatility following the Great Inflation was not a result of effective monetary
policies.

Our paper looks to bridge the gap between the former, studies examining the real effects
of unconventional monetary policies (see e.g. Kapetanios et al. (2012), Baumeister and Benati
(2013), Gambacorta et al. (2014), Meinusch and Tillmann (2016), and Weale and Wieladek
(2016)), and monetary policy at the zero lower bound (e.g. Wu and Xia (2016) and Belongia
and Ireland (2016)). We provide evidence that our aggregate liquidity shock indirectly captures
unconventional monetary policies whilst also holding historical economic importance. Therefore,
our study offers an alternative strategy to examine recent monetary policies in a flexible macro-
econometric model that can also account for conventional monetary policy shocks.2

This study has clear implications for policymakers. Our results demonstrate that aggregate
liquidity conditions should be monitored by policymakers. Although the propagation of these
shocks changes over time, the economic significance retains historical importance. Moreover,
our analysis supports the idea that without unconventional monetary policies, the recovery in
GDP from the 2008 recession would have been much more gradual. Thus, consistent with the
recommendations in Kapetanios et al. (2012) and Baumeister and Benati (2013), policymakers
were right to respond to the financial crisis with large scale asset purchase facilities.

The paper proceeds in the following manner: In Section 2, we discuss data, our econometric
specification, and structural identification. Sections 3 and 4 present our empirical results and
robustness analysis, respectively. Finally, Section 5 offers concluding comments.

2 Data, Econometric Specification and Structural Identification

2.1 Data

We use UK macroeconomic data from 1955Q1 to 2016Q4 on real GDP, consumer prices, the
Bank of England’s Policy rate of interest and we construct a break adjusted M4/M4ex series.3.
All variables enter our model as quarterly growth rates except for the economy’s interest rate.
We compute the quarterly interest rate in the following manner it = ((1+iAnnt ) 1

4−1)·100, where
iAnnt is the annual interest rate. To calibrate the initial conditions of the model, we use the first
20 years of data. Therefore the time period our estimated model covers is 1976Q1-2016Q4.4 Our
time-series is dictated by data availability, with our estimation sample containing 4 recessionary
periods, as well as the first three rounds of QE implemented by the Bank of England in response
to the 2008 recession. In Figure 1, we plot UK data, and within Appendix A Table A1 report

2Although conceptually conventional and unconventional monetary policies may not be orthogonal, we do not
explicitly identify an unconventional monetary policy shock.

3M4ex denotes M4 excluding other intermediate financial corporations. This is the Bank of England’s pre-
ferred measure of broad money; see http://www.bankofengland.co.uk/statistics/Pages/iadb/notesiadb/
m4_counterparts.aspx) However these data begin in 1997Q4. Therefore we construct a break-adjusted
M4/M4ex series following the methodology outlined in http://www.bankofengland.co.uk/research/Pages/
onebank/threecenturies.aspx.

4Within the TVP VAR literature, it is standard to use the first 10 years of data to calibrate the initial
conditions of the model (see e.g. Primiceri (2005), and Cogley and Sargent (2005). We have also estimated our
model calibrating the initial conditions using 10 years of data, all results we present in this paper are consistent
with these alternative estimates. We opt for a 20 year calibration period in order to capture UK macroeconomic
dynamics for a sufficient period following departure from the Bretton Woods system.

3
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the sources and codes of our variables.
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Figure 1: Macroeconomic Data from 1976Q1 to 2016Q4
Notes: This figure plots UK macroeconomic data from 1976Q1 to 2016Q4. The top left panel plots the
quarterly growth rate of real GDP, yt; in the top right panel we plot the quarterly growth in consumer
price inflation, πt; the bottom left and right panels plot break adjusted M4/M4ex quarterly growth, mt;
and the Bank of England Bank Rate, it, respectively. Green bars indicate UK recession dates and blue
bars indicate the three rounds of Quantitative Easing implemented by the Bank of England following
the Great Recession.

2.2 A Time–varying Parameter VAR with Stochastic Volatility

We work with the following TVP–VAR model with p lags and M endogenous variables

Yt = β0,t + β1,tYt−1 + · · ·+ βp,tYt−p + εt ≡ X
′
tθt + εt (1)

where Yt is defined as Yt ≡ [yt, πt, mt, it]
′ , with yt being quarterly real GDP growth, πt is

the quarterly rate of consumer price inflation, mt is the quarterly growth rate of the monetary
aggregate, and it is the short term interest rate respectively. X

′
t contains lagged values of Yt

and a constant. In our case, M = 4, and we set a lag length p = 2 which is consistent with
Primiceri (2005), Benati and Mumtaz (2007) and Benati (2008).5 As in Cogley and Sargent

5Note that the Schwarz Information Criterion (SIC) favours a lag length of 2 when estimating a conventional
VAR over the estimation sample. Note also that we have estimated the model using a lag length of 4 and obtain
similar results. The increased dimensionality of this specification increases computation time substantially. In
the Appendix, we provide a lag length selection exercise in a Bayesian framework using stochastic shrinkage.
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(2005), the VAR’s time-varying parameters collected in θt evolve as

p(θt|θt−1, Q) = I(θt)f(θt|θt−1, Q) (2)

where I(θt) is an indicator function that rejects unstable draws. Therefore, we impose a stability
constraint on the VAR where, conditional on the roots of the VAR polynomial lying outside the
unit circle, f(θt|θt−1, Q) follows a random walk

θt = θt−1 + νt (3)

where νt v N(0, Q). Q is a full matrix that allows parameter innovations to be correlated
across equations. If Q = 0, the model reduces to a constant parameter VAR model with a time-
varying covariance matrix. The innovations in (1) follow εt v N(0,Ωt). Ωt is the time–varying
covariance matrix which we factor as

V ar(εt) ≡ Ωt = A−1
t Ht(A−1

t )′ (4)

The structure of the time–varying matrices, Ht and At are

Ht ≡


h1,t 0 0 0
0 h2,t 0 0
0 0 h3,t 0
0 0 0 h4,t

 At ≡


1 0 0 0

α21,t 1 0 0
α31,t α32,t 1 0
α41,t α42,t α43,t 1

 (5)

in (5), hi,t evolves as a geometric random walk and αt ≡ [α21,t, α31,t, . . . , α43,t]′ follows a random
walk, respectively

ln hi,t = ln hi,t−1 + ηt (6)

αt = αt−1 + ζt (7)

The innovations in the model are jointly normal
ut

νt

ζt

ηt

 v N(0, V ), V =


IM 0 0 0
0 Q 0 0
0 0 S 0
0 0 0 W

 (8)

where ut is such that, εt ≡ A−1
t H

1
2
t ut. The matrices Q, S, W are all positive definite and we

follow Primiceri (2005) by imposing S as a block diagonal matrix

S ≡ V ar(ζt) =


S1 01×2 01×3

02×1 S2 02×3

03×1 02×3 S3

 (9)
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where S1 ≡ V ar(ζ21,t), S2 ≡ V ar([ζ31,t, ζ32,t]
′) and S3 ≡ V ar([ζ41,t, ζ42,t, ζ43,t]

′). This implies
that the non–zero and non–unit elements of At that belong to different rows evolve indepen-
dently. This is a simplifying assumption that allows us to estimate (the non–zero and non–unit
elements of) At equation by equation. Appendix B reports our choice of priors, an outline
of the Markov Chain Monte Carlo (MCMC) posterior simulation algorithm, and convergence
diagnostics.

