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Abstract

We define a general model of stochastically-evolving graphs, namely the Edge-Uniform
Stochastically-Evolving Graphs. In this model, each possible edge of an underlying general
static graph evolves independently being either alive or dead at each discrete time step of
evolution following a (Markovian) stochastic rule. The stochastic rule is identical for each
possible edge and may depend on the past k ≥ 0 observations of the edge’s state. We
examine two kinds of random walks for a single agent taking place in such a dynamic graph:
(i) The Random Walk with a Delay (RWD), where at each step the agent chooses (uniformly
at random) an incident possible edge, i.e., an incident edge in the underlying static graph,
and then it waits till the edge becomes alive to traverse it. (ii) The more natural Random
Walk on what is Available (RWA) where the agent only looks at alive incident edges at each
time step and traverses one of them uniformly at random. Our study is on bounding the
cover time, i.e., the expected time until each node is visited at least once by the agent. For
RWD, we provide a first upper bound for the cases k = 0, 1 by correlating RWD with a
simple random walk on a static graph. Moreover, we present a modified electrical network
theory capturing the k = 0 case. For RWA, we derive some first bounds for the case k = 0, by
reducing RWA to an RWD-equivalent walk with a modified delay. Further, we also provide a
framework, which is shown to compute the exact value of the cover time for a general family
of stochastically-evolving graphs in exponential time. Finally, we conduct experiments on
the cover time of RWA in Edge-Uniform graphs and compare the experimental findings with
our theoretical bounds.

1 Introduction

In the modern era of the Internet, modifications in a network topology can occur extremely
frequently and in a disorderly way. Communication links may fail from time to time, while
connections amongst terminals may appear or disappear intermittently. Thus, classical (static)
network theory fails to capture such ever-changing processes. In an attempt to fill this void,
different research communities have given rise to a variety of theories on dynamic networks.
In the context of algorithms and distributed computing, such networks are usually referred to
as temporal graphs [1]. A temporal graph is represented by a (possibly infinite) sequence of
subgraphs of the same static graph. That is, the graph is evolving over a series of (discrete)
time steps under a set of deterministic or stochastic rules of evolution. Such a rule can be edge-
or graph-specific and may take as input graph instances observed in previous time steps.

∗This research was partially supported by the Network Sciences and Technologies (NeST) initiative of the
School of Electrical Engineering, Electronics and Computer Science at the University of Liverpool. Paul Spirakis
was partially funded by EPSRC grant number EP/P02002X/1 “Algorithmic Aspects of Temporal Graphs”.
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In this paper, we focus on stochastically-evolving temporal graphs. We define a model of
evolution, where there exists a single stochastic rule, which is applied independently to each
edge. Furthermore, our model is general in the sense that the underlying static graph is allowed
to be a general connected graph, i.e., with no further constraints on its topology, and the
stochastic rule can include any finite number of past observations.

Assume now that a single mobile agent is placed on an arbitrary node of a temporal graph
evolving under the aforementioned model. Next, the agent performs a simple random walk;
at each time step, after the graph instance is fixed according to the model, the agent chooses
uniformly at random a node amongst the neighbours of its current node and visits it. The cover
time of such a walk is defined as the expected number of time steps until the agent has visited
each node at least once. Herein, we prove some first bounds on the cover time for a simple
random walk as defined above, mostly via the use of Markovian theory.

Random walks constitute a very important primitive in terms of distributed computing.
Examples include their use in information dissemination [2] and random network structure [3];
also, see the short survey in [4]. In this work, we consider a single random walk as a fundamental
building block for other more distributed scenarios to follow.

1.1 Related Work

A paper very relevant to ours is the one of Clementi, Macci, Monti, Pasquale and Silvestri [5],
where they considered the flooding time in edge-Markovian dynamic graphs. In such graphs,
each edge independently follows a one-step Markovian rule and their model appears as a special
case of ours (matches our case k = 1). Further work under this edge-Markovian paradigm
includes [6, 7].

Another work related to our paper is the one of Avin, Koucký and Lotker [8], who defined
the notion of a Markovian evolving graph, i.e., a temporal graph evolving over a set of graphs
G1, G2, . . . , where the process transits fromGi toGj with probability pij , and considered random
walk cover times. Note that their approach becomes computationally intractable if applied to
our case; each of the possible edges evolves independently, thence causing the state space to be
of size 2m, where m is the number of possible edges in our model.

Clementi, Monti, Pasquale and Silvestri [9] studied the broadcast problem, when at each time
step, the graph is selected according to the well-known Gn,p model. Furthermore, Yamauchi,
Izumi and Kamei [10] studied the rendezvous problem for two agents on a ring, when each edge
of the ring independently appears at every time step with some fixed probability p.

Moving to a more general scope, research in temporal networks is of interdisciplinary interest,
since they are able to capture a wide variety of systems in physics, biology, social interactions
and technology. For a view of the big picture, see the review in [11]. There exist several papers
considering, mostly continuous-time, random walks on different models of temporal networks:
In [12], they considered a walker navigating randomly on some specific empirical networks.
Rocha and Masuda [13] studied a lazy version of a random walk, where the walker remains
at its current node according to some sojourn probability. In [14], they studied the behaviour
of a continuous time random walk on a stationary and ergodic time-varying dynamic graph.
Lastly, random walks with arbitrary waiting times were studied in [15], while random walks on
stochastic temporal networks were surveyed in [16].

In the analysis to follow, we employ several seminal results around the theory of random
walks and Markov chains. For random walks, we base our analysis on the seminal work in [2]
and the electrical network theory presented in [17, 18]. For results on Markov chains, we cite
the textbooks [19, 20].

