Algorithmica

Binary Search in Graphs Revisited

Manuscript Number:
Full Title:

Article Type:
Keywords:

Corresponding Author:

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author:
First Author Secondary Information:

Order of Authors:

Order of Authors Secondary Information:

Funding Information:

Abstract:

--Manuscript Draft--

ALGO-D-17-00293
Binary Search in Graphs Revisited
Original Research

binary search; graph; query complexity; approximate query; probabilistic algorithm;
lower bound

Argyrios Deligkas

Technion Israel Institute of Technology William Davidson Faculty of Industrial
Engineering and Management

Haifa, ISRAEL

Technion Israel Institute of Technology William Davidson Faculty of Industrial
Engineering and Management

Argyrios Deligkas

Argyrios Deligkas
George Mertzios

Paul Spirakis

Engineering and Physical Sciences
Research Council
(EP/P020372/1)

Engineering and Physical Sciences
Research Council
(EP/P02002X/1)

Engineering and Physical Sciences
Research Council
(EP/LO11018/1)

Israel Science Foundation
(2021296)

Dr George Mertzios

Prof Paul Spirakis

Not applicable

Not applicable

In the classical binary search in a path the aim is to detect an unknown target by
asking as few queries as possible, where each query reveals the direction to the target.
This binary search algorithm has been recently extended by [Emamjomeh-Zadeh et al.,
STOC, 2016] to the problem of detecting a target in an arbitrary graph. Similarly to the
classical case in the path, the algorithm of Emamjomeh-Zadeh et al. maintains a
candidates' set for the target, while each query asks an appropriately chosen vertex--
the “"median"--which minimises a potential Phi among the vertices of the candidates'
set. In this paper we address three open questions posed by Emamjomeh-Zadeh et al.,
namely (a) detecting a target when the query response is a direction to an
approximately shortest path to the target, (b) detecting a target when querying a vertex
that is an approximate median of the current candidates' set (instead of an exact one),
and (c) detecting multiple targets, for which to the best of our knowledge no progress
has been made so far. We resolve questions (a) and (b) by providing appropriate
upper and lower bounds, as well as a new potential Gamma that guarantees efficient
target detection even by querying an approximate median each time. With respect to
(c), we initiate a systematic study for detecting two targets in graphs and we identify
sufficient conditions on the queries that allow for strong (linear) lower bounds and
strong (polylogarithmic) upper bounds for the number of queries. All of our positive

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

results can be derived using our new potential Gamma that allows querying
approximate medians.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

tex file

O©CO~NOOOTA~AWNPE

Click here to download Manuscript binary-search-graphs-

algorithmica.tex

Noname manuscript No.

(will be inserted by the editor)

Binary Search in Graphs Revisited

Argyrios Deligkas - George Mertzios -
Paul Spirakis

the date of receipt and acceptance should be inserted later

Abstract In the classical binary search in a path the aim is to detect an un-
known target by asking as few queries as possible, where each query reveals
the direction to the target. This binary search algorithm has been recently ex-
tended by [Emamjomeh-Zadeh et al., STOC, 2016] to the problem of detecting
a target in an arbitrary graph. Similarly to the classical case in the path, the
algorithm of Emamjomeh-Zadeh et al. maintains a candidates’ set for the
target, while each query asks an appropriately chosen vertex— the “median”—
which minimises a potential ¢ among the vertices of the candidates’ set. In
this paper we address three open questions posed by Emamjomeh-Zadeh et
al., namely (a) detecting a target when the query response is a direction to an
approzimately shortest path to the target, (b) detecting a target when query-
ing a vertex that is an approximate median of the current candidates’ set
(instead of an exact one), and (c) detecting multiple targets, for which to the
best of our knowledge no progress has been made so far. We resolve questions
(a) and (b) by providing appropriate upper and lower bounds, as well as a
new potential I" that guarantees efficient target detection even by querying an
approximate median each time. With respect to (c), we initiate a systematic
study for detecting two targets in graphs and we identify sufficient conditions

Partially supported by the EPSRC grants EP/P020372/1, EP/P02002X/1, EP/L011018/1,
and by the ISF grant 2021296.

A. Deligkas
Faculty of Industrial Engineering and Management, Technion, Israel
E-mail: argyris@technion.ac.il

G. Mertzios
Department of Computer Science, Durham University, UK
E-mail: george.mertzios@durham.ac.uk

P. Spirakis

Department of Computer Science, University of Liverpool, UK and Research Academic
Computer Technology Institute (CTI), Greece

E-mail: p.spirakis@liverpool.ac.uk

L]

http://www.editorialmanager.com/algo/download.aspx?id=107580&guid=2a77ed8f-2c3e-43c7-8878-0f677f4e81b6&scheme=1
http://www.editorialmanager.com/algo/download.aspx?id=107580&guid=2a77ed8f-2c3e-43c7-8878-0f677f4e81b6&scheme=1

O©CO~NOOOTA~AWNPE

2 Argyrios Deligkas et al.

on the queries that allow for strong (linear) lower bounds and strong (polylog-
arithmic) upper bounds for the number of queries. All of our positive results
can be derived using our new potential I" that allows querying approximate
medians.

Keywords: binary search, graph, approximate query, probabilistic algo-
rithm, lower bound.

1 Introduction

The classical binary search algorithm detects an unknown target (or “trea-
sure”) t on a path with n vertices by asking at most logn queries to an oracle
which always returns the direction from the queried vertex to ¢t. To achieve
this upper bound on the number of queries, the algorithm maintains a set of
candidates for the place of ¢; this set is always a sub-path, and initially it is
the whole path. Then, at every iteration, the algorithm queries the middle
vertex (“median”) of this candidates’ set and, using the response of the query,
it excludes either the left or the right half of the set. This way of searching
for a target in a path can be naturally extended to the case where ¢ lies on an
n-vertex tree, again by asking at most logn queries that reveal the direction
in the (unique) path to ¢ [22]. The principle of the binary search algorithm on
trees is based on the same idea as in the case of a path: for every tree there
exists a separator vertex such that each of its subtrees contains at most half
of the vertices of the tree [14], which can be also efficiently computed.

Due to its prevalent nature in numerous applications, the problem of de-
tecting an unknown target in an arbitrary graph or, more generally in a search
space, has attracted many research attempts from different viewpoints. Only
recently the binary search algorithm with logn direction queries has been ex-
tended to arbitrary graphs by Emamjomeh-Zadeh et al. [10]. In this case there
may exist multiple paths, or even multiple shortest paths form the queried ver-
tex to t. The direction query considered in [10] either returns that the queried
vertex ¢ is the sought target ¢, or it returns an arbitrary direction from ¢ to
t, i.e. an arbitrary edge incident to ¢ which lies on a shortest path from ¢
to t. The main idea of this algorithm follows again the same principle as for
paths and trees: it always queries a vertex that is the “median” of the current
candidates’ set and any response to the query is enough to shrink the size of
the candidates’ set by a factor of at least 2. Defining what the “median” is
in the case of general graphs now becomes more tricky: Emamjomeh-Zadeh et
al. [10] define the median of a set S as the vertex ¢ that minimizes a potential
function @, namely the sum of the distances from ¢ to all vertices of S.

Apart from searching for upper bounds on the number of queries needed
to detect a target ¢ in graphs, another point of interest is to derive algorithms
which, given a graph G, compute the optimal number of queries needed to
detect an unknown target in G (in the worst case). This line of research was
initiated in [18] where the authors studied directed acyclic graphs (DAGs).

O©CO~NOOOTA~AWNPE

Binary Search in Graphs Revisited 3

Although computing a query-optimal algorithm is known to be NP-hard on
general graphs [4,7,16], there exist efficient algorithms for trees; after a se-
quence of papers [1,13,17,19,26], linear time algorithms were found in [19,22].
Different models with queries of non-uniform costs or with a probability dis-
tribution over the target locations were studied in [5,6,8,15].

A different line of research is to search for upper bounds and information-
theoretic bounds on the number of queries needed to detect a target ¢, assuming
that the queries incorporate some degree of “noise”. In one of the variations of
this model [2,10,11], each query independently returns with probability p > %
a direction to a shortest path from the queried vertex ¢ to the target, and with
probability 1 — p an arbitrary edge (possibly adversarially chosen) incident to
¢. The study of this problem was initiated in [11], where £2(logn) and O(logn)
bounds on the number of queries were established for a path with n vertices.
This information-theoretic lower bound of [11] was matched by an improved
upper bound in [2]. The same matching bound was extended to general graphs
in [10].

In a further “noisy” variation of binary search, every vertex v of the graph
is assigned a fixed edge incident to v (also called the “advice” at v). Then, for
a fraction p > % of the vertices, the advice directs to a shortest path towards
t, while for the rest of the vertices the advice is arbitrary, i.e. potentially
misleading or adversarially chosen [3]. This problem setting is motivated by
the situation of a tourist driving a car in an unknown country that was hit
by a hurricane which resulted in some fraction of road-signs being turned in
an arbitrary and unrecognizable way. The question now becomes whether it is
still possible to navigate through such a disturbed and misleading environment
and to detect the unknown target by asking only few queries (i.e. taking advice
only from a few road-signs). It turns out that, apart from its obvious relevance
to data structure search, this problem also appears in artificial intelligence
as it can model searching using unreliable heuristics [3,20,23]. Moreover this
problem also finds applications outside computer science, such as in navigation
issues in the context of collaborative transport by ants [12].