2.3 Structural Identification

Table 1 summarises the impact of a positive, identified, structural shock to our macroeconomic
variables. We impose contemporaneous sign restrictions, on a period-by-period basis, to each
of our endogenous variables. We posit that an expansionary aggregate liquidity shock contem-
poraneously increases real GDP and money growth; inflation is unconstrained; and the interest
rate does not respond on impact. Note that since we only explicitly identify 2 shocks, which
may in fact impact the space spanned by our structural inference. However, we do not wish to
assume that the economy may only be hit by M=4 structural shocks. Our partially identified
structural model follows, Canova and Gambetti (2009) who characterise a model where there
are at least M+1 shocks. In our case, we do not wish to impose a full set of identifying restric-
tions since we omit variable(s) in this analysis, such as those accounting for the financial sector.
Therefore, those two shocks we leave unidentified are a (possibly nonlinear) combination of the
remaining structural shocks the economy is subject to.

Table 1: Identification Restrictions

Shock: Aggregate Liquidity, uLt Monetary Policy, uMP
t

Variable
yt ≥0 ≤0
πt x ≤0
mt ≥0 ≤0
it 0 ≥0

Notes: This table reports the sign restrictions imposed on the
contemporaneous impact of identified structural shocks on to
GDP growth, yt; inflation, πt; the interest rate, it; and broad
money growth, mt. 0 denotes a zero contemporaneous re-
sponse. The term x denotes no restriction imposed on the
contemporaneous impact of the structural shock to the re-
spective variable.

This set of restrictions requires some insight and explanation. Theoretically, negative liq-
uidity shocks in the context of Kiyotaki and Moore (2012) and Shi (2015) cause investment
to decline as a result of the resaleability of assets decreasing. As a result, output falls and
recession begins. Thus, a sudden increase in the saleability of assets has the opposite effect;
thereby providing theoretical premise for our restriction on GDP growth. Naturally, a sudden
increase in aggregate liquidity should result in an increase in money growth. There are two
possible channels through which this affect translates into increases in money growth following
the theoretical underpinnings in Belongia and Ireland (2014). Firstly, an increase in aggregate
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liquidity implies that banks and financial intermediaries’ demands for reserves falls. Secondly, a
sudden expansion to liquidity may increase private intermediaries’ abilities to provide deposits
at a lower cost. The model deduced by Belongia and Ireland (2014) shows that decreases in
reserves demand and deposit costs, which are associated with expansions to liquidity, cause
money to increase.

There are conflicting theories as to how prices should respond to a sudden increase in
aggregate liquidity. Since the source of the liquidity shock is unknown, it may stem from the
financial sector. For example, suppose that an increase in aggregate liquidity stems from the
velocity of money that ultimately results in surging consumption. We would expect inflation
to rise. However, if aggregate liquidity increases as a result of portfolio shifts into generally
safer and more liquid assets, there is no economic justification for this to pass through to rising
consumer prices. Essentially, the influence of aggregate liquidity shocks on inflation depends on
whether supply or demand side factors dominate (see e.g. Gilchrist et al. (2017), Nekarda and
Ramey (2013), and Gertler and Karadi (2011) for debates on demand and supply side factors).

By imposing a zero response of the interest rate on impact, we implicitly assume that once a
liquidity shock is observed, policymakers can only respond in the following period(s) by increas-
ing the interest rate; conditional on the amount of aggregate liquidity within the economy.6 This
assumption is particularly relevant to the QE policies implemented by central banks; including
the Bank of England starting on March 5th 2009. For a multivariate examination of QE policies
in the UK, see Kapetanios et al. (2012). In conjunction with our aggregate liquidity shock, we
identify a monetary policy shock following Benati and Mumtaz (2007) and Benati (2008).

To compute our time-varying structural impact matrix, we follow Rubio-Ramirez et al.
(2010). Let Ωt = PtDtP

′
t be the eigenvalue-eigenvector decomposition of the VAR’s time-

varying covariance matrix at time t. We draw an M×M matrix K from the N(0, 1) distribution
and compute the QR decomposition of K, normalising the elements of the diagonal matrix R

to be positive; the matrix Q is a matrix whose columns are orthogonal to one another. We
compute the time-varying structural impact matrix as A0,t = PtD

1
2
t Q
′. To impose the single

zero restriction we compute a deterministic rotation of A0,t along the lines of Baumeister and
Peersman (2013a). Specifically we define the rotation matrix, RM as

RM =


I2 02×2

02×2

[
c − s
s c

] (10)

where RM ·RM ′ = IM and

c = A0,t(4, 4)√
A0,t(4, 3)2 +A0,t(4, 4)2

(11)

s = − A0,t(4, 3)√
A0,t(4, 3)2 +A0,t(4, 4)2

(12)

6To the best of our knowledge there is no economic argument to guide our choice for the contemporaneous
response of the interes rate. Friedman (1983) states that as a result of surging money growth rates, investors
view their increased cash holdings as imperfect substitites an invest into other assets which pushes interest rates
down. However, this response would not be contemporaneous.
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where A0,t(i, j) notes the (i, j) entry in the prospective impact matrix, A0,t at time t. We obtain
a new impact matrix, Ā0,t = A0,t · RM with a zero in the (4,3) position. We carry out our
structural analysis in a generalised framework allowing for the propagation of shocks in our
impulse response functions. The Monte Carlo integration procedure we use is similar to Koop
et al. (1996); we report a more detailed outline of the algorithm in Appendix C.

3 Results

3.1 Model Evaluation

To justify our econometric specification, we conduct a model selection exercise that examines
the fit of the model to the data. We use Bayesian DIC statistics (DIC) which is given by

DIC = D̄ + pD (13)

where D̄ = −2E(ln L(Λi) which is 2 multiplied by the expected value of the log likelihood
function evaluated at parameter draws Λi, for each iteration of the MCMC. The second term is
a measure of model complexity that approximates the effective number of parameters the model
estimates. The lower the DIC, the better the model fit. We report in Table 2, the estimated
DIC statistics, along with pD and the expected value of the log likelihood function, respectively,
for restricted variants of the TVP VAR.

Table 2: Bayesian DIC Statistics for Competing VAR Models of UK Data

DIC pD E(ln L(Λi)
Linear Bayesian VAR 2828.15 117.98 -1355.08
Linear Bayesian VAR with stochastic volatility 700.58 108.21 -296.19
Linear Bayesian VAR with time-varying covariance matrix 760.71 107.90 -326.41
TVP VAR with constant covariance matrix 2591.42 261.46 -1164.98
TVP VAR with time-varying covariance matrix -105.79 67.48 86.63
Notes: This table reports the DIC estimates from a battery of VAR models that are nested
within the TVP VAR specification. These are a traditional Bayesian VAR model (BVAR),
a BVAR with stochastic volatility, a BVAR with time-varying covariance matrix, a TVP
VAR with constant covariance matrix, and our specified TVP VAR with time-varying
covariance matrix.

As is clear from Table 2, our baseline econometric specification provides the lowest DIC
value, thereby indicating this model most favourably fits the data. Note also that the measure of
model complexity is substantially lower for our TVP VAR specification (i.e. pD=67.48), relative
to all restricted variant of the TVP VAR model7. Having established that our methodology is
justified statistically, we proceed in presenting our empirical analysis.

