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Abstract 

One of the key factors limiting the charge mobility of molecular semiconductors is the fluctuation of transfer 

integrals, also known as dynamic disorder. This is a manifestation of the non-local electron phonon coupling, 

a property that is computationally expensive to evaluate and, so far, prevented the study of this property on 

large datasets of molecules. In this paper we describe a methodology for the fast evaluation of the dynamic 

electronic disorder for molecular semiconductors from their crystalline structure. The computation is 

accelerated by (i) the evaluation of the Cartesian gradient of transfer integral and (ii) the use of approximate 

phonons evaluated within the rigid body approximation. The quality of the approximations is checked against 

less approximated alternatives. The method is used to study a range of molecular crystals and some general 

trends on the behaviour of the non-local electron-phonon coupling are discussed. A strategy to find the optimal 

relative position between interacting molecules is proposed.  

 

Introduction 

A number of highly desirable properties motivates the research into organic semiconductors: they can be 

processed at lower temperatures than inorganic semiconductors, they have good mechanical properties like 

high flexibility and strength and their chemical/physical properties can be easily tuned by using different 

functional groups.1–3 These materials are currently used in devices like organic field-effect transistors 

(OFET),3,4 organic light emitting diodes (OLED),5 and organic solar cells (OSC).6 The charge mobility of 

organic semiconductors is their main electronic characteristic and the materials developed within the past few 

years, with mobilities exceeding 1 cm2V-1s-1, can now compete with that of amorphous silicon.7 Despite the 

intense research effort all new organic semiconductors have usually been discovered by trial and error and, 

even retrospectively, it was not always possible to explain why some materials were better than others. Many 

authors are advocating the use of computer-aided materials discovery8 to accelerate the pace of organic 

semiconductor discovery.3,8–10 A major bottleneck in the case of molecular crystals is the great challenge of 

performing crystal structure prediction on large sets of hypothetical molecules11,12 and the observation that the 

intermolecular arrangement rather than the isolated molecular properties is the key determinant of the 

mobility2. The best contribution that computational methods could give at the moment is the prediction of the 

mobility from the crystalline structure of the semiconductor. A tool able to perform such prediction would be 

highly beneficial considering that substantial experimental effort is required to grow ultra-pure single-

crystalline samples for OFET measurements, while the crystalline structures of the material are typically 

known shortly after the initial synthesis.   

The computational methodology for predicting the charge mobility must be related to a mechanism of charge 

transport as different mechanisms require the evaluation of different parameters. For example, if one wishes 

to use a charge hopping approach within Marcus theory, the mobility can be predicted from the transfer integral 

between nearest neighbour molecules and the reorganization energy of the isolated molecule,13–15 an approach 

that can be easily implemented to screen thousands of molecules.16 Unfortunately, there are serious limitation 

with describing charge transport via a hopping approach,17 and the large reported mobility with the evidence 
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of Hall effects18,19 suggests that the charge propagates coherently. A family of alternative models have emerged 

based on the observation that the transfer integral undergoes large fluctuations because of thermal motions.20–

23 This effect, known as dynamic disorder, is due to the strong modulation of the transfer integral by low 

frequency molecular phonons, i.e. it is a manifestation of the non-local electron-phonon coupling. A number 

of numerical methods have been proposed to compute the mobility for such systems including Ehrenfest 

dynamics24, modified surface hopping25,26, open quantum systems dynamics,27,28 many-body physics methods29 

on model Hamiltonians30 or realistic chemical models.31–35  Fratini et al. proposed a method that is particularly 

appealing to the intuition based on the evaluation of a transient localization.36,37 When applied to a family of 

realistic semiconductors it demonstrated excellent predictive power and was used to build a map of molecular 

semiconductors that are less susceptible to disorder.21  It is therefore evident that, regardless of the detailed 

description of transport, the evaluation of the non-local-electron phonon coupling has become an essential 

component for the analysis of existing materials or the discovery of new ones. All these models predict that 

the mobility increases if the dynamic disorder decreases but, up to now, there are no design principles for 

molecules or materials displaying the smallest possible amount of nonlocal electron-phonon coupling. The 

analysis of the nonlocal electron-phonon coupling for a great number of materials can reveal interesting 

chemical patterns and, possibly, suggest new chemical design rules for materials insensitive to disorder.  