Another way of incorporating some “noise” in the query responses, while
trying to detect a target, is to have multiple targets hidden in the graph. Even
if there exist only two unknown targets ¢; and to, the response of each query
is potentially confusing even if every query correctly directs to a shortest path
from the queried vertex to one of the targets. The reason of confusion is that
now a detecting algorithm does not know to which of the hidden targets each
query directs. In the context of the above example of a tourist driving a car in
an unknown country, imagine there are two main football teams, each having
its own stadium. A fraction 0 < p; < 1 of the population supports the first
team and a fraction ps = 1 — p; the second one, while the supporters of
each team are evenly distributed across the country. The driver can now ask
questions of the type “where is the football stadium?” to random local people
along the way, in an attempt to visit both stadiums. Although every response
will be honest, the driver can never be sure which of the two stadiums the local
person meant. Can the tourist still detect both stadiums quickly enough? To

O©CO~NOOOTA~AWNPE

4 Argyrios Deligkas et al.

the best of our knowledge the problem of detecting multiple targets in graphs
has not been studied so far; this is one of the main topics of the present paper.

The problem of detecting a target within a graph can be seen as a spe-
cial case of a two-player game introduced by Renyi [25] and rediscovered by
Ulam [27]. This game does not necessarily involve graphs: the first player seeks
to detect an element known to the second player in some search space with
n elements. To this end, the first player may ask arbitrary yes/no questions
and the second player replies to them honestly or not (according to the details
of each specific model). Pelc [24] gives a detailed taxonomy for this kind of
games. Group testing is a sub-category of these games, where the aim is to
detect all unknown objects in a search space (not necessarily a graph) [9].
Thus, group testing is related to the problem of detecting multiple targets in
graphs, which we study in this paper.

1.1 Our contribution

In this paper we systematically investigate the problem of detecting one or
multiple hidden targets in a graph. Our work is driven by the open questions
posed by the recent paper of Emamjomeh-Zadeh et al. [10] which dealt with
the detection of a single target with and without “noise”. More specifically,
Emamjomeh-Zadeh et al. [10] asked for further fundamental generalizations
of the model which would be of interest, namely (a) detecting a single tar-
get when the query response is a direction to an approrimately shortest path,
(b) detecting a single target when querying a vertex that is an approzimate
median of the current candidates’ set S (instead of an exact one), and (c) de-
tecting multiple targets, for which to the best of our knowledge no progress
has been made so far.

We resolve question (a) in Section 2.1 by proving that any algorithm re-
quires {2(n) queries to detect a single target ¢, assuming that a query directs
to a path with an approximately shortest length to ¢. Our results hold es-
sentially for any approximation guarantee, i.e. for 1-additive and for (1 + ¢)-
multiplicative approximations.

Regarding question (b), we first prove in Section 2.2 that, for any constant
0 < e < 1, the algorithm of [10] requires at least §2(y/n) queries when we
query each time an (1 + €)-approximate median (i.e. an (1 + €)-approximate
minimizer of the potential @ over the candidates’ set S). Second, to resolve
this lower bound, we introduce in Section 2.3 a new potential I'. This new
potential can be efficiently computed and, in addition, guarantees that, for
any constant 0 < ¢ < 1, the target ¢ can be detected in O(logn) queries even
when an (1 + ¢)-approximate median (with respect to I') is queried each time.

Regarding question (c), we initiate in Section 3 the study for detecting
multiple targets on graphs by focusing mainly to the case of two targets t;
and to. We assume throughout that every query provides a correct answer, in
the sense that it always returns a direction to a shortest path from the queried
vertex either to ¢; or to t3. The “noise” in this case is that the algorithm does

O©CO~NOOOTA~AWNPE

Binary Search in Graphs Revisited 5

not know whether a query is returning a direction to ¢; or to to. Initially we
observe in Section 3 that any algorithm requires § — 1 (resp. n —2) queries in
the worst case to detect one target (resp. both targets) if each query directs
adversarially to one of the two targets. Hence, in the remainder of Section 3,
we consider the case where each query independently directs to the first target
t1 with a constant probability p; and to the second target t5 with probability
p2 = 1 — py. For the case of trees, we prove in Section 3 that both targets can
be detected with high probability within O(logn) queries.

For general graphs, we distinguish between biased queries (p1 > p2) in
Section 3.1 and unbiased queries (p1 = p2 = %) in Section 3.2. For biased
queries, we observe that we can utilize the algorithm of Emamjomeh-Zadeh et
al. [10] to detect the first target ¢; with high probability in O(logn) queries;
this can be done by considering the queries that direct to t5 as “noise”. Thus
our objective becomes to detect the target ¢s in a polylogarithmic number of
queries. Notice here that we cannot apply the “noisy” framework of [10] to
detect the second target to , since now the “noise” is larger than % We derive
a probabilistic algorithm that overcomes this problem and detects the target ¢,
with high probability in O(A log? n) queries, where A is the maximum degree
of a vertex in the graph. Thus, whenever A = O(polylogn), a polylogarithmic
number of queries suffices to detect to. In contrast, we prove in Section 3.2
that, for unbiased queries, any deterministic (possibly adaptive) algorithm
that detects at least one of the targets requires at least § — 1 queries, even
in an unweighted cycle. Extending this lower bound for two targets, we prove
that, assuming 2¢ > 2 different targets and unbiased queries, any deterministic
(possibly adaptive) algorithm requires at least 5 — ¢ queries to detect one of
the targets.

Departing from the fact that our best upper bound on the number of biased
queries in Section 3.1 is not polylogarithmic when the maximum degree A is
not polylogarithmic, we investigate in Section 4 several variations of queries
that provide more informative responses. In Section 4.1 we turn our attention
to “direction-distance” biased queries which return with probability p; both
the direction to a shortest path to t; and the distance between the queried
vertex and t;. In Section 4.2 we consider another type of a biased query which
combines the classical “direction” query and an edge-variation of it. For both
query types of Sections 4.1 and 4.2 we prove that the second target to can
be detected with high probability in O(log3 n) queries. Furthermore, in Sec-
tions 4.3 and 4.4 we investigate two further generalizations of the “direction”
query which make the target detection problem trivially hard and trivially
easy to solve, respectively.

1.2 Our Model and Notation
We consider connected, simple, and undirected graphs. A graph G = (V, E),

where |V| = n, is given along with a weight function w : E — R* on its
edges; if w(e) = 1 for every e € E then G is unweighted. An edge between

O©CO~NOOOTA~AWNPE

6 Argyrios Deligkas et al.

two vertices v and u of G is denoted by vu, and in this case v and u are said
to be adjacent. The distance d(v,u) between vertices v and u is the length
of a shortest path between v and u with respect to the weight function w.
Since the graphs we consider are undirected, d(u,v) = d(v, u) for every pair of
vertices v, u. Unless specified otherwise, all logarithms are taken with base 2.
Whenever an event happens with probability at least 1 — n% for some o > 0,
we say that it happens with high probability.

The neighborhood of a vertex v € V is the set N(v) = {u € V : vu € E}
of its adjacent vertices. The cardinality of N(v) is the degree deg(v) of v. The
maximum degree among all vertices in G is denoted by A(G), i.e. A(G) =
max{deg(v) : v € V'}. For two vertices v and u € N(v) we denote by N(v,u) =
{z € V :d(v,z) = w(vu) + d(u,z)} the set of vertices x € V for which there
exists a shortest path from v to x, starting with the edge vu. Note that, in
general, N(u,v) # N(v,u). Let T' = {t1,t2,--- ,tj7)} €V be a set of (initially
unknown) target vertices. A direction query (or simply query) at vertex v € V
returns with probability p; a neighbor v € N (v) such that ¢t; € N(u,v), where
Zgll p; = 1. If there exist more than one such vertices u € N(v) leading to ¢;
via a shortest path, the direction query returns an arbitrary one among them,
i.e. possibly chosen adversarially, unless specified otherwise. Moreover, if the
queried vertex v is equal to one of the targets ¢; € T, this is revealed by the
query with probability p;.

2 Detecting a Unique Target

In this section we consider the case where there is only one unknown target
t = ty, i.e. T = {t}. In this case the direction query at vertex v always
returns a neighbor u € N(v) such that ¢t € N(u,v). For this problem setting,
Emamjomeh-Zadeh et al. [10] provided a polynomial-time algorithm which
detects the target ¢ in at most logn direction queries. During its execution,
the algorithm of [10] maintains a “candidates’ set” S C V such that always
t € S, where initially S = V. At every iteration the algorithm computes
in polynomial time a vertex v (called the median of S) which minimizes a
potential Pg(v) among all vertices of the current set S. Then it queries a
median v of S and it reduces the candidates’ set S to S N N(v,u), where u
is the vertex returned by the direction query at v. The upper bound logn
of the number of queries in this algorithm follows by the fact that always
SN N(v,u)| < @, whenever v is the median of S.