2



1.2 Our Results

We define a general model of stochastically-evolving graphs, where each possible edge evolves
independently, but all of them evolve following the same stochastic rule. Furthermore, the
stochastic rule may take into account the last k states of a given edge. The motivation for such
a model lies in several practical examples from networking where the existence of an edge in the
recent past means it is likely to exist in the near future, e.g., for telephone or Internet links. In
some other cases, existence may mean that an edge has “served its purpose” and is now unlikely
to appear in the near future, e.g., due to a high maintenance cost. The model is a discrete-time
one following previous work in the computer science literature. Moreover, as a first start and
for mathematical convenience, it is formalized as a synchronous system, where all possible edges
evolve concurrently in distinct rounds (each round corresponding to a discrete time step).

Special cases of our model have appeared in previous literature, e.g., in [9, 10] for k = 0
and in the line of work starting from [5] for k = 1; however, they only consider special graph
topologies (like ring and clique). On the other hand, the model we define is general in the sense
that no assumptions, aside from connectivity, are made on the topology of the underlying graph
and any amount of history is allowed in the stochastic rule. Thence, we believe it can be valued
as a basis for more general results to follow, capturing search or communication tasks in such
dynamic graphs.

We hereby provide the first known bounds relative to the cover time of a simple random walk
taking place in such stochastically-evolving graphs for k = 0. To do so, we make use of a simple,
yet fairly useful, modified random walk, namely the Random Walk with a Delay (RWD), where
at each time step, the agent is choosing uniformly at random from the incident edges of the
static underlying graph and then waits for the chosen edge to become alive in order to traverse
it. Despite the fact that this strategy may not sound naturally-motivated enough, it can act as
a handy tool when studying other, more natural, random walk models, as in the case of this
paper. Indeed, we study the natural random walk on such graphs, namely the Random Walk
on what is Available (RWA), where at each time step, the agent only considers the currently
alive incident edges and chooses to traverse one out of them uniformly at random.

For the case k = 0, that is when each edge appears at each round with a fixed probability p
regardless of history, we prove that the cover time for RWD is upper bounded by CG/p, where
CG is the cover time of a simple random walk on the (static) underlying graph G. The result can
be obtained both by a careful mapping of the RWD walk to its corresponding simple random
walk on the static graph and by generalizing the standard electrical network theory literature in
[17, 18]. Later, we proceed to prove that the cover time for RWA is between CG/(1− (1− p)∆)
and CG/(1− (1− p)δ), where δ, respectively ∆, is the minimum, respectively maximum, degree
of the underlying graph. The main idea here is to reduce RWA to an RWD walk, where at each
step, the traversal delay is lower, respectively upper, bounded by (1 − (1 − p)δ), respectively
(1− (1− p)∆).

For k = 1, the stochastic rule takes into account the previous, one time step ago, state of the
edge. If an edge was not present, then it becomes alive with probability p, whereas if it was alive,
then it dies with probability q. For RWD, we show a CG/ξmin upper bound by considering the
minimum probability guarantee of existence at each round, i.e., ξmin = min{p, 1−q}. Similarly,
we show a CG/ξmax lower bound, where ξmax = max{p, 1− q}.

Consequently, we demonstrate an exact, exponential-time approach to determine the precise
cover time value for a general setting of stochastically-evolving graphs, including also the edge-
independent model considered in this paper.

Finally, we conduct a series of experiments on calculating the cover time of RWA (k = 0
case) on various underlying graphs. We compare our experimental results with the achieved
theoretical bounds.
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1.3 Outline

In Section 2, we provide preliminary definitions and results regarding important concepts and
tools that we use in later sections. Then, in Section 3, we define our model of stochastically-
evolving graphs in a more rigorous fashion. Afterwards, in Sections 4 and 5, we provide the
analysis of our cover time bounds when for determining the current state of an edge, we take
into account its last zero and one states, respectively. In Section 6, we demonstrate an exact
approach for determining the cover time for general stochastically-evolving graphs. Then, in
Section 7, we present some experimental results on zero-step history, RWA cover time and
compare them to the corresponding theoretical bounds in Section 4. Finally, in Section 8, we
cite some concluding remarks.

2 Preliminaries

Let us hereby define a few standard notions related to a simple random walk performed by a
single agent on a simple connected graph G = (V,E). By d(v), we denote the degree, i.e., the
number of neighbours, of a node v ∈ V . A simple random walk is a Markov chain where, for
v, u ∈ V , we set pvu = 1/d(v), if (v, u) ∈ E, and pvu = 0, otherwise. That is, an agent performing
the walk chooses the next node to visit uniformly at random amongst the set of neighbours of
its current node. Given two nodes v, u, the expected time for a random walk starting from v
to arrive at u is called the hitting time from v to u and is denoted by Hvu. The cover time
of a random walk is the expected time until the agent has visited each node of the graph at
least once. Let P stand for the stochastic matrix describing the transition probabilities for a
random walk (or, in general, a discrete-time Markov chain), where pij denotes the probability
of transition from node i to node j, pij ≥ 0 for all i, j and

∑
j pij = 1 for all i. Then, the matrix

P t consists of the transition probabilities to move from one node to another after t time steps,

and we denote the corresponding entries as p
(t)
ij . Asymptotically, limt→∞ P

t is referred to as the
limiting distribution of P . A stationary distribution for P is a row vector π such that πP = π
and

∑
i πi = 1. That is, π is not altered after an application of P . If every state can be reached

from another in a finite number of steps, i.e., P is irreducible and the transition probabilities

do not exhibit periodic behaviour with respect to time, i.e., gcd{t : p
(t)
ij > 0} = 1, then the

stationary distribution is unique, and it matches the limiting distribution (fundamental theorem
of Markov chains). The mixing time is the expected number of time steps until a Markov chain
approaches its stationary distribution.