The evaluation of the non-local electron-phonon coupling for molecular crystals has been performed several 

times,38,39 but the available methods are not suitable to explore a large data set of materials. The most expensive 

component of the calculation is the evaluation of the crystal vibrations and, for this reason, many have adopted 

empirical force fields.40,41 These can be inaccurate (they have not been parametrized to reproduce low 

frequency vibration) and, more importantly, cannot describe (without re-parametrization) the novel chemical 

functionalities introduced in many new compounds. First principle evaluations of the phonons of molecular 

crystals, albeit fairly well established42–45 are very rarely performed on materials with hundreds of atoms in the 

unit cell – a common occurrence in organic semiconductors – and are certainly not suitable as a routine protocol 

for exploring new materials. 

The aim of this paper is to present a methodology for the evaluation of the dynamic electronic disorder in 

organic materials in a significantly reduced computational time relying on two main ideas: (i) the evaluation 

of the electron-phonon coupling with respect to cartesian displacement and (ii) the use of simplified phonons 

evaluated in the framework of the rigid-body approximation,2,46 where each molecule is assumed to oscillate 

independently, with the great advantage of separating effectively the internal (intramolecular vibrations) and 

external (intermolecular vibrations) degrees of freedom. Here we test our methodology on some molecules 

widely studied in the literature, comparing a selection of our results with data obtained with more accurate 

approaches, e.g. taking into account the hybridization of intra- and inter- molecular vibration modes.47,48 

Methods 

Definitions. We use a tight-binding Hamiltonian for the description of the charge transport in organic 

semiconductor, which can be written as a sum of 3 contributions: the electronic part, the phonon part and their 

interaction  

 .el ph el phH H H H       (1) 

The electronic Hamiltonian can be written as  

 
,

,el
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where the basis set i  contains one-electron states localized on site i (only one state per site is considered, e.g. 

the molecular HOMO for hole transport), i  is the site electronic energy, Jij is the transfer integral and the 

summation is limited to the nearest neighbours pair. The phonon term is described by: 
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where the index M runs over all nuclear modes with frequency ωM and QM is the dimensionless coordinate of 

the normal mode. The electron-phonon coupling part of the Hamiltonian is 
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where the total electron-phonon coupling is explicitly separated in terms of the local (gi,M) and the nonlocal 

(gij,M) electron-phonon couplings. The former concerns the modulation of the site energies, while the latter 

describes the modulation of the transfer integrals. A number of work have described the calculation of the local 

electron-phonon coupling,43 which is now routinely achievable. This work will only consider the evaluation of 

the non-local electron-phonon coupling gij,M, which is ultimately responsible of the dynamic disorder and the 

fluctuation of the transfer integral. The latter can be computed at a given temperature from the electron-phonon 

coupling terms as:46  
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where kBT is the thermal energy. An efficient evaluation of eq. (5) is the goal of the reminder of this section.  

Computation of non-local electron-phonon coupling. The transfer integrals Jij depend on the set of 

displacements { }MQ . The couplings {gij,M} appear in the second term of the Taylor series of the expansion of 

Jij  around the equilibrium position: 
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i.e. the {gij,M} can be evaluated as  
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The transfer integrals in this work have been evaluated as:49 
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where 
0i  and 

0 j  are the localised highest-occupied molecular orbitals (HOMO) of molecule i and j, 

respectively, and F is the Fock operator of the dimer system. The suffix 0 indicates that the orbitals are 

unperturbed, i.e. computed for the isolated molecule. It is alternatively possible to evaluate the same matrix 

elements using the Fock matrix built using the density matrix of the non-interacting monomer. Our test with 

pentacene, rubrene and tetracene indicate only small differences (under 5% with correlation coefficient 

between the two calculations r2=0.995). We have performed additional tests using the methodology proposed 

in ref. 50 and based on transforming the Fock matrix extracted from adiabatic first-principle calculations, also 

obtaining equally consistent results.  