7We do not present results from a two-regime Markov-Switching VAR (MS-VAR) as we do not wish to impose
the assumption that regimes are the same throughout time. Note that the DIC estimate from the MS-VAR is
762.51.
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3.2 Empirical Results

In Figure 2 we plot, the posterior median impulse response functions of real GDP growth,
inflation, money growth and the interest rate from 1976Q1 to 2016Q4 over a 20 quarter horizon.
The impulse response functions have been normalised to a 1% increase in money growth. It
is clear from the first row of Figure 2, the contemporaneous response of UK real GDP growth
and inflation varies considerably over our sample. In general, the impact of aggregate liquidity
shocks for GDP is stronger during recessions. In particular, quarterly GDP growth increases
by 1% in 2008Q2 on impact (when quarterly GDP growth was -0.65%); yet in 2016Q4 the
contemporaneous response of GDP is an increase by 0.5% (when the rate of GDP growth was
at 0.6%).

To contrast, inflation declines on impact at every observation in our sample. Therefore
following Fiore and Tristani (2013), we postulate that the net affect driving the inflationary im-
pact of aggregate liquidity shocks are declines in borrowing costs feeding through into marginal
costs that influence firms pricing decisions. This result is consistent with Abbate et al. (2016)
who provide robust evidence in favour of expansionary financial shocks causing US inflation to
decline.

The response of the interest rate 1-2 quarters following the shock is positive across most
observations in our sample. However, note that in some periods following the aggregate liquidity
shock the interest rate falls. Following Friedman (1983), if excess cash holdings are realised as
a result of an increase in excess money growth, those investors viewing extra cash holdings as a
disturbance in their portfolios will invest into other assets; thus causing a decline in the interest
rate. In all periods however, interest rates are positive one year following the shock. At longer
horizons the response of the interest rate is persistent, and gradually becomes more resilient to
these shocks until 1997; when the Bank of England gained operational independence. Then,
the sensitivity of the interest rate increases from early 2000 to the end of the sample at these
horizons.

In Figure 3 we plot the posterior median, 68% and 95% posterior credible sets for the
accumulated 4 quarter response of GDP, inflation and the interest rate from 1976 to 2016. The
accumulated impact of aggregate liquidity shocks on to GDP is substantial, with 95% posterior
credible sets distinctly above zero. On the contrary, the (dis)inflationary impact of aggregate
liquidity shocks is short lived; relative to both 68% and 95% posterior credible sets. During
recessions however, the response of inflation is significant. This implies that during recessions
firms change their pricing decisions for a longer period of time; arguably to remain competitive.
In general our findings are consistent with Abbate et al. (2016) who report a transitory impact
of financial shocks for US inflation.

Figure 4 plots the historical contribution of aggregate liquidity shocks to GDP growth,
inflation, money growth and the interest rate. The dashed lines represent the actual time series
relative to its average growth rate, and the solid blue line reports the estimated cumulative
effect of the estimated aggregate liquidity shocks on macroeconomic developments. Thus, the
solid line shows how each variable would have evolved if only aggregate liquidity shocks had
occurred. The difference between the actual data and the contribution of aggregate liquidity
shocks is the cumulative contribution of the composite of monetary policy and other demand
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Figure 2: Posterior Median Response of Macroeconomic Variables with Respect to
an Aggregate Liquidity Shock from 1976Q1 to 2016Q4
Notes: This figure plots heatmaps of the posterior median impulse response function of UK real GDP
growth, yt, consumer price inflation πt, break-adjusted M4/M4ex, mt, and the Bank of England Bank
Rate, it from 1976Q1 to 2016Q4 with respect to an aggregate liquidity shock. We normalise the response
of our variables to a 1% increase in mt. We plot time and horizon along x-axis and y-axis, respectively.
The colour bars refer to the magnitude of the response of macroeconomic variables.
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GDP growth, yt, consumer price inflation, πt, and the Bank of England Bank Rate, it 1 year following
an aggregate liquidity shock from 1976Q1 to 2016Q4. Green bars indicate UK recession dates and blue
bars indicate the three rounds of Quantitative Easing implemented by the Bank of England following
the Great Recession.
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shocks.8

The overall effect of aggregate liquidity disturbances on real GDP growth, inflation and
money growth has been substantial. Note that our assumption of a zero contemporaneous
impact of aggregate liquidity shocks on the interest rate is clearly shown in the bottom right
panel of Figure 4 which indicates that the interest rate is explained by other shocks. The
contribution of aggregate liquidity shocks to GDP, inflation and money surges across recessions
in our sample. In particular, these shocks appear to explain the lion’s share of macroeconomic
variation both during the Great Recession, and during QE periods.
To assess whether our proposed aggregate liquidity shock captures unconventional monetary
policies, we report the results from a counterfactual simulation. Had policymakers chosen not
to implement successive rounds of asset purchase facilities, the volatility of these shocks would
have, arguably, been less turbulent. Therefore, our counterfactual simulation assumes that the
standard deviation of estimated structural liquidity shocks remains constant from 2009Q1 until
2016Q4. We set the volatility of the structural liquidity shocks from 2009Q1 to 2016Q4 to the
average value of these shocks from 1976Q1 to 2008Q4.9 Figure 5 reports the posterior median
counterfactual simulated path of GDP, Inflation and M4/M4ex, along with their simulated
actual values from 2009 to 2016 respectively.

From Figure 5 three points emerge. First, the recovery in UK GDP growth following the
Great Recession would have been more gradual. Specifically, GDP growth would have been half
a percent smaller than its actual value following the first round of QE. Our finding of subdued
rates of GDP growth is consistent with Kapetanios et al. (2012) who show that QE effects on
the level of real GDP are around 1.5%. Secondly, inflation would have been more volatile, and
higher following QE1 and QE3. This suggests that the more stable rate of inflation that was
actually observed as a result of lowering longer term borrowing costs for firms (Abbate et al.,
2016). Finally, the recovery in M4/M4ex growth would have taken around two years longer
than implied by the actual simulated history. The actual simulated history reports a revival in
M4/M4ex growth around 2011Q1, whereas our counterfactual path reveals that money growth
would have been 2% lower following the QE3. Based on these findings, and how they link
with previous studies, we postulate that our structural liquidity shock indirectly captures the
successive rounds of asset purchase facilities implemented by the UK in response to the Great
Recession.

In order to assess the relevance of our structural aggregate liquidity shocks for policymakers,
we perform a structural variance decomposition in the frequency domain along the lines of Benati
and Mumtaz (2007) and Ellington et al. (2017); in Appendix C, we provide more detail of how
we compute these decompositions. To examine the changes in the economic significance of our

8Following Baumeister and Peersman (2013b) and Canova and Gambetti (2009), we condition on all available
information until each respective time period when computing the impulse response function of aggregate liquidity
shocks. The impulse response functions are defined as the difference between two conditional expectations, where
both contain the entire history up until that point in time. Therefore they trace out the future path of the
endogenous variables conditional on the history that reflects the impact of all previous shocks. It is worth
mentioning that the influence of aggregate liquidity shocks may be affected by earlier demand and monetary
policy shocks whilst monetary policy shocks and demand shocks could be influenced by earlier aggregate liquidity
shocks. These indirect effects of earlier shocks are not captured in Figure 4.

