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Abstract 

 

 

This paper examines the concept of ‘risk loving’ (that is risk seeking, intemperance, edginess, 

etc.), which can be characterized by preferences over simple lotteries. This paper analyzes the 

notion of preferring to combine good with good, and bad with bad, as opposed to combining 

good with bad as usual. The significance of such preferences have implications on utility 

functions and  are analyzed in the paper. This paper extends Eeckhoudt and Schlesinger (2006) 

results to risk lovers, the results from Crainich, Eeckhoudt and Trannoy (2012) are also 

generalized to higher orders. We also generalize to higher orders the concept of bivariate risk 

seeking, introduced by Richard (1975) and called correlation loving by Epstein and Tanny 

(1980). In the expected utility framework, risk loving of order (𝑁, 𝑀) coincides with the non-

negativity of the (𝑁, 𝑀)𝑡ℎ partial derivative of the utility function. In dealing with mixed risk 

loving utility functions, we give several useful properties, for example, mixed risk loving is 

consistent with the mixture of positive exponential utilities and with non-increasing coefficients 

of absolute risk aversion at any order. 

 

 

Keywords: bivariate utility function, correlation loving, cross-prudence, intemperance, mixed 

risk loving, risk seeking. 
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1. Introduction 

Several studies have demonstrated that if the utility of the individual has one argument, its 

successive derivatives are brought to alternate in sign, the first being positive. Recently, the 

analysis of the behavior of utility functions with several variables (generally two) made it 

possible to characterise the behavior with respect to the risk of the risk-averse individuals, by 

alternating the signs of the partial derivatives with the first cross partial derivative being 

negative.  Very little attention was given to attitude with respect to the risk of the individuals 

attracted to risk, yet the presence of this  is necessary in the financial markets and it is especially 

important that their existence is proven. It is thus relevant to be interested in a whole fringe of 

the population which was put aside, namely the risk-loving individuals. 

The first steps in this direction, as with the case of utility functions with one variable and within 

the framework of the expected utility, indicate that the behavior of risk loving individuals with 

respect to risk would be compatible with the preference for the combination of good with good, 

and bad with bad. The importance of the sign of the derivatives of the univariate utility function 

and the partial derivatives of the bivariate utility function is well known. With respect to the 

univariate framework, several papers document the alternation of the signs of the successive 

derivatives, usually at least to the fourth order.  

The concepts of risk aversion, prudence, temperance and edginess are related to the first four 

derivatives (Deck and Schlesinger (2014)). They have several applications in economics, 

finance and health, amongst other domains. It is well recognized that the signs of the successive 

derivatives of the utility function play an important role in decision making. Eeckhoudt and 

Schlesinger (2006) present a context-free interpretation of these signs in the univariate 

framework. To do so, they introduced the concept of risk apportionment, which is equivalent 

to the preference for combining good with bad. Jokung (2011) extends their result to the 

bivariate case and these two papers rely on the preference for combining good with bad, which 

corresponds to risk apportionment and the decision maker is always supposed to be risk averse.  

In the case that the decision maker is a risk lover, this is considered by Crainich, Eeckhoudt and 

Trannoy (2012), who consider a risk loving individual and the preference for combining good 

with good. They restrict their analysis to the expected utility framework and to the first four 

derivatives of the univariate utility function; they find out the non-negativity of the first four 

successive derivatives of the utility function. They are the first, to our knowledge, to consider 

risk lovers instead of risk averters. In this study we generalize their results to higher orders and 

to the non-expected utility framework.  

Caballé and Pomansky (1996) introduce a mixed risk averse utility function related to a 

completely monotonic function. An individual is said to be mixed risk averse if all the 

successive derivatives of his or her utility function alternate in sign, the first one being positive. 

This  is equivalent to the decrease of all the coefficients of absolute risk aversion at any order 

(absolute risk aversion, absolute prudence, absolute temperance, absolute edginess, etc.). In 

dealing with risk lovers and assuming a preference for combining good with good, and bad with 

bad, we end up with non-negative successive derivatives of the utility function.  
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As far as we are concerned with risk lovers, we consider the class of absolutely monotonic 

functions that define mixed risk loving utility functions. An individual is said to be mixed risk 

loving if he or she is risk loving at any order. We define the concept of univariate risk loving 

with preference over simple lotteries. Multivariate risk (see Ebert and Van de Kuilen (2015)) 

and multivariate risk seeking was first defined by Richard (1975) as a choice between two 

lotteries. The risk-seeking individual prefers taking a chance on all the ‘good’ or all the ‘bad’, 

rather than having some of the ‘good’ and some of the ‘bad’.  

In this paper, we introduce the concept of bivariate risk loving which behaves similarly to 

bivariate risk seeking. Our concept allows us to characterize bivariate risk loving of higher 

orders by preferences among bivariate lotteries in the spirit of Eeckhoudt and Schlesinger 

(2006) in the univariate approach, and in the spirit of Jokung (2011) in the bivariate case. Risk 

loving of order (𝑁, 𝑀) encompasses univariate risk loving and in the univariate framework, 

risk loving indicates a preference to pool risks in the same states of nature. In the bivariate 

framework, risk loving will combine this property and the implications of preferring the 

bivariate lottery with two ‘good’ and two ‘bad’ attributes to the bivariate lottery with one ‘bad’ 

attribute and one ‘good’ attribute. We connect risk loving of order (𝑁, 𝑀) with the non-

negativity of the partial derivative of order (𝑁, 𝑀) of the bivariate utility function and 

(univariate) risk loving of order 𝑁 with the non-negativity of the derivative of order 𝑁 of the 

univariate utility function. We refer to an individual that is risk loving at any order as a mixed 

risk loving individual. We show that his or her utility function is a mixture of positive 

exponential utilities and we give some important properties in the univariate case. For example, 

the coefficients of absolute risk aversion of any order (absolute risk aversion, prudence, 

temperance, edginess,…) are non-increasing.  

Our paper contributes to the research literature in several ways. Firstly, we generalize the results 

from Crainich, Eeckhoudt and Trannoy (2012) to higher orders and to a non-expected utility 

framework, thereby extending Eeckhoudt and Schlesinger (2006) to risk lovers. Secondly, we 

characterize concepts such as risk-seeking, prudence, intemperance and edginess with a 

preference relation over simple lotteries. Thirdly, we define the concept of risk loving by 

preferences over lotteries. In the expected utility framework, the direction of preference for our 

lotteries is equivalent to signing the derivatives of the univariate utility function. Fourth, we 

generalize our results to bivariate utility functions. Fifth, preference for combining good with 

good at any order leads to the concept of mixed risk loving. We relate mixed risk loving with 

absolutely monotonic functions and with a mixture of non-negative exponentials. We show that 

an individual is mixed risk loving (he or she prefers to combine good with good at any level) if 

and only if all his or her coefficients of absolute risk aversion of any order are non-increasing.  