2.1 Bounds for Approximately Shortest Paths

We provide lower bounds for both additive and multiplicative approxima-
tion queries. A c-additive approximation query at vertex v € V returns a
neighbor v € N(v) such that w(vu) + d(u,t) < d(v,t) + c¢. Similarly, an

O©CO~NOOOTA~AWNPE

Binary Search in Graphs Revisited 7

(14 &)-multiplicative approximation query at vertex v € V returns a neighbor
u € N(v) such that w(vu) + d(u,t) < (1 +¢€) - d(v,t).

It is not hard to see that in the unweighted clique with n vertices any algo-
rithm requires in worst case n — 1 1-additive approximation queries to detect
the target ¢. Indeed, in this case d(v,t) = 1 for every vertex v # t, while every
vertex u ¢ {v,t} is a valid response of an 1-additive approximation query at v.
Since in the case of the unweighted clique an additive 1-approximation is the
same as a multiplicative 2-approximation of the shortest path, it remains un-
clear whether 1-additive approximation queries allow more efficient algorithms
for graphs with large diameter. In the next theorem we strengthen this result
to graphs with unbounded diameter.

Theorem 1 Assuming 1-additive approximation queries, any algorithm re-
quires at least n—1 queries to detect the target t, even in graphs with unbounded
diameter.

Proof To prove the theorem we will construct a graph and a strategy for the
adversary such that any algorithm will need n—1 queries to locate the target ¢.
Consider a horizontal 2 x 5 grid graph where we add the two diagonals in
every cell of the grid. Formally, the graph has § “top” vertices v1,...,vz and
5 “bottom” vertices uy,...,uz. For every i € {1,2,...,5 — 1} we have the
edges Vi1, Uilkiq1, Vilhs, Vig1 Wit 1, Vithiy1, Vig1Usi-

The strategy of the adversary is as follows. If the algorithm queries a top
vertex v;, then the query returns the bottom vertex w;. Similarly, if the algo-
rithm queries a bottom vertex u;, then the query returns the top vertex v;.
Observe that, in every case, the query answer lies on a path of length at most
one more than a shortest path from the queried vertex and the target ¢t. To
see this assume that the algorithm queries a top vertex v;; the case where the
queried vertex is a bottom vertex u; is symmetric.

If t = w;, then the edge v;u; clearly lies on the shortest path between wv;
and t. If t = u;, where j # ¢, then the shortest path uses one of the diagonal
edges incident to v;. In this case the edge v;u; leads to a path with length one
more than the shortest one. Finally, if ¢ = v;, where j # ¢, then the shortest
path has length |j — i| and uses either the edge v;v;—1 or the edge v;v;y1. In
both cases the edge v;u; lies on the path from v; to T with length |j —i| + 1
which uses the edge v;u; and one of the diagonal edges u;11v;—1 and w;41v;41.

Hence, after each query at a vertex different than ¢, the algorithm can not
obtain any information about the position of ¢. Thus, in the worst case the
algorithm needs to make n — 1 queries to detect t. a

In the next theorem we extend Theorem 1 by showing a lower bound of
n - £ queries when we assume (1 4 ¢)-multiplicative approximation queries.

Theorem 2 Lete > 0. Assuming (14-¢)-multiplicative approzimation queries,
any algorithm requires at least at least n - 7 queries to detect the target t.

O©CO~NOOOTA~AWNPE

8 Argyrios Deligkas et al.

Proof For the proof we use the same construction from Theorem 1, however the
adversary we use here is slightly modified. Assume that the distance between
the queried vertex and the target ¢ is d. If d+ 1 < (1 +€) - d, or equivalently,
if d > %, the adversary can respond in the same way as in Theorem 1.

Overall, the adversary proceeds as follows. Initially all vertices are un-
marked. Whenever the algorithm queries a vertex v; (resp. u;), the adversary
marks the vertices {vj,u; : |j —i| < 1} in order to determine the query re-
sponse. If at least one unmarked vertex remains in the graph, then the query
returns (similarly to Theorem 1) vertex u; (resp. v;). In this case the adver-
sary can place the target t at any currently unmarked vertex. By doing so,
the adversary ensures that the distance between ¢ and any of the previously
queried vertices is at least % If all vertices of the graph have been marked,
then the adversary places the target ¢ at one of the last marked vertices and
in this case the query returns a vertex on the shortest path between ¢t and the
queried vertex.

With the above strategy, any algorithm needs to continue querying vertices
until there is no unmarked vertex left. Thus, since at every query the adversary
marks at most 2/¢ new vertices, any algorithm needs to perform at least

— g 3
37c = N - 7 queries. O

2.2 Lower Bound for querying the Approximate Median

The potential @g : V — RT of [10], where S C V, is defined as follows. For any
set S C V and any vertex v € V, the potential of v is 5(v) =) g d(v,u). A
vertex € V is an (1+¢)-approximate minimizer for the potential @ over a set
S (i.e. an (1 + €)-median of S) if Ps(z) < (1 + €) min,ey Ps(v), where € > 0.
We prove that an algorithm querying at each iteration always an (14&)-median
of the current candidates’ set S needs £2(y/n) queries.

Theorem 3 Let € > 0. If the algorithm of [10] queries at each iteration an
(1 + €)-median for the potential function @, then at least 2(\/n) queries are
required to detect the target t in a graph G with n vertices, even if the graph
G is a tree.

Proof We will construct a graph G = (V, E) with n vertices such that 2(y/n)
queries are needed to locate the target. The graph G will be a tree with a
unique vertex of degree greater than 2, i.e. G is a tree that resembles the
structure of a star. Formally, G consists of /n paths of length /n each,
where all these paths have a vertex vy as a common endpoint. Let P, =
(V0, Vi1, V2, -, V; m_1,V; /) be the ith path of G. For every i < /n denote
by Qi = {viz2,vi3,..., Ui7\/ﬁ} be the set of vertices of P; without vy and v; 1.
Furthermore, for every k € {0,1,...,1/n} define V_ =V \ (U; ;< Qi) to be
the set of vertices left in the graph by keeping only the first edge from each
path P;, where ¢ < k. Note by definition that V_q = V.

Having constructed the graph G we are now ready to prove the theorem.
The target will be the vertex vyg. The main idea for the proof is as follows.

O©CO~NOOOTA~AWNPE

Binary Search in Graphs Revisited 9

At every iteration the central vertex vy and all its neighbors, who have not
yet been queried, are (1 4 ¢)-medians, while vy is the exact median for the
potential @ of [10]. For every k € {0,1,...,+/n} we have

\/ﬁ
Dy, (vo) =k+ (Vn—k)) j

j=1
=k 5V~ B)(n+ V). (1)

Next we compute @y, (vp,1) for every p > k. Note that d(vp,1,v;,1) = 2 for

every ¢ < k, and thus Ele d(vp,1,vi1) = 2k. Furthermore, for the vertices on
the path P, we have

v n—1

i
Zd(vpyla”p-,i) = Z i =

1=2 1=

(n—+/n).

,_.
N =

Finally, for the remaining of the vertices in V_j (denote them by R) we
have

Vn+1
S dwpau) =1+ (Vn—k—-1)- > j
ueER j=2

:1+%(\/_—k—1)(n+3\/ﬁ).

Therefore, it follows that

By (pa) =2+ 50— V) + 1+ 5(VA— k=D +3vA). (2)

Now note that, due to symmetry, vy is the exact median of the vertex set
V' (with respect to the potential @ of [10]), that is, Py (vo) = mingev{Pyv ()}.
Furthermore note by (1) and (2) that @y _, (vp1) > Pv_, (vo) for every k < y/n.
Moreover, due to symmetry this monotonicity of @y, (-) is extended to all
vertices vp 2, Up3, - - -, Uy /m, that is, v, (vp ;) > Pv_, (vo) for every 1 < j <
v/n. Therefore vy remains the exact median of each of the vertex sets V_y,
where 0 < k < /n.

Let € > 0. Then (1) and (2) imply that &y, (vp1) < (1 +¢€)Py_, (vg) for
every k < y/n and for large enough n. Now assume that the algorithm of [10]
queries always an (1 + €)-median of the candidates’ set S, where initially
S = V. Then the algorithm may query always a different neighbor of vy. Due
to symmetry, we may assume without loss of generality that the algorithm
queries the vertices v1,1,v2,1, ... U in this order. Note that these vertices
are (1+¢)-medians of the candidates’ sets V_o, V_1,..., V_(m_1), respectively.
Therefore the algorithm makes at least \/n queries, where the total number of
vertices in the graph is n — /n + 1. 0

O©CO~NOOOTA~AWNPE

10 Argyrios Deligkas et al.

2.3 Upper Bound for querying the Approximate Median

In this section we introduce a new potential function I's : V' — N for every S C
V', which overcomes the problem occured in Section 2.2. This new potential
guarantees efficient detection of ¢ in at most O(logn) queries, even when we
always query an (1 + ¢)-median of the current candidates’ set .S (with respect
to the new potential I'), for any constant 0 < e < 1. Our algorithm is based
on the approach of [10], however we now query an approximate median of the
current set S with respect to I' (instead of an exact median with respect to @
of [10]).