The sign of the transfer integral depends on an arbitrary phase of the orbital but the signs of all transfer integral 

of a solid need to be evaluated consistently, e.g. once a phase is chosen for an orbital all transfer integral must 

be reported with that phase. Electronic properties like band structure or charge mobility are incorrect if one 

does not keep track of the relative transfer integral sign. In this work we select the phase arbitrarily, making 

the phase identical for orbitals on translationally invariant molecules and we report one of the correct sign 

combinations (the other can be derived trivially from eq. (8)).     
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We represent the mode M as a vector of Cartesian displacements }{ M

M kQ x , which spans the entire supercell, 

writing the electron-phonon coupling as: 

 , ,ij M ij MJg Q    (9) 

where ∇Jij is the Cartesian gradient of the transfer integral, i.e. the derivative of the transfer integral with 

respect to the Cartesian displacement of an atom k: 

 .
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J

x
  (10) 

Here the elements of this vector are zero if displacements xk do not belong to molecule i or j. 

The formulation in eq. (9) is useful because the first term of the product only includes 6NA differentiations (NA 

being the number of atoms in one molecule) and the second term does not depend on the transfer integral. 

Besides, it should be noted that, while the gradient of the transfer integral can be evaluated relatively quickly 

(e.g. in less than 1 day per typical molecule using 16 processors), the computation of all the lattice phonons is 

a time-consuming task, especially if a good sampling of the Brillouin zone is required.38,46,48 

Approximate phonons. We significantly speed up the computations by using simplified phonons evaluated 

assuming that each molecule oscillates independently from the others (Einstein dispersionless phonons), with 

a strict separation between intramolecular and intermolecular degrees of freedom. The intramolecular 

vibrational modes are assumed to be equal to the vibrations of the isolated molecule. This is an excellent 

approximation at least for the high frequency modes, which display only moderate frequency variations 

between solution and solid-state phases.51,52 

To describe the intermolecular motion, we consider the rigid motion of each molecule surrounded by the 

neighbouring molecules frozen in their equilibrium position. The quality of such approximation, not known a 

priori but used for example in ref. 53–55, will be evaluated in the next section in the context of determining the 

dynamic disorder of specific materials.  In practice, we define six rigid displacement modes q1 … q6 (three 

translations and three rotations in reduced mass coordinates) and evaluate numerically the 6×6 Hessian matrix 
2

ij i jP E q q    , where E is the total energy of a cluster containing a molecule surrounded by all molecules 

in van der Waals contact. The eigenvalues
2

M of the Hessian give the square of the frequencies of the rigid 

molecule modes and the corresponding eigenvectors wj,M provide a representation of the rigid molecules modes 

QM as linear combination of the original roto-translational modes: 

 ,

6

1j

M j M jQ w q


   (11) 

Computational Details 

The level of the computation was selected to be consistent with the reminder of the approximations and the 

intention to perform calculations on a large set of molecules. The validation of the methodology against less 

approximated alternatives is given in the result section. Electronic structure and normal modes have been 

calculated by employing the self-consistent-charge density-functional tight-binding (SCC-DFTB) method as 

implemented in the DFTB+ software package.56,57 The DFTB method is a non-orthogonal tight-binding method 

based on a second-order expansion of the DFT total energy expression. Thanks to a series of approximations, 

including the two-centre approximation and the use of minimal atomic basis sets, the elements of Hamiltonian 

and overlap matrices are evaluated starting from pre-computed values, so computations are about 3-4 orders 

of magnitudes faster using DFTB rather than DFT.57,58 Optimized structures have been obtained using the 

conjugate gradient method with a force-threshold criterion of 10-8 Hartree per Bohr radius, while holding fixed 

the experimental crystalline lattice constants. We have used periodic boundary conditions (PBC) employing a 
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4×4×4 Monkhorst-Pack k-point sampling scheme.59 The DFTB-D3 formalism60 is used to take into account 

the van der Waals interaction in the crystalline phase. 