In order to derive lower bounds for RWA, we use the following graph family, commonly
known as lollipop graphs, capturing the maximum cover time for a simple random walk, e.g.,
see [21, 22].

Definition 1. A lollipop graph Lkn consists of a clique on k nodes and a path on n − k nodes
connected with a cut-edge, i.e., an edge whose deletion makes the graph disconnected.

3 The Edge-Uniform Evolution Model

Let us define a general model of a dynamically-evolving graph. Let G = (V,E) stand for a
simple, connected graph, from now on referred to as the underlying graph of our model. The
number of nodes is given by n = |V |, while the number of edges is denoted by m = |E|.
For a node v ∈ V , let N(v) = {u : (v, u) ∈ E} stand for the open neighbourhood of v and
d(v) = |N(v)| for the (static) degree of v. Note that we make no assumptions regarding the
topology of G, besides connectedness. We refer to the edges of G as the possible edges of our
model. We consider evolution over a sequence of discrete time steps (namely 0, 1, 2, . . .) and
denote by G = (G0, G1, G2, . . .) the infinite sequence of graphs Gt = (Vt, Et), where Vt = V and
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Et ⊆ E. That is, Gt is the graph appearing at time step t, and each edge e ∈ E is either alive
(if e ∈ Et) or dead (if e /∈ Et) at time step t.

Let R stand for a stochastic rule dictating the probability that a given possible edge is alive
at any time step. We apply R at each time step and at each edge independently to determine
the set of currently alive edges, i.e., the rule is uniform with regard to the edges. In other words,
let et stand for a random variable where et = 1, if e is alive at time step t, or et = 0, otherwise.
Then, R determines the value of Pr(et = 1|Ht) where Ht is also determined by R and denotes
the history length, i.e., the values of et−1, et−2, . . ., considered when deciding for the existence
of an edge at time step t. For instance, Ht = ∅ means no history is taken into account, while
Ht = {et−1} means the previous state of e is taken into account when deciding its current state.

Overall, the aforementioned Edge-Uniform Evolution model (EUE) is defined by the pa-
rameters G, R and some initial input instance G0. In the following sections, we consider
some special cases for R and provide some first bounds for the cover time of G under this
model. Each time step of evolution consists of two stages: in the first stage, the graph Gt
is fixed for time step t following R, while in the second stage, the agent moves to a node in
Nt[v] = {v} ∪ {u ∈ V : (v, u) ∈ Et}. Notice that, since G is connected, then the cover time
under EUE is finite, since R models edge-specific delays.

4 Cover Time with Zero-Step History

We hereby analyse the cover time of G under EUE in the special case when no history is taken
into consideration for computing the probability that a given edge is alive at the current time
step. Intuitively, each edge appears with a fixed probability p at every time step independently
of the others. More formally, for all e ∈ E and time steps t, Pr(et = 1) = p ∈ [0, 1].

4.1 Random Walk with a Delay

A first approach toward covering G with a single agent is the following: The agent is randomly
walking G as if all edges were present, and when an edge is not present, it just waits for it to
appear in a following time step. More formally, suppose the agent arrives on a node v ∈ V with
(static) degree d(v) at the second stage of time step t. Then, after the graph is fixed for time
step t + 1, the agent selects a neighbour of v, say u ∈ N(v), uniformly at random, i.e., with
probability 1

d(v) . If (v, u) ∈ Et+1, then the agent moves to u and repeats the above procedure.

Otherwise, it remains on v until the first time step t′ > t + 1 such that (v, u) ∈ Et′ and then
moves to u. This way, p acts as a delay probability, since the agent follows the same random
walk it would on a static graph, but with an expected delay of 1

p time steps at each node. Notice
that, in order for such a strategy to be feasible, each node must maintain knowledge about its
neighbours in the underlying graph; not just the currently alive ones. From now on, we refer to
this strategy for the agent as the Random Walk with a Delay (RWD).

Now, let us upper bound the cover time of RWD by exploiting its strong correlation to a
simple random walk on the underlying graph G via Wald’s equation (Theorem 1). Below, let
CG stand for the cover time of a simple random walk on the static graph G.

Theorem 1 ([23]). Let X1, X2, . . . , XN be a sequence of real-valued, independent and identically
distributed random variables, where N is a nonnegative integer random variable independent of
the sequence (in other words, a stopping time for the sequence). If each Xi and N have finite
expectations, then it holds:

E[X1 +X2 + . . .+XN ] = E[N ] · E[X1]

Theorem 2. For any connected underlying graph G evolving under the zero-step history EUE,
the cover time for RWD is expectedly CG/p.
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Proof. Consider a Simple Random Walk (SRW) and an RWD (under the EUE model) taking
place on a given connected graphG. Given that RWD decides on the next node to visit uniformly
at random based on the underlying graph, that is in exactly the same way SRW does, we use a
coupling argument to enforce RWD and SRW to follow the exact same trajectory, i.e., sequence
of visited nodes.

