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Abstract: This paper considers the optimal planning problem for container prestaging and 
dynamic discharging/loading at seaport rail terminals subject to uncertainties. We formulate 
the problem into a stochastic dynamic programming model to minimise the total logistics cost.  
Four simplified strategies are proposed. Experiments based on a real case study are performed 
to compare the optimal strategy with four simplified strategies in terms of cost, computing time 
and practicality. Results show that the seaport can use prestaging to reduce the cost involved 
and that an appropriate discharging/loading plan can be created in response to different 
prestaging situations and uncertain scenarios.  
  
Keywords: Container transport; seaport rail terminal; prestaging; discharge and load; 
stochastic dynamic programming. 
 
1. Introduction 
Global Container port traffic has increased from nearly 85 million TEUs (twenty-foot 
equivalent unit) in 1990 to 700 million TEUs in 2016.  Meanwhile, the size of containerships 
has increased dramatically, from 5000 TEU in 1990 to 21400 TEU in 2017 (UNCTAD 2017). 
The growing traffic volume puts a huge pressure on container ports, which act as critical 
interface points between seaborne transport and hinterland transport. The deployment of mega-
vessels tends to concentrate container loading/unloading activities at hub and gateway ports, 
adding further pressure to container ports to cope with the surge effect of container flows. 
 
In addition, traffic congestion and emissions (e.g. mainly caused by truck movements) in the 
areas surrounding seaports have raised serious environmental concerns. Rail transport is 
regarded as one of the most effective ways to tackle the above challenges due to its high 
capacity and low emissions. However, the limited handling capacity in seaport rail terminals is 
not able to match the growing demand; thus there is a compelling need to improve the 
efficiency of rail terminal operations at seaports in order to achieve sustainability and reduce 
pollution and congestion in container transport chains.  
 
In a broad context, numerous studies have been conducted on the optimisation of container 
terminal operations. Readers can refer to the survey papers such as Steenken et al. (2004); 
Gunther and Kim (2006); Stahlbock and Voss (2008); Bierwirth and Meisel (2010); Carlo et 
al. (2014); and Kim and Lee (2015). However, it is noted that most of the optimisation models 
focused on quayside and yardside operations with a relatively limited number of studies on 
landside operations interfacing with hinterland transport activities. In particular, the operations 
management issues associated with seaport rail terminals have been under-studied (Caballini 
et al. 2016; Heggen et al. 2016).   
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Trains arrive at a seaport rail terminal, carrying export containers which are discharged and 
transported to storage yards close to ship berth terminals. Then, import containers are loaded 
onto trains either directly from storage yards or from the rail terminal buffer, where import 
containers have been prestaged (stored in advance). Both the discharge process and the load 
process have to be carried out within pre-specified working time windows; in particular each 
train has a strict departure time due to railway network scheduling. There is often a considerable 
distance (up to several miles) between rail terminals and storage yards, yard cranes serve 
multiple tasks, and other factors exist such as weather conditions, equipment breakdown, etc; 
therefore, a high level of uncertainty is involved in the transportation of containers between the 
storage yards and the train. In a similar manner to how yard template planning is used to 
determine the assignment of spaces in a container port prior to a vessel’s arrival (Zhen, 2016), 
a container prestaging mechanism is introduced in this research. Prestaging refers to moving 
containers from storage yards to the rail terminal buffer in advance, in order to shorten the 
distance they need to be moved at time critical points so as to mitigate risks imposed by various 
uncertainties and to better meet the departure deadline. However, prestaging has to be 
appropriately planned as prestaging activity is costlier and rail terminal buffer space is limited. 
The discharging and loading processes are performed within planned time windows. A time 
window may be divided into multiple periods (e.g. hourly periods). Flow rates are defined as 
container movements between the rail terminal and the storage yards at each period, which may 
change dynamically over the discharging and loading time windows. In this paper, we propose 
an integrated model to optimise the decisions of container prestaging and of container flow 
rates in the presence of uncertainties. 
 
To the best of our knowledge, we are the first to investigate container prestaging issue at rail 
terminal. The main contributions of this research include: (i) this study investigates the issues 
of simultaneously optimising container prestaging and container flow rates at seaport rail 
terminals subject to time windows. (ii) we obtain the optimal strategy using the stochastic 
dynamic programming method. To overcome the challenge of the computational complexity, 
we propose four simplified strategies, which are more computationally efficient and readily 
applicable in practice. In particular, the Bang-bang strategy can achieve a performance very 
close to the optimal strategy. (iii) The current industrial practice relating to planning prestaging, 
discharging and loading is manual and time consuming; therefore, this work offers the 
opportunity for terminal operators to improve the efficiency of rail terminal operations.  
 
The rest of the paper is organised as follows. Section 2 reviews the relevant literature together 
with an empirical example to motivate the study. In Section 3, an integrated stochastic dynamic 
programming model is formulated, which is able to optimise the decisions of container 
prestaging and the decisions of container discharging and loading rates in the presence of 
uncertainties. Section 4 presents solution strategies including the optimal strategy and four 
simplified strategies. In Section 5, the model is extended to tackle multiple train situations. In 
Section 6, numerical examples based on a real case study are provided to compare these 
strategies and illustrate their effectiveness in a range of scenarios. Finally, we draw conclusions 
and indicate further research in Section 7. 
 
2. Literature review and an empirical example 
This section contains two subsections Section 2.1 Literature review, and Section 2.2 Operations 
at rail terminal. Section 2.1 provides a summary and critical evaluation on the work in relation 
to the research topic. A critique of review is also demonstrated to establish need for this 
research. Section 2.2 provides a clear background of the problem investigated in this research, 
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and also provides a detailed explanation of the operations of rail terminals in a seaport, 
facilitated by the illustrative map in Figure 1, and empirical examples in Figures 2-3. 

 
2.1 Literature review 

At a container rail terminal, there are two types of players that are closely related: the rail 
operator and the terminal operator. The rail operator is the operator of trains, who is 
responsible for transporting containers between seaport rail terminals and inland intermodal 
terminals via trains. In terms of the importing process, the rail operator will produce a load list 
specifying the specific containers to be loaded on a particular train. The load list can be 
communicated to the terminal operator between several hours and one day in advance of the 
train’s arrival at the seaport rail terminal. However, the load list is subject to changes; it is not 
unusual that the rail operator may require loading of a certain number of containers with short 
notice. Failing to load such containers may incur a heavy penalty for the terminal operator. 
Figure 1 depicts the operational activities among rail terminals in a seaport.  The terminal 
operator is responsible for transporting containers between rail terminals and storage yards via 
internal moving vehicles (IMV) facilitated by other resources such as rail mounted gantry 
(RMG) cranes and yard cranes. As a seaport normally has a number of storage yards divided 
into blocks, the distance between storage yards and the rail terminal varies quite significantly. 
In the following, we provide a brief literature review from two aspects: rail operator and 
terminal operator. 
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Figure 1: An illustrative map of rail terminal operations at seaport 
 

From the rail operator’s perspective, the predominant research focuses on the train load 
planning problem. Heggen et al. (2016) provided a comprehensive literature review on the 
models of train load planning problems. This problem mainly concerns determining the optimal 
assignment of containers to wagon slots in order to maximise train utilisation by taking into 
account various constraints imposed by train, track, wagons and load unit types. Early work in 
this research stream concentrated on rail operations at inland intermodal terminals (e.g. Corry 
and Kozan 2008; Bruns and Knust 2012). Ambrosino et al. (2011) is the first to extend the train 
load planning problem to the context of seaport rail terminals. They integrated the optimisation 
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of train load planning with the optimisation of crane and storage planning. This essentially 
combines the operations from the rail operator’s perspective (maximise train utilisation) with 
the operations from the terminal operator’s perspective (minimise the unproductive operations 
in the terminal) to some extent. More specifically, Ambrosino et al. (2011) considered the train 
sequential loading problem at a seaport, which aims to assign containers to the wagon slots of 
the train by minimising the reshuffles in the storage area. The model was then extended by 
allowing backward empty crane moves (Ambrosino et al. 2013). Anghinolfi and Paolucci 
(2014) extended the train sequential loading model presented by Ambrosino et al. (2011) to 
consider a sequence of trains with different destinations with the aim to minimise the distances 
between the container locations in the storage area and the assigned wagons. Ambrosino and 
Siri (2015) examined the train load planning problem that aims to maximise the train utilisation 
and minimise unproductive operations in the rail terminal (e.g. unproductive movements of 
crane, reshuffle of containers in the stacking area). The problems in the above studies are 
generally formulated into mixed-integer programming models and often solved using heuristic 
or metaheuristic methods due to the computational complexity of the problems. Uncertainty is 
normally not considered in the research steam. 
 