Calculations of the transfer integrals are carried out at the B3LYP/3-21g* level of theory as implemented in 

Gaussian 16.61 Selected calculations have been performed also using different functionals and basis set 

(B3LYP/3-21g*, B3LYP/6-31g*, B3LYP/6-311g**, PBE/6-31g*) as discussed in the result section. ∇Jij has 

been evaluated by using the finite-difference 2-point approximation, using displacement of ±0.01 Å.  

It should be noted that it is not convenient to use DFTB for the transfer integral as the method is known to 

severely underestimate this quantity because of the minimal basis set used.62–66 The proposed solution to this 

problem, a case-by-case recalibration of additional diffuse basis set in DFTB,62,63 would not be convenient for 

the study of a large range of materials.  

To construct the Hessian matrix Pij, the second derivative of the energy has been evaluated numerically by 

performing single-point DFTB+ calculation on a supercell in which the molecule of interest is distorted along 

the rigid molecular displacements, in the presence of periodic boundary conditions (PBC). The supercell size 

is chosen so that in presence of PBC the molecule of interest is not in van der Waals contact with its repetition.  

Results  

Systems studied 

We have studied 12 crystalline semiconductors, shown in Fig. 1 with their full chemical name in the caption, 

including oligoacenes, oligothienoacenes, tetrathiafulvalenes and derivatives. These systems are widely 

studied in the literature7,13,21,67 as they show the highest mobilities recorded up to now.  

 

 

Figure 1. The organic molecules studied in this work. Full names are: An=anthracene; Pn = pentacene; Rb = rubrene; Tn = tetracene; 

Pc = picene; BTBT = [1]benzothieno[3,2-b][1]benzothiophene; C8-BTBT = 2,7-Dioctyl[1]benzothieno[3,2-b][1]benzothiophene; 

TIPS = 6,13-Bis(triisopropylsilylethynyl)pentacene; DPA = Diphenil-anthracene; DTTTF = Dithieno-tetratiofulvalene; DBTDT = 

Dibenzo-thieno-dithiophene; DNTT = Dinaphtho-thieno-thiophene. 

As shown elsewhere,68–71 the majority of molecular semiconductors have a crystal structure with a high-

mobility plane, while the mobility perpendicular to this plane is 1-2 orders of magnitude smaller. Here we 

focus on the high-mobility plane, and, for convenience in reporting our results, we refer to a standard 2D lattice 

where there can be up to three nearest-neighbour transfer integrals (Fig. 2). Indeed, allowing for some of the 

transfer integrals to be zero, or for pairs of parameters to be identical, such a lattice can describe the vast 

majority of high-mobility organic molecular semiconductors.21  
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Figure 2. Definition of a standard 2D lattice used to present the parameters needed for the calculation of the mobility. a and b identify 

any two crystallographic axes and γ is the angle between them.  

 

Using this layout, we report in Table 1 the transfer integral (J), the norm of the transfer integral gradient (|∇J|) 

and the fluctuation of the transfer integral (σ) evaluated at T=300 K for each pair in the high-mobility plane of 

the molecules in Fig. 1. In particular the crystal structure is derived from the Cambridge Structural Database 

(CSD)72 and the molecule pair is identified by: (i) the ID of the first molecule of the pair in the reference cell 

(ID is a number varying between 1 and the number of the independent molecules in the unit cell), (ii) the ID 

of the other molecule constituting the pair, (iii) three integers 
1 2 3, ,n n n  defining the translation 

1 1 2 2 3 3 n v n v n v  

of the second molecule with respect to the first one (
1 2 3, ,v v v  are the lattice vectors in the reference 

crystallographic structure). 

 

Table 1. List of pairs in the high-mobility plane for molecules in Fig. 1 and relative values for: the transfer integral (J), the norm of the 

transfer integral gradient (|∇J|) and the fluctuation of the transfer integral (σ) at 300 K. For each molecule the CSD (from which all the 

CIF files have been obtained) code is provided. The molecules constituting each pair are labeled according to Fig. 2 and further 

identified as explained in the main text. All values are obtained using B3LYP/3-21g*.  