Definition 4 (Potential I') Let S C V and v € V. Then I's(v) =
max{|N(v,u)NS|:ue N}

Theorem 5 Let 0 < e < 1. There exists an efficient adaptive algorithm which
detects the target t in at most % queries, by querying at each iteration
an (1 + €)-median for the potential function I.

Proof Our proof closely follows the proof of Theorem 3 of [10]. Let S C V
be an arbitrary set of vertices of G such that t € S. We will show that there
exists a vertex v € V such that I's(v) < ‘—‘;‘ First recall the potential ®g(v) =
> wesd(v,z). Let now vy € V be a vertex such that ®5(vg) is minimized,
ie. Pg(vg) < Pg(v) for every v € V. Let u € N(vg) be an arbitrary vertex
adjacent to vg. We will prove that |N (v, u)NS| < ‘—g‘ Denote St = N (vg, u)N
S and S~ = S\ ST. By definition, for every x € ST, the edge vou lies on a
shortest path from vy to z, and thus d(u,x) = d(vg,z) — w(vou). On the
other hand, trivially d(u,z) < d(vg,z) + w(vou) for every x € S, and thus in
particular for every x € S~. Therefore $g(vg) < Ps(u) < Pg(vo) + (|S7| —
|ST]) - w(vou), and thus |ST| < |S~|. That is, |N(vg,u) N S| = |ST| < Izﬂ,
since S~ = S\ ST. Therefore which then implies that I's(vy) < |2ﬂ as the
choice of the vertex u € N(uvp) is arbitrary.

Let v, € V be an exact median of S with respect to I'. That is, I's(vy,) <
I's(v) for every v € V. Note that I's(vp,) < I's(vg) < @ Now let 0 <e <1
and let v, € V be an (1+4¢)-median of S with respect to I'. Then I's(v,) < (1+
e) s (vm) < HE|S|. Our adaptive algorithm proceeds as follows. Similarly to
the algorithm of [10] (see Theorem 3 of [10]), our adaptive algorithm maintains
a candidates’ set S, where initially S = V. At every iteration our algorithm
queries an arbitrary (1 + €)-median v, € V of the current set S with respect
to the potential I'. Let u € N(v,,) be the vertex returned by this query; the
algorithm updates S with the set N(v,u) N S. Since I's(v,) < 1E£|S| as we
proved above, it follows that the updated candidates’ set has cardinality at
most 11£|S|. Thus, since initially |S| = n, our algorithm detects the target ¢

after at most log(i) n=

) queries. a
1+e¢

logn
1—log(1+e

Notice in the statement of Theorem 5 that for e = 0 (i.e. when we always
query an exact median) we get an upper bound of log n queries, as in this case

O©CO~NOOOTA~AWNPE

Binary Search in Graphs Revisited 11

the size of the candidates’ set decreases by a factor of at least 2. Furthermore
notice that the reason that the algorithm of [10] is not query-efficient when
querying an (1 + €)-median is that the potential @g(v) of [10] can become
quadratic in |S|, while on the other hand the value of our potential I's(v) can
be at most |S| by Definition 4, for every S C V and every v € V. Further-
more notice that, knowing only the value @s(v) for some vertex v € V is not
sufficient to provide a guarantee for the proportional reduction of the set S
when querying v. In contrast, just knowing the value I's(v) directly provides a
guarantee that, if we query vertex v the set S will be reduced by a proportion

of F|ST(|U)’ regardless of the response of the query. Therefore, in practical appli-

cations, we may not need to necessarily compute an (exact or approximate)
median of S to make significant progress.

3 Detecting Two Targets

In this section we consider the case where there are two unknown targets t;
and tg, i.e. T = {t1,t2}. In this case the direction query at vertex v returns
with probability p; (resp. with probability po = 1 — p1) a neighbor u € N(v)
such that ¢; € N(v,u) (resp. t2 € N(v,u)). Detecting more than one unknown
targets has been raised as an open question by Emamjomeh-Zadeh et al. [10],
while to the best of our knowledge no progress has been made so far in this
direction. Here we deal with both problems of detecting at least one of the
targets and detecting both targets. We study several different settings and
derive both positive and negative results for them. Each setting differs from
the other ones on the “freedom” the adversary has on responding to queries,
or on the power of the queries themselves. We will say that the response to a
query directs to t;, where i € {1,2}, if the vertex returned by the query lies
on a shortest path between the queried vertex and ;.

It is worth mentioning here that, if an adversary would be free to arbitrarily
choose which ¢; each query directs to (i.e. instead of directing to ¢; with prob-
ability p;), then any algorithm would require at least | %] (resp. n —2) queries
to detect at least one of the targets (resp. both targets), even when the graph

is a path. Indeed, consider a path vy,...,v, where t; € {vy,... ,’UL%J} and
ty € {UL%JH, ..., Un}. Then, for every i € {1,...,[5]}, the query at v; would
return v; 1, i.e. it would direct to t». Similarly, for every i € {| %] +1,...,n},

the query at v; would return v;_1, i.e. it would direct to ¢;. It is not hard
to verify that in this case the adversary could “hide” the target ¢; at any of
the first [5] vertices which is not queried by the algorithm and the target t,
on any of the last n — | %] vertices which is not queried. Hence, at least | %]
queries (resp. n — 2 queries) would be required to detect one of the targets
(resp. both targets) in the worst case.

As a warm-up, we provide in the next theorem an efficient algorithm that
detects with high probability both targets in a tree using O(log2 n) queries.

O©CO~NOOOTA~AWNPE

12 Argyrios Deligkas et al.

Theorem 6 For any constant 0 < p1 < 1, we can detect with probability at
least (1 - loi"

2
) both targets in a tree with n vertices using O(log2 n) queries.

Proof Let G = (V,E) be a tree on n vertices and let T = {¢1,t2} be the
two targets. The algorithm runs in two phases. In each phase it maintains a
candidates’ set S C V such that, with high probability, S contains at least
one of the yet undiscovered targets. At the beginning of each phase S = V.
Let without loss of generality p; > po. Furthermore let o = —ﬁ; note that
a>1.

The first phase of the algorithm proceeds in logn iterations, as follows. At
the beginning of the ith iteration, where 1 < i < logn, the candidates’ set is
S;; note that S; = V at the beginning of the first iteration. Let v; be a median
of S; (with respect to the potential I" of Section 2.3). In the first iteration we
query the median vy of V' once; let u; be the response of this query. Then we
know that one of the two targets belongs to the set N (v, u1), thus we compute
the updated candidates’ set So = N(v1,u1). Furthermore, since v; was chosen
to be a median of S, it follows that |Sa| < ls—;‘ = 3.

For each i > 2, the ith iteration proceeds as follows. We query the median
v; of the set S; for avlogn times. First assume that at least one of these alogn
queries at v; directs to a subtree of v; (within S;) that does not contain the
first median vy of S; =V, and let u} be the response of that query. Then we
know that the subtree of v; (within S;) which is rooted at u} contains at least
one of the targets that belong to S;. Thus we compute the updated candidates’
set Si+1 = Sl n N(’Ui, u;), where again |Si+1| < %

Now assume that all of the alogn queries at v; direct to the subtree of
v; that contains the median vy of the initial candidates’ set S; = V. Let
u} be the (unique) neighbor of v; in that subtree, that is, all alogn queries
at v; return the vertex u. Then we compute the updated candidates’ set
Sit1 = S; N N(v;,ul), where again |S;11]| < IS;‘. In this case, the probability
that at least one of the targets of .S; does not belong to the subtree of v; (within
S;) which is rooted at v is upper bounded by the probability p'**™ that each
of the alogn queries at v; directs to a target that does not belong to S;. That
is, with probability at least 1 — p{' 108 "4t least one of the targets of S; (which
we are looking for) belongs to the subtree of v; (within S;) rooted at u}. Since
at each iteration the size of the candidates’ set decreases by a factor of 2, it
follows that |Siogrn| = 1. The probability that at each of the logn iterations
we maintained a target from the previous candidates’ set to the next one is

alogn logn_ 1\logn logn y . .
at least (1 —p; = (1 — 5) > 1 — == by Bernoulli’s inequality.

That is, with probability at least 1 — lo% we detect during the first phase one
of the two targets in logn iterations, i.e. in 0410g2 n queries in total.

Let ty be the target that we detected during the first phase. In the second
phase we are searching for the other target t;, € T'\ {¢o}. The second phase of
the algorithm proceeds again in log n iterations, as follows. Similarly to the first

phase, we maintain at the beginning of the ith iteration, where 1 <17 <logmn,

O©CO~NOOOTA~AWNPE

Binary Search in Graphs Revisited 13

a candidates’ set S; with median v;, where S; = V at the beginning of the
first iteration.