9We also compute counterfactuals by removing the aggregate liquidity shock from 2009Q1. This assumption
leads to the same conclusions as those reported.
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Figure 4: Historical Decomposition of Macroeconomic Variables from 1976Q1 to
2016Q4; Aggregate Liquidity Shocks
Notes: This figure plots the posterior median historical decompositions of UK real GDP growth, yt,
consumer price inflation, πt, break-adjusted M4/M4ex, mt, and the Bank of England Bank Rate, it from
1976Q1 to 2016Q4. “Actual demeaned data” indicates the data have been adjusted for the baseline
forecast. Green bars indicate UK recession dates and blue bars indicate the three rounds of Quantitative
Easing implemented by the Bank of England following the Great Recession.
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Figure 5: Counterfactual Simulations of GDP, Inflation and Money Growth 2009Q1
to 2016Q4
Notes: This figure plots the posterior median counterfactual simulations of UK real GDP growth, yt,
consumer price inflation πt, and break-adjusted M4/M4ex, mt by assuming constant volatility of the
structural liquidity shock from 2009Q1. We set the volatility of the structural liquidity shock equal to
the average value from 1976Q1 to 2008Q4. We also plot the actual simulated values implied by our TVP
VAR model. Blue bars indicate rounds of Quantitative Easing.
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identified aggregate liquidity shocks over time and frequencies, we plot in Figure 6, the posterior
median contribution of these shocks at a business cycle frequency. Following Hamilton (1994)
and Mumtaz and Sunder-Plassmann (2013), we define business cycle frequency as 10 quarters.
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Figure 6: Contribution of Structural Aggregate Liquidity Shocks to the Variance in
Macroeconomic Variables from 1976Q1 to 2016Q4
Notes: This figure plots the posterior median contribution of structural aggregate liquidity shocks to the
variance of UK real GDP growth, yt; consumer price inflation, πt; break-adjusted M4/M4ex, mt; and
the Bank of England Bank Rate, it at a business cycle frequency from 1976Q1 to 2016Q4. We report
the 68% posterior credible intervals of the contribution of aggregate liquidity shocks are business cycle
frequency denoted by the black dashed lines. Green bars indicate UK recession dates and blue bars
indicate the three rounds of Quantitative Easing implemented by the Bank of England following the
Great Recession.

On the whole, our frequency domain variance decompositions have some important implica-
tions for policy. First, the stark differences between the contributions at an infinite horizon and
business cycle frequency of GDP growth and inflation imply that policymakers should monitor
liquidity conditions within the economy over the business cycle. Second the surge in contribu-
tions of these shocks to inflation variability from 2009 to 2013 helps explain the falling trend in
inflation during the second and third rounds of QE. In the very same period, the importance of
these shocks increased for GDP growth, and during the first three rounds of QE. Combining the
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above with the impulse response analysis, suggests there could be tradeoffs for central banks
with the dual mandate of maintaining steady growth and price stability; which is analogous to
the implications in Abbate et al. (2016). Third, we document statistically significant differences
in the contribution of aggregate liquidity shocks, particularly for GDP growth and inflation.
This implies that policymakers’ responses should be heterogeneous; conditional on the state of
economy; and focus on tailoring policy response to business cycle frequencies.

Following Cogley et al. (2010), we assess the statistical significance of time variation within
our structural variance decompositions at a business cycle frequency. In doing so, we account
for the entire distribution of the variance decompositions between different periods. We select
periods that relate to the financial crisis and QE policies implemented by the Bank of England.
Dates relating to the financial crisis are the start and end dates to the recession in the UK,
2008Q2 and 2009Q2 respectively. Similarly, dates relating to QE policies are the first quarter
each round of QE started: 2009Q1; 2011Q4; 2012Q3; and 2016Q3. The former three dates
are the quarter in which QE1, QE2 and QE3 began. The latter is representative of the asset
purchase rounds following the UK’s vote to leave the European Union on June 23 2016.

We plot the joint distribution of the contribution of structural liquidity shocks to UK real
GDP growth, inflation, money growth and the interest rate in the far left; left; right; and far
right columns of Figure 7, respectively. The first row plots the joint distributions in 2008Q2
against 2009Q1. The remaining three rows plot the joint distributions of these shocks in the
final quarter of the Great Recession, 2009Q2, against 2011Q4, 2012Q3 and 2016Q3 respectively.
Along with the scatterplots, we include a 45◦ line. The first row of Figure 7 indicates that there
is a significant difference in the contribution of structural liquidity shocks to the variance of
macroeconomic fundamentals in 2008Q2 and 2009Q1. For GDP growth, inflation and money
growth, 95% of the distribution lies below the 45◦ line indicating that the contribution of
aggregate liquidity shocks was greater at the onset of the financial crisis relative to 2009Q1. For
the interest rate, time variation is less significant with 90% of the distribution lying below the
45◦ line.

In the remaining three rows, we plot the joint distribution of our structural variance decom-
positions of our UK macroeconomic data in the final quarter of the Great Recession against the
first quarter of asset purchases following QE1. It is evident from these plots that there are sta-
tistically significant differences in the contribution of aggregate liquidity shocks during rounds
of asset purchase facilities relative to the Great Recession. More specifically, the contribution
of aggregate liquidity shocks is statistically greater, relative to the final quarter of the Great
Recession, during all QE periods following QE1. The same conclusion holds for the variance of
inflation and money, albeit less so during QE following the UK’s decision to leave the European
Union in June 2016.

In general, our results provide substantial evidence in support of the findings in Gertler and
Karadi (2011) that unconventional monetary policies should only be implemented during times
of financial crises. Our structural analysis provides empirical justification for these theoretical
findings. Although we do not take a stance on formally identifying an unconventional monetary
policy shock, our findings imply that aggregate liquidity shocks capture QE policies. Our
analysis sheds light on the ramifications of large scale asset purchases. These findings link well
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Figure 7: Assessing the Statistical Significance of Time-variation in the Contribu-
tion of Structural Aggregate Liquidity Shocks to the Variance in Macroeconomic
Variables at Business Cycle Frequency
Notes: This figure plots the joint distribution of structural aggregate liquidity shocks to the volatility
of UK real GDP growth, yt in the first column; consumer price inflation, πt in the second column;
break-adjusted M4/M4ex, mt in the third column; and the Bank of England Bank Rate, it in the fourth
column, over selected dates at business cycle frequency. The first row plots the joint distribution in
2008Q2 against 2009Q1. The second to fourth rows plot the joint distribution of aggregate liquidity
shocks in 2009Q2 against 2011Q4, 2012Q3 and 2016Q3 respectively. Consistent with Hamilton (1994),
our definition of business cycle frequency is a 10 quarter horizon, and for each plot we include the 45◦
line.
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with those in Gambacorta et al. (2014), Kapetanios et al. (2012), Baumeister and Benati (2013),
and Weale and Wieladek (2016) advocating the implementation of unconventional monetary
policies as a response to the financial crisis.