Molecule & 

CSD code 

Label ID1, ID2, n1, n2, n3 J (meV) |∇J| (mev/Å) σ (meV) σ (meV) 

other works 

An (599019) A 1, 1, 0, -1, 0 −61.2 176 14.6 10-11 a 

 B 1, 2, -1, -1, -1 +35.1 724 41.4 20-21 a 

Tn (IUCr 

A03426) 

A 1, 1, 0, −1, 0 +5.60 180 17.2 14-16 a 

B 1, 2, 0, 0, 0 +18.9 375 22.8 19-21 a 

C 1, 2, −1, 0, 0 −86.4 301 21.4 17-18 a 

Pn (665900) A 1, 1, −1, 0, 0 −74.9 142 13.1 14-15 b 

B 1, 2, 0, 0, 0 −102 218 23.9 24-28 b 

C 1, 2, −1, 0, 0 −96.9 249 22.7 22-24 b 

Rb (605647) A 1, 1, −1, 0, 0 +140 289 46.3 49.1 c - 51 d 

B 1, 2, 0, 0, 0 −21.3 124 18.7 9.7c - 9.9 d 

Pc (560122) A 1, 1, 0, −1, 0 +115 217 17.9  

B 1, 2, 0, 0, 0 −89.8 527 24.1  

C 1, 2, 1, −1, 0 −81.8 526 27.8  

BTBT 

(975935) 

A 1, 1, 0, −1, 0 +119 1222 46.7  

B 1, 2, 0, 0, 0 −23.4 808 43.2  

DTTTF 

(1236389) 

A 1, 1, 0, −1, 0 +114 1134 84.2  

B 1, 2, −1, −1, 0 −55.0 537 87.5  

DNTT 

(644240) 

A 1, 1, −1, 0, 0 +131 197 15.2  

B 1, 2, −1, 0, 1 −146 712 53.7  

DBTDT 

(1236389) 

A 1, 1, 0, 0, -1 +15.5 124 9.47  

B 1, 3, -1, 0, 1 −20.8 208 12.6  

C 1, 3, 0, 0, 0 −68.1 245 14.4  

DPA B 1, 3, -1, 0, 0 36.891 190 11.5  

(113041) C 1, 2, 0, 0, 0 -44.852 199 13.3  

TIPS 

(172476) 

A 1, 1, 0, −1, 0 +3.01 33.1 12.3  

B 1, 1, −1, 1, 0 +45.3 762 101  

C 1, 1, −1, 0, 0 +45.3 1147 144  

A 1, 1, −1, 0, 0 +70.2 1464 148  
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C8-BTBT 

(679293) 

B 1, 2, −1, −1, 0 +70.2 1616 306  

C 1, 2, 0, 0, 0 −9.65 448 71.2  

Reference values from: a ref. 38; b ref. 43; c ref. 48; d ref. 73; 

Validation of the approach 

Before discussing the results in Table 1, we report the outcomes of tests concerning (i) the sensitivity of the 

transfer integral to the density functional and basis set used and (ii) the accuracy of the approximated modes 

used for the computation of the nonlocal electron-phonon coupling. In Fig. 3 we report three scatter plots 

comparing the results of our calculations of transfer integrals for molecules in Fig. 1 using different functionals 

and basis sets (B3LYP/3-21g*, B3LYP/6-31g*, B3LYP/6-311g** and PBE/6-31g*). As expected, all of them 

lead to very similar values. 

 

Figure 3. Comparison between transfer integrals for the molecules shown in Fig. 1 obtained with B3LYP/6-31g* vs. B3LYP/3-21g* 

(left), B3LYP/6-311g** (centre) and PBE/6-31g* (right), respectively.  