Then, let the trajectory end when each node in G has been visited at least once, and denote
by T the total number of node transitions made by the agent. Such a trajectory under SRW
will cover all nodes in expectedly E[T ] = CG time steps. On the other hand, in the RWD case,
for each transition, we have to take into account the delay experienced until the chosen edge
becomes available. Let Di ≥ 1 be a random variable, where 1 ≤ i ≤ T stands for the actual
delay corresponding to node transition i in the trajectory. Then, the expected number of time
steps till the trajectory is realized is given by E[D1 + . . . + DT ]. Since the random variables
Di are independent and identically distributed by the edge-uniformity of our model, T is a
stopping time for them and all of them have finite expectations, then by Theorem 1, we get:
E[D1 + . . .+DT ] = E[T ] · E[D1] = CG · 1/p.

For an explicit general bound on RWD, it suffices to use CG ≤ 2m(n− 1) proven in [2].

A Modified Electrical Network Another way to analyse the above procedure is to make
use of a modified version of the standard literature approach of electrical networks and random
walks [17, 18]. This point of view gives us expressions for the hitting time between any two
nodes of the underlying graph. That is, we hereby (in Lemmata 1, 2 and Theorem 3) provide a
generalization of the results given in [17, 18], thus correlating the hitting and commute times of
RWD with an electrical network analogue and reaching a conclusion for the cover time similar
to the one of Theorem 2.

In particular, given the underlying graph G, we design an electrical network, N(G), with
the same edges as G, but where each edge has a resistance of r = 1

p ohms. Let Hu,v stand
for the hitting time from node u to node v in G, i.e., the expected number of time steps until
the agent reaches v after starting from u and following RWD. Furthermore, let φu,v declare the
electrical potential difference between nodes u and v in N(G) when, for each w ∈ V , we inject
d(w) amperes of current into w and withdraw 2m amperes of current from a single node v. We
now upper-bound the cover time of G under RWD by correlating Hu,v to φu,v.

Lemma 1. For all u, v ∈ V , Hu,v = φu,v holds.

Proof. Let us denote by Cuw the current flowing between two neighbouring nodes u and w.
Then, d(u) =

∑
w∈N(u)Cuw, since at each node, the total inward current must match the total

outward current (Kirchoff’s first law). Moving forward, Cuw = φuw/r = φuw/(1/p) = p · φuw
by Ohm’s law. Finally, φuw = φuv − φwv, since the sum of electrical potential differences
forming a path is equal to the total electrical potential difference of the path (Kirchoff’s second
law). Overall, we can rewrite d(u) =

∑
w∈N(u) p(φu,v − φw,v) = d(u) · p · φu,v − p

∑
w∈N(u) φw,v.

Rearranging gives:

φu,v =
1

p
+

1

d(u)

∑
w∈N(u)

φw,v.

Regarding the hitting time from u to v, we rewrite it based on the first step:

Hu,v =
1

p
+

1

d(u)

∑
w∈N(u)

Hw,v

since the first addend represents the expected number of steps for the selected edge to appear
due to RWD and the second addend stands for the expected time for the rest of the walk.
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Wrapping it up, since both formulas above hold for each u ∈ V \ {v}, therefore inducing
two identical linear systems of n equations and n variables, it follows that there exists a unique
solution to both of them, and Hu,v = φu,v.

In the lemma below, let Ru,v stand for the effective resistance between u and v, i.e., the
electrical potential difference induced when flowing a current of one ampere from u to v.

Lemma 2. For all u, v ∈ V , Hu,v +Hv,u = 2mRu,v holds.

Proof. Similar to the definition of φu,v above, one can define φv,u as the electrical potential
difference between v and u when d(w) amperes of current are injected into each node w and 2m
of them are withdrawn from node u. Next, note that changing all currents’ signs leads to a new
network where for the electrical potential difference, namely φ′, it holds φ′u,v = φv,u. We can
now apply the superposition theorem (see Section 13.3 in [24]) and linearly superpose the two
networks implied from φu,v and φ′u,v, creating a new one where 2m amperes are injected into u,
2m amperes are withdrawn from v and no current is injected or withdrawn at any other node.
Let φ′′u,v stand for the electrical potential difference between u and v in this last network. By
the superposition argument, we get φ′′u,v = φu,v + φ′u,v = φu,v + φv,u, while from Ohm’s law, we
get φ′′u,v = 2m · Ru,v. The proof concludes by combining these two observations and applying
Lemma 1.

Theorem 3. For any connected underlying graph G evolving under the zero-step history EUE,
the cover time for RWD is at most 2m(n− 1)/p.

Proof. Consider a spanning tree T of G. An agent, starting from any node, can visit all nodes
by performing a Eulerian tour on the edges of T (crossing each edge twice). This is a feasible
way to cover G, and thus, the expected time for an agent to finish the above task provides
an upper bound on the cover time. The expected time to cover each edge twice is given by∑

(u,v)∈ET
(Hu,v +Hv,u) where ET is the edge-set of T with |ET | = n− 1. By Lemma 2, this is

equal to 2m
∑

(u,v)∈ET
Ru,v = 2m

∑
(u,v)∈ET

1
p = 2m(n− 1)/p.

4.2 Random Walk on What Is Available

Random walk with a delay does provide a nice connection to electrical network theory. However,
depending on p, there could be long periods of time where the agent is simply standing still at
the same node. Since the walk is random anyway, waiting for an edge to appear may not sound
very wise. Hence, we now analyse the strategy of a Random Walk on what is Available (shortly
RWA). That is, suppose the agent has just arrived at a node v after the second stage at time
step t, and then, Et+1 is fixed after the first stage at time step t + 1. Now, the agent picks
uniformly at random only amongst the alive incident edges at time step t+1. Let dt+1(v) stand
for the degree of node v in Gt+1. If dt+1(v) = 0, then the agent does not move at time step
t+ 1. Otherwise, if dt+1(v) > 0, the agent selects an alive incident edge each having probability

1
dt+1(v) . The agent then follows the selected edge to complete the second stage of time step t+ 1
and repeats the strategy. In a nutshell, the agent keeps moving randomly on available edges
and only remains on the same node if no edge is alive at the current time step. Below, let
δ = minv∈V d(v) and ∆ = maxv∈V d(v).