Decision making in the face of the uncertainty, combined with varying levels of risk preference, 

have many  applications in applied management science  areas. For example, Subulan et al. 

(2015) take into account  financial risks in manufacturing applications. In Crainich et al. (2017) 

they examine how health impacts the portfolio choice of risky assets, and the relation to 

differing risk preferences. In Outreville (2013) the relation between risk preference and the 

impact on financial and insurance products is investigated, as well as the relation to socio-
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economic factors. Consequently, the analysis of risk preferences and decision under uncertainty 

will be beneficial to many areas of applied management science. 

The paper is organized as follows: section 2 introduces the utility implications of preferring to 

combine good lotteries with good ones and bad lotteries with bad ones. In the next section we 

present the concept of risk loving and extend the result from Eeckhoudt and Schlesinger (2006) 

to risk lovers, on the one hand, and on the other hand this section generalizes to higher orders 

the results from Crainich, Eeckhoudt and Trannoy (2012). This section also extends  the 

bivariate framework concept of risk loving and recovers the concepts of correlation loving, 

prudence and intemperance. In section 4 we examine the mixed risk loving individual 

(univariate or bivariate). Finally, we end with a conclusion.  

 

 

 

2. Univariate And Bivariate Models: Preference For Combining ‘Good’ With ‘Good’ And 

‘Bad’ With ‘Bad’ 

In this section, we discuss the notion of preferring to combine ‘good’ with ‘good’ and ‘bad’ 

with ‘bad’, and its implications on the utility function and the behavior toward risk. We consider 

two cases: univariate and bivariate models. 

 

2.1  Univariate Risk Model 

In this sub-section we  define the univariate risk framework, risk seeking, prudence and 

intemperance.  When we consider the expected utility framework, we deal with univariate 

utility functions. We denote the univariate utility function as 𝑣, and the utility function should 

be increasing. 

Risk seeking 

Assume we have a binary lottery with equally likely outcomes [𝑥; 𝑦], such that 𝑥 < 𝑦 . Here 𝑦 

is a good outcome and 𝑥 is bad outcome. If we now combine this lottery with −𝑘 (a sure loss) 

and 0 (no loss) by adding them to the outcomes, then this will give the following lotteries: 

-  [𝑥 − 𝑘; 𝑦 + 0], or 

-  [𝑥 + 0; 𝑦 − 𝑘].   
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In the first lottery, we combine good (good outcome) with good (no loss) and bad (bad outcome) 

with bad (the sure loss), whereas in the second lottery we combine good (good outcome and no 

loss respectively) with bad (the loss and the bad outcome respectively). The individual who 

prefers to combine good with good and bad with bad will prefer the first lottery. That is: 

[𝑥; 𝑦 − 𝑘] ≼ [𝑥 − 𝑘; 𝑦]. 

Hence this individual prefers to face a sure reduction in wealth with the bad outcome and 

nothing with the good outcome.  In the expected utility framework, let 𝑣 be the univariate utility 

function, the last condition is equivalent to: 

𝑣(𝑥) + 𝑣(𝑦 − 𝑘) ≤ 𝑣(𝑥 − 𝑘) + 𝑣(𝑦) , ∀𝑥 < 𝑦 ⇔ 𝑣(𝑥) − 𝑣(𝑥 − 𝑘) ≤ 𝑣(𝑦) − 𝑣(𝑦 −

𝑘), ∀𝑥 < 𝑦 . 

This means that  

𝜑(𝑧) = 𝑣(𝑧) − 𝑣(𝑧 − 𝑘), 

is an increasing function of 𝑧, or equivalently 

𝑣′(𝑧) ≥ 𝑣′(𝑧 − 𝑘). 

This last condition means that 𝑣′ increases, that is 𝑣′′ ≥ 0, which corresponds to the notion of 

risk seeking. 

Prudence 

Consider a random variable Є̃ such that 𝐸(Є̃) = 0. We know that for risk lovers Є̃ is better than 

0 due to risk seeking, so 𝐸𝑣(𝑥 + Є̃) ≥ 𝑣(𝑥) meaning that Є̃ is good and 0 is bad. Let us now 

combine [𝑥; 𝑦] with Є̃ (a zero-mean random variable) and 0 (no loss). Now, if the individual 

prefers to combine good with good and bad with bad, we must have  

[𝑥 + Є̃; 𝑦 + 0]  ≼ [𝑥 + 0; 𝑦 + Є̃]. 

In the expected utility framework, this condition is equivalent to: 

𝑣(𝑦) + 𝐸𝑣(𝑥 + Є̃) ≤ 𝑣(𝑥) + 𝐸𝑣(𝑦 + Є̃), ∀𝑥 < 𝑦, 

⇔ 𝐸𝑣(𝑥 + Є̃) − 𝑣(𝑥) ≤ 𝐸𝑣(𝑦 + Є̃) − 𝑣(𝑦), ∀𝑥 < 𝑦. 
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This means that 𝛾(𝑧) = 𝐸𝑣(𝑧 + Є̃) − 𝑣(𝑧) is an increasing function of 𝑧, that is, 

𝐸𝑣′(𝑧 + Є̃) ≥ 𝑣′(𝑧). 

Also, with Jensen’s inequality the marginal utility is convex, that is 𝑣′′′ ≥ 0.  We note in passing 

that the notion of prudence was introduced by Kimball (1990). 

Intemperance  

Consider two independent zero-mean random variables Є̃1 and Є̃2. In the lottery [𝑥; 𝑥 + Є̃1], 

we can combine it with Є̃2  (good) and 0 (bad). If the individual prefers to combine good with 

good and bad with bad then, we must have   

[𝑥 + Є̃2; (𝑥 + Є̃1) + 0]  ≼ [𝑥 + 0; (𝑥 + Є̃1) + Є̃2]. 

In the expected utility framework, the condition is equivalent to : 

                                          𝐸𝑣(𝑥 + Є̃2) + 𝐸𝑣(𝑥 + Є̃1) ≤ 𝑣(𝑥) + 𝐸𝑣(𝑥 + Є̃1 + Є̃2) 

                                     ⇔ 𝐸𝑣(𝑥 + Є̃2) − 𝑣(𝑥) ≤ 𝐸𝑣(𝑥 + Є̃1 + Є̃2) − 𝐸𝑣(𝑥 + Є̃1) 

                                     ⇔ 𝛿(𝑥) ≤ 𝐸𝛿(𝑥 + Є̃1), 

where 𝛿(𝑥) = 𝐸𝑣(𝑥 + Є̃2) − 𝑣(𝑥).  