From the terminal operator’s perspective, rail terminals are only part of the complex 
container terminal system. A large number of studies have been conducted to facilitate 
container terminal operators to make various strategic and tactical decisions, for example on 
berth allocation (Zhen, 2015), yard template planning (Zhen, 2014, Zhen et al., 2016), yard 
capacity, fleet composition, truck substitutability, and terminal scalability issues (Petering, 
2011). There is also extensive amount of literature that deals with the quayside and yardside 
operations at container terminals (c.f. Steenken et al. 2004; Murty et al. 2005; Gunther and Kim 
2006; Stahlbock and Voss 2008; Bierwirth and Meisel 2010; Carlo et al. 2014; and Kim and 
Lee 2015).  
 
A range of uncertainties are also considered in some of the container terminal literature. For 
example, Zhen (2014) developed stochastic programming models for yard template planning 
under uncertain freight transportation demand, traffic congestion and vessel arrival cycle time 
patterns (Zhen et al., 2016). Zhen (2015) investigated the berth allocation problem related to 
uncertain dwell times of ships. A mixed integer programming model has been developed to 
address berth and quay crane scheduling problem simultaneously, with stochastic vessel arrival 
and container handling times (Han, et al., 2010). A stochastic programming model has been 
proposed to dynamically allocate berths and quay-cranes in real stochastic environments 
characterised by stochastic vessel arrival and handling times (Zhou and Kang, 2008). However, 
these uncertainties are associated with the operations at quayside or yardside rather than at the 
rail terminal. 
 
None of the aforementioned research has addressed the issues in relation to rail terminals at 
seaports. In this context, research can be classified as: I) research that investigates the 
functionality or benefits brought by having a rail terminal at a seaport; and II) studies that 
specifically focus on seaport rail terminal operations.   
 
A few studies belong to category I). Gillen and Hasheminia (2018) revealed that the best way 
to reduce dwell time in a Canadian seaport is to increase the frequency of train movements.  
They utilised a simulation model to measure the effect of changes on total dwell time, i.e. the 
time elapsed between the vessel berthing at the port and the loaded train leaving the port.   
Schonemann (2010) considered the transhipment process between ships and railways in 
German seaports and developed an information flow model which aimed to reduce buffer time 
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by enabling better communication between the intermediaries of the transhipment process. 
However, the information flow model was hypothetical and remained as a conceptual design. 
Roso (2007), studied the concept of implementing a dry port in Scandinavia. The 
implementation of a dry port in a seaport’s immediate hinterland was shown to increase the 
utilisation of train services, thus reducing the seaport’s lorry congestion, leading to reduced 
environmental effects along the road network.   
 
However, very few studies investigated the rail terminal operations in category II). Caballini 
et al. (2014) presented an aggregate queue-based model representing the movements of 
containers in the maritime rail terminal area as a set of flows. A mixed-integer linear 
mathematical programming problem is formulated in order to optimise the timings of the trains 
and the use of the handling resources devoted to rail port operations. The authors further 
extended the deterministic model to deal with unexpected situations by adopting an event-
triggered receding-horizon planning approach, in which the deterministic optimisation problem 
will be re-solved whenever a critical event happens or the real values of some problem data 
significantly differ from the predicted ones. Caballini et al. (2016) extended the above model 
to address the capacity design and shunting operations planning problem in a port rail network. 
The above two papers introduced the concepts of flow rates and queue length to model the 
container movements/storage between yards, RMGs and the internal rail park. They did not 
consider the container prestaging issue or the regular uncertainties during container flows. 
 
     2.2 Operations at rail terminal- an empirical example 
The two container flows via the rail terminal at a sea port (see Figure 1) can be generally 
described as follows (see Figure 2): 

1) Discharging flow (i.e. dashed-line): after a train carrying export containers arrives at a 
seaport rail terminal, the containers will be discharged from the train by RMGs onto 
the IMVs, which move them to storage yards to await loading onto vessels. The 
discharging activities are performed within a pre-specified discharge time window. 

2) Loading flow (i.e. solid lines): the loading process is performed within the load time 
window but after the discharge process. However, it is possible that the load time 
window partially overlaps with the discharge window. In the loading process, import 
containers are transported from storage yards via IMVs to the RMG, or import 
containers that have been prestaged in the Rail Terminal (RT) buffer are moved from 
there to the RMG via IMVs. Finally, the RMGs will load the containers onto the train.  

 
 

 
 
 
 

 
 
 

Figure 2. The processes of moving containers between yards and train 
 
 The main job of a seaport rail terminal operator, is to discharge each of the daily inbound train 
arrivals (7 inbound trains arrive daily in the rail terminal considered in this research), shunt 
wagons from some inbound trains to form outbound trains, and load containers onto the 
outbound trains. However, resources, such as RMGs, IMVs and labour resource are limited 
and each train is assigned a fixed working time window. The terminal operator aims to allocate 
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resources to loading and discharging tasks efficiently within the allowed time window for each 
train in order to minimise the total logistics costs. Any container that is not discharged or loaded 
in this time is called a miss. Misses are considered a huge customer service failure for an 
industrial port, damaging its reputation and potentially resulting in customer loss.  
 
The existence of a variety of uncertain factors makes loading and discharging tasks even more 
challenging. Firstly, the train load plan could be changed for various reasons, e.g. uncertain 
events, urgent transport needs, inaccurate information. The terminal operator has to 
accommodate such later changes and respond in a dynamic way. Secondly, the train may arrive 
later than the planned arrival time, but it has to depart at the planned departure time. This affects 
the working time window and implies that the operational plan for discharge and load activities 
has to be adjusted accordingly. Thirdly, IMV often has to wait at the transfer points at storage 
yards to collect containers because yard cranes may be not available immediately. Normally, 
yard cranes are moving among different yard blocks and performing a range of tasks for both 
import and export containers. According to our empirical data from a real case, the IMV 
waiting time is uncertain and occupies a significant part of the total container transportation 
time. Fourthly, the IMV may have to wait at the rail terminal as well due to resource 
unavailability (e.g. RMGs). Fifthly, there may be uncertainty during the transportation between 
the rail terminal and storage yards as the distance is up to several kilometres and is subject to 
traffic congestion.  
 
The fact that discharging happens before loading means that the chance of fully discharging is 
higher than fully loading. The process of taking the import container from the main storage 
yard to RMG or train is time consuming for the IMVs involved. As a way to mitigate risks 
imposed by various uncertainties, short distance local storage areas near RMG or train are used 
as buffers, to allow containers to be taken to local storage areas prior to the train arrival, so as 
to ensure service is maintained. The use of buffer is the prestaging measure defined in 
Introduction section.  
 
Figure 3 shows the actual container load rates at a rail terminal within a day (every 30 minutes) 
based on the empirical data of a real case. These empirical data demonstrate that there is a high 
level of uncertainty/variability in the process of moving containers between storage yards and 
rail terminals over the periods.  
 

 
Figure 3. Empirical data of container loading rates at a rail terminal within a day 
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In current industrial practice, the rail terminal operator at the seaport relies on experience to 
manually design the operational plan in terms of assigning IMVs to perform the discharge and 
load tasks. Prestaging decisions are also made subjectively based on experiences. Therefore, a 
need emerges for a tool that can make static decisions on prestaging and create dynamic plans 
for container discharging and loading over the time windows by taking into account the 
uncertainties in the processes. 
 