4 Robustness Analysis

4.1 Assessing the Consequences of the Zero-Lower Bound (ZLB)

Given that UK short-term interest rates have been stuck at their zero lower bound for nearly
a decade, it is necessary to explore the implications of these on our main results. Therefore,
following the ‘constant interest rate projections’ in Baumeister and Benati (2013), and also used
by central banks, we impose a binding ZLB constraint on the UK Bank rate such that it does not
respond to structural shocks over a four quarter horizon. The binding constraint is computed by
drawing a sequence of monetary policy shocks that exactly neutralise the systematic component
of monetary policy. Then, at horizons greater than 4 quarters, we allow the interest rate to
move according to what is dictated by the structural monetary policy rule.10

In Figure 8, we report the posterior median, 68% posterior credible sets, and 95% posterior
credible sets of the four quarter accumulated impulse response functions for GDP growth and
inflation from 1976 to 2016; assuming the ZLB is binding for one year following an aggregate
liquidity shock. It is clear that the responses of GDP and inflation are similar to those ob-
tained from our baseline results. In particular, there is still substantial time-variation in the
transmission mechanism of these shocks that is confluent with the results reported in Figure 3.

The above suggests that our main conclusions are not influenced by the short-term interest
rates tending to the ZLB. We have also estimated a model that replaces the UK Bank rate with
an estimated shadow rate, as in Wu and Xia (2016). These results conform to those presented
here, and in the preceding section.

4.2 Aggregate Liquidity Shocks Identified from a Cholesky Decomposition

To investigate the robustness of our proposed identification scheme, we carry out our structural
analysis using a recursive identification scheme. Structural inference is carried out using the
same reduced-form estimates to compute our baseline results. The ordering of our variables
allows the interest rate to respond contemporaneously to an aggregate liquidity shock. Figure
9 plots the posterior median response of our four endogenous variables with respect to an
aggregate liquidity shock identified using a Cholesky decomposition over a 20 quarter horizon.
We normalise the response of variables such that the aggregate liquidity shock causes money
growth to increase by 1%. Under this approach, the ordering of our variables assumes that
GDP growth and inflation react with a lag to aggregate liquidity shocks whereas the interest
rate responds contemporaneously.

As we can see from the bottom right panel of Figure 9, the interest rate responds negatively
on impact for the first 5 years whereas the impact response from 1980 to 2016 is positive. At
longer impulse horizons however, there is a similar decline in the sensitivity of the interest to

10These results are robust to imposing a binding constraint of 5-12 quarters.
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Figure 8: Accumulated Response of Macroeconomic Variables 4 Quarters after an
Aggregate Liquidity Shock from 1976Q1 to 2016Q4
Notes: This figure plots the posterior median (thick solid line), along with 68% posterior credible sets
(dashed lines) and 95% posterior credible sets (solid lines), for the accumulated response of UK real GDP
growth, yt, and consumer price inflation, πt 1 year following an aggregate liquidity shock from 1976Q1 to
2016Q4. Green bars indicate UK recession dates and blue bars indicate the three rounds of Quantitative
Easing implemented by the Bank of England following the Great Recession.
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Figure 9: Posterior Median Response of Macroeconomic Variables with Respect
to an Aggregate Liquidity Shock Identified using a Cholesky Decomposition from
1976Q1 to 2016Q4
Notes: This figure plots the posterior median impulse response function of UK real GDP growth, yt,
consumer price inflation πt, break-adjusted M4/M4ex, mt, and the Bank of England Bank Rate, it
from 1976Q1 to 2016Q4 with respect to an aggregate liquidity shock. We normalise the response of our
variables to a 1% increase in mt. We plot time, horizon and percent along x-axis, y-axis and z-axis,
respectively.
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aggregate liquidity shocks that we report in our baseline analysis. Turning our attention to the
response of GDP growth and inflation, it is clear that GDP becomes more resilient to aggregate
liquidity throughout time and the impact of the shock is more persistent during the earlier years
of our sample. The effect of these shocks on inflation changes from a negative response in the
first decade, to a positive response from 1990 to the end of our sample. It is worth mentioning
that sensitivity of inflation declines at longer impulse horizons, however the posterior median
response oscillates and appears to be imprecisely determined.11
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Figure 10: Historical Decomposition of Money growth and the Interest Rate from
1976Q1 to 2016Q4; Aggregate Liquidity Shocks Identified Using a Cholesky De-
composition
Notes: This figure plots the posterior median historical decompositions of UK break-adjusted M4/M4ex,
mt, and the Bank of England Bank Rate, it from 1976Q1 to 2016Q4. “Actual demeaned data” indicates
the data have been adjusted for the baseline forecast. Green bars indicate UK recession dates and blue
bars indicate the three rounds of Quantitative Easing implemented by the Bank of England following
the Great Recession.

Our proposed identification scheme imposes that aggregate liquidity shocks, on impact, do
not contribute to movements in the interest rate. To establish the validity of this assumption,

11Note that we cannot benchmark identification schemes against one another in this context. This is because
our procedure produces set identification, while taking a Cholesky decomposition produces exact identification.
It is however, useful to examine results implied by alternative identification procedures to assess the validity of
our main results by assuming a recursive identification scheme and allowing the data guide structural inference
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we report the historical decompositions of aggregate liquidity shocks identified using a Cholesky
decomposition. In Figure 10, we report the historical contribution of aggregate liquidity shocks
to money growth and the interest rate over our sample.

In comparing the results in Figure 10 with the bottom panel of Figure 4, two of noteworthy
points emerge. First, we can see that aggregate liquidity shocks appear to contribute sub-
stantial proportions of money growth movements. This is consistent under both our proposed
identification scheme, and using a Cholesky decomposition. Second, the importance of aggre-
gate liquidity shocks for the level of the interest rate has always been negligible. In particular,
note that these shocks appear to contribute very little toward the level of interest rates during
the Great Recession. The implication here is that our assumption of a contemporaneous zero
restriction on the response of the interest rate is plausible and supported by the data; even in
an historical context.

5 Conclusions

In this paper, we conduct an empirical investigation on the influence of aggregate liquidity shocks
for the real economy through the lens of monetary aggregates for the UK economy from 1955 to
2016. We fit a Bayesian time-varying parameter VAR model to UK economic data allowing for
four sources of uncertainty, and conduct structural inference in a fully non-linear framework. In
doing so, we adopt an identification procedure that relies on combining contemporaneous sign
restrictions with a single zero restriction.

We summarise our results as follows: First, we provide substantial evidence in favour of a
time-varying transmission of aggregate liquidity shocks for real GDP growth and inflation. In
particular, both real GDP growth and inflation become sensitive to these shocks during periods
of economic downturn. Second, these shocks hold historical substance by contributing signif-
icantly macroeconomic movements, and variance. Third, counterfactual simulations indicate
that our aggregate liquidity shock indirectly captures unconventional monetary policies. For
example, our estimates imply that the recovery in GDP following QE1 would have been more
gradual. Fourth, we report substantial differences in the contribution of aggregate liquidity
shocks to the variance of macroeconomic fundamentals at a business cycle frequency. At the
beginning of the Great Recession these shocks contribute 32% and 47% toward the (business
cycle) variability of real GDP and inflation, respectively. Finally, our analysis uncovers statisti-
cally significant differences in the percent of variance explained by these shocks during periods
of QE relative to the Great Recession.