The last condition means that 𝛿 is convex, that is  

𝐸𝑣′′(𝑥 + Є̃2) ≥ 𝑣′′(𝑥). 

This in turn means that 𝑣′′ is convex, that is (𝑣′′)′′ = 𝑣(4) ≥ 0.  This is intemperance, the 

opposite of the feeling of temperance introduced by Kimball (1993). If we continued deriving 

further, we would find that a preference for combining good with good and bad with bad is 

consistent with 𝑣(5) ≥ 0, which is called edginess and presented by Lajeri-Chaherli (2004).   

Our recursive approach shows that a preference for combining good with good and bad with 

bad is consistent with the non-negativity of the signs of the successive derivatives of the utility 

function. We recall that Eeckhoudt and Shlesinger (2006) show that a preference for combining 

good with bad is consistent with alternating signs for successive derivatives of the utility 

function.  
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2.2 Bivariate Risk Model 

We now consider the bivariate case and introduce multivariate risk seeking (or correlation 

loving), cross prudence and intemperance. In the expected utility framework, we deal with the 

bivariate utility function 𝑢(𝑥, 𝑦). For example, the first attribute could be wealth and the second 

one could be health. In all that follows, we assume that more is preferred to less on each 

attribute.  

Multivariate Risk Seeking Or Correlation Loving 

Let us start with the couple (𝑥, 𝑦) and assume that we can combine the first attribute of the 

utility function, namely 𝑥, with −𝑘  (a sure loss) and 0 (no loss); and the second attribute, 

namely 𝑦, with −𝑐  (a sure loss) and 0 (no loss). In other words, we can add to (𝑥, 𝑦) one of the 

four following combinations: 

- (0,0): good with the first attribute and good with the second attribute; 

- (−𝑘, 0): bad with the first attribute and good with the second attribute; 

- (0, −𝑐): good with the first attribute and bad with the second attribute; 

- (−𝑘, −𝑐): bad with the first attribute and bad with the second attribute. 

A preference for combining good with good and bad with bad will mean that the lottery 

                                                       [(𝑥, 𝑦) + (−𝑘, −𝑐); (𝑥, 𝑦) + (0,0))], 

is preferred to the lottery 

                                                        [(𝑥, 𝑦) + (−𝑘, 0); (𝑥, 𝑦) + (0, −𝑐)], ∀𝑥, 𝑦.  

Or equivalently the lottery [(𝑥, 𝑦); (𝑥 − 𝑘, 𝑦 − 𝑐)] is preferred to the lottery [(𝑥, 𝑦 − 𝑐); (𝑥 −

𝑘, 𝑦)], ∀𝑥, 𝑦. This is exactly the definition of multivariate risk seeking given by Richard (1975), 

Epstein and Tanny (1980) also named this as correlation loving.  If we express the former 

preference in terms of the utility function, we have: 

𝑢(𝑥, 𝑦 − 𝑐) + 𝑢(𝑥 − 𝑘, 𝑦) ≤ 𝑢(𝑥, 𝑦) + 𝑢(𝑥 − 𝑘, 𝑦 − 𝑐), ∀𝑥, 𝑦, 𝑘. 

This inequality corresponds to the definition of multivariate risk seeking in the expected utility 

framework.  
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Cross-prudence 

Let us consider now a zero-mean random variable Є̃. Let us combine the first attribute of the 

utility function with Є̃ and 0 (no loss); and the second attribute with −𝑐  (a sure loss) and 0 (no 

loss). In other words, we add to (𝑥, 𝑦) one of the four following combinations: 

- (Є̃, 0): good with the first attribute and good with the second attribute; 

- (0,0): bad with the first attribute and good with the second attribute; 

-  (Є̃ , −𝑐): good with the first attribute and bad with the second attribute; 

- (0, −𝑐):  bad with the first attribute and bad with the second attribute. 

A preference for combining good with good and bad with bad means that the lottery 

 [(𝑥, 𝑦) + (Є̃ ,0); (𝑥, 𝑦) + (0, −𝑐)], 

is preferred to the lottery 

[(𝑥, 𝑦) + (Є̃ , −𝑐); (𝑥, 𝑦) + (0,0)], ∀𝑥, 𝑦. 

Or equivalently the lottery  

[(𝑥 + Є̃ , 𝑦); (𝑥, 𝑦 − 𝑐)] , 

is preferred to the lottery  

[(𝑥 + Є̃ , 𝑦 − 𝑐); (𝑥, 𝑦)], ∀𝑥, 𝑦. 

This is exactly the definition of cross-prudence with respect to the first attribute of the utility 

function given by Eeckhoudt, Rey and Schlesinger (2007). If one combines the first with −𝑐  

(a sure loss) and 0; and the second attribute with Є̃ and 0; you end up with cross-prudence with 

respect to the second attribute of the utility function. 

 

Intemperance 

We now consider two independent zero-mean random variables Є̃1 and Є̃2 such that Є̃1 is 

concerned with the first attribute and Є̃2 is concerned with the second attribute of the utility 

function. Let us combine the first attribute with Є̃1 and 0; and the second attribute with Є̃2 and 

0. In other words, we add to (𝑥, 𝑦) one of the four following combinations: 
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- (Є̃1 , Є̃2): good with the first attribute and good with the second attribute; 

- (0, Є̃2):  bad with the first attribute and good with the second attribute; 

- (Є̃1 ,0): good with the first attribute and bad with the second attribute; 

- (0,0): bad with the first attribute and bad with the second attribute. 

A preference for combining good with good and bad with bad implies that the lottery  

[(𝑥, 𝑦) + (Є̃1 , Є̃2) ; (𝑥, 𝑦) + (0,0)], 

is preferred to the lottery 

[(𝑥, 𝑦) + (Є̃1 ,0); (𝑥, 𝑦) + (0, Є̃2)], ∀𝑥, 𝑦. 

Or equivalently the lottery  

[(𝑥 + Є̃1  , 𝑦 + Є̃2 ); (𝑥, 𝑦)]  

is preferred to the lottery  

[(𝑥 + Є̃1 , 𝑦); (𝑥, 𝑦 + Є̃2)], ∀𝑥, 𝑦. 

This is the opposite of the definition of temperance given by Eeckhoudt, Rey and Schlesinger 

(2007), that is intemperance and the individual is intemperate. The two risks are mutually 

ameliorating for the individual who prefers to combine good with good, and bad with bad. 