The purpose of this study is to fill the above research gap by developing such a tool that can be 
applied to solve real train load/discharge planning problem, and to improve the efficiency of 
rail terminal operations at a container seaport. We adopt a discrete-time flow rate model. The 
dynamic plan of container discharging and loading activities is characterised by the discharge 
flow rates and load flow rates over the working time windows. The static prestaging decisions 
are represented by the pre-specified number of containers that are stored in the rail terminal 
buffer before the train arrives. We did not model the schedule of individual containers and 
resources mainly due to the existence of the aforementioned uncertain factors that may make 
the detailed schedule infeasible to implement. The flow-based discrete-time model can act as 
a tool to plan and re-plan the resource assignment in a dynamic way to accommodate the regular 
uncertainties and respond to the disruptive events. Relevant flow-based discrete-time models 
can be accessed in Caballini et al. (2014, 2016). However, we formulate the problem into a 
stochastic dynamic programming model that is able to determine the optimal static container 
prestaging decision and the optimal dynamic container flow rates simultaneously. More 
importantly, we take into account the uncertainties appearing in container handling activities, 
which have been largely ignored in the existing literature.  
 
3. Stochastic dynamic programming model for the single train loading and discharging 

problem 
The rail terminal operator needs to make a range of planning decisions, including: i) 
Operational Level Static Planning: the number of containers to be prestaged from storage yards 
to the RT buffer before the working time window; ii) Operational Level Dynamic Planning: 
the container flow rates from train to yard over the discharge time window and the container 
flow rates from yard to train and/or from RT buffer to train over the load time window. The 
problem is to seek the optimal decisions by minimising the total logistics cost associated with 
the prestaging, discharging and loading processes subject to a series of constraints.  
 

3.1. Notation 
In order to formulate the optimisation problem mathematically, we introduce the following 
notation. 
 
Input parameters 
𝑡 :  the beginning of the working time window for discharging the train (𝑡 ≥ 0); 
𝑡 :  the end of the working time window for discharging the train (𝑡 <𝑡 ); 
𝑡 :  the beginning of the working time window for loading the train (𝑡 > 𝑡 ); 
𝑡 :  the end of the working time window for loading the train (𝑡  < 𝑡 and 𝑡 <𝑡 ); 

B
lQ :  the maximum number of containers allowed to be prestaged at the RT buffer; 
T
dQ :  the total number of containers initially on the train to be discharged; 
T
lQ :  the total number of containers planned to be loaded onto the train; 

𝑄 :  the capacity of the train with 𝑄 ≥ max{ T
dQ , T

lQ }; 
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( )dlC t : the maximum discharging/loading capacity of RMG cranes in period t; 

( )dU t : the maximum flow rate of transporting discharge containers in period t; 

( )Y
lU t : the maximum flow rate of transporting load containers from yards in period t; 

( )B
lU t : the maximum flow rate of transporting load containers from RT buffer in period t; 

, ,Y Y B
d l lf f f : the parameters to represent uncertainty in container flow rates from train to yard, 

from yard to train, and from RT buffer to the train respectively;  
Pc :  the unit cost of prestaging containers at RT buffer (including transport and storage); 
Yc :    the unit cost of IMV transporting a container between yard and RMG; 
Bc :  the unit cost of IMV transporting a container from RT buffer to RMG; 
Dc :  the unit cost of the RMG discharging a container from the train; 
Lc :  the unit cost of the RMG loading a container to the train; 
Sc :  the storage cost at RT buffer per container per period; 
Tc :  the storage cost on the train per container per period; 
Mc :  the unit penalty cost for missing discharge containers from the train by the end of 

discharging time window, or for missing load containers to the train by the end of loading 
time window; 

Dynamic derived variables 
( )T

dx t : the number of discharge containers left on the train at the beginning of time period t ; 

( )B
lx t : the number of containers left in the RT buffer to be loaded on the train at the beginning 

of time period t ; 
( )T

lx t : the number of containers loaded on the train at the beginning of time period t ; 

( )Y
d t : the random variable representing the actual container flow rate from train to yard via 

RMG in period t ; 
( )Y

l t : the random variable representing the actual container flow rate from yard to train via 

RMG in period t ; 
( )B

l t : the random variable representing the actual container flow rate from RT buffer to train 

via RMG in period t ; 
Decision variables 

( )Y
du t : the planned container flow rate from train via RMG to yard in period t ; 

( )Y
lu t : the planned container flow rate from yard to train via RMG in period t ;  

( )B
lu t : the planned container flow rate from RT buffer to train via RMG in period t ; 

q :  the number of containers prestaged at RT buffer to be loaded on train initially, which is 

not greater than B
lQ ; 

 
The rationale of introducing a range of unit costs is explained below: 
1) Pc : the unit cost of prestaging:  this is a one-off cost incurred to transport containers from 

storage yard and store them at RT buffer, and it associates with the prestaged number of 
containers q .  

2) Yc : this is the unit cost of IMV transporting one container between yard and RMG, but it 
is worth noting that IMVs together with drivers, as resources, are deployed ahead of the 
actual transportation. Therefore, this unit cost is linked with the committed resources, i.e., 
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the planned number of IMVs used to transport containers between yard and RMG, which 
are measured as planned flow rates ( )Y

du t  and ( )Y
lu t .  

3) Bc : this is the unit cost of IMV transporting one container from RT buffer to RMG. For 
similar reasons to those outlined in point 2) above, this unit cost is associated with the 
deployed number of IMVs between RT buffer and RMG, measured as ( )B

lu t . 

4) Dc and Lc , unit costs of RMG discharging and loading containers: although the planned 
number of containers to be loaded or charged per train is fixed in our context, the actual 
number of containers that will be loaded or discharged by RMGs is uncertain due to the 
uncertainty in the processes. It is not unusual that trains depart from the seaport before 
completing loading in order to meet the rail network’s timetable. Missed loading of 
containers can incur high penalties and is an important issue for the rail terminal operator 
to deal with. On the other hand, it is possible that containers on the train may not be 
completely discharged within the pre-specified discharge time window due to the 
uncertainty in the discharging process, which incurs additional cost. For these reasons, Dc   
and Lc  are associated with actual loading and discharging activities, measured as ( )Y

d t , 

( )Y
l t and ( )B

l t , which are actual flow rates delivered by the resources available within 

the working time window.  
5) Sc , unit storage cost at RT buffer: buffer size in a rail terminal is limited and is regarded 

as a precious resource. A buffer can be shared by a number of trains to store containers. To 
increase the utilisation of buffer, it is in the terminal operator’s interest to free up the buffer 
as soon as possible and offer it to other trains.  

6) Tc , unit storage cost on the train per container per period: similar to the storage cost adopted 
in an inventory control problem, the unit storage cost on train is used to model the following 
practices:  

a). in a stochastic case, it encourages the operator to discharge containers from the train 
as soon as possible to avoid storage cost, and possible misses caused by uncertainties; 

b). in a deterministic situation, it is preferred to load containers onto trains as late as 
possible to allow customers to make late changes.  Our industrial partners advise that 
customers may occasionally request an urgent change in loading containers. 

7) Unit storage cost in yard is not considered in this research for the following reasons: at the 
rail terminal the storage yard size is much bigger than the buffer size; therefore, in 
comparison with other unit costs, the value of unit storage cost at storage yard is small 
enough to be neglectable. The omission of this cost has no significant impact on the 
decisions of prestaging, discharging and loading flow rates. 

8) It should be noted that due to the uncertainties involved in the transportation and operation 
processes at the rail terminal, for example, waiting time at storage yards, waiting time at 
rail terminals, late arrival of trains, RMG breakdown, etc., the committed resources may 
not be fully effective; therefore the planned flow rates may not be fully realised in the actual 
flow rates. This means it is reasonable to assume that actual flow rates are lower than the 
planned flow rates, i.e., ( )Y

d t ≤ ( )Y
du t , ( )Y

l t ≤ ( )Y
lu t , and ( )B

l t ≤ ( )B
lu t . 

 
3.2. Dynamic Model  

We assume that the actual container flow rates follow uniform probability distributions in 
intervals with their ranges proportional to the planned flow rates.  
 