 

Moreover, since the transient localization approach only depends on the relative magnitude and sign of the 

coupling,21 it is quite insensitive to the (little) variations shown in Fig. 3. With this in mind, we decided to 

compute the numerical derivatives for the evaluation of the gradient of transfer integral using B3LYP/3-21g*, 

i.e. the cheapest method, to shorten the computational time, since the evaluation of the gradient of transfer 

integral is a computationally intensive step, requiring 12×NA single-point calculations. For consistency with 

the computations of ∇J, also the J reported in Table 1 are obtained at B3LYP/3-21g* level. Finally we mention 

that our transfer integral results are in good agreement with data obtained with the latter approach and reported 

in the literature,2,13,74 except for rubrene, for which smaller values have been reported using different 

approximated methodology.2,74,75 

We next checked the quality of the modes Q obtained with our approximations by defining a spectral density 

function for the nonlocal electron-phonon coupling: 

 
2

,

1
) ( ),(

2
    ij ij M M

M

B g   (12) 

where the contribution of each mode is weighted by the square of non-local electron-phonon coupling.76 In the 

numerical analysis, the Dirac delta function is replaced by a finite broadening (a Gaussian distribution with 

standard deviation of 5 cm-1). This quantity has been evaluated for two test cases, the couple of Tn and Rb 

with largest total fluctuations, and our results have been compared with the spectral density computed with a 

more accurate approach incorporating the effect of phonon band dispersion.48 As shown in Fig. 4, in light of 

the strong approximations applied, we have a good agreement between the two approaches, ensuring the 

reliability of our method. The best figure of merit to compare the two approaches is the room temperature 

fluctuation of the transfer integral computed as in eq. (5), which gives greater weight to the differences at lower 

energy. Indeed, as reported in Table 1, the corresponding σ values obtained using the two approaches are very 

similar, e.g. within 20%, suggesting that using very approximate crystal vibration can be acceptable at least 

for very rigid molecules.  The table also reports values computed by other groups with other methods at a 

similar level of approximation,38,43 where the evaluation of the optical phonons was conducted neglecting the 
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dispersion of the modes with momentum for supercells of different sizes to reach convergence, and the results 

are reassuringly consistent. 

      

Figure 4. Total spectral density for Tn dimer B (left) and Rb dimer A (right). Black line: our data, red line: data from ref. 48. 

Discussion 

The main significance of Table 1 and of the validation tests is that it is possible to explore a range of materials 

to look at the strength of their non-local electron-phonon coupling, i.e. to use our approximate methodology 

in the area of materials discovery. In particular, the computation of phonons, that represents the slow step in 

other approaches, requiring up to several months, can be performed using our methodology on a time scale 

comparable to the evaluation of the gradient of transfer integral, so that the computations of J, ∇J and σ takes 

about 2-3 days for each system studied (using 16 processors). As could have been anticipated from the 

methodology itself, our approach can be more inaccurate for molecules containing highly flexible or large 

fragment like the two alkyl chains in C8-BTBT. Large amplitude vibrations of the isolated molecule are 

modified by the crystal field (shifted at higher energy and reduced in amplitude) while in the current version 

of the method this effect is excluded, and the non-local electron phonon coupling is probably overestimated in 

such molecules.  

To the best of our knowledge, this is the first time that the non-local electron-phonon coupling has been 

evaluated for a quite large set of molecules, and that allows us to identify some general trends and relations 

among the computed quantities. For example, it is expected that molecules showing high transfer integrals and 

a low degree of disorder should be the best semiconducting materials and the limited number of reports so far 

suggested that the relative fluctuation σ/|J| falls within a relatively narrow range around 0.5 at room 

temperature. The analysis of all the data points suggests instead that σ and J are virtually uncorrelated as shown 

from a scatter plot and a histogram illustrating the distribution of σ/|J| in Fig. 5. An immediate consequence of 

this observation is that there is a potentially large range of σ/|J|, i.e. the dynamic disorder is not approximately 

constant – and therefore unavoidable – within the family of molecular semiconductors and one can develop 

materials where it is substantially smaller.  For the same reason, focusing only on materials showing high 

transfer integrals could be misleading, since a high transfer integral alone does not ensure good semiconducting 

properties. To give further examples, it is expected that, if σ/|J| is very large, the material should display a very 

poor mobility.  Indeed, the molecule displaying the highest values of σ/|J| for all the interacting couples, i.e. 