 

 

 

3. Univariate And Bivariate Risk Loving 

In this section we examine the risk loving theory within the univariate and bivariate models. 

We first consider the univariate framework and we generalize the result from Crainich, 

Eeckhoudt and Trannoy (2012) by presenting a unified concept of risk loving. In the bivariate 

framework, the tradeoff between the attributes is no longer obvious. Also, the attitude towards 

risk in the bivariate framework is not obtained in a straightforward manner from that of the 

univariate framework. The interaction between the two attributes must be taken into account. 

We extend to the bivariate framework the concept of risk loving such that the univariate case is 

a special case of the bivariate one. 
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3.1 Univariate Risk Loving Model 

In this section, we extend the result from Eeckhoudt and Schlesinger (2006) concerning risk 

averse individuals to risk lovers. The class of simple lotteries such that the direction of 

preference between these lotteries is equivalent to signing the 𝑁𝑡ℎ derivative of the utility 

function. Finally, we show that risk seeking, prudence, intemperance and edginess are special 

cases of risk loving. 

Let �̃� and �̃� denote two possibly degenerate independent random variables; [�̃� ;  �̃� ] denotes a 

lottery that takes the values �̃� and �̃� with the same probabilities; [�̃�] corresponds to the lottery 

that takes the value �̃� with certainty. Consider the following sequence of lotteries: 

         𝐴1 = [−𝑘], 𝐵1 = [0]; 

         𝐴2 = [0], 𝐵2 = [Є̃1]; 

        𝐴𝑁 = [𝐵𝑁−2; 𝐴𝑁−2 + Є̃
𝐼𝑛𝑡(

𝑁

2
)
], 𝐵𝑁 = [𝐴𝑁−2; 𝐵𝑁−2 + Є̃

𝐼𝑛𝑡(
𝑁

2
)
] , ∀𝑁 ≥ 3. 

The random variables Є̃𝑖 are assumed to be independent and they are defined in the same way 

as Є̃1. In what follows, all the non-degenerate lotteries are 50-50 lotteries.  This sequence of 

lotteries is similar to the one used by Eeckhoudt and Schlesinger (2006), except that 𝐴2 and 𝐵2 

play the opposite roles. Let us now define the concept of risk loving of different orders by 

assuming that the individual prefers to combine good with good, and bad with bad. 

 

3.1.1 Risk Loving Of Order 1 

Definition 1:  An individual is  risk loving of order 1 if the lottery 𝐵1 = [0]  is preferred to the 

lottery  𝐴1 = [−𝑘],  for all initial wealth levels and for all k. 

In this definition, 𝐵1 = [0] is better than 𝐴1 = [−𝑘], in other words more is preferred to less. 

In the expected utility framework, this preference corresponds to the monotonicity of the utility 

function.  

 

3.1.2 Risk Loving Of Order 2 
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Definition 2:  An individual is said to be risk loving of order 2 if the lottery 𝐵2 = [Є̃1] is 

preferred to the lottery  𝐴2 = [0],  for all initial wealth levels and for all zero-mean random 

variable Є̃1. 

In this definition the fact that 𝐵2 = [Є̃1]  is preferred to 𝐴2 = [0] means that the individual is 

risk seeking. The risk loving of order 2 corresponds to risk seeking, and in the expected utility 

framework, the utility function is convex. 

 

3.1.3 Risk Loving Of Order 3 

Definition 3:  An individual is said to be risk loving of order 3 if the lottery 𝐵3 = [−𝑘, Є̃1] is 

preferred to the lottery  𝐴3 = [0, Є̃1 − 𝑘],  for all initial wealth levels, for all k and for all zero-

mean random variable Є̃1. 

This definition is exactly the same as in Eeckhoudt and Schlesinger (2006) and it corresponds 

to the definition of prudence. Furthermore, we can notice that having 𝐴3 ≼ 𝐵3 in the expected 

utility framework is equivalent to: 

𝑣(𝑥 − 𝑘) + 𝐸𝑣(𝑥 + Є̃1) ≥ 𝑣(𝑥) + 𝐸𝑣(𝑥 − 𝑘 + Є̃1) 

⇔ 𝐸𝑣(𝑥 − 𝑘 + Є̃1) − 𝑣(𝑥 − 𝑘) ≤  𝐸𝑣(𝑥 + Є̃1) − 𝑣(𝑥) 

This means that 𝛾(𝑧) = 𝐸𝑣(𝑧 + Є̃1) − 𝑣(𝑧) is an increasing function of 𝑧 ,  that is 

𝐸𝑣′(𝑧 + Є̃1) ≥ 𝑣′(𝑧). 

Also, with Jensen’s inequality the marginal utility is convex, that is 𝑣′′′ ≥ 0 . The preference 

to combine good with good of order 3 is equivalent to prudence.  

 

3.1.4 Risk Loving Of Order 4 

Definition 4:  An individual is said to be risk loving of order 4 if the lottery 𝐵4 = [0, Є̃1 + Є̃2] 

is preferred to the lottery  𝐴4 = [Є̃1, Є̃2],  for all initial wealth levels and for all zero-mean 

independent random variables Є̃1 and Є̃2. 
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This definition is the opposite definition of Eeckhoudt and Schlesinger (2006) concerning the 

concept of temperance. Therefore, our definition corresponds to intemperance. 

 

3.1.5 Risk Loving Of Order 𝑵 

In relation to risk loving of higher orders, we have the following definition: 

Definition 5:  Preferences are said to satisfy risk loving of order 𝑁 if the individual prefers the 

lottery 𝐵𝑁 to the lottery 𝐴𝑁. 

This definition is not concerned by risk loving of other orders.  For example, the individual can 

be risk seeking and prudent simultaneously.  We can notice that risk loving of odd orders 

correspond to risk apportionment whereas risk loving of even orders coincide with anti-risk 

apportionment. 

 

3.1.6 Theorem: Risk Loving  Of Order N 

Risk loving coincides with some conditions on the univariate utility function in the expected 

utility framework. We now have the following theorem: 

 

Theorem 1: In the expected utility framework with differentiable univariate utility function 𝑣, 

risk loving of order 𝑁 is equivalent to 𝑣(𝑁)(𝑤) ≥ 0, ∀𝑤. 

Proof.  We want to prove that   

𝐴𝑁  ≼ 𝐵𝑁 , if and only if  𝑣(𝑁) ≥ 0 . 

We remark that the claim holds for 𝑁 = 1, and we assume that it holds for 𝑘 = 1, … , 𝑁. We 

want to show that it holds for  𝑁 + 1  and we proceed by induction. 