In the time periods of b e

d lt t t  , the discrete-time dynamic equations of container flows 

(including both discharge and load processes) can be given as follows: 
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( )T b T
d d dx t Q   (1) 

( )B b
l dx t q    (2) 

( ) 0T b
l dx t     (3) 

( 1) ( ) ( )T T Y
d d dx t x t t    (4) 

( 1) ( ) ( )B B B
l l lx t x t t    (5) 

( 1) ( ) ( ) ( )T T B Y
l l l lx t x t t t      (6) 

0 B
lq Q   (7) 

   0 ( ) min ( ), ( ), ( )Y T b e
d d dl d d du t x t C t U t I t t t       (8) 

   0 ( ) min ( ), ( ), ( )B B B b e
l l dl l l lu t x t C t U t I t t t       (9) 

   0 ( ) min ( ), ( )Y Y b e
l dl l l lu t C t U t I t t t      (10) 

 ( ) ( ) min ( ), ( ) ( )Y B T T T T T
l l l l d lu t u t Q x t Q x t x t       (11) 

( ) ( ) ( ) ( )Y Y B
d l l dlu t u t u t C t    (12) 

( ) ~ ( ( ), ( ))Y Y Y Y
d d d dt Uniform f u t u t   (13) 

( ) ~ ( ( ), ( ))B B B B
l l l lt Uniform f u t u t    (14) 

( ) ~ ( ( ), ( ))Y Y Y Y
l l l lt Uniform f u t u t   (15) 

 

The problem is to find the optimal control policy  , ( ), ( ), ( ) :Y B Y b e
d l l d lq u t u t u t t t   by 

minimizing the following objective function: 
* min [ ( 1) ( ( 1))

( ( 1) ( ( 1) ( 1)) ( ( ) ( ))

( ) ( ) ( ( ) ( )))]

P M T e M T T e
d d l l l

S B T T T Y Y Y
l d l d lt

B B D Y L B Y
l d l l

J E c q c x t c Q x t

c x t c x t x t c u t u t

c u t c t c t t  

         

         

      

          (16) 

 
On the right-hand-side of the above equation, the first term is the container prestaging cost; the 
second term represents the missed discharge penalty at the end of the discharging time window; 
the third term represents the missed load penalty at the end of loading time window; the fourth 
term aggregates the cost for each period that includes the storage costs at the rail terminal buffer, 
the storage cost for containers on the train, the IMV deployment cost between the yard/buffer, 
and the handling cost of RMGs. The explanations to the IMV deployment cost and the RMG 
handling cost can be referred to Section 3.1 points 2) ~ 4).  
 
Note that in the problem (16) the prestaging decision q is a static decision variable, whereas 

planned flow rates decisions  ( ), ( ), ( )Y B Y
d l lu t u t u t  are dynamic decision variables over multiple 

periods. Specifically, the static prestaging decision can be reflected by appropriately setting the 
initial value of the state variable ( )B

lx t  at b
dt t .  

 
In practice, we are interested in finding the optimal state-feedback control policies for the 

container flow rates. Hence,  ( ), ( ), ( )Y B Y
d l lu t u t u t  can be interpreted as { ( ( ), ( ), ( ))Y T B T

d d l lu x t x t x t , 

( ( ), ( ), ( ))B T B T
l d l lu x t x t x t , ( ( ), ( ), ( ))Y T B T

l d l lu x t x t x t }. The optimal dynamic container flow rates can 

be found by applying the stochastic dynamic programming approach. Let 
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( ( ), ( ), ( ))T B T
t d l lJ x t x t x t  denote the cost-to-go function from period t onward. The dynamic 

programming optimality equation is given by ( b e
d lt t t  ):  

 
       
        
       

1

( ( ), ( ), ( )) min { { }

( ) 1 ( ( )) {

)

  

 

 

1}

(

T B T P b
t d l l d

M T e
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l d d d d
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l l l d l

B B D Y L B

M T T e
d d l l l

T

Y
l d l l

T
t d

c x t I t t c x t I t t t

c x t I t t t c u t u t

c

J x t x t x t E c q I t t

c x t

t

I t t c Q x t

u t c c t t

J x t

I t t

 





   

          





   

   

  

  

   

  

       }1 , 1 , 1B T
l lx t x t 

 

     

     
        

       
      

     
      1

1
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1 , 1 , 1  
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P b M T e
d d d

M T T e S B b
l l l l d

T T b e T T b e
d d d l l l

Y Y Y B B
d l l

D Y L B Y
d l l

T B T
t d l l

c q I t t c x t I t t

c Q x t I t t c x t I t t

c x t I t t t c x t I t t t

c u t u t c u t

E c t c t t

J x t x t x t

  



   

   

   

  



    

    

     

 



   

  

  

           (17) 

where       1 1 , 1 , 01T B T
t d l lJ x t x t x t     for e

lt t . Here I{condition} is an indicator 

function. It takes 1 if the condition in {} is true, 0 otherwise.  
 
Note that the minimum operation on the right-hand-side of (17) is taken over the planned flow 

rates  ( ), ( ), ( )Y B Y
d l lu t u t u t ; the actual flow rates      { }, ,Y B Y

d l lt t t    are random variables 

that depend on  ( ), ( ), ( )Y B Y
d l lu t u t u t ; the cost-to-go function 

      1 1 , 1 , 1T B T
t d l lJ x t x t x t    depends on both  ( ), ( ), ( )Y B Y

d l lu t u t u t and 

     { }, ,Y B Y
d l lt t t    from (4)-(6). At period t, the mathematical expectation is only 

performed on             1  1 , 1 , 1( )D Y L B Y T B T
d l l t d l lc t c t t J x t x t x t          as 

shown in the second equation of (17). This is because other terms are deterministic at the 
current period. The calculation of the expectation in the last term on the right-hand-side of (17) 
can be referred to similar expositions in Bertsekas (1976), Puterman (2005), and Song (2013). 
For example, under the assumption that the random variables are discrete, let 

 , {:   }Y Y
d i dp Prob t i  ;  , {:   }Y Y

l j lp Prob t j  ;  , { }:   ;B B
l k lp Prob t k   then we 

have, 

            
 

     

1

, , ,

1

  1 , 1 , 1

 

 – ,  – ,  )]

[ ( ) ]

[

(

D Y L B Y T B T
d l l t d l l

Y Y B D L
d i l j l ki j k

T B T
t d l l

E c t c t t J x t x t x t

p p p c i c k j

J x t i x t k x t k j
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From the dynamic programming optimality equation (17), the optimal expected cost defined in 
(16) is given by  * *, ,  0T

t dJ J Q q  with b
dt t , where 

  *  argmin , ,  0   0 ,|  T B b
t d l dq J Q q q Q t t    . 

 
We further analysed the properties of the dynamic model in (1)-(17) to gain an insight into 
potential decision making on prestaging and flow rates. The dynamic optimality equation 
presented in (17) presents a linear relationship between the unit costs and planned flow rate, 
and a linear relationship between unit costs and derived dynamic variables, such as actual flow 
rates. The ordinal relationships of the unit cost coefficients (c.f. the explanations in Section 6.1) 
implies that the dynamic model has several nice properties: 
I) Due to the extremely high penalty of missing containers for discharging and loading, the 

priority of the decision making should avoid the misses.  
II) Intuitively, the prestaging decision variable q should increase if the train’s working time 

window is narrower and/or the degree of uncertainties between RMGs and yards is higher.  
III) In terms of the flow rate decision variables, the discharging and loading operations should 

be done as rapidly as possible to avoid misses and penalty costs. However, there exists a 
trade-off between the penalties and the storage and the prestaging costs. On the other 
hand, if we can guarantee that all containers will be loaded before the train departure time 
(e.g. in the deterministic case), then the loading operations should be performed as late 
as possible due to the storage cost on the train. 

IV) In the uncertain case where there is no guarantee of completing discharge before the 
train’s departure, and if Mc is high enough, the maximum resource capacity should be 
deployed to discharge containers as much and as early as possible.  

V) There are two factors to consider when loading starts, the timing and the origin of loading. 
Timing affects the storage cost in the train and in the buffer, while the origin of loading 
decides the loading sequence, i.e., from yard to train first, or from buffer to train first.   
 

In Section 6 Numerical experiments, a few observations are made to verify the properties above, 
when parameter values are given.  
 
4. Optimal strategies and solutions 
The traditional way to resolve the stochastic dynamic programming problem in (1)~(17) is the 
backwards value iteration algorithm (c.f. Bertsekas 1976; Sennott 1999; Puterman 2005; Song 
2013), which will be named as Optimal Strategy in this research, and explained in detail in  
Section 4.1.  
 