Our robustness analysis reveals that our results are not driven by ZLB constraints. In
particular we adopt a commonly used method in central banks, outlined in Baumeister and
Benati (2013), that allows the imposition of a ZLB constraint for a specified number of quarters
over the impulse horizon. Adding to this, we conduct structural inference assuming a recursive
identification scheme similar to Baumeister et al. (2008) that validates the sign restrictions
imposed in our main analysis.

For policymakers, the substantial evidence in favour of time-variation suggests that policy
responses to these shocks should be dynamic. Consequently in conjunction with Kapetanios
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et al. (2012) and Baumeister and Benati (2013), our analysis supports the implementation of
Quantitative Easing policies in the UK. Our study builds on the aforementioned in associating
time, and frequency, varying macroeconomic variance to identified structural shocks. This paper
provides considerable capacity for future research. First, it would be interesting to explore the
interconnectedness of financial institutions and markets with aggregate liquidity in a time-
varying framework. This would permit an assessment of the dynamics and propagations of
liquidity shocks from one sector of the economy to another. Second, linking aggregate liquidity
conditions to policy reform would provide key information on the effectiveness of policy response
to economic turmoil. Finally in the spirit of Belongia and Ireland (2014), investigating the
impact of aggregate liquidity shocks on the monetary business cycle would be of paramount
importance to deduce optimal policy responses in a DSGE framework.
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Appendices

Appendix A: Data and Sources

Table A1: Data, Codes and Sources for UK Macroeconomic Data
Notes: We compute the quarterly growth rates for all macroeconomic data except for the interest rate. We compute the quarterly interest rate as it =
((1 + iAnn

t )1/4 − 1) · 100.

UK Data Code Source
GDP, yt ABMI Office for National Statistics, Quarterly real GDP, millions of pound Sterling.

Available: https://www.ons.gov.uk/economy/grossdomesticproductgdp/timeseries/abmi/ukea

Inflation, πt D7BT Office for National Statistics, Consumer Price Index
Available: https://www.ons.gov.uk/economy/inflationandpriceindices/timeseries/d7bt/mm23
We splice this measure with the consumer price index in the Bank of England’s
Three Centuries of Macroeconomic Data.
Available: http://www.bankofengland.co.uk/research/Pages/onebank/threecenturies.aspx.

Bank rate, it N/A Bank of England, we convert monthly Bank Rate figures from the
Three Centuries of Macroeconomic Data dataset into quarterly observations by
taking the average of monthly observations in each respective quarter.

Broad Money, mt N/A Bank of England, we use a break adjusted stock of M4 that splices conventional M4
with the Bank of England’s preferred measure M4 excluding Intermediate Other
Financial Corporations. We follow the methodology used to construct the
break-adjusted stock of broad money in the Three Centuries of Macroeconomic Data.
We use the break adjusted M4 series provided by the Bank of England and splice
this with M4ex, taken from the Bank of England’s Statistical Database,
Code: RPQB53Q.
Available: http://www.bankofengland.co.uk/boeapps/iadb/NewInterMed.asp?Travel=NIxSCxSUx
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Appendix B: Priors and Posterior Simulation, Convergence Diagnostics, and
Lag Length Selection

Prior Distributions

The priors of the model in (1)–(9) are calibrated on the point estimates of a constant coefficient
VAR with 2 lags estimated over the period 1955Q4–1975Q4. We posit that the initial values of
the states θ0, α0, h0 are Normal, and independent from one another and from the distributions
of the hyperparameters.12 We set

θ0 v N
[
θ̂OLS , 4 · V̂ (θ̂OLS)

]
(14)

for α0, h0, let Σ̂OLS be the estimated covariance matrix of the residuals from the time–invariant
VAR. Let C be the lower–triangular Choleski factor such that CC ′ = Σ̂OLS . We then set

ln h0 v N(lnµ0, 10× I4) (15)

where µ0 collects the logarithms of the squared elements along the diagonal of C. We divide
each column of C by the corresponding element on the diagonal; call this matrix C̃. We then
set

α0 v N
[
α̃0, Ṽ (α̃0)

]
(16)

with α̃0 ≡ [α̃0,11, α̃0,21, . . . , α̃0,61]′ which is a vector collecting all the elements below the diagonal
of C̃−1. We assume Ṽ (α̃0) is diagonal with each element equal to 10 times the absolute value
of the corresponding element of α̃0. This is an arbitrary prior but correctly scales the variance
of each element of α0 to account for their respective magnitudes (Benati and Mumtaz, 2007).

With regards to the hyperparameters, Q is set to follow an inverse–Wishart distribution,

Q v IW (Q−1, T0) (17)

where Q = (1 +dim(θt)) · V̂ (θ̂OLS) · 3.4× 10−4. The prior degrees of freedom, (1 +dim(θt)), are
the minimum allowed for the prior to be proper. Our choice of scaling parameter 3.4× 10−4 is
consistent with Cogley and Sargent (2005). We have also estimated our models using different
priors, we allowed for a tighter scaling parameter of 1.0× 10−4 and have also set the degrees of
freedom to be the length of the training sample; in our case this is 40. The scaling parameter
essentially sets the amount of drift within the θt matrices. The results and conclusions presented
within the main body are robust to changing the value of the scaling parameter, and the prior
degrees of freedom imposed.

The blocks of S are also assumed to follow inverse–Wishart distributions with prior degrees
12Our results are insensitive to different prior specifications and larger samples of data to calibrate the initial

conditions of the model.
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of freedom equal to the minimum allowed (i.e. 1 + dim(Si)).

S1 v IW (S−1
1 , 2) (18)

S2 v IW (S−1
2 , 3) (19)

S3 v IW (S−1
3 , 4) (20)

we set S1, S2, S3 in accordance with α̃0 as in Benati and Mumtaz (2007) such that S1 =
10−3 × |α̃0,11|, S2 = 10−3×diag([|α̃0,21|, |α̃0,31|]′), S3 = 10−3× diag([|α̃0,41|, |α̃0,51|, |α̃0,61|]′).
This calibration is consistent with setting S1, S2, S3 to 10−4 times the corresponding diagonal
block of Ṽ (α̃0). The variances for the stochastic volatility innovations, as in Cogley and Sargent
(2005), follow an inverse–Gamma distribution for the elements of W ,

Wi,i v IG(10−4

2 ,
1
2) (21)

Simulating the Posterior Distribution

In order to simulate the posterior distribution of the hyperparameters and states, conditional
on the data, we implement the following MCMC. We combine elements from Primiceri (2005)
and Cogley and Sargent (2005).

1) Draw elements of θt Conditional on Y T , αT and HT , the observation equation (1) is linear
with Gaussian innovations with a known covariance matrix. Factoring the density of θt,
p(θt) in the following manner

p(θT |yT , AT , HT , V ) = p(θT |Y T , AT , HT , V )
T−1∏
t=1

p(θt|θt+1, Y
t, AT , HT , V ) (22)

the Kalman filter recursions pin down the first element on the right hand side of the
above; p(θT |Y T , AT , HT , V ) v N(θT , PT ), with PT being the precision matrix of θT from
the Kalman filter. We compute the remaining elements in the factorisation via backward
recursions as in Cogley and Sargent (2005). Since θt is conditionally Normal we have

θt|t+1 = Pt|tP
−1
t+1|t(θt+1 − θt) (23)

Pt|t+1 = Pt|t − Pt|tP−1
t+1|tPt|t (24)

which yields, for every t from T−1 to 1, the remaining elements in the observation equation
(1). More precisely, the backward recursion begins with a draw, θ̃T from N(θT , PT ).
Conditional on θ̃T , the above produces θT−1|T and PT−1|T . This allows us to draw θ̃T−1

from N(θT−1|T , PT−1|T ) until t=1.