                                    𝐸𝑣(𝑥 + 𝐴𝑁+1) ≤ 𝐸𝑣(𝑥 + 𝐵𝑁+1)  

                               

⇔ 𝐸𝑣(𝑥 + 𝐵𝑁−1) + 𝐸𝑣(𝑥 + 𝐴𝑁−1 + Є̃) ≤ 𝐸𝑣(𝑥 + 𝐴𝑁−1) + 𝐸𝑣(𝑥 + 𝐵𝑁+1 + Є̃) 
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                              ⇔ 𝐸𝑣(𝑥 + 𝐵𝑁−1) − 𝐸𝑣(𝑥 + 𝐵𝑁−1 + Є̃) ≤ 𝐸𝑣(𝑥 + 𝐴𝑁−1) − 𝐸𝑣(𝑥 +

𝐴𝑁−1 + Є̃)  

                              ⇔ 𝜙(𝑥 + 𝐴𝑁−1) ≤ 𝜙(𝑥 + 𝐵𝑁−1), 

where 𝜙(𝑧) = 𝐸𝑣(𝑧 + Є̃) − 𝑣(𝑧). 

The last condition is equivalent to having  𝜙(𝑁−1) ≥ 0, that is  

𝐸𝑣(𝑁−1)(𝑧 + Є̃) ≥ 𝑣(𝑁−1)(𝑧). 

This means that 𝑣(𝑁−1) is convex, or equivalently  

(𝑣(𝑁−1))
′′

= 𝑣(𝑁+1) ≥ 0. 

Q.E.D.∎ 

 

 

3.2 Bivariate Risk Loving Model 

In this section, we extend the former results to the bivariate model and define bivariate risk 

loving of different orders. We illustrate the manner in which our framework incorporates, via 

the choice between two lotteries, the bivariate risk loving of any order. We present the class of 

bivariate lotteries such that the direction of preference between these lotteries is equivalent to 

signing the (𝑁, 𝑀)𝑡ℎ partial derivative of the bivariate utility function. Finally, we show that 

correlation loving, cross-prudence and intemperance are special cases of bivariate risk loving. 

 

3.2.1 Bivariate Risk Loving Of Order (𝑵, 𝑴) Definition And Theorem 

Risk loving means that the individual prefers to put all the risks in the same state of nature. In 

addition, it is supposed that the individual prefers taking a chance on all the ‘good’ and all the 

‘bad’, rather than to getting some of the ‘good’ and some of the ‘bad’ when we add a couple of 

outcomes. Therefore, we have the following definition for bivariate risk loving: 
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Definition 6: Preferences, in the bivariate framework, are said to satisfy risk loving of order 

(𝑁, 𝑀) if the individual always prefers  

[(𝑥 + 𝐵𝑁, 𝑦 + 𝐵𝑀); (𝑥 + 𝐴𝑁 , 𝑦 + 𝐴𝑀)], 

to  

[(𝑥 + 𝐵𝑁, 𝑦 + 𝐴𝑀); (𝑥 + 𝐴𝑁 , 𝑦 + 𝐵𝑀)],  ∀𝑥, 𝑦. 

The individual prefers to combine good with good (the B’s lotteries), and bad with bad (the A’s 

lotteries). This definition expresses preference for the lottery over the ‘outer’ bivariate risks as 

opposed to that of the ‘inner’ bivariate risks, namely:   

[(𝐵𝑁, 𝐴𝑀); (𝐴𝑁 , 𝐵𝑀)] ≼ [(𝐵𝑁 , 𝐵𝑀); (𝐴𝑁 , 𝐴𝑀)]. 

We recall that 𝐴𝑁 ≼ 𝐵𝑁 and 𝐴𝑀 ≼ 𝐵𝑀, therefore 𝐵𝑁 and 𝐵𝑀 are good whereas 𝐴𝑁 and 𝐴𝑀 are 

bad. 

 

The direction of preference for our pairs of bivariate lotteries is equivalent to signing the 

(𝑁, 𝑀)𝑡ℎ partial derivative of the bivariate utility function. We assume that the (𝑁, 𝑀)𝑡ℎ partial 

derivative of the utility function exists, it is continuous, and is given by 

𝑢(𝑁,𝑀)(𝑥, 𝑦) =
𝜕𝑁+𝑀 𝑢

𝜕𝑥𝑁𝜕𝑦𝑀 (𝑥, 𝑦) . 

 

We have the following result: 

 

Theorem 2: In the expected utility framework with differentiable bivariate utility function 𝑢, 

risk loving of order (𝑁, 𝑀) is equivalent to 𝑢(𝑁,𝑀)(𝑥, 𝑦) ≥ 0, ∀𝑥, 𝑦. 

Proof. Consider the couple (𝑁, 𝑀) where 𝑁 and 𝑀 are two positive integers.   

[(𝑥 + 𝐵𝑁 , 𝑦 + 𝐴𝑀); (𝑥 + 𝐴𝑁 , 𝑦 + 𝐵𝑀)] ≼ [(𝑥 + 𝐵𝑁 , 𝑦 + 𝐵𝑀); (𝑥 + 𝐴𝑁 , 𝑦 + 𝐴𝑀)] 

In the expected utility framework, the preference condition becomes: 
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𝐸𝑢(𝑥 + 𝐵𝑁 , 𝑦 + 𝐵𝑀) + 𝐸𝑢(𝑥 + 𝐴𝑁 , 𝑦 + 𝐴𝑀) ≥ 𝐸𝑢(𝑥 + 𝐵𝑁, 𝑦 + 𝐴𝑀) + 𝐸𝑢(𝑥 + 𝐴𝑁 , 𝑦 +

𝐵𝑀), 

𝐸𝑢(𝑥 + 𝐵𝑁 , 𝑦 + 𝐵𝑀) − 𝐸𝑢(𝑥 + 𝐵𝑁 , 𝑦 + 𝐴𝑀) ≥ 𝐸𝑢(𝑥 + 𝐴𝑁 , 𝑦 + 𝐵𝑀) − 𝐸𝑢(𝑥 + 𝐴𝑁 , 𝑦 + 𝐴𝑀) 

⇔ 𝐸𝜂(𝑥 + 𝐵𝑁) ≥ 𝐸𝜂(𝑥 + 𝐴𝑁), 

with  𝜂(𝑧) = 𝐸𝑢(𝑧, 𝑦 + 𝐵𝑀) − 𝐸𝑢(𝑧, 𝑦 + 𝐴𝑀). 