However, the main disadvantage of seeking the optimal strategy is computational complexity, 
which is due to the curse of dimensionality and is a common issue for traditional dynamic 
programming formulated problems. Therefore, four alternative solution strategies are proposed, 
with the purpose to reduce the curse of dimensionality by simplifying the solution space. In 
this way the problem can be solved much more efficiently, at the expense of a solution with 
reduced quality. The proposed four alternative solution strategies include: a Decoupled 
Strategy where loading and discharging are decoupled; two greedy strategies i.e., Buffer-first 
Greedy strategy and Yard-first Greedy strategy; and a Bang-bang strategy 
loading/discharging the whole batch or nothing.     
 
The above five solution strategies are explained in detail in the following sub-sections 
including the rationales of their adoption in our research context. We will also provide 
theoretical analysis to compare the computational complexity among five strategies at the end 
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of this section. More comparison among these strategies in terms of effectiveness in achieving 
optimality and computing efficiency are made in Section 6 using numerical examples.   
 

4.1. Optimal strategy 
The stochastic dynamic programming problem in (1)~(17) can be solved using the backwards 
value iteration algorithm.  
 

Step 1: Let       1 1 , 1 , 1 0T B T
t d l lJ x t x t x t     for any state (  1T

dx t  ,  1B
lx t  , 

 1T
lx t  ) at e

lt t . 

Step 2: Let e
lt t .  

Step 3: Use (17) to calculate the optimal value function       , ,T B T
t d l lJ x t x t x t , and the 

optimal state-feedback control { ( ( ), ( ), ( ))Y T B T
d d l lu x t x t x t , ( ( ), ( ), ( ))B T B T

l d l lu x t x t x t , 

( ( ), ( ), ( ))Y T B T
l d l lu x t x t x t } subject to constraints in (1)~(15).  

Step 4: Let –  1t t .  If b
dt t , go to Step 3. 

Step 5: At b
dt t , find the optimal prestaging decision by: 

  *  argmin , ,  }0  0 ,{ |T B b
t d l dq J Q q q Q t t    .  

Step 6: Return the optimal cost given by  * *, ,  0T
t dJ J Q q  with b

dt t ; the optimal decision 

variables *q , ( ( ), ( ), ( ))Y T B T
d d l lu x t x t x t , ( ( ), ( ), ( ))B T B T

l d l lu x t x t x t , ( ( ), ( ), ( ))Y T B T
l d l lu x t x t x t  for 

e
d

b
lt t t  . 

The advantages of the above algorithm include the ability to obtain the optimal expected cost, 
J*, the optimal prestaging decision, q*, and the optimal dynamic flow rate plan over the working 
time window, ( ( ), ( ), ( ))Y T B T

d d l lu x t x t x t , ( ( ), ( ), ( ))B T B T
l d l lu x t x t x t , ( ( ), ( ), ( ))Y T B T

l d l lu x t x t x t for 
b e

d lt t t  . In addition, although we have assumed that the uncertainties are characterised by 

uniform distributions, i.e.      , ,Y B Y
d l lt t t  follow uniform distributions, the model and the 

solution can be similarly applied for other types of probability distributions. 
 
The main disadvantage of the above algorithm is the computational complexity, which is 
caused by the curse of dimensionality. It is a common issue for most dynamic programming 
formulated problems. Stochastic dynamic programming has up to three types of curses of 
dimensionality: the state space, the outcome space and the action space (Powell 2011). In our 

problem setting, we have three dimensions of state space, i.e.       , ,T B T
d l lx t x t x t ; three 

dimensions of outcome space, i.e.      ( ), ,Y B Y
d l lt t t   ; and three dimensions of action 

space, i.e.       , ,Y B Y
d l lu t u t u t . This gives rise to 9 nested loops at each period in the value 

iteration algorithm. Note that each dimension takes a range of values. It requires a substantial 
computational effort to obtain the optimal policy, although it is not intractable. Powell (2011) 
presented an approximate dynamic programming approach to deal with the curse of 
dimensionality issue, which is effective for high-dimensional optimisation problems. As our 
problem is not a very high dimensional problem, we present alternative methods to simplify 
the computational complexity by focusing on reducing the outcome space and the action space.  
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4.2. Two greedy strategies 
A traditional greedy algorithm is an algorithmic strategy that makes the best optimal choice at 
each small stage with the aim to find a globally optimum solution. It picks the best immediate 
solution without considering the big picture, hence it is called greedy. The greedy algorithm or 
rule has been widely adopted in local search heuristics (Taha, 2011), e.g. the well-known hill 
climbing algorithm. The philosophy of a greedy algorithm is to achieve the best outcome using 
the immediate resources at each stage.  
 
In our research context, since failing to complete discharging tasks or loading tasks would lead 
to extremely high penalty, and inspired by philosophy of the traditional greedy algorithm, we 
introduce two new greedy strategies in this work, to deploy the maximum resources to perform 
discharging and loading as much and as early as possible.  
 
The advantage of such greedy strategy is the substantial reduction of the action space and the 
outcome space, which then leads to the reduced solution space. We introduce two greedy 
strategies by defining the sequence of loading activities (from yard and buffer). The first greedy 
strategy, called Buffer-first Greedy strategy, discharges containers from trains, loads 
containers from the buffer first and then loads containers from the yard. The second greedy 
strategy is Yard-first Greedy strategy, which discharges containers from trains, and loads 
containers from the yard as early and as many as possible. It should be noted that the second 
greedy strategy does not involve prestaging activity. 
 
Mathematically, Buffer-first Greedy strategy can be expressed as below in terms of 

      , ,Y B Y
d l lu t u t u t :  

            min , ,Y T b e
d d dl d d du t x t C t U t I t t t    (18) 

                   min , – , –  – ,  ,B B T T T T T Y B b e
l l l l d l dl d l l lu t x t Q x t Q x t x t C t u t U t I t t t   

 (19) 
           

         
  min{ –  , –  –  

}

,

  ,

Y T T B T T T B
l l l l d l l

Y B Y b e
dl d l l l l

u t Q x t u t Q x t x t u t

C t u t u t U t I t t t

  

   
 (20) 

 
In mathematical form, Yard-first Greedy strategy can be expressed in the following equations:  

            min , ,Y T b e
d d dl d d du t x t C t U t I t t t    (21) 

                  min – , –  – ,  ,Y T T T T T Y Y b e
l l l d l dl d l l lu t Q x t Q x t x t C t u t U t I t t t     

 (22) 
0( )  B

lu t   (23) 

 
As shown in formulas (18) and (21), the discharging quantity performed by the two Greedy 
strategies is the maximum flow rate  Y

du t , which is constrained by the number of discharge 

containers left on the train  T
dx t , the maximum discharging capacity of RMG crane  dlC t , 

and the maximum rate of transporting discharge containers  dU t .  

 
The Buffer-first Greedy strategy first loads the maximum possible number of containers from 
the buffer, as expressed in (19), and does not start loading from the yard until all the containers 
in the buffer are loaded (see (20)). As expressed in (19), the maximum flow rate from the buffer, 
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 B
lu t , is associated with a few parameters, i.e., the number of containers left in the buffer 

 B
lx t , the total containers left to be loaded  –T T

l lQ x t , the capacity left on the train 

   –  –T T T
d lQ x t x t , RMG crane’s available capacity     Y

dl dC t u t  and the transportation 

capacity  B
lU t . Likewise the maximum flow rate from the yard,  Y

lu t , is also linked with 

these parameters, which are further reduced by the flow rate from the buffer  B
lu t , as 

presented in (20).  
 
Similarly, the Yard-first Greedy strategy first loads the maximum possible number of 
containers from the yard, as shown in (22), but does not start loading from buffer at all (see 
(23)). The maximum flow rate of loading from the yard,  Y

lu t , is similar to the rate in the 

Buffer-first Greedy strategy but without the effect of  B
lu t . 

 
4.3. Decoupled strategy 

According to the practice in our industrial partner, discharging and loading processes are often 
separated in the rail operations at the port, even though their working time windows may 
overlap. One of the reasons of doing so is wagon shunting at the end of discharging and forming 
new departure trains. One way to simplify the problem is to decouple the discharging decisions 
and the loading decisions. This would mitigate two types of curse of dimensionality, i.e. 
reducing the outcome space and the action space. In our context, the three dimensions of the 
outcome space      ( ), ,Y B Y

d l lt t t   can essentially be reduced to be two dimensions, as can 

the action space       , ,Y B Y
d l lu t u t u t .  