For each ¢ > 1, in the ith iteration of the second phase we query alogn
times the median v; of the set S;. First assume that at least one of these alogn
queries at v; directs to a subtree of v; (within S;) that does not contain the
target to that we detected in the first phase, and let u} be the response of
that query. Then we can conclude that the other target t{, belongs to the set
N (v;, u}), thus we compute the updated candidates’ set S;+1 = S; NN (v;,u}),
where |Si+1| S ‘b;'

Now assume that all of the alogn queries at v; direct to the subtree of
v; that contains the target ¢o. Let u be the (unique) neighbor of v; in that
subtree, that is, all awlogn queries at v; return the vertex). Then we compute
the updated candidates’ set S;11 = S; N N(v;,u)), where again |S;11] < ‘52”.
In this case, the probability that the undiscovered target t{, does not belong
to the subtree of v; (within S;) which is rooted at u} is upper bounded by

alogn

the probability p; that each of the alogn queries at v; directs to tg.
That is, with probability at least 1 — p{ 8™ " the target t) belongs to the
subtree of v; (within S;) rooted at u. Since at each iteration the size of the
candidates’ set decreases by a factor of at least 2, it follows that |Siegrn| = 1.

The probability that at each of the logn iterations we maintained the target
logn
ty in the candidates’ set is at least (1 -7 log") > 118" That is, with

probability at least 1 — loen we detect in alog?n queries during the second

phase the second target t(, given that we detected the other target to in the
first phase.

2
Summarizing, with probability at least (1 — 1"%) we detect both targets

in 2alog?® n queries. a

Since in a tree both targets ¢1,f2 can be detected with high probability
in O(log®n) queries by Theorem 6, we consider in the remainder of the sec-
tion arbitrary graphs instead of trees. First we consider in Section 3.1 biased
queries, i.e. queries with p; > % Second we consider in Section 3.2 unbiased
queries, i.e. queries with p; = py = %

3.1 Upper Bounds for Biased Queries

In this section we consider biased queries which direct to ¢; with probability
p1 > % and to to with probability po =1 —p; < % As we can detect in this
case the first target ¢; with high probability in O(logn) queries by using the
“noisy” framework of [10], our aim becomes to detect the second target t5 with
the fewest possible queries, once we have already detected ¢.

For every vertex v and every i € {1,2}, denote by E, (v) = {u € N(v) :
t; € N(v,u)} the set of neighbors of v such that the edge uv lies on a shortest
path from v to t;. Note that the sets Fy, (v) and Ey, (v) can be computed in

O©CO~NOOOTA~AWNPE

14 Argyrios Deligkas et al.

polynomial time, e.g. using Dijkstra’s algorithm. We assume that, once a query
at vertex v has chosen which target ¢; it directs to, it returns each vertex of
E,, (v) equiprobably and independently from all other queries. Therefore, each
of the vertices of E}, (v)\ Ft,(v) is returned by the query at v with probability

|Epﬁ’ each vertex of Ey, (v)\ Ft, (v) is returned with probability ﬁ, and
tq (U to (U

each vertex of Fy, (v)NEy, (v) is returned with probability W:DW + %. We
1 2
will show in Theorem 8 that, under these assumptions, we detect the second

target t, with high probability in O(Alog? n) queries where A is the maximum
degree of the graph.

The high level description of our algorithm (Algorithm 1) is as follows.
Throughout the algorithm we maintain a candidates’ set S of vertices in which
to belongs with high probability. Initially S = V. In each iteration we first
compute an (exact or approximate) median v of S with respect to the potential
I' (see Section 2.3). Then we compute the set E, (v) (this can be done as

t; has already been detected) and we query cAlogn times vertex v, where

2
c= % is a constant. Denote by Q(v) the multiset of size cAlogn that

contains the vertices returned by these queries at v. If at least one of these
O(Alogn) queries at v returns a vertex u ¢ Fy, (v), then we can conclude that
u € Ey, (v), and thus we update the set S by SNN (v, u). Assume otherwise that
all O(Alogn) queries at v return vertices of E;, (v). Then we pick a vertex ug €
N (v) that has been returned most frequently among the O(Alogn) queries at
v, and we update the set S by SN N(v,ug). As it turns out, ug € Ey, (v) with
high probability. Since we always query an (exact or approximate) median v
of the current candidates’ set S with respect to the potential I', the size of
S decreases by a constant factor each time. Therefore, after O(logn) updates
we obtain |S| = 1. It turns out that, with high probability, each update of
the candidates’ set was correct, i.e. S = {t2}. Since for each update of S we
perform O(Alogn) queries, we detect t, with high probability in O(Alog?n)
queries in total.

Algorithm 1 Given t;, detect t, with high probability with O(Alog®n)
queries

p1(1—p1)2
2: while |S| > 1 do
3: Compute an (approximate) median v of S with respect to potential I'; Compute
By, (v)

4 Query cAlogn times vertex v; Compute the multiset Q(v) of these query responses
5 if Q(v) \ E¢, (v) # 0 then

6: Pick a vertex u € Q(v) \ Et, (v) and set S <— SN N(v,u)

7 else

8 Pick a most frequent vertex u € Q(v) and set S < SN N(v,u)

9:

return the unique vertex in S

O©CO~NOOOTA~AWNPE

Binary Search in Graphs Revisited 15

Recall that every query at v returns a vertex u € Ey, (v) with probability
p1 and a vertex u € Ey, (v) with probability 1 — p;. Therefore, for every v € V
the multiset Q(v) contains at least one vertex u € Ey, (v) with probability at
least 1 — pllQ(v)‘ 1-— lCA gl 1) the next lemma we prove that, every time
we update S using Step 8, the updated set contains t5 with high probability.

Lemma 7 Let S CV such that to € S and let S’ = SNN (v, u) be the updated
set at Step 8 of Algorithm 1. Then to € S with probability at least 1 — %

Proof Let § = p L and ¢ = % be two constants. Recall that each of

the vertices of Etl()\ FEt,(v) is returned by the query at v with probability
each vertex of Ey, (v)\ Et, (v) is returned with probability I,El_ﬁ and

p1
[Eey (0)]°
each vertex of E;, (v) N E,(v) is returned with probability IE (v)l + IErQ(v)\
Observe that these probabilities are the expected frequencies for these vertices
in Q(v). Recall that Step 8 is executed only in the case where Q(v) C Et, (v).
To prove the lemma it suffices to show that, whenever Q(v) C Ey, (v), the most
frequent element of Q(v) belongs to E:, (v) N Et, (v) with high probability.

First note that, for the chosen value of ¢,

P1 P1 I—m

005 <09 (& *) ?)

Let u € Ey, (v) \ E,(v), i.e. the query at v directs to ¢; but not to ¢,.

We define the random variable Z;(u), such that Z;(u) = 1 if u is returned

by the i-th query at v and Z;(u) = 0 otherwise Furthermore define Z(u) =

S22 Zi(u). Since Pr(Zi(u) = 1) = ‘E s it follows that E(Z(u)) =

cAlog nlEth by the linearity of expectation. Then, using Chernoff’s bounds
it follows that

PMMEOMWWWK&%ng mmo

3 | Bt (v)]
2 (1+p1)?
< exp <—25 mlog)
= exp (—2logn)
1
=3 (4)

Thus (4) implies that the probability that there exists at least one u €
E;, (v) \ Ey, (v) such that Z(u) > (1 4+ 6)E(Z(u)) is

)<m-u%<l.@

n

Pr (3u € Ey,(W)\ B, (v) : Z(u) > (1+9)
|Et1()|

Now let w' € E, (v) N By, (v). Similarly to the above we define the random
variable Z!(u’), such that Z!(u') = 1 if u' is returned by the i-th query at v
and Z!(u') = 0 otherwise. Furthermore define Z'(u') = S372/°8™ Z!(u/). Since

O©CO~NOOOTA~AWNPE

16 Argyrios Deligkas et al.
Pr(Z/(u') = 1) = =z + =2 by the linearity of expectation it follows
i [Eiy)] T [Biy (v)]
that E(Z(u)) = cAlogn (ﬁ + %) Then we obtain similarly to (4)
ty (U to (U
that

Pr(Z'(v) < (1 - 8)E(Z' (u))) < exp (—% <|Etpl(v)| + |}Et_(l;l)|) cA logn>

2
< exp (—352(14_71)1)2 log n>

pi(l —p1)
< exp (—3logn)
1
<3 (6)

Thus, it follows by the union bound and by (3), (5), and (6) that

Pr(Ju € By, (v) \ B, (v) : Z(u) > Z'(v)) < (7)

That is, the most frequent element of Q(v) belongs to Fy, (v) N Ey, (v) with
probability at least 1 — % This completes the proof of the lemma. a

Sl

With Lemma 7 in hand we can now prove the main theorem of the section.