The last inequality is true if the univariate function 𝜂 exhibits risk loving of order 𝑁. That is: 

𝜂(𝑁)(𝑧) = 𝐸[𝑢(𝑁,0)(𝑧, 𝑦 + 𝐵𝑀)] − 𝐸[𝑢(𝑁,0)(𝑧, 𝑦 + 𝐴𝑀)] ≥ 0 

⇔ 𝐸[𝑢(𝑁,0)(𝑧, 𝑦 + 𝐵𝑀)] ≥ 𝐸[𝑢(𝑁,0)(𝑧, 𝑦 + 𝐴𝑀)] 

This last inequality is verified if the univariate function 𝜉(𝑤) = 𝑢(𝑁,0)(𝑧, 𝑤) exhibits risk 

loving of order 𝑀, meaning that: 

 𝜉(𝑀)(𝑤) = 𝑢(𝑁,𝑀)(𝑧, 𝑤) ≥ 0, ∀𝑧, 𝑤. 

 Q.E.D.∎ 

 

3.2.2 Risk Loving Of Orders Less Than 𝟐 

In this sub-section, we show that the concept of risk loving of orders less than 2 coincides with 

correlation loving ((𝑁, 𝑀) = (1,1)), cross-prudence ((𝑁, 𝑀) = (1,2) or (𝑁, 𝑀) = (2,1)) and 

intemperance ((𝑁, 𝑀) = (2,2)) . 

 

3.2.2.1 Risk Loving Of Order (1,1) 

Let us consider Definition 6 with (𝑁, 𝑀) = (1,1), we get: 

[(𝑥 + 𝐵1, 𝑦 + 𝐵1); (𝑥 + 𝐴1, 𝑦 + 𝐴1)] 

 is preferred to  

[(𝑥 + 𝐵1, 𝑦 + 𝐴1); (𝑥 + 𝐴1, 𝑦 + 𝐵1)], ∀𝑥, 𝑦. 
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Equivalently: 

[(𝑥, 𝑦); (𝑥 − 𝑘, 𝑦 − 𝑘)] is preferred to  [(𝑥, 𝑦 − 𝑘); (𝑥 − 𝑘, 𝑦)], ∀𝑥, 𝑦. So 

                               𝑢(𝑥, 𝑦 − 𝑘) + 𝑢(𝑥 − 𝑘, 𝑦) ≤ 𝑢(𝑥, 𝑦) + 𝑢(𝑥 − 𝑘, 𝑦 − 𝑘), ∀𝑥, 𝑦, 𝑘, 

                                                                 𝛥1,1(𝑥) ≤ 𝛥1,1(𝑥 − 𝑘), ∀𝑥, 𝑦, 𝑘, 

with  

𝛥1,1(𝑥) = 𝑢(𝑥, 𝑦 − 𝑘) − 𝑢(𝑥, 𝑦). 

 

The former inequality becomes: 

𝜕𝛥1,1

𝜕𝑥
(𝑥) = 𝑢(1,0)(𝑥, 𝑦 − 𝑘) − 𝑢(1,0)(𝑥, 𝑦) ≤ 0 

meaning that  

𝑢(1,0)(𝑥, 𝑦 − 𝑘) ≤ 𝑢(1,0)(𝑥, 𝑦). 

Therefore 𝑢(1,0)(𝑥, 𝑦) increases with respect to 𝑦, meaning that 𝑢(1,1)(𝑥, 𝑦) ≥ 0. The 

correlation loving introduced by Epstein and Tanny (1980) or multivariate risk seeking 

introduced by Richard (1975) corresponds to risk loving of order (1,1) . In other words,  a type 

of preference for putting together two sure losses each concerning one of the two attributes of 

the utility function. 

 

3.2.2.2 Risk Loving Of Orders (1,2) And (2,1) 

Consider Definition 6 with (𝑁, 𝑀) = (1,2), we have: 

[(𝑥 + 𝐵1, 𝑦 + 𝐵2); (𝑥 + 𝐴1, 𝑦 + 𝐴2)], 

is preferred to  

[(𝑥 + 𝐵1, 𝑦 + 𝐴2); (𝑥 + 𝐴1, 𝑦 + 𝐵2)], ∀𝑥, 𝑦. 

Equivalently: 

                         𝐸𝑢(𝑥, 𝑦 + Є̃1) + 𝑢(𝑥 − 𝑘, 𝑦) ≥ 𝑢(𝑥, 𝑦) + 𝐸𝑢(𝑥 − 𝑘, 𝑦 + Є̃1), ∀𝑥, 𝑦, 𝑘, 
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                          ⇔ 𝐸𝑢(𝑥, 𝑦 + Є̃1) − 𝑢(𝑥, 𝑦) ≥ 𝐸𝑢(𝑥 − 𝑘, 𝑦 + Є̃1) − 𝑢(𝑥 − 𝑘, 𝑦), ∀𝑥, 𝑦, 𝑘, 

                          ⇔ 𝛥(1,2)(𝑥) = 𝐸𝑢(𝑥, 𝑦 + Є̃1) − 𝑢(𝑥, 𝑦) 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 𝑤𝑖𝑡ℎ 𝑥, ∀𝑦, 

                          ⇔ 𝐸𝑢(1,0)(𝑥, 𝑦 + Є̃1) − 𝑢(1,0)(𝑥, 𝑦) ≥ 0, ∀𝑦, 

                          ⇔ 𝐸𝑢(1,0)(𝑥, 𝑦 + Є̃1) ≥ 𝑢(1,0)(𝑥, 𝑦), ∀𝑦, 

                          ⇔ 𝑢(1,0)(𝑥, 𝑦)  is convex in y, 

                          ⇔ 𝑢(1,2)(𝑥, 𝑦)  ≥ 0. 

Cross-prudence with respect to the first attribute of the utility function corresponds to risk 

loving of order (1,2). That is, a type of preference for separating a sure loss and a zero-mean 

random variable in the two attributes of the utility function knowing that the first attribute is 

concerned with the sure loss and the second attribute is concerned with the zero-mean random 

variable. By the same argument, cross-prudence with respect to the second attribute of the utility 

function corresponds to risk loving of order (2,1). 

 

3.2.2.3 Risk Loving Of Order (2,2) 

When we consider Definition 6 with (𝑁, 𝑀) = (2,2), we have: 

[(𝑥 + 𝐵2, 𝑦 + 𝐵2); (𝑥 + 𝐴2, 𝑦 + 𝐴2)]  

is preferred to  

[(𝑥 + 𝐵2, 𝑦 + 𝐴2); (𝑥 + 𝐴2, 𝑦 + 𝐵2)],  ∀𝑥, 𝑦. 