2) Drawing elements of αt Conditional on Y T , θT and HT we follow Primiceri (2005) and
note that (1) can be written as

AtỸt ≡ At(Yt −X
′
tθt) = Atεt ≡ ut (25)

V ar(ut) = Ht (26)
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with Ỹt ≡ [Ỹ1,t, Ỹ2,t, Ỹ3,t, Ỹ4,t]
′ and

Ỹ1,t = u1,t (27)

Ỹ2,t = −α21,tỸ1,t + u2,t (28)

Ỹ3,t = −α31,tỸ1,t − α32,tỸ2,t + u3,t (29)

Ỹ4,t = −α41,tỸ1,t − α42,tỸ2,t − α43,tỸ3,t + u4,t (30)

These observation equations and the state equation (7) allows us to draw the elements of
αt equation by equation using the same algorithm as above; assuming S is block diagonal.

3) Drawing elements of Ht Conditional on Y T , θT and αT , the orthogonal innovations ut,
V ar(ut) = Ht are observable. We sample, element by element, hi,t’s using the algorithm
of Jacquier et al. (2002); Cogley and Sargent (2005) provide details in Appendix B.2.5 of
their paper.

4) Drawing the hyperparameters Conditional on Y T , θT , Ht and αT , the innovations in θt, αt
and hi,t’s are observable, which allows us to draw the elements of Q, S1, S2, S3 and the
Wi,i from their respective distributions.

Convergence of the MCMC Algorithm

We allow for 50,000 iterations of the Gibbs sampler keeping every 10th draw, following an initial
burn in period of 50,000 iterations. Following Primiceri (2005) we compute the inverse relative
numerical efficiency factors for the θt, At, Ht matrices and for the hyperparameters of the model,
Q,S,W . Relative numerical efficiency factors are defined as

RNE = (2π)−1 1
S(0)

∫ π

−π
S(ω)dω

where S(ω) is the spectral density of the sequence of draws from the Gibbs sampler for the
quantity of interest at frequency ω; S(0) is the spectral density of the sequence at frequency
zero. Figure B1 plots the inefficiency factors for our TVP VAR model. It is clear that the
autocorrelation among the draws are low, and in the vast majority of cases below 1. As stressed
in Primiceri (2005), values of the inefficiency factors below 20 are satisfactory.
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Figure B.1: Convergence of the MCMC Algorithm; Inefficiency Factors
Notes: This figure shows the inefficiency factors computed for the draws of the elements of the matrices:
θt, At, Ht, Q, S and W
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As we can see, all of the inefficiency factors are well below 20, therefore we postulate our
algorithm has converged to the ergodic distribution.

Lag Length Selection in a Bayesian Framework

In order to justify our lag length of 2 within the TVP VAR, we estimate a traditional Bayesian
VAR model over our estimation sample (1955–2016) using the stochastic search shrinkage
methodology of George et al. (2008). In particular, this specification allows us to conduct
variable selection in a data based manner. Posterior computation allows us to retrieve probabil-
ities of including dependent variables within each respective equation; the reader is referred to
their paper for technical details. Table B1 reports the probability of including lagged dependent
variable x = {yt−p, πt−p, mt−p, it−p} at lag p = {1, 2, . . . , 6} from 3 alternative models. The
first model uses 6 lags of dependent variables, and the second and third models use 4 and 2 lags,
respectively. We highlight in bold font the posterior inclusion probabilities that exceed 0.51.

As can be seen from Table B1, the VAR using 6 lags contains 17 coefficients that exceed
a posterior inclusion probability of 0.51 (i.e. 17.5% of all estimated coefficients). Similarly
the model using 4 lags contains 20 of the 65 coefficients surpassing the posterior inclusions
probability of 0.51 (or 30.8%). Finally, the model using 2 lags contains 13 of the 39 coefficients
that exceed a posterior inclusion probability of 0.51 (or 39.4%). Note also, that for the models
estimated with 6 and 4 lags, only 6.25% and 15.625% of coefficients exceeding a lag length of 2
surpass 0.51, respectively.

In general, it is clear across all estimated models, that the majority of lagged dependent
variables that exceed a posterior inclusion probability of 0.51 are at lags 1 and 2. Therefore,
we postulate that our choice for 2 lags within our TVP VAR is well justified in a data based
manner.
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Table B1: Stochastic Shrinkage Variable Selection: Inlcusion Probabilities of lagged dependent Variables from Constant Parameter Bayesian VAR
models, 1955Q2–2016Q4

Model: p=6 p=4 p=2
Dependent Variable:

yt πt mt it yt πt mt it yt πt mt it

Intercept 0.9962 0.0844 0.7542 0.3053 Intercept 0.9962 0.1006 0.9432 0.2105 Intercept 1.0000 0.1367 0.9769 0.1511
yt−1 0.0850 0.9267 0.7424 0.7543 yt−1 0.0906 0.9843 0.6506 0.7716 yt−1 0.0863 0.9424 0.7127 0.7379
πt−1 0.0732 1.0000 0.6116 0.0742 πt−1 0.0853 1.0000 0.6357 0.0896 πt−1 0.1144 1.0000 0.8306 0.0955
mt−1 0.1652 0.3656 0.9643 0.9994 mt−1 0.1164 0.7638 0.9649 0.9976 mt−1 0.0758 0.9812 0.9991 1.0000
it−1 0.7433 0.1813 0.0728 1.0000 it−1 0.6144 0.1395 0.0696 1.0000 it−1 0.0957 0.0356 0.1236 1.0000
yt−2 0.0784 0.1074 0.1040 0.6153 yt−2 0.0830 0.2200 0.1038 0.6673 yt−2 0.0981 0.1837 0.1102 0.7324
πt−2 0.1270 0.0818 0.2838 0.0841 πt−2 0.2375 0.0912 0.4049 0.0960 πt−2 0.1276 0.0843 0.3300 0.1121
mt−2 0.2895 0.0905 0.4481 0.7262 mt−2 0.2541 0.0990 0.5346 0.7360 mt−2 0.0751 0.0997 0.9864 0.7499
it−2 0.2555 0.2161 0.0438 0.1071 it−2 0.3896 0.3298 0.0448 0.0906 it−2 0.0613 0.0395 0.0741 0.1230
yt−3 0.4154 0.3198 0.1762 0.1136 yt−3 0.2879 0.2614 0.1427 0.1166
πt−3 0.1001 0.6782 0.0899 0.1464 πt−3 0.0917 0.9468 0.0945 0.1694
mt−3 0.1964 0.1128 0.8385 0.1526 mt−3 0.1122 0.1208 0.8234 0.1645
it−3 0.1482 0.0944 0.0441 0.0522 it−3 0.3482 0.2230 0.0365 0.0473
yt−4 0.0838 0.0915 0.3551 0.0900 yt−4 0.1069 0.0965 0.3558 0.0857
πt−4 0.1189 0.0832 0.1106 0.1159 πt−4 0.1454 0.0854 0.1038 0.1090
mt−4 0.4020 0.3402 0.2084 0.1596 mt−4 0.2555 0.6195 0.1999 0.1875
it−4 0.0892 0.1249 0.0455 0.0464 it−4 0.6542 0.8712 0.0482 0.0547
yt−5 0.0912 0.1225 0.2560 0.1144
πt−5 0.1141 0.9947 0.2042 0.0672
mt−5 0.0984 0.6380 0.1711 0.3369
it−5 0.1433 0.8234 0.0526 0.0427
yt−6 0.0972 0.1415 0.4879 0.3301
πt−6 0.0900 0.0914 0.2175 0.0752
mt−6 0.1844 0.8247 0.1186 0.1308
it−6 0.8523 0.2016 0.0961 0.0563
Notes: This table reports the posterior mean of including lagged dependent variable x = {yt−p, πt−p, mt−p, it−p} at lag p = {1, 2, . . . , 6} from 3 alternative
models. The first model uses 6 lags of dependent variables, and the second and third models use 4 and 2 lags, respectively. We highlight in bold font
the posterior inclusion probabilities that exceed 0.51. All Bayesian VAR models are estimated using the methods proposed by George et al. (2008).
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Appendix C: Outline of Structural Computations