TIPS (black dashed circles in Fig. 5), has the lowest experimental mobilities reported among the molecules 

under investigation (0.6 cm2V-1s-1)21. On the other hand, a low ratio σ/|J| is found for both high mobility 

materials (e.g. DNTT and Pc, for which have been reported mobilities up to 8.3 cm2V-1s-1 and 9.0 cm2V-1s-1  

respectively77,78), and for materials with moderate mobility (Pn, with experimental mobility79–81 of 1.5 cm2V-

1s-1). There are at least two reasons for this occurrence: (i) as shown elsewhere21 the relative sign of the transfer 

integrals should be also taken into account (it explains the relatively low mobility of Pn) and (ii) experimental 

data are strongly dependent on the degree of purification of the crystal and therefore one can expect to see the 

intrinsic mobility for a number of materials that have ideal electronic properties only when extremely pure. 

We point out that, given the large spread of values that can be found in the literature, in particular for pentacene, 

we have considered only experimental mobility results showing good reproducibility between different groups, 

as these are as close to the ideal intrinsic behaviour as can be achieved today.21  
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Figure 5. Scatter plot showing σ vs. absolute value of J (left) and histogram of σ/|J| (right) for all the couples reported in Table 1. Black 

dashed circles identify TIPS values, red dotted circles identify Pn-B and red full circles identify DNTT-A and Pc-A values. The rather 

high σ/|J| for TIPS is not reported in the histogram for convenience.   

The data in Table 1 can also be used to establish whether the main contributor to the disorder σ is the strength 

of the transfer integral gradient (∇J) or the polarization of the phonons (QM). There is, broadly speaking, a 

good correlation between σ and |∇J|, as illustrated in Fig. 6, suggesting that ∇J is the main factor determining 

the strength of the fluctuation of the transfer integral. In particular, as it is also clear from the definition of σ 

(eq. (5) and (9)), smaller |∇J| are always associated with small disorder while, for larger |∇J|, there is a larger 

distribution of values for σ, which is affected by the phonon polarization direction. Fig. 6 highlights the case 

of TIPS and BTBT, which have similar |∇J| values and very different σ. The implication for materials discovery 

is that one should focus on the identification of materials with small |∇J|, a property that can be computed 

more easily and does not depend on vibrational properties of the solids.  

 

Figure 6. Scatter plot showing σ vs. |∇J| for all the couples reported in Table 1. Black dashed circles highlight TIPS values, while red 

circles identify BTBT values. 

To explain more intuitively the role of phonon polarization, e.g. how materials with similar |∇J| may have very 

different σ, we resort to a graphical representation of eq. (9), that expresses the electron-phonon coupling as 

the scalar product between the gradient of transfer integral and the phonon displacements (QM). In Fig. 7 we 

graphically represent these two quantities as a set of red (∇J) and green (QM) arrows centred on the 

corresponding atom for the mode showing the highest contributions to total σ for BTBT-A (ω=58 cm-1) and 

TIPS-C (ω=15 cm-1). It is easy to notice that, in the case of BTBT, the mode displacements are almost 

orthogonal to the gradient of transfer integral, thus leading to a low value of σ despite the quite high value of 
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|∇J| (see Table 1). On the contrary, for TIPS, the couple showing the highest value of σ, the gradient of transfer 

integral shows a good overlap with the phonon displacements. While the role of the phonon polarization in 

determining the fluctuation of the transfer integral can be therefore fully explained, it is very difficult to design 

molecular materials with the desired phonon characteristics also because of the high computational cost of 

these calculations. 

           

Figure 7. Superposition of the gradient of the transfer integral (red arrows) and the displacements (green arrows) for the mode showing 

the greatest contribution to the total σ for: top BTBT; bottom TIPS (the Si atoms and the alkyl chains, which have almost zero values 

of ∇J, are replaced by a grey sphere). Note that the displacements are shown only on one molecule since in our approach the crystal 

vibrations are localized on one molecule.  