Equivalently: 

𝐸𝑢(𝑥, 𝑦 + Є̃2) + 𝑢(𝑥 + Є̃1, 𝑦) ≤ 𝑢(𝑥, 𝑦) + 𝐸𝑢(𝑥 + Є̃1, 𝑦 + Є̃2), ∀𝑥, 𝑦 

⇔ 𝛥(2,2)(𝑥) ≤ 𝐸𝛥(2,2)(𝑥 + Є̃1)), ∀𝑥, 𝑦 

where 𝛥(2,2)(𝑥) =  𝐸𝑢(𝑥, 𝑦 + Є̃2) − 𝑢(𝑥, 𝑦). 

The former condition is equivalent to the convexity of 𝛥(2,2)(𝑥). Equivalently, we have  
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 𝐸𝑢(2,0)(𝑥, 𝑦 + Є̃2) ≥ 𝑢(2,0)(𝑥, 𝑦) 

This means that 𝑢(2,0)(𝑥, 𝑦) is convex in  𝑦, therefore 𝑢(2,2)(𝑥, 𝑦)  ≥ 0. 

Risk loving of order (2,2) corresponds to intemperance. We are in the presence of a type of 

preference for putting together two independent zero-mean random variables in each attribute 

of the utility function. The risks are loss-ameliorating. 

 

 

4. Mixed Risk Loving Model 

The objective of this section is to analyze the attitude of an individual who prefers to combine 

good with good, and bad with bad at any level. We first examine the univariate mixed risk 

loving model, defining terms within the univariate mixed risk loving model and deriving a 

useful Theorem and properties. Similarly, we examine the bivariate mixed risk loving model, 

defining terms within this model and deriving another beneficial Theorem and properties. 

 

4.1 Univariate Mixed Risk Loving Model 

An individual will be mixed risk loving if he or she is risk loving at any order. Therefore, we 

have the following definition: 

 

Definition 7: An individual is mixed risk loving if he prefers lottery 𝐵𝑁 to lottery 𝐴𝑁 , ∀𝑁 =

1,2 …. 

 

We also have the following definition concerning a special class of real-valued functions. 

Definition 8: A real-valued function 𝑓 defined on (0, +∞) is absolutely monotonic if and only 

if its derivatives  𝑓(𝑁)  of all orders exist and 𝑓(𝑁)(𝑤) ≥ 0 , ∀𝑤, ∀𝑁 = 1,2 …   

Berstein ( 1926)  shows the following result: 
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Theorem 3 (Bernstein; 1926 ): A function 𝑓 defined on (0, +∞) is absolutely monotonic if and 

only if it is a Laplace transform of a distribution function 𝐹 on (0, +∞). 

 

That is, a utility function 𝑣 is absolutely monotonic if and only if 𝑣(𝑤) = ∫ 𝑒𝑠 𝑤𝑑𝐹(𝑠)
+∞

0
 up 

to a positive linear transformation.  

An individual who prefers to combine good with good and bad with bad at any level should 

have a utility function with non-negative successive derivatives. Therefore, mixed risk loving 

is consistent with absolutely monotonic utility function. We now have the following definition: 

 

Definition 9: A real-valued continuous utility function 𝑣 defined on (0, +∞) exhibits mixed risk 

loving if and only if it has an absolutely monotonic first derivative on (0, +∞) and 𝑣(0) = 0. 

 

Property 1: 𝑣 defined on (0, +∞) exhibits mixed risk loving if and only if its first derivative 

can be written as 𝑣′(𝑤) = ∫ 𝑒𝑠(𝑤−𝑎)𝑑𝐹(𝑠)
+∞

0
 for some distribution function 𝐹 on (0, +∞). 

In other words, preference for combining good with good and bad with bad is consistent with a 

positive exponential function. 

 

Property 2: Let 𝑣 be a mixed risk loving utility function which is analytic at the point 𝜏 with 

interval of convergence [𝜏−∈; 𝜏+∈] where 0 ≤∈≤ 𝜏. Then 𝑣 can be expressed as a power 

series: 

𝑣(𝑤) = ∑ 𝑝𝑁(𝑤 − 𝜏)𝑁  ∀𝑤 ∈

∞

𝑁=0

[𝜏−∈; 𝜏+∈] 

where 

                                                  𝑝0 = ∫
𝑒𝑠 𝜏

𝑠
𝑑𝐹(𝑠)

+∞

0
, 

                                                  𝑝𝑁 =
1

𝑁!
∫ 𝑠𝑁−1 𝑒𝑠 𝜏 𝑑𝐹(𝑠),

+∞

0
 ∀ 𝑁 ≥ 1,  
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and 𝐹 is a distribution function on (0, +∞). 

This property comes directly from Bernstein’s result. A direct consequence of the former 

property is that we know the direction of change in the expected utility thanks to a marginal 

change on one moment of a small risk. 

 

Property 3: Let 𝑣 be a mixed risk loving utility function which is analytic at the point 𝜏 with 

interval of convergence [𝜏−∈; 𝜏+∈] where 0 ≤∈≤ 𝜏. Assume that �̃� is a random variable 

whose distribution support is included in the interval [𝜏−∈; 𝜏+∈]. Then  𝐸𝑣(�̃�) has non-

negative derivatives with respect to the moments of �̃�. That is,  
𝜕𝐸𝑣(�̃�)

𝜕𝜇𝑖
≥ 0 , ∀𝑖, where 𝜇𝑖 =

𝐸(�̃�𝑖). 

When a mixed risk loving individual faces a choice between two small risks that differ only in 

the 𝑁𝑡ℎ moment, he or she will prefer the one with the higher moment. Recall that when the 

individual was mixed risk averse, he or she prefers the risk with the higher moment when 𝑁 is 

odd and the risk with the lower moment when 𝑁 is even.   

Let us denote by 𝐴𝑅𝐴𝑁(𝑤) = −
𝑣(𝑁)

𝑣(𝑁−1) (𝑤) the coefficient of absolute risk aversion of order 𝑁. 

𝐴𝑅𝑆𝑁(𝑤) =
𝑣(𝑁)

𝑣(𝑁−1) (𝑤) represents the coefficient of absolute risk seeking of order 𝑁. With 𝑁 =

2 we have absolute risk aversion whereas with 𝑁 = 3 we deal with absolute prudence. For the 

mixed risk loving utility function, we have the following characterization: 

 

Theorem 4: Let the continuous utility function 𝑣 defined on (0, +∞) be increasing, convex and 

smooth on (0, +∞) with 𝑣(0) = 0 and 𝑣(𝑁)(𝑤) ≠ 0 for all positive wealth and 𝑁 = 1,2 3, … 

Then 𝑣 is mixed risk loving if and only if 𝐴𝑅𝑆𝑁 (respectively 𝐴𝑅𝐴𝑁) is non-decreasing 

(respectively non-increasing) with wealth for 𝑁 = 1,2 3, … 

Proof. Assume that 𝐴𝑅𝑆𝑁 is non-decreasing with wealth for 𝑁 = 1,2 3, … 

Then 

𝑑𝐴𝑅𝑆𝑁(𝑤)

𝑑𝑤
= 𝐴𝑅𝑆𝑁

′ (𝑤) ≥ 0. 
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This means that 

𝑣(𝑁+1)𝑣(𝑁−1) ≥ 𝑣(𝑁)𝑣(𝑁) 

For 𝑁 = 1  this gives 𝑣′′𝑣 ≥ (𝑣′)2 ≥ 0. The non-negativity of the utility function implies that 

the marginal utility function is increasing, meaning that the second derivative of the utility 

function is non-negative. 