Theorem 4. For any connected underlying graph G with min-degree δ and max-degree ∆ evolv-
ing under the zero-step history EUE, the cover time for RWA is at least CG/(1− (1− p)∆) and
at most CG/(1− (1− p)δ).

Proof. Suppose the agent follows RWA and has reached node u ∈ V after time step t. Then,
Gt+1 becomes fixed, and the agent selects uniformly at random a neighbouring edge to which
to move. Let Muv (where v ∈ {w ∈ V : (u,w) ∈ E}) stand for a random variable taking value
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one if the agent moves to node v and zero otherwise. For k = 1, 2, . . . , d(u) = d, let Ak stand
for the event that dt+1(u) = k. Therefore, Pr(Ak) =

(d
k

)
pk(1− p)d−k is exactly the probability

k out of the d edges existing since each edge exists independently with probability p. Now,
let us consider the probability Pr(Muv = 1|Ak): the probability v will be reached given that k
neighbours are present. This is exactly the product of the probability that v is indeed in the
chosen k-tuple (say p1) and the probability that then v is chosen uniformly at random (say p2)
from the k-tuple. p1 =

(d−1
k−1

)
/
(d
k

)
= k

d , since the model is edge-uniform, and we can fix v and

choose any of the
(d−1
k−1

)
k-tuples with v in them out of the

(d
k

)
total ones. On the other hand,

p2 = 1
k by uniformity. Overall, we get Pr(Muv = 1|Ak) = p1 · p2 = 1

d . We can now apply the
total probability law to calculate:

Pr(Muv = 1) =
∑d
k=1 Pr(Muv = 1|Ak) Pr(Ak) = 1

d

∑d
k=1

(d
k

)
pk(1− p)d−k = 1

d(1− (1− p)d)

To conclude, let us reduce RWA to RWD. Indeed, in RWD, the equivalent transition proba-
bility is Pr(Muv = 1) = 1

dp, accounting both for the uniform choice and the delay p. Therefore,
the RWA probability can be viewed as 1

dp
′, where p′ = (1−(1−p)d). To achieve edge-uniformity,

we set p′ = (1− (1− p)δ), which lower bounds the delay of each edge, and finally, we can apply
the same RWD analysis by substituting p by p′. Similarly, we can set the upper-bound delay
p′′ = (1−(1−p)∆) to lower bound the cover time. Applying Theorem 2 completes the proof.

The value of δ used to lower-bound the transition probability may be a harsh estimate for
general graphs. However, it becomes quite more accurate in the special case of a d-regular
underlying graph where δ = ∆ = d. To conclude this section, we provide a worst-case lower
bound on the cover time based on similar techniques as above.

Lemma 3. There exists an underlying graph G evolving under the zero-step history EUE such
that the RWA cover time is at least Ω(mn/(1− (1− p)∆)).

Proof. We consider the L
2n/3
n lollipop graph, which is known to attain a cover time of Ω(mn)

for a simple random walk [21, 22]. Applying the lower bound from Theorem 4 completes the
proof.

5 Cover Time with One-Step History

We now turn our attention to the case where the current state of an edge affects its next state.
That is, we take into account a history of length one when computing the probability of existence
for each edge independently. A Markovian model for this case was introduced in [5]; see Table 1.
The left side of the table accounts for the current state of an edge, while the top for the next
one. The respective table box provides us with the probability of transition from one state to
the other. Intuitively, another way to refer to this model is as the birth-death model: a dead
edge becomes alive with probability p, while an alive edge dies with probability q.

Table 1: Birth-death chain for a single edge [5].
dead alive

dead 1− p p

alive q 1− q

Let us now consider an underlying graph G evolving under the EUE model where each
possible edge independently follows the aforementioned stochastic rule of evolution.
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5.1 RWD for General (p, q)-Graphs

Let us hereby derive some first bounds for the cover time of RWD via a min-max approach.
The idea here is to make use of the “being alive” probabilities to prove lower and upper bounds
for the cover time parameterized by ξmin = min{p, 1− q} and ξmax = max{p, 1− q}.

Let us consider an RWD walk on a general connected graph G evolving under EUE with
a zero-step history rule dictating Pr(et = 1) = ξmin for any edge e and time step t. We refer
to this walk as the Upper Walk with a Delay (UWD). Respectively, we consider an RWD walk
when the stochastic rule of evolution is given by Pr(et = 1) = ξmax. We refer to this specific
walk as the Lower Walk with a Delay (LWD). Below, we make use of UWD and LWD in order
to bound the cover time of RWD in general (p, q)-graphs.

Theorem 5. For any connected underlying graph G and the birth-death rule, the cover time of
RWD is at least CG/ξmax and at most CG/ξmin.

Proof. Regarding UWD, one can design a corresponding electrical network where each edge
has a resistance of 1/ξmin capturing the expected delay till any possible edge becomes alive.
Applying Theorem 2 gives an upper bound for the UWD cover time.

Let C ′ stand for the UWD cover time and C stand for the cover time of RWD under the
birth-death rule. It now suffices to show C ≤ C ′ to conclude.