Theorem 8 Giventy, Algorithm 1 detectsts in O(A log2 n) queries with prob-
ability at least (1 — %)O(log n)

Proof Since we query at each iteration an (1 + ¢)-median for the potential
function I, recall by Theorem 5 that after at most % = O(logn) it-
erations we will obtain |S| = 1. Furthermore, in every iteration the algorithm
queries cAlogn times the (1 + ¢)-median of the current set, and thus the al-
gorithm makes O(Alog?n) queries in total. Whenever the algorithm updates
S in Step 6 the target t5 belongs to the updated set with probability 1. More-
over, whenever the algorithm updates S in Step 8, Lemma 7 implies that the
target t2 belongs to the updated set with probability at least (1 — %) Thus,
the probability all the O(logn) updates of S were correct, i.e. t2 belongs to S
after each of the O(logn) updates, is at least (1 — %)O(log 2 O

Note by Theorem 8 that, whenever A = O(polylogn) we can detect both
targets ¢1 and te in O(polylogn) queries. However, for graphs with larger
maximum degree A, the value of the maximum degree dominates any poly-
logarithmic factor in the number of queries. The intuitive reason behind this
is that, for an (exact or approximate) median v of the current set S, whenever
deg(v) and E, (v) are large and E, (v) C E, (v), we can not discriminate with
a polylogarithmic number of queries between the vertices of Ey,(v) and the
vertices of Fy, (v) \ By, (v) with large enough probability. Although this argu-
ment does not give any lower bound for the number of queries in the general
case (i.e. when A is unbounded), it seems that more informative queries are
needed to detect both targets with polylogarithmic queries in general graphs.
We explore such more informative queries in Section 4.

O©CO~NOOOTA~AWNPE

Binary Search in Graphs Revisited 17

3.2 Lower Bounds for Unbiased Queries

In this section we consider unbiased queries, i.e. queries which direct to each
of the targets t1,ty with equal probability p1 = ps = % In this setting every
query is indifferent between the two targets, and thus the “noisy” framework
of [10] cannot be applied for detecting any of the two targets. In particular we
prove in the next theorem that any deterministic (possibly adaptive) algorithm
needs at least § — 1 queries to detect one of the two targets.

Theorem 9 Let p1 = pa = % Then any deterministic (possibly adaptive)
algorithm needs at least 5 — 1 queries to detect one of the two targets, even in
an unweighted cycle.

Proof Let G be the unweighted cycle with n = 2k vertices vg, v1, . . ., v2x—1. For
simplicity denote v; = v; mod 2k for every @ € Z. The targets ¢; and ¢4 are placed
by the adversary on two anti-diametrical vertices of the cycle, i.e. t; = v; and
to = viyk, for somei € {0,1,...,2k—1}. Thus, for any vertex v, ¢ {t1,t2}, the
unbiased query at v, returns v,_1 with probability % and v, with probability
%. That is, for each vertex v, ¢ {t1,t2} the response of the query at v, is
exactly the same. Let A be a deterministic algorithm that queries at most k—2
different vertices. Then there exist at least two pairs {v;, viyx} and {vj,vj4r}
of anti-diametrical vertices such that none of these vertices is queried by the
algorithm. Then the adversary can place the two targets either at the vertices
{vi,vitx} or at the vertices {vj,vj1x}, without affecting the validity of the
previous answers. Thus the algorithm A needs to query at least k —1 =5 —1
different vertices to detect a target. a

In the next theorem we generalize the lower bound of Theorem 9 to the
case of 2¢ > 2 different targets T = {t1,ta,...,t2.} and the query to any
vertex v ¢ T is unbiased, i.e. p; = % for every i € {1,2,...,2¢c}.

Theorem 10 Suppose that there are 2¢ targets in the graph and let p; = % for
every i € {1,2,...,2c}. Then, any deterministic (possibly adaptive) algorithm
requires at least 5 —c queries to locate at least one target, even in an unweighted
cycle.

Proof Our proof is similar to that of Theorem 9. Let T = {¢1,t2,...,t2.} be
the set of targets. Again, let G be the unweighted cycle with n = 2k vertices
Vo, V1, ..,U25—1. For each i € {1,2,..., ¢} the targets {¢;,t;1.} are placed by
the adversary on two anti-diametrical vertices of the cycle, i.e. t; = v; and
tite = Vj4, for some j € {0,1,...,2k — 1}. Thus, for any vertex v, ¢ T, the
unbiased query at v, returns v,_; with probability % and v,1 with probability
%. That is, for each vertex v, ¢ T the response of the query at v, is exactly
the same (similarly to Theorem 9). Let A be a deterministic algorithm that
queries at most k —c— 1 different vertices. Then there exist at least ¢+ 1 pairs
{Viy, Viy 4k by {Vins Vig+k }s - -, {Vis, Vioti } Of anti-diametrical vertices such that
none of these vertices is queried by the algorithm. Then the adversary can

O©CO~NOOOTA~AWNPE

18 Argyrios Deligkas et al.

place the 2c¢ targets any c of these ¢ + 1 pairs of anti-diametrical vertices,
without affecting the validity of the previous answers. Thus the algorithm A
n

needs to query at least k — ¢ = 5 — c different vertices to detect a target. O

4 More Informative Queries for Two Targets

A natural alternative to obtain query-efficient algorithms for multiple targets,
instead of restricting the maximum degree A of the graph (see Section 3.1), is
to consider queries that provide more informative responses in general graphs.
As we have already observed in Section 3.1, it is not clear whether it is possible
to detect multiple targets with O(polylogn) direction queries in an arbitrary
graph. In this section we investigate natural variations and extensions of the
direction query for multiple targets which we studied in Section 3.

4.1 Direction-Distance Biased Queries

In this section we strengthen the direction query in a way that it also returns
the value of the distance between the queried vertex and one of the targets.
More formally, a direction-distance query at vertex v € V returns with proba-
bility p; a pair (u,£), where u € N(v) such that ¢; € N(u,v) and d(v,t;) = ¢.
Note that here we impose again that all p;’s are constant and that Zgll p; =1,
where T' = {t1,t2,..., 7|} is the set of targets. We will say that the response
(u, £) to a direction-distance query at vertex v directs to t; if t; € N(v,u) and
¢ = d(v,t;). Similarly to our assumptions on the direction query, whenever
there exist more than one such vertices u € N(v) leading to ¢; via a shortest
path, the direction-distance query returns an arbitrary vertex v among them
(possibly chosen adversarially). Moreover, if the queried vertex v is equal to
one of the targets ¢; € T, this is revealed by the query with probability p;.
These direction-distance queries have also been used in [10] for detecting one
single target in directed graphs.

Here we consider the case of two targets and biased queries, i.e. T = {t1,t2}
where p; > po. Similarly to Section 3.1, initially we can detect the first target
t; with high probability in O(logn) queries using the “noisy” model of [10].
Thus, in what follows we assume that ¢; has already been detected. We will
show that the second target to can be detected with high probability with
O(log3 n) additional direction-distance queries using Algorithm 2. The high
level description of our algorithm is the following. We maintain a candidates’
set S such that at every iteration to € S with high probability. Each time
we update the set S, its size decreases by a constant factor. Thus we need
to shrink the set S at most logn times. In order to shrink S one time, we
first compute an (1 + €)-median v of the current set S and we query logn
times this vertex v. Denote by Q(v) the set of all different responses of these
logn direction-distance queries at v. As it turns out, the responses in Q(v)
might not always be enough to shrink S such that it still contains to with

O©CO~NOOOTA~AWNPE

Binary Search in Graphs Revisited 19

high probability. For this reason we also query logn times each of the logn
neighbors u € N (v), such that (u, £) € Q(v) for some £ € N. After these log” n
queries at v and its neighbors, we can safely shrink S by a constant factor,
thus detecting the target to with high probability in log® n queries.

For the description of our algorithm (see Algorithm 2) recall that, for every
vertex v, the set Ey, (v) = {u € N(v) : t; € N(v,u)} contains all neighbors of
v such that the edge uv lies on a shortest path from v to t;.

Algorithm 2 Given t;, detect t, with high probability with O(log®n)
direction-distance queries

1: S« V

2: while |S| > 1 do

3: Compute an (approximate) median v of S with respect to potential I'; Compute
Bty (v)

4: Query logn times vertex v; Compute the set Q(v) of different query responses

5: if there exists a pair (u,£) € Q(v) such that u ¢ Ey, (v) or £ # d(v,t1) then

6: S+ SNN(v,u)

7 else

8: for every (u,£) € Q(v) do

9: Query logn times vertex u; Compute the set Q(u) of different query responses

10: if for every (z,¢') € Q(u) we have ¢/ = £ — w(vu) then

11: S+ SN N(v,u); Goto line 2

12: return the unique vertex of S

In the next theorem we prove the correctness and the running time of
Algorithm 2.

Theorem 11 Given t;, Algorithm 2 detects ty in at most O(log®n) queries
with probability at least 1 — O (logn . pllog").