For 𝑁 = 2  this gives 𝑣′′′𝑣′ ≥ (𝑣′′)2 ≥ 0. The monotony of the utility function implies that the 

third derivative of the utility function is non-negative. 

For 𝑁 = 3  this gives 𝑣(4)𝑣(2) ≥ (𝑣(3))2 ≥ 0. The convexity of the utility function implies that 

the fourth derivative of the utility function is non-negative.  

Therefore by induction we obtain 𝑣(𝑁) ≥ 0, ∀ 𝑁 = 1, 2, …, meaning that the utility function 

exhibits mixed risk loving. 

Assume now that the utility function 𝑣 is mixed risk loving, we know that : 

𝑣(𝑤) = ∫ 𝑒𝑠 𝑤𝑑𝐹(𝑠)

+∞

0

 

The Chebychev Inequality gives 

𝑣(𝑁+1)𝑣(𝑁−1) ≥ [𝑣(𝑁)]
2

, ∀𝑁 = 1, … 

but we know that 

𝐴𝑅𝑆𝑁
′ =

𝑣(𝑁+1)𝑣(𝑁−1) − 𝑣(𝑁)𝑣(𝑁)

[𝑣(𝑁−1)]2
 

Therefore  𝐴𝑅𝑆𝑁
′ ≥ 0.  

Also the coefficients of absolute risk seeking at any order are non-decreasing. Or equivalently, 

the coefficients of absolute risk aversion at any order are non-increasing.  

Q.E.D.∎ 
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This theorem shows that mixed risk loving utility functions are utility functions such that the 

coefficients of risk seeking 𝐴𝑅𝑆𝑁 =
𝑣(𝑁)

𝑣(𝑁−1) are non-decreasing, meaning that the coefficients of 

absolute risk aversion 𝐴𝑅𝐴𝑁 = −
𝑣(𝑁)

𝑣(𝑁−1)  are non-increasing. Mixed risk lovers exhibit at least 

risk seeking, prudence, intemperance, edginess and those feeling are all decreasing with respect 

to wealth. The importance of Theorem 4 is to link the mixed risk loving attitude with the 

decrease of the successive non-positive coefficients of absolute risk aversion.  

 

4.2 Bivariate Mixed Risk Loving Model 

An individual will be bivariate mixed risk loving if he or she is bivariate risk loving at any 

order. We assert the following definition: 

 

Definition 10: An individual is bivariate mixed risk loving if he or she always prefers the lottery 

 [(𝐵𝑁, 𝐵𝑀); (𝐴𝑁 , 𝐴𝑀)] 

to the lottery 

                                                                 [(𝐵𝑁, 𝐴𝑀); (𝐴𝑁 , 𝐵𝑀)] ,  ∀𝑁 = 1,2 …. and  ∀𝑀 =

1,2 …. 

 

An absolutely monotonic bivariate function is infinitely differentiable with non-negative partial 

derivatives. 

 

Definition 11: A bivariate function 𝑔 defined on (0, +∞) ⨯ (0, +∞) is absolutely monotonic 

if and only if its partial derivatives  𝑔(𝑁,𝑀)  of all orders exist and 

𝑔(𝑁,𝑀)(𝑤) ≥ 0, ∀𝑤, ∀𝑁 = 1,2 … , ∀𝑀 = 1,2 … 

An individual who prefers to combine good with good, and bad with bad, at any level should 

have a utility function with non-negative successive partial derivatives. Therefore, bivariate 



24 
 

mixed risk loving is consistent with the bivariate absolutely monotonic utility function. We 

assert the following definition: 

 

Definition 12: A real-valued continuous utility function 𝑢 defined on (0, +∞) ⨯ (0, +∞)  

exhibits mixed risk loving if and only if it is absolutely monotonic. 

Like in the univariate case, bivariate absolutely monotonic functions can be expressed by the 

help of distribution function. 

 

Theorem 5: A bivariate function 𝑔 defined on (0, +∞) ⨯ (0, +∞) is absolutely monotonic if 

and only if it can be written as 𝑔(𝑥, 𝑦) = ∬ 𝑒𝑠𝑥+𝑡𝑦𝑑𝐹(𝑠
+∞

0
, 𝑡) for some distribution function 𝐹 

on (0, +∞) ⨯ (0, +∞). 

 

Finally, we can say that preferring more to less and to combine good with good and bad with 

bad is consistent with utility function that is a mixture of positive exponential utilities. 

 

 

5. Conclusion 

In this paper, we analyze preferences for combining good with good.  This leads to risk seeking, 

prudence, intemperance and edginess at lower orders. In the univariate framework, the results 

are the opposite of those of Eeckhoudt and Schlesinger (2005) for odd orders and are the same 

for even orders. In the expected utility framework, our preferences for risk loving are related to 

the positivity of the successive derivatives of the utility function, thus generalizing the results 

from Crainich, Eeckhoudt and Trannoy (2012). Our results are based on preferences over 

simple lotteries. 

Dealing with the bivariate case, we consider a decision-maker that prefers taking a chance on 

all the ‘best’ or all the ‘worst’  to getting some of the ‘best’ and some of the ‘worst’ with 50-50 

lotteries. We extend the former results to the case of bivariate utility function and our results 

are in contrast to those of Jokung (2011) who considers bivariate risk apportionment.  The 
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preferences are expressed with the help of simple bivariate lotteries (inner and outer). Risk 

loving of order (𝑁, 𝑀) corresponds to the positivity of the (𝑁, 𝑀)𝑡ℎ partial derivative of the 

bivariate utility function. Our approach allows us to recover multivariate risk seeking or 

correlation loving, cross-prudence and intemperance as particular cases.  

The mixed risk loving utility functions are connected with absolutely monotonic functions and 

presented with their main properties. They are characterized by non-increasing non-positive 

coefficients of absolute risk aversion. The bivariate mixed risk loving utility functions are a 

mixture of positive exponential functions. 
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