In birth-death, the expected delay before each edge traversal is either 1/p, in case the
possible edge is dead, or 1/(1−q), in case the possible edge is alive. In both cases, the expected
delay is upper-bounded by the 1/ξmin delay of UWD, and therefore, C ≤ C ′ follows since any
trajectory under RWD will take at most as much time as the same trajectory under UWD.

In a similar manner, the cover time of LWD lower bounds the cover time of RWD, and by
applying Theorem 2, we derive a lower bound of CG/ξmax.

6 An Exact Approach

So far, we have established upper and lower bounds for the cover time of edge-uniform stochastically-
evolving graphs. Our bounds are based on combining extended results from simple random walk
theory and careful delay estimations. In this section, we describe an approach to determine the
exact cover time for temporal graphs evolving under any stochastic model. Then, we apply this
approach to the already seen zero-step history and one-step history cases of RWA.

The key component of our approach is a Markov chain capturing both phases of evolution:
the graph dynamics and the walk trajectory. In that case, calculating the cover time reduces to
calculating the hitting time to a particular subset of Markov states. Although computationally
intractable for large graphs, such an approach provides the exact cover time value and is hence
practical for smaller graphs.

Suppose we are given an underlying graph G = (V,E) and a set of stochastic rules R
capturing the evolution dynamics of G. That is, R can be seen as a collection of probabilities
of transition from one graph instance to another. We denote by k the (longest) history length
taken into account by the stochastic rules. Like before, let n = |V | stand for the number of
nodes and m = |E| for the number of possible edges of G. We define a Markov chain M with
states of the form (H, v, Vc), where:

• H = (H1, H2, . . . ,Hk) is a k-tuple of temporal graph instances, that is for each i =
1, 2, . . . , k, Hi is the graph instance present i− 1 time steps before the current one (which
is H1)

• v ∈ V (G) is the current position of the agent

• Vc ⊆ V (G) is the set of already covered nodes, i.e., the set of nodes that have been visited
at least once by the agent

9



As described earlier for our edge-uniform model, we assume evolution happens in two phases.
First, the new graph instance is determined according to the rule-set R. Second, the new agent
position is determined based on a random walk on what is available. In this respect, consider a
state S = (H, v, Vc) and another state S′ = (H ′, v′, V ′c ) of the described Markov chain M . Let
Pr[S → S′] denote the transition probability from S to S′. We seek to express this probability
as a product of the probabilities for the two phases of evolution. The latter is possible, since,
in our model, the random walk strategy is independent of the graph evolution.

For the graph dynamics, let Pr[H
R−→ H ′] stand for the probability to move from a history-

tuple H to another history-tuple H ′ under the rules of evolution in R. Note that, for i =
1, 2, . . . , k − 1, it must hold H ′i+1 = Hi in order to properly maintain history, otherwise the
probability becomes zero. On the other hand, for valid transitions, the probability reduces to
Pr[H ′1|(H1, H2, . . . ,Hk)], which is exactly the probability that H ′1 becomes the new instance
given the history H = (H1, H2, . . . ,Hk) of past instances (and any such probability is either
given directly or implied by R).

For the second phase, i.e., the random walk on what is available, we denote by Pr[v
Hj−−→ v′]

the probability of moving from v to v′ on some graph instance Hj . Since the random walk
strategy is only based on the current instance, we can derive a general expression for this
probability, which is independent of the graph dynamics R. Below, let NHj (v) stand for the
set of neighbours of v in graph instance Hj . If {v, v′} 6∈ E(G), that is if there is no possible

edge between v and v′, then for any temporal graph instance Hj , it holds Pr[v
Hj−−→ v′] = 0.

The probability is also zero for all graph instances Hj where the possible edge is not alive, i.e.,

{v, v′} 6∈ E(Hj). In contrast, if {v, v′} ∈ E(Hj), then Pr[v
Hj−−→ v′] = |NHj (v)|−1, since the agent

chooses a destination uniformly at random out of the currently alive ones. Finally, if v = v′,
then the agent remains still, with probability one, only if there exist no alive incident edges.
We summarize the above facts in the following equation:

Pr[v
Hj−−→ v′] =


1 , if NHj (v) = ∅ and v′ = v

|NHj (v)|−1 , if v′ ∈ NHj (v)

0 , otherwise

(1)

Overall, we combine the two phases inM and introduce the following transition probabilities.

• If |Vc| < n:

Pr[(H, v, Vc)→ (H ′, v′, V ′c )] =


Pr[H

R−→ H ′] · Pr[v
H′1−−→ v′] , if v′ ∈ V ′c and V ′c = Vc

Pr[H
R−→ H ′] · Pr[v

H′1−−→ v′] , if v′ 6= v, v′ 6∈ V ′c and V ′c = Vc ∪ {v′}
0 , otherwise

• If |Vc| = n:

Pr[(H, v, Vc)→ (H ′, v′, V ′c )] =

®
1 , if H = H ′, v = v′, Vc = V ′c
0 , otherwise

For |Vc| < n, notice that only two cases may have a non-zero probability with respect to
the growth of Vc. If the newly visited node v′ is already covered, then V ′c must be identical to
Vc since no new nodes are covered during this transition. Further, if a new node v′ is not yet
covered, then V ′c is updated to include it, as well as all the covered nodes in Vc.

For |Vc| = n, the idea is that once such a state has been reached, and so all nodes are
covered, then there is no need for further exploration. Therefore, such a state can be made to
absorb. In this respect, let us denote the set of these states as Γ = {(H, v, Vc) ∈M : |Vc| = n}.
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Definition 2. Let ECT (G,R) be the problem of determining the exact value of the cover time
for an RWA on a graph G stochastically evolving under rule-set R.