Impulse Response Computation

This Section describes the Monte Carlo integration algorithm we use to compute the time
paths of impulse response functions to our four structural shocks. Similar to Koop et al.
(1996), we compute the generalised impulse responses as the difference between two conditional
expectations, with and without exogenous shocks

IRFt+j = E [yt+j |εt, ωt]− E [yt+j |ωt] (31)

where yt+j contains contains forecasts of the endogenous variables at horizon j = 1, ..., 20, ωt
represents the current information set and εt is a vector of current disturbance terms. For every
point in time, we condition the forecasts on the actual values of the lagged variables and a
random draw from the joint posterior distribution of the model parameters and hyperparame-
ters. Specifically, we take 500 random draws of the economy at each point in time. Following
each random draw, we simulate stochastically the future paths of the coefficient vector and
components of the variance-covariance matrix based on the transition laws 20 quarters into the
future. In this manner we are accounting for all of the potential sources of uncertainty stemming
from the innovations, variations in lagged coefficients and evolutions in the contemporaneous
relations among the endogenous variables.

Following Rubio-Ramirez et al. (2010), we obtain the time-varying impact matrix A0,t in the
following manner. Given the current state of the economy, let Ωt = PtDtP

′
t be the eigenvalue-

eigenvector decomposition of the VAR’s time-varying covariance matrix at time t. We draw
an M ×M matrix K from the N(0, 1) distribution and compute the QR decomposition of K,
normalising the elements of the diagonal matrix R to be positive; the matrix Q is a matrix whose
columns are orthogonal to one another. We compute the time-varying structural impact matrix
as A0,t = PtD

1
2
t Q
′. We then, perform a deterministic rotation of A0,t described in Section 2.3

to give us Ā0,t with a single zero restriction in the (4,3) entry of Ā0,t. Given Ā0,t we compute
the reduced-form innovations using εt = Ā0,tεt, where εt contains our four structural shocks
obtained by drawing from a standard Normal distribution. The impulse response functions
are computed by taking the difference between the evolution of the variables with a shock and
without a shock. In the former case, the shock is set to εi,t + 1 and in the latter we consider
only εi,t. From this set of impulse responses, we retain only those that satisfy the whole set of
sign restrictions. We retain 100 iterations that satisfy the sign restrictions and then take the
mean responses of our endogenous variables over the accepted simulations.

5.1 Computing Structural Variance Decompositions in the Frequency Do-
main

We compute the structural volatility decompositions as a ratio of the conditional and uncon-
ditional spectral densities. Following Cogley and Sargent (2005) the unconditional spectral
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density of variable x = {yt, πt, it, mt} at frequency ω is given by

fx,t|T (ω) = sx(I4 − β̃t|T e−iω)−1 Ā0,t|T (Ā0,t|T )′

2π
[
(I4 − β̃t|T e−iω)−1

]′
s′x (32)

where Ā0,t|T (Ā0,t|T )′ is the structural impact matrix satisfying our identification restrictions, β̃t|T
are the time-varying coefficient matrices, I4 is a 4 × 4 identity matrix, and sx is a row vector
selecting the variable of interest. The conditional spectral density of variable x = {yt, πt, it, mt}
is

f̄x,t|T (ω) = sx(I4 − β̃t|T e−iω)−1 A
¯ 0,t|T (A

¯ 0,t|T )′

2π
[
(I4 − β̃t|T e−iω)−1

]′
s′x (33)

where we replace Ā0,t|T (Ā0,t|T )′ with A
¯ 0,t|T (A

¯ 0,t|T )′ which shuts off all structural shocks except
for the one of interest. It is not possible to uniquely identify the innovation variances of our
structural shocks. However, it is plausible to compute the TVP-VAR covariance matrix at each
point in time that results from setting one or more of the structural innovation variances to
zero. Therefore the contribution of identified structural shocks is given by the ratio

f̄x,t|T (ω)
fx,t|T (ω) (34)
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Canova, F., De Nicoló, G., 2002. Monetary Disturbances Matter for Business Fluctuations in
the G-7. Journal of Monetary Economics 49 (6), 1131–1159.

Canova, F., Gambetti, L., 2009. Structural Changes in the US Economy: Is there a Role for
Monetary Policy? Journal of Economic Dynamics and Control 33 (2), 477–490.

Cogley, T., Primiceri, G. E., Sargent, T. J., 2010. Inflation-gap Persistence in the US. American
Economic Journal: Macroeconomics 2 (1), 43–69.

Cogley, T., Sargent, T. J., 2005. Drifts and Volatilities: Monetary Policies and Outcomes in
the post WWII US. Review of Economic Dynamics 8 (2), 262–302.

Cukierman, A., 2013. Monetary Policy and Institutions Before, During, and After the Global
Financial Crisis. Journal of Financial Stability 9 (3), 373–384.

Ellington, M., 2018. Financial Market Illiquidity Shocks and Macroeconomic Dynamics: Evi-
dence from the UK. Journal of Banking & Finance 89, 225–236.

Ellington, M., Florackis, C., Milas, C., 2017. Liquidity Shocks and Real GDP Growth: Evidence
from a Bayesian Time–varying Parameter VAR. Journal of International Money and Finance
72, 93–117.

Fiore, F. D., Tristani, O., 2013. Optimal Monetary Policy in a Model of the Credit Channel.
The Economic Journal 123 (571), 906–931.

Friedman, M., 1983. Monetary Trends in the United States and the United Kingdom: Their
Relations to Income, Prices, and Interest Rates. University of Chicago Press.

Gambacorta, L., Hofmann, B., Peersman, G., 2014. The Effectiveness of Unconventional Mon-
etary Policy at the Zero Lower Bound: A Cross-Country Analysis. Journal of Money, Credit
and Banking 46 (4), 615–642.

George, E. I., Sun, D., Ni, S., 2008. Bayesian Stochastic Search for VAR Model Restrictions.
Journal of Econometrics 142 (1), 553–580.

Gertler, M., Karadi, P., 2011. A Model of Unconventional Monetary Policy. Journal of Monetary
Economics 58 (1), 17–34.
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