 
Decoupling may be done by changing the pre-specified working time windows to avoid the 
overlapping. However, such treatment may significantly reduce the rail terminal handling 
capacity. Another way is to keep the working time windows unchanged, but impose additional 
constraints to only allow one way flow at each period during the overlapping interval, and only 
allow loading action to start after all export containers have been discharged during the 
overlapping interval.  
 
Mathematically, the additional constraints of the control actions at each period 

      , ,Y B Y
d l lu t u t u t  are as follows: 

      0   0B T
l du t I x t   , for   b e

l dt t t   (24) 

      0   0Y T
l du t I x t   , for  b e

l dt t t    (25) 

It should be noted that if b e
l dt t , then the actual start time of the loading process is flexible 

because the discharge process may be completed earlier or later due to the uncertainties. On 
the other hand, if b e

l dt t , then the discharge and load processes have already been decoupled 

and (24) and (25) do not exist. By adding constraints (24) and (25) to (1)~(16), the value 
iteration algorithm in Section 4.1 can be similarly applied to find the optimal decoupled 
strategy among all decoupled control policies.  
 

4.4. Bang-bang strategy 
Based on the literature on stochastic dynamic programming, we observe that many optimal 
control policies have good structural properties such as monotonicity (Sennott 1999; Puterman 
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2005; Song 2013). For example, the optimal action at a given state can infer the optimal action 
at some neighbouring states. 

Bang-bang control restricts the control action to be at either the lower or the upper boundary, 
but never between the boundaries (Evans 2010). Bang-bang control has been used in inventory 
management (Song 2005; Tsoularis, 2014), reverse logistics (Dobos and Richter, 2004, 2006) 
and manufacturing systems (Song et al. 1998; Salama, 2000), in the form of a pure bang-bang 
strategy (Richter, 1997; Song et al. 1998; Dobos and Richter, 2004, 2006; Song 2005; Tsoularis 
2014), or as the well-known (s, S) policy (Veinott 1966; Zheng and Federgruen, 1991; Salama, 
2000). The (s, S) policy states that an order is placed to increase the inventory position to the 
upper level S as soon as this inventory position drops below the lower level s, which essentially 
regulates the system by either committing sufficient effort to bring the inventory position to an 
upper boundary or doing nothing.    
 
The unique feature of bang-bang type of control policies is restricting the control action into 
two choices for each decision variable. This could greatly reduce the action space and simplify 
the optimization of the decision variables. Applying the concept of bang-bang control to our 
research context, we propose a bang-bang strategy, which performs discharging and loading at 
either the maximum possible flow rate or the minimum flow rate (i.e. zero).  Specifically, the 
constraints of the control actions at each period      ( ), ,Y B Y

d l lu t u t u t  can be narrowed down 

as follows: 

          m{0, }in , ,Y T b e
d d dl d d du t x t C t U t I t t t    (26) 

                  0,  min , – , –  }– ,  ,{B B T T T T T Y B b e
l l l l d l dl d l l lu t x t Q x t Q x t x t C t u t U t I t t t      

 (27) 
           

         
0,  min{ –  , –  –  

}

,

 

{

 },

Y T T B T T T B
l l l l d l l

Y B Y b e
dl d l l l l

u t Q x t u t Q x t x t u t

C t u t u t U t I t t t

 

  



 
  (28) 

Comparing formulas (26)-(28) with (18)-(20) and (21)-(23) respectively, it is clear that the two 
greedy strategies, the Buffer-first strategy and the Yard-first strategy are special forms of Bang-
bang strategy. When loading from the buffer, the Bang-bang strategy either loads no containers, 
or the maximum flow rate, which is identical to the flow rate performed by the Buffer-first 
strategy (see (19) and (27)). Likewise, when loading from the yard, the maximum flow rate 
conducted by the Bang-bang strategy equals the flow rate of the Yard-first strategy (see (22) 
and (28)). In our context, Bang-bang strategy simplifies the action space, which can also reduce 
the outcome space, because the outcome space      ( ), ,Y B Y

d l lt t t   depends on the action 

space       , ,Y B Y
d l lu t u t u t . 

 
By replacing the constraints (8)~(10) with (26)~(28), the value iteration algorithm in Section 
4.1 can be applied to find the optimal Bang-bang strategy among all Bang-bang types of control 
policies.  
 

4.5. Comparison of computational time complexity among five strategies 
The above five strategies can be obtained and evaluated using the valuate iteration algorithm 
described in Section 4.1 by appropriately adjusting the constraints of the decision variables. It 
is helpful to analyse and compare the computational time complexities of these strategies. Note 
that the value iteration algorithm for each strategy needs to be performed in –  1e b

l dt t   steps 

to cover both discharging and loading windows. At each step, the objective function will be 



 17

evaluated * *T B T
d l lQ Q Q  times, which corresponds to the size of the system state space for 

     ( ), ,T B T
d l lx t x t x t . This applies to all five strategies. 

 
Aligned with the discharging window (td

b, td
e) and the loading window ),( b e

l lt t , the time steps 

over which the optimality equation in (17) is solved can be divided into four possible periods: 
discharging only period, discharging and loading period, no discharging and no loading period, 
and loading only period.  
 
In each period of the four possible periods, the minimization in Eq. (17) should be performed 
over all the possible combinations of control actions      ( ), ,Y B Y

d l lu t u t u t . As such, a new 

metric measuring the Computational Time Complexity (CTC) of solution strategies is 
introduced and defined as the number of mathematical expectation calculations required in 
order to perform the “min” operation in Eq. (17) at each system state. The CTC metric actually 
represents the size of the admissible control actions at each system state under a given solution 
strategy.  
 
We take the discharging and loading period as an example to provide a detailed analysis below 
to compare the CTC among five strategies.   
 
Firstly, let us consider the Optimal strategy algorithm. In general,  Y

du t  can take a value from 

0 to  dU t ,  B
lu t can take a value from 0 to  B

lU t , and  Y
lu t  can take a value from 0 to 

 Y
lU t  (note that the maximum possible values of      , ,Y B Y

d l lu t u t u t  may be constrained 

by other resources, e.g. RMG crane capacity). Therefore, it may require up to 

      *  *B Y
d l lU t U t U t  calculation of the mathematical expectation in (17), i.e., CTC in 

discharging and loading period equals to       *  *B Y
d l lU t U t U t , as shown in Table 1. It 

should be pointed out that the real computation time for the mathematical expectation will 
depend on the values of      , ,Y B Y

d l lu t u t u t and the uncertainty factors , ,Y B Y
d l lf f f .  

 
Secondly, we consider the Decoupled strategy. This discharging and loading period can be 
further divided into two sub-periods according to     0T

dx t   or    0T
dx t  . To decouple the 

discharging and loading activities, we only perform discharging activity when     0T
dx t  ; 

and only perform loading activity when    0T
dx t  (i.e. the discharging process has completed). 

During the sub-period with     0T
dx t  ,  Y

du t  can take a value from 0 to  dU t , and  B
lu t

=  Y
lu t  = 0. Therefore, it may require up to  dU t  calculations of the mathematical 

expectation in (17), and CTC=  dU t . On the other hand, during the sub-period with 

   0T
dx t  ,  B

lu t can take a value from 0 to  B
lU t ,  Y

lu t  can take a value from 0 to  Y
lU t , 

and  Y
du t = 0. This implies that up to     *B Y

l lU t U t  calculations of the mathematical 

expectation in (17) are required, i.e., CTC= Ul
B(t) * Ul

Y(t) , as presented in Table 1. 
 
Thirdly, we consider the two Greedy strategies: the Buffer-first Greedy strategy and the Yard-
first Greedy strategy. From (19)~(20) and (22)~(23), it can be seen that the control actions 
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     ( ), ,Y B Y
d l lu t u t u t  are implicit, and no “min” operation in (17) is required. In other words, 

at each time step for each system state, the calculation of the mathematical expectation in 
Eq.(17) is only performed once, which means CTC=1. 
 
Fourthly, let us consider the Bang-bang strategy. From (27)~(28), it can be seen that  Y

du t , 

 B
lu t  and  Y

lu t  all take at most two values. Therefore, it requires CTC=2*2*2 = 8 

calculations of the mathematical expectation in Eq. (17). 
 