Theorem 6. Assume all probabilities of the form Pr[H
R−→ H ′] used in M are exact reals and

known a priori. Then, for any underlying graph G and stochastic rule-set R, it holds that
ECT (G,R) ∈ EXPTIME.

Proof. For each temporal graph instance, Hi, in the worst case, there exist 2m possibilities,
since each of the m possible edges is either alive or dead at a graph instance. For the whole
history H, the number of possibilities becomes (2m)k = 2k·m by taking the product of k such
terms. There are n possibilities for the walker’s position v. Finally, for each v ∈ V (G), we
only allow states such that v ∈ Vc. Therefore, since we fix v, there are up to n− 1 nodes to be
included or not in Vc leading to a total of O(2n−1) possibilities for Vc. Taking everything into
account, M has a total of O(2k·m+n−1n) states.

Let Hs,Γ stand for the hitting time of Γ when starting from a state s ∈M . Assuming exact
real arithmetic, we can compute all such hitting times by solving the following system (Theorem
1.3.5 [20]): ®

Hs,Γ = 0 , ∀s ∈ Γ

Hs,Γ = 1 +
∑
s′ 6∈Γ Pr[s→ s′] ·Hs′,Γ , ∀s 6∈ Γ

Let C stand for the cover time of an RWA on G evolving under R. By definition, the cover
time is the expected time till all nodes are covered, regardless of the position of the walker at
that time. Consider the set S = {(H, v, {v}) ∈ M : v ∈ V (G)} of start positions for the agent
as depicted in M . Then, it follows C = maxs∈S Hs,Γ, where we take the worst-case hitting time
to a state in Γ over any starting position of the agent. In terms of time complexity, computing
C requires computing all values Hs,Γ, for every s ∈ S. To do so, one must solve the above linear
system of size O(2k·m+n−1n), which can be done in time exponential to input parameters n,m
and k.

It is noteworthy to remark that this approach is general in the sense that there are no
assumptions on the graph evolution rule-set R besides it being stochastic, i.e., describing the
probability of transition from each graph instance to another given some history of length k.
In this regard, Theorem 6 captures both the case of Markovian evolving graphs [8] and the
case of edge-uniform graphs considered in this paper. We now proceed and show how the
aforementioned general approach applies to the zero-step and one-step history cases of edge-
uniform graphs. To do so, we calculate the corresponding graph-dynamics probabilities. The
random walk probabilities are given in Equation (1).

RWA on Edge-Uniform Graphs (Zero-Step History) Based on the general model, we
rewrite the transition probabilities for the special case when RWA takes place on an edge-
uniform graph without taking into account any memory, i.e., the same case as in Section 4.
Notice that, since past instances are not considered in this case, the history-tuple reduces to
a single graph instance H. We rewrite the transition probabilities, for the case |Vc| < n, as
follows:

Pr[(H, v, Vc)→ (H, v′, V ′c )] =


Pr[H ′|H] · Pr[v

H′−→ v′] , if v′ ∈ V ′c and V ′c = Vc

Pr[H ′|H] · Pr[v
H′−→ v′] , if v′ 6= v, v′ 6∈ V ′c and V ′c = Vc ∪ {v′}

0 , otherwise

Let α stand for the number of edges alive in H ′. Since there is no dependence on history and
each edge appears independently with probability p, we get Pr[H ′|H] = Pr[H ′] = pα ·(1−p)m−α.

11



RWA on Edge-Uniform Graphs (One-Step History) We hereby rewrite the transition
probabilities for a Markov chain capturing an RWA taking place on an edge-uniform graph
where, at each time step, the current graph instance is taken into account to generate the next
one. This case is related to the results in Section 5. Due to the history inclusion, the transition
probabilities become more involved than those seen for the zero-history case. Again, we consider
the non-absorbing states, where |Vc| < n.

Pr[((H1, H2), v, Vc)→ ((H ′1, H
′
2), v′, V ′c )] =


Pr[(H1, H2)→ (H ′1, H

′
2)] · Pr[v

H′1−−→ v′] , if v′ ∈ V ′c and V ′c = Vc

Pr[(H1, H2)→ (H ′1, H
′
2)] · Pr[v

H′1−−→ v′] , if v′ 6∈ V ′c and V ′c = Vc ∪ {v′}
0 , otherwise

If H ′2 6= H1, i.e., if it does not hold that, for each e ∈ G, e ∈ H ′2 if and only if e ∈ H1, then
Pr[(H1, H2) → (H ′1, H

′
2)] = 0, otherwise the history is not properly maintained. On the other

hand, if H ′2 = H1, then Pr[(H1, H2) → (H ′1, H
′
2)] = Pr[(H1, H2) → (H ′1, H1)] = Pr[H ′1|H1]. To

derive an expression for the latter, we need to consider all edge (mis)matches between H ′1 and H1

and properly apply the birth-death rule (Table 1). Below, we denote by D(H) = E(G) \E(H)
the set of possible edges of G, which are dead at instance H. Let c00 = |D(H1) ∩ D(H ′1)|,
c01 = |D(H1) ∩ E(H ′1)|, c10 = |E(H1) ∩ D(H ′1)| and c11 = |E(H1) ∩ E(H ′1)|. Each of the c00

edges was dead in H1 and remained dead in H ′1, with probability 1−p. Similarly, each of the c01

edges was dead in H1 and became alive in H ′1, with probability p. Furthermore, each of the c10

edges was alive in H1 and died in H ′1, with probability q. Finally, each of the c11 edges was alive
in H1 and remained alive in H ′1, with probability 1− q. Overall, due to the edge-independence
of the model, we get Pr[H ′1|H1] = (1− p)c00 · pc01 · qc10 · (1− q)c11 .