Proof Throughout its execution, Algorithm 2 maintains a vertex set S that
contains the second target to with high probability. Initially S = V. Let v be
an (1 + ¢)-median of the set S (with respect to the potential I" of Section 2.3)
at some iteration of the algorithm, and assume that to € S. We query logn
times vertex v; let Q(v) be the set of all different query responses. Since each
query directs to t; with probability p; and to t5 with probability ps, it follows
that lat least one of the queries at v directs to to with probability at least
1—ploen,

Consider a response-pair (u,f) € Q(v). If this query directs to 1, then
u € Ep, (v) and £ = d(v,t1). Hence, if we detect at least one response pair
(u,0) € Q(v) such that u ¢ Ey (v) or £ # d(v,t1), we can safely conclude
that this query directs to to (lines 5-6 of Algorithm 2). Therefore, in this case,
u € Ey,(v) = {u € N(w) : t2 € N(v,u)}, and thus we safely compute the
updated set SN N(v,u) at line 6.

Assume now that u € FE; (v) and ¢ = d(v,t;) for every response-pair
(u,£) € Q(v) (see lines 8-11 of the algorithm). Then every query at v directs

O©CO~NOOOTA~AWNPE

20 Argyrios Deligkas et al.

to t1. However, as we proved above, at least one of these queries (u,£) € Q(v)
also directs to ty (i.e. u € Ey,(v)) with probability at least 1 — p!°*™. Therefore
¢ = d(v,t1) = d(v,t2) with probability at least 1 — pllog". Note that, in this
case, we can not use only the response-pairs of Q(v) to distinguish which query
directs to to.

In our attempt to detect at least one vertex u € E,(v), we query logn
times each of vertices u such that (u,¢) € Q(v). For each such vertex u denote
by Q(u) the set of all different response-pairs from these logn queries at w.
Similarly to the above, at least one of these logn queries at u directs to to with
probability at least 1 — p'°2™. Recall that d(v,t5) = £ and let (z,£) € Q(u).
If w € Ey,(v) then d(u,tz) = € — w(vu), otherwise d(u,t2) > ¢ — w(vu).
Furthermore note that d(u,t;) = £ — w(vu), since u € Ey, (v). Therefore, if we
detect at least one response-pair (z,¢') € Q(u) such that ¢/ > £ — w(vu), then
we can safely conclude that u ¢ Fy,(v). Otherwise, if for every response-pair
(2,£") € Q(u) we have that ¢/ = ¢ — w(vu), then u € Ey, (v) (i.e. t2 € N(v,u))
with probability at least 1 — pll"g".

Recall that there exists at least one query at v that directs to to with
probability at least 1 — pllog", as we proved above. That is, among all response-
pairs (u, £) € Q(v) there exists at least one vertex u € Ey, (v) with probability

at least 1—p'°* ™. Therefore, we will correctly detect a vertex u € Ey, (v) at lines

2
10-11 of the algorithm with probability at least (1 - pllog") , i.e. with at least

this probability the updated candidates’ set at line 11 still contains t5. Thus,

since we shrink the candidates’ set % = O(logn) times, we eventually

detect ¢t as the unique vertex in the final candidates’ set with probability at
O(logn)

least (1 — plos™ > 1—0(logn-p'*®™) by Bernoulli’s inequality. Finally,

it is easy to verify from the above that the algorithm will terminate after at

logn

most O(log® n) queries with probability at least 1 — O(logn - p*¢™). O

4.2 Vertex-Direction and Edge-Direction Biased Queries

An alternative natural variation of the direction query is to query an edge
instead of querying a vertex. More specifically, the direction query (as defined
in Section 1.2) queries a vertex v € V and returns with probability p; a
neighbor u € N (v) such that ¢; € N(u,v). Thus, as this query always queries a
vertex, it can be also referred to as a vertex-direction query. Now we define the
edge-direction query as follows: it queries an ordered pair of adjacent vertices
(v,u) and it returns with probability p; YES (resp. NO) if ¢; € N(v,u) (resp. if
t; ¢ N(v,u)). Similarly to our notation in the case of vertex-direction queries,
we will say that the response YES (resp. NO) to an edge-direction query at the
vertex pair (v,u) refers to t; if t; € N(v,u) (resp. if ¢; ¢ N(v,w)). Similar
but different edge queries for detecting one single target on trees have been
investigated in [10, 13,21, 26].

O©CO~NOOOTA~AWNPE

Binary Search in Graphs Revisited 21

Here we consider the case where both vertex-direction and edge-direction
queries are available to the algorithm, and we focus again to the case of two
targets and biased queries, i.e. T = {t1,t2} where p; > po. Similarly to Sec-
tions 3.1 and 4.1, we initially detect ¢; with high probability in O(log n) vertex-
direction queries using the “noisy” model of [10]. Thus, in the following we as-
sume that ¢; has already been detected. We will show that Algorithm 3 detects
the second target ¢, with high probability using O(log?n) additional vertex-
direction queries and O(log®n) edge-direction queries, i.e. in total O(log®n)
queries.

Algorithm 3 Given t1, detect t, with high probability with O(log® n) vertex-
direction and edge-direction queries
1: S« V

2: while |S| > 1 do

3: Compute an (approximate) median v of S with respect to potential I'; Compute
By (v)

4: Apply logn vertex-direction queries at vertex v; Compute the set Q(v) of different
query responses

5: if there exists a vertex u € Q(v) such that u ¢ Et, (v) then

6: S+ SNN(v,u)

7. else

8: for every u € Q(v) do

9: Apply log n edge-direction queries at (v, u); Compute the set Q (v, u) of different
query responses

10: if Q(v,u) = {YES} then

11: S+ SN N(v,u); Goto line 2

12: return the unique vertex of S

In the next theorem we prove the correctness and the running time of
Algorithm 3.

Theorem 12 Given ty, Algorithm 3 detects to in at most O(log®n) vertex-
direction queries and O(log3 n) edge—direction queries with probability at least
1—O(logn - pio&™).

Proof The proof follows a similar approach as the proof of Theorem 11. Through-
out its execution, Algorithm 3 maintains a vertex set S that contains the sec-
ond target to with high probability. Initially S = V. Let v be an (1+¢)-median
of the set S (with respect to the potential I of Section 2.3) at some iteration
of the algorithm, and assume that to € S. We query logn times vertex v; let
Q(v) be the set of all different query responses. Similarly to the analysis of
Algorithm 2 in the proof of Theorem 11, at least one of the queries at v directs
to ¢, with probability at least 1 — p\°8".

Consider a response-vertex u € Q(v). If this query directs to t1, then
u € Ey, (v). Hence, if we detect at least one u € Q(v) such that u ¢ Ey, (v),
we can safely conclude that this query directs to t (lines 5-6 of Algorithm 3).
Therefore, in this case, u € Fy,(v) = {u € N(v) : t2 € N(v,u)}, and thus we
safely compute the updated set SN N (v, u) at line 6.

O©CO~NOOOTA~AWNPE

22 Argyrios Deligkas et al.

Assume now that u € E¢, (v) for every response u € Q(v) (see lines 8-11
of the algorithm). Then every query at v directs to ¢, although at least one
of them also directs to o (i.e. Q(v) N Ey,(v) # 0) with probability at least
1— pllog", as we proved above. Note that, in this case, we can not use only the
vertices of Q(v) to distinguish which query directs to t.

In our attempt to detect at least one vertex u € Ey,(v), we apply logn
edge-direction queries at each of the ordered pairs (v, u), where u € Q(v). For
each such pair (v, u) denote by Q(v,u) the set of all different YES/NO responses
from these logn queries at (v,w). Similarly to the above, at least one of these
logn queries at (v, u) refers to to with probability at least 1 —p11°g". Therefore,
if NOe Q(v,u), then we can safely conclude that u ¢ E,(v). Otherwise, if

Q(v,u) = {YES}, then u € E},(v) (i.e. t2 € N(v,u)) with probability at least

1 poen
Recall that there exists at least one query at v that directs to to with
probability at least 1 — pllog". That is, among all responses in Q(v) there exists

logn

at least one vertex u € Ey,(v) with probability at least 1 — p;°* ™. Therefore,
we will correctly detect a vertex u € E,(v) at lines 10-11 of the algorithm

1 logn

2
with probability at least (-) , i.e. with at least this probability the

updated candidates’ set at line 11 still contains to. Thus, similarly to the
proof of Theorem 11, we eventually detect t2 as the unique vertex in the final
candidates’ set with probability at least 1—O(logn-p°¢™). Finally, it is easy to
verify from the above that the algorithm will terminate after at most O(log? n)
vertex-direction queries and log® n edge—direction queries with probability at

least 1 — O(logn - p=™). 0

4.3 Two-Direction Queries

In this section we consider another variation of the direction query that was
defined in Section 1.2 (or “vertex-direction query” in the terminology of Sec-
tion 4.2), which we call two-direction query. Formally, a two-direction query at
vertex v returns an unordered pair of (not necessarily distinct) vertices {u, u'}
such that t7 € N(v,u) and t2 € N(v,u'). Note here that, as {u,u’} is an
unordered pair, the response of the two-direction query does not clarify which
of the two targets belongs to N(v,u) and which to N(v,u’).