Table 1 summarizes the comparison of CTC among five strategies. It shows the required CTC 
for each system state at each time step. Clearly, the two Greedy strategies are the fastest 
algorithms, followed by the Bang-bang strategy, the Decoupled strategy and the Optimal 
strategy. In particular, the two Greedy strategies and the Bang-bang strategy could significantly 
outperform the Optimal strategy in terms of time complexity. The numerical examples in 
Section 6 will confirm this assertion.  
 

Table 1. A comparison of Computational Time Complexity (CTC) under five strategies 
  

Time step t CTC of  
Optimal 

CTC of  
Decoupled 

CTC of  
Buffer-first or 

Yard-first 

CTC of 
Bang-bang 

Discharging only period  

( b b
d lt t t  ) 

 dU t   dU t  1 2 

Discharging and loading period 

( b e
l dt t t  ) with     0T

dx t    
      *  *B Y

d l lU t U t U t   dU t  1 8 

Discharging and loading period 

( b e
l dt t t  ) with     0T

dx t    
    *B Y

l lU t U t      *B Y
l lU t U t  1 4 

No discharging and no loading 

period ( e b
d lt t t  ) 

1 1 1 1 

Loading only period  

(  max , b e e
l d lt t t t ) 

    *B Y
l lU t U t      *B Y

l lU t U t  1 4 

 
5. Extension to multiple trains loading and discharging problem 
In the above sections, we assumed that there is only one train to be discharged and loaded 
within the working windows. In reality, it is possible that multiple trains are discharged (or 
loaded) at the same time. In this section, we generalise the model to deal with the N train 

situation. Suppose the handling capacities       , , ( ),B Y
dl d l lC t U t U t U t  are shared by all N 

trains for any given period, and the cost coefficients and the uncertainty parameters are the 
same for all trains. We use subscript n to denote the index of a train in the following generalised 
notation.  
 

5.1. Generalised notation 

,
b

d nt :  the beginning of the working time window for discharging the nth train ( ,
b

d nt ≥ 0); 

,
e

d nt :  the end of the working time window for discharging the nth train ( ,
b

d nt < ,
e

d nt ); 

,
b

l nt :  the beginning of the working time window for loading the nth train ( ,
b

l nt > ,
b

d nt ); 
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,
e

l nt :  the end of the working time window for loading the nth train ( ,
b

l nt < ,
e

l nt and ,
e

d nt < ,
e

l nt ); 

,
B

l nQ :  the maximum number of containers allowed to be prestaged at the RT buffer for the nth 

train; 

,
T

d nQ :  the total number of containers initially on the nth train to be discharged; 

,
T

l nQ :  the total number of containers planned to be loaded onto the nth train; 
T

nQ  :  the capacity of the nth train with Qn
T ≥ max{ , ,,T T

d n l nQ Q }; 

 ,
T

d nx t : the number of discharge containers left on the nth train at the beginning of time period 

t; 
 ,

B
l nx t : the number of containers left in the RT buffer to be loaded on the nth train at the 

beginning of time period t; 
 ,

T
l nx t : the number of containers loaded on the nth train at the beginning of time period t; 

 ,
Y

d n t : the random variable representing the actual container flow rate from the nth train to 

yard via RMG in period t; 

 ,
Y

l n t : the random variable representing the actual container flow rate from yard to the nth 

train via RMG in period t; 

 ,
B

l n t : the random variable representing the actual container flow rate from RT buffer to the 

nth train via RMG in period t; 

 ,
Y

d nu t : the planned container flow rate from the nth train via RMG to yard in period t; 

 ,
Y

l nu t : the planned container flow rate from yard to the nth train via RMG in period t;  

 ,
B

l nu t : the planned container flow rate from RT buffer to the nth train via RMG in period t; 

nq :  the number of containers prestaged at RT buffer to be loaded on the nth train initially, 

which is not greater than ,
B

l nQ ; 

 
5.2. Generalised dynamic model 

Similarly, we assume that the actual container flow rates follow uniform probability 
distributions in intervals with their ranges proportional to the planned flow rates. The discrete-
time dynamic equations of container flows (including both discharge and load processes) can 
be given as follows: 

 , , , T b T
d n d n d nx t Q  (29) 

 , ,   B b
l n d n nx t q  (30) 

 , ,   0 T b
l n d nx t   (31) 

     , , ,1   –   T T Y
d n d n d nx t x t t   (32) 

     , , ,1   –B B B
l n l n l nx t x t t   (33) 

       , , , ,1      T T B Y
l n l n l n l nx t x t t t      (34) 

0 B
n lq Q   (35) 

          , , , ,0   min  , ,Y T b e
d n d n dl d d n d nu t x t C t U t I t t t    (36) 

          , , , ,0   min , ,B B B b e
l n l n dl l l n l nu t x t C t U t I t t t    (37) 

        , , ,0   min ,Y Y b e
l n dl l l n l nu t C t U t I t t t    (38) 
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            , , , , , ,min , – , –  –Y B T T T T T
l n l n dl l n l n n d n l nu t u t C t Q x t Q x t x t   (39) 

   ,
Y

d n dn
u t U t  (40) 

   ,  
n

B B
l n lu t U t  (41) 

   ,  
n

Y Y
l n lu t U t  (42) 

       , , , (  ) Y

n

Y B
d n l n l n dlu t u t u t C t    (43) 

     , , ,( )~ ,Y Y Y Y
d n d d n d nt Uniform f u t u t   (44) 

     , , ,~ ( ),B B B B
l n l l n l nt Uniform f u t u t   (45) 

     , , ,( )~ ,Y Y Y Y
l n l l n l nt Uniform f u t u t   (46) 

 
Let ,1 ,2 ,( ) ( ( ) ( ) ( )) :  , ,  ,T T T T

d d d d Nt x t x t x t x , ,1 ,2 ,( ) ( ( ) ( ) ( )) :  , ,  ,B B B B
l l l l Nt x t x t x t x . The 

dynamic programming optimality equation is given by (for t =0, 1, …, T):  

        
        
           
      
 

,

, , , , ,

, , , , , , , ,

, , ,

,

, ,   minE

1   – 1

  

 

 

{T B T P b
t d l l n d nn

M T e M T T e
d n d n l n l n l n

S B b T T b e T T b e
l n d n d n d n d n l n l n l n

Y Y Y B B
d n l n l n

D Y
d n

J t t t c q I t t

c x t I t t c Q x t I t t

c x t I t t c x t I t t t c x t I t t t

c u t u t c u t

c t

 



 

   

     

  



    

      

 



x x x

   
      

, ,

1 1 , 1 ,

( )

}1

L B Y
l n l n

T B T
t d l l

c t t

J t t t





 





  x x x

  

(47) 

where       1 1 , 1 , 1 0T B T
t d l lJ t t t   x x x  for ,

e
l nt t  and 1 n N  .  

In principle, the optimal cost function, the optimal prestaging decision, and the optimal planned 
flow rates policy can be obtained using the value iteration algorithm similar to Section 4. 
However, due to the curse of dimensionality, it is computationally difficult to obtain the 
optimal solution to (29)~(47). Note that the empirical data in Figure 1 shows that the load 
processes for different trains are completely decoupled. This implies that we can divide the 
integrated optimisation problem (29)~(47) into a series of sub-optimisation problems for 
individual trains. That is, 

             , , ,, ,  , ,T B T T B T
t d l l t d n l n l nn

J t t t J x t x t x tx x x  (48) 

Where       , , ,, ,  T B T
t d n l n l nJ x t x t x t  is given in (17), and the handling capacities 

      , , ( ),d
B Y

dl l lC t U t U t U t  apply to individual trains. Following the solution methods in 

Section 4, we can then solve the problem (48) in a sequential approach. 
 
6. Numerical experiments 
In this section, numerical experiments based on a real case study are performed to test the 
stochastic dynamic model, and to compare five different solution strategies. The data used in 
this study is retrieved from real data occurred on a weekday in one of the three rail terminals 
at the industrial port (see Figure 1). The case port is one of the largest container ports in 
Northern Europe with an annual throughput in excess of 4 million TEUs. Nearly 30% of the 
containers are handled by rail at the port. The case terminal handles 7 inbound and 7 outbound 
trains per day; the number of containers loaded onto 7 trains are presented in Figure 2.  
 