7 Experimental Results

In this section, we discuss some experimental results to complement our previously-established
theoretical bounds. We simulated an RWA taking place in graphs evolving under the zero-step
history model. We provided an experimental estimation of the value of the cover time for such
a walk. To do so, for each specific graph and value of p considered, we repeated the experiment
a large number of times, e.g., at least 1000 times. In the first experiment, we started from a
graph instance with no alive edges. At each step, after the graph evolved, the walker picked
uniformly at random an incident alive edge to traverse. The process continued till all nodes
were visited at least once. Each next experiment commenced with the last graph instance of
the previous experiment as its first instance.

We constructed underlying graphs in the following fashion: given a natural number n, we
initially constructed a path on n nodes, namely v1, v2, . . . , vn. Afterwards, for each two distinct
nodes vi and vj , we added an edge {vi, vj} with probability equal to a randomThreshold
parameter. For instance, randomThreshold = 0 means the graph remains a path. On the
other hand, for randomThreshold = 1, the graph becomes a clique.

In Tables 2–4, we display the average cover time, rounding it to the nearest natural number,
computed in some indicative experiments for randomThreshold equal to 0.85, 0.5 and 0.15,
respectively. Consequently, we provide estimates for a lower and an upper bound on the tem-
poral cover time. In this respect, we experimentally compute a value for the cover time of a
simple random walk in the underlying graph, i.e., the static cover time. Then, we plug in this
value in place of CG to apply the bounds given in Theorem 4. Overall, the temporal cover times
computed appear to be within their corresponding lower and upper bounds.

8 Conclusions

We defined the general edge-uniform evolution model for a stochastically-evolving graph, where
a single stochastic rule is applied, but to each edge independently, and provided lower and upper
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Table 2: Experimental Results for Randomly-Produced Graphs (randomThreshold = 0.85)
Size δ ∆ p Static Cover Time Temporal Cover Time Lower Bound Upper Bound

10 6 9 0.9 28 28 28 28

10 7 9 0.5 28 28 28 28

10 7 9 0.2 27 31 31 34

10 7 9 0.1 29 50 47 61

10 7 9 0.05 28 78 76 93

10 7 8 0.01 28 356 83 413

100 74 92 0.9 535 535 535 535

100 74 91 0.05 530 543 535 543

100 76 92 0.01 536 912 888 1003

100 74 92 0.005 541 1476 1465 1746

250 197 229 0.99 1551 1551 1551 1551

250 194 228 0.75 1555 1555 1555 1555

250 192 225 0.01 1548 1744 1728 1810

250 201 228 0.005 1538 2326 2259 2423

250 198 225 0.001 1546 7948 7670 8603

Table 3: Experimental Results for Randomly-Produced Graphs (randomThreshold = 0.5)
Size δ ∆ p Static Cover Time Temporal Cover Time Lower Bound Upper Bound

10 3 6 0.9 35 35 35 35

10 3 7 0.5 33 35 34 38

10 5 8 0.2 28 37 33 41

10 4 8 0.1 34 69 60 100

10 3 8 0.05 32 118 96 226

10 3 7 0.01 33 780 486 1113

100 39 60 0.9 542 542 542 542

100 37 68 0.1 561 571 561 572

100 35 63 0.05 556 589 579 667

100 38 63 0.01 544 1349 1160 1714

100 35 61 0.005 549 2436 2085 3413

250 106 144 0.9 1589 1589 1589 1589

250 105 145 0.025 1581 1646 1623 1700

250 109 147 0.01 1579 2150 2046 2372

250 105 150 0.005 1584 3324 2998 3871

Table 4: Experimental Results for Randomly-Produced Graphs (randomThreshold = 0.15)
Size δ ∆ p Static Cover Time Temporal Cover Time Lower Bound Upper Bound

10 2 5 0.9 38 38 38 38

10 1 5 0.5 62 70 64 125

10 2 4 0.2 41 88 69 113

10 2 5 0.1 48 176 117 252

10 1 5 0.05 46 361 203 919

10 2 4 0.01 38 1356 959 1899

100 9 28 0.9 671 671 671 671

100 8 24 0.1 634 740 689 1113

100 11 25 0.05 616 1033 852 1428

100 9 24 0.01 694 4152 3240 8028

100 10 23 0.005 642 7873 5894 13127

250 25 57 0.9 1708 1708 1708 1708

250 27 59 0.1 1700 1739 1700 1803

250 23 54 0.01 1750 5167 4179 8480

250 23 54 0.005 1736 9601 7321 15944
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bounds for the cover time of two random walks taking place on such a graph (cases k = 0, 1).
Moreover, we provided a general framework to compute the exact cover time of a broad family
of stochastically-evolving graphs in exponential time.

An immediate open question is how to obtain a good lower/upper bound for the cover time
of RWA in the birth-death model. In this case, the problem becomes quite more complex than
the k = 0 case. Depending on the values of p and q, the walk may be heavily biased, positively
or negatively, toward possible edges incident to the walker’s position, which were used in the
recent past.

Acknowledgements. We acknowledge two anonymous reviewers for spotting technical errors
in the previously attempted analysis of the one-step history RWA. Furthermore, we acknowledge
another anonymous reviewer who suggested using Theorem 2 as an alternative to electrical
network theory and some other modifications.

Supplementary Materials. The source code associated with the experiments in Section 7
is available online at https://github.com/yiannislamprou/AvgRWA.
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