 

The analysis so far suggests that, to design better molecular semiconductors, one should develop an intuitive 

understanding of what makes the transfer integral less sensitive to the nuclear motion or, more quantitatively, 

what makes the ratio |∇J|/|J| as small as possible. In the early papers of organic electronics,82 researchers focus 

on the intermolecular geometries that maximize the transfer integrals. In a similar way we can construct a joint 

map of |∇J| and |J| ratio to understand how and why some mutual molecular configuration are less susceptible 

to dynamic disorder.  

To provide an initial illustration of this point, we have evaluated |∇J| and |J| for different relative positions of 

two molecules in the DNTT-A couple, which displays a rather low |∇J|/|J| value. In particular, starting from 

the crystallographic mutual geometry we translate one molecule with respect to the other along the short 

molecular axis Δx as shown in Fig. 8 (Δx=Δy=Δz=0 is the equilibrium geometry). |∇J| and |J| seems to follow 

independent behaviours, e.g. there is no relation between the maxima of |J| and the value of |∇J|. For this 

reason, in the interval 1 Å<Δx<7 Å, where the molecules have good overlap, one obviously observes a small 

ratio |∇J|/|J| when |J| is large, i.e. 4.5 Å<Δx< 5.6 Å. A less trivial area interesting for good transport properties 

is when the overlap between the two molecules is limited to only few atoms, e.g. in the region (Δx<0 Å). Also 

in this case the ratio |∇J|/|J| becomes small, this time because |∇J| is smaller when fewer atoms are involved 

in the transfer integral (the displacement of the atoms not involved does not influence the transfer integral). 

This analysis suggests that molecular crystals where molecules interact through their extremities should not be 

dismissed as this arrangement can be highly beneficial for small non-local electron-phonon couplings. Such 

observation may explain for example the difference between DTTTF-A and DNTT-A, two systems possessing 
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similar J values but significantly different |∇J| (see Table 1). Indeed, as shown in Fig. 9, where the HOMO 

orbitals of these two systems are shown, it is easy to notice that the two DTTTF molecules show a partial 

stacking, while the DNTT molecules interact through their extremities.               

     

 

 

 

 

Figure 8. Top: reference frame for the relative shift of the two DNTT molecules. Below, a plot showing: values of J (top), |∇J| (middle) 

and |∇J|/J (bottom) for different relative positions of the two molecules in the DNTT-A couple. As shown on the top reference frame, 

positive Δx values mean that the molecules are rigidly shifted towards the direction in which they are closer than experimental 

geometry. 
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Figure 9. Side view of DTTF-A (left) and DNTT-A (right) HOMO orbitals. 

 

Conclusions 

In conclusion, in this paper we have presented a methodology for the quick evaluation of the non-local 

electron-phonon coupling relying on two main approximations: the evaluation of the Cartesian gradient of 

transfer integral and the use of approximated phonons evaluated within the rigid body approximation. Despite 

the severe approximations, our method leads to results in excellent agreement with data obtained with more 

accurate approaches.  

The good number of molecules studied by this approach allows us to outline some general trends. First of all, 

we have shown that there is almost no correlation between the transfer integral J and their room temperature 

fluctuation σ. For this reason, the fluctuation of the transfer integral should not be considered an unavoidable 

property of these materials and, on the contrary, one could search for materials for which the ratio σ/J is 

minimized. Secondly, since our data point out that materials with small σ are invariably characterized by small 

values of the gradient of the transfer integral with respect to all atomic translations |∇J|, and this quantity is 

substantially cheaper to evaluate, we highlight the possibility of using |∇J| instead of σ to identify materials 

showing low dynamic disorder. Following these ideas, we propose that the best mutual arrangement between 

molecules can be deduced by comparing the map of the transfer integral (well known since the early days of 

organic electronics) with the map of its gradient (proposed here). Using the test case of the DNTT molecule 

we showed that favourable regions for transport can be found near the maxima of J (as expected) but also when 

the molecules interact through their edges which form a minimum for |∇J|. 

In summary, this work provides an efficient way to access an important quantity for charge transport in 

molecular crystals. Its computation on larger molecular databases and on new molecules is expected to guide 

the rationalization of the charge transport characteristics of this class of materials. 
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