Although this type of query may seem at first to be more informative than
the standard direction query studied in Section 3, we show that this is not
the case. Intuitively, this type of query resembles the unbiased direction query
of Section 3.2. To see this, consider e.g. the unweighted cycle where the two
targets are placed at two anti-diametrical vertices; then, applying many times
the unbiased direction query of Section 3.2 at any specific vertex v reveals with
high probability the same information as applying a single two-direction query
at v. Based on this intuition the next theorem can be proved with exactly the
same arguments as Theorem 9 of Section 3.2.

O©CO~NOOOTA~AWNPE

Binary Search in Graphs Revisited 23

Theorem 13 Any deterministic (possibly adaptive) algorithm needs at least
5 — 1 two-direction queries to detect one of the two targets, even in an un-
weighted cycle.

4.4 Restricted Set Queries

The last type of queries we consider is when the query is applied not only to
a vertex v of the graph, but also to a subset S C V of the vertices, and the
response of the query is a vertex u € N(v) such that t € N(v,u) for at least
one of the targets ¢ that belong to the set S. Formally, let T be the set of
targets. The restricted-set query at the pair (v,S), where v € V and S CV
such that TN S # (), returns a vertex u € N(v) such that ¢ € N(v,u) for
at least one target t € TN S. If there exist multiple such vertices u € N(v),
the query returns one of them adversarially. Finally, if we query a pair (v, S)
such that TN S = (J, then the query returns adversarially an arbitrary vertex
u € N(v), regardless of whether the edge vu leads to a shortest path from v to
any target in 7. That is, the response of the query can be considered in this
case as “noise”.

In the next theorem we prove that this query is very powerful, as |T|-logn
restricted-set queries suffice to detect all targets of the set T

Theorem 14 Let T be the set of targets. There exists an adaptive determin-
istic algorithm that detects all targets of T with at most |T|-logn restricted-set
queries.

Proof To detect the first target we simply apply binary search on graphs. At
every iteration we maintain a candidates’ set S (initially S = V). We compute
a median v of S (with respect to the potential I" of Section 2.3) and we query
the pair (v, .S). If the response of the query at (v, S) is vertex u € N(v) then we
update the candidates’ set as S N N(v,u). We know that there is at least one
target in the updated set S and that the size of the candidates’ set decreased
by a factor of at least 2 (cf. Theorem 5). Thus, after at most log n restricted-set
queries we end up with a candidates’ set of size 1 that contains one target.
We repeat this procedure for another |T'| — 1 times to detect all remaining
targets of T',as follows. Assume that we have already detected the targets
ti,t2,...,t; € T. To detect the next target of T we initially set S = V \
{t1,t2,...,t;} and we apply the above procedure. Then, after at most logn
restricted-set queries we detect the next target ¢;11. Thus, after at most |T| -
log n restricted-set queries in total we detect all targets of T'. a

5 Conlusions
This paper resolves some of the open questions raised by Emamjomeh-Zadeh

et al. [10] and makes a first step towards understanding the query complexity
of detecting two targets on graphs. Our results provide evidence that different

O©CO~NOOOTA~AWNPE

24 Argyrios Deligkas et al.

types of queries can significantly change the difficulty of the problem and make
it from almost trivial impossible to solve.

There are several interesting avenues for future research both for detecting
one target and for detecting multiple targets. The potential I" we introduced
in this paper has several interesting properties that have not yet been fully
explored. As we mentioned in the paper, just knowing the value I's(v) for a
vertex v directly provides enough information to quantify the “progress” a
direction query can make by querying vertex v, without the need to know the
values I's(u) for any other vertex u # v. This property of I" may be exploited
to provide computationally more efficient algorithms for detecting one target;
an algorithm might only need to compute I's(v) for all vertices v lying within a
wisely chosen subset such that one of these vertices is an approximate median.
Of course, this approach cannot break the log n lower bound on the number of
queries needed to detect the target (e.g. in the path of n vertices), but it could
potentially improve the computational complexity of the detection algorithm.
Furthermore, the potential I" might be a useful tool for deriving an optimal
number of queries for classes of graphs other than trees, since every exact
median of I" separates the graph into roughly equal subgraphs.

For the setting where two, or more, targets need to be detected there is a
plethora of interesting questions. We believe that the most prominent one is to
derive lower bounds on the number of queries needed to detect both targets in
the biased setting. Preliminary results suggest a lower bound of logn loglogn
bound for a special type of algorithms. A general lower bound seems to re-
quire new techniques. Another interesting question is to decide whether there
exists an algorithm that detects both targets with a polylogarithmic number
of direction queries. Finally, an intriguing question is to find the minimal re-
quirements a query has to satisfy in order to detect even one target in the
unbiased setting.

References

1. Y. Ben-Asher, E. Farchi, and I. Newman. Optimal search in trees. SIAM J. Comput.,
28(6):2090-2102, 1999.

2. M. Ben-Or and A. Hassidim. The bayesian learner is optimal for noisy binary search (and
pretty good for quantum as well). In 49th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages
221-230, 2008.

3. L. Boczkowski, A. Korman, and Y. Rodeh. Searching on trees with noisy memory.
CoRR, abs/1611.01403, 2016.

4. R. Carmo, J. Donadelli, Y. Kohayakawa, and E. S. Laber. Searching in random partially
ordered sets. Theor. Comput. Sci., 321(1):41-57, 2004.

5. F. Cicalese, T. Jacobs, E. S. Laber, and M. Molinaro. On the complexity of searching in
trees and partially ordered structures. Theor. Comput. Sci., 412(50):6879-6896, 2011.

6. F. Cicalese, T. Jacobs, E. S. Laber, and C. D. Valentim. The binary identification
problem for weighted trees. Theor. Comput. Sci., 459:100-112, 2012.

7. D. Dereniowski. Edge ranking and searching in partial orders. Discrete Applied Math-
ematics, 156(13):2493-2500, 2008.

8. D. Dereniowski, A. Kosowski, P. Uznanski, and M. Zou. Approximation Strategies for
Generalized Binary Search in Weighted Trees. In 44th International Colloquium on

O©CO~NOOOTA~AWNPE

Binary Search in Graphs Revisited 25

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Automata, Languages, and Programming (ICALP 2017), volume 80 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 84:1-84:14, 2017.

D. Du and F. K. Hwang. Combinatorial Group Testing and its Applications. World
Scientific, Singapore, 1993.

E. Emamjomeh-Zadeh, D. Kempe, and V. Singhal. Deterministic and probabilistic
binary search in graphs. In Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages
519-532, 2016.

U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with noisy information.
SIAM J. Comput., 23(5):1001-1018, 1994.

E. Fonio, Y. Heyman, L. Boczkowski, A. Gelblum, A. Kosowski, A. Korman, and
O. Feinerman. A locally-blazed ant trail achieves efficient collective navigation despite
limited information. eLife, page 23 pages, 2016.

A. V. Iyer, H. D. Ratliff, and G. Vijayan. Optimal node ranking of trees. Inf. Process.
Lett., 28(5):225-229, 1988.

C. Jordan. Sur les assemblages de lignes. Journal f’ur die reine und angewandte
Mathematik, 70:195-190, 1869.

E. S. Laber, R. L. Milidii, and A. A. Pessoa. On binary searching with non-uniform
costs. In Proceedings of the Twelfth Annual Symposium on Discrete Algorithms, Jan-
uary 7-9, 2001, Washington, DC, USA., pages 855-864, 2001.

T. W. Lam and F. L. Yue. Edge ranking of graphs is hard. Discrete Applied Mathe-
matics, 85(1):71-86, 1998.

T. W. Lam and F. L. Yue. Optimal edge ranking of trees in linear time. Algorithmica,
30(1):12-33, 2001.

N. Linial and M. E. Saks. Searching ordered structures. J. Algorithms, 6(1):86-103,
1985.

S. Mozes, K. Onak, and O. Weimann. Finding an optimal tree searching strategy
in linear time. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20-22,
2008, pages 1096-1105, 2008.

N. J. Nilsson. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill Pub.
Co., 1971.

R. Nowak. Noisy generalized binary search. In Y. Bengio, D. Schuurmans, J. D. Lafferty,
C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing
Systems 22, pages 1366-1374. Curran Associates, Inc., 2009.

K. Onak and P. Parys. Generalization of binary search: Searching in trees and forest-
like partial orders. In 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings,
pages 379-388, 2006.

J. Pearl. Heuristics - intelligent search strategies for computer problem solving.
Addison-Wesley series in artificial intelligence. Addison-Wesley, 1984.

A. Pelc. Searching games with errors - fifty years of coping with liars. Theor. Comput.
Sci., 270(1-2):71-109, 2002.

A. Renyi. On a problem in information theory. Magyar Tud. Akad. Mat. Kutato Int.
Kozl, 6(B):505-516, 1961.

A. A. Sch”affer. Optimal node ranking of trees in linear time. Information Processing
Letters, 33(2):91-96, 1989.

S. Ulam. Adventures of a Mathematician. University of California Press, 1991.