 21

The experimental results are discussed in three subsections: 
In Section 6.1, we focus on a single train with loading process only. The optimal 

prestaging and loading rate policy will be illustrated in detail.  
In Section 6.2, we consider a single train with both discharging and loading processes. 

Comparison of the optimal strategy with four simplified strategies is made in a range of 
scenarios in terms of solution quality and computational performance.  

In Section 6.3, we apply four simplified strategies in multiple train situations to 
illustrate their applications.  
The experiments are coded in Matlab R2015b running on a Windows 10 PC with CPU 
3.00GHz with RAM 4GB. 
 

6.1. Single train loading problem 
We select the second train from Figure 3 as a Reference Case to optimise its prestaging and 
loading process. Based on the empirical data from the real case, we calibrate the input data of 
the Reference Case as follows, by keeping the ordinal relationship among them:  

 the time period is 30 minutes;  
 the load time window is b

lt  = 10; e
lt = 15;  

 the number of containers to be loaded are T
lQ = 37 containers; 

 the RMG cranes’ loading capacity is   15dlC t   containers in period t; 

 the maximum flow rate from storage yards to RMG cranes in period t is   15Y
lU t    

 the maximum flow rate from rail terminal buffer to RMG cranes in period t is 

  15B
lU t  ; 

 the maximum capacity of prestaging B
lQ = 30 containers; 

 cost parameters are Pc = 4; Yc = 5; Bc = 2; Dc = Lc =1; Sc = 0.1; Tc =0.5; Mc = 20.  
 
It should be noted that the above cost coefficients are largely hypothetical and only the relative 
values of these cost elements are meaningful.  The values of the cost parameters are based on 
real data that reflect the ordinal relationships among them. As illustrated in Figure 1, the buffer 
is situated close to the rail track, and RMG is located next to the rail track. Therefore, unit cost 
of IMV transporting from yard to RMG, Yc , is higher than pre-staging cost Pc (from yard to 
buffer); the pre-staging cost Pc is higher than the cost from buffer to RMG, Bc ; and the penalty 
of missing discharging or loading a container is much higher than other costs. While unit costs 
of RMG loading to and discharging from trains, Dc and Lc , are usually lower than IMV’s 
transportation costs Yc and Bc . Storage costs on train or in buffer are introduced to influence 
decision making in the dynamic model, and they are much smaller than IMV transportation or 
RMG operation costs, with storage cost in buffer cheaper than storage cost in train. So, the 
order of unit costs in terms of their values is: Mc > Yc > Pc > Bc > Dc (or Lc )> Tc > Sc .  
 

Table 2. Optimal prestaging and cost with varying uncertainty degrees 
,B Y

l lf f   *q    *
0 ,0J q    0 0,  0J   %above 

1, 1.0 0 236.50 236.50 0.00% 
1, 0.8 6 279.21 279.81 0.21% 
1, 0.6 23 300.99 315.45 4.80% 
1, 0.4 30 311.06 358.90  15.38% 
1, 0.2 30 321.77 414.16 28.71% 

 



 22

Table 2 gives the results of the single train with loading process only under different scenarios 
of uncertainties. The Optimal Strategy is applied based on the stochastic dynamic approach. 
Column 2 shows the optimal prestaging decisions; column 3 and 4 show the optimal costs with 
and without prestaging, respectively. The percentage above (noted as %above) is introduced 
here, to indicate the percentage of  0 0,  0J , i.e., the cost achieved under no prestaging 

scenario, above  *
0 ,0J q  the cost achieved in optimal prestaging case. It can be observed that 

higher level of uncertainty leads to higher cost, and the cost saving from prestaging is 
increasing as the degree of uncertainty increases.  
 
6.1.1 Optimal flow rate policies 
To describe the optimal planned flow rate policies for loading activities, we take two examples 
from Table 2, including Example 1-the deterministic case ),( B Y

l lf f  = (1, 1), and Example 2-

the stochastic case (fl
B, fl

Y) = (1, 0.6). In each case, an analysis is made for the flow rate policies 
derived under three different prestaging levels, with q=15, 10 and 0. In Example 3, we 
compared the flow rate polices obtained under different levels of uncertainties, i.e. (fl

B, flY) = 
(1, 0.8/0.6/0.4/0.2). 
 

 Example 1 Deterministic case 
Although load window opens at t=10, actual loading does not start until t=13. The optimal flow 

rate policy     ,Y B
l lu t u t  at period t = 13-15 with varying prestaging levels is shown in Table 

3. It is clear that the flow rate policy     ,Y B
l lu t u t varies with time period t, the number of 

containers already loaded to the train  T
lx t , and the number of prestaged containers q. To 

simplify the narrative, we use Y
lu to represent  Y

lu t , and the same applies to B
lu and T

lx . 

 
In line with the analytical properties of the dynamic model summarised under points I)-V), a 
few observations can be made from Table 3 in terms of loading activities: 
(i) Under the deterministic case, completing the loading task is guaranteed; as such the 

activity does not start until 13t  ;  
(ii) Loading always starts from prestaging buffer if prestaging level is positive; the loading 

amount increases with time period t and the prestaging level q, but decreases with the 
number of loaded containers T

lx ; when the prestaged containers q are exhausted, the 

rest of the containers are loaded from the yard in order to complete loading the planned 
number of containers T

lQ .  

 
Table 3. Optimal loading flow rate policies with varying prestaged containers (fl

Y=1.0) 

t = 15  
q=15 

T
lx  B

lu  

t = 15  
q=10 

T
lx  B

lu  

t = 15  
q=0 

T
lx  B

lu  

[0, 22] 15 [0, 27] 10 [0, 37] 0 
[23, 37] 37 – T

lx  [28, 37] 37 – T
lx    

T
lx  Y

lu  T
lx  Y

lu  T
lx  Y

lu  

[0, 37] 0 [0, 22] 5 [0, 22] 15 
  [23, 26] 27 – T

lx  [23, 37] 37 – T
lx  

  [27, 37] 0   

t = 14 
 q =15 

T
lx  B

lu  t = 14 
q=10 

T
lx  B

lu  t = 14 
q=0 

T
lx  B

lu  

[0, 7] 15 [0, 12] 10 [0, 37] 0 
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[8, 21] 22 – T
lx  [13, 21] 22 – T

lx    

[22, 37] 0 [22, 37] 0   
T

lx  Y
lu  T

lx  Y
lu  T

lx  Y
lu  

[0, 37] 0 [0, 7] 5 [0, 7] 15 
  [8, 11] 12 – T

lx  [8, 21] 22– T
lx  

  [12, 37] 0 [22, 37] 0 

t = 13 
q=15 

T
lx  B

lu  

t = 13 
q=10 

T
lx  B

lu  

t = 13 
q=0 

T
lx  B

lu  

[0, 6] 7- T
lx  [0, 6] 7- T

lx  [0, 37] 0 

[7, 37] 0 [7, 37] 0   
T

lx  Y
lu  T

lx  Y
lu  T

lx  Y
lu  

[0, 37] 0 [0, 37] 0 [0, 6] 7- T
lx  

    [7, 37] 0 
 

 Example 2 Stochastic case 
The second example is the stochastic case with ),( B Y

l lf f = (1, 0.6). The optimal flow rate 

policies  ,Y B
l lu u  with varying number of prestaged containers (q=0, 10, and 15) are   

presented in Table 4 for periods t =12-15. 
 
Unlike the flow rate policy in the deterministic case, the flow rate cannot be fixed or 
represented in simple mathematical formula for certain periods. In deterministic situation, it is 
preferable to plan loading form rail buffer first to reduce the storage cost without incurring any 
penalty. While in stochastic situation with uncertain movement from yard to train but certain 
movement from rail buffer to train, it is preferable to plan loading from yard first and then from 
rail buffer, to reduce the possible heavy penalty. In comparison with the deterministic case, the 
planned flow rate becomes more irregular where uncertainty exists. However, some 
observations can still be drawn from Table 4:  

(i) Loading starts earlier than the deterministic case, with a small flow rate Y
lu from the 

yard, but reserving the prestaged containers until later working periods.  As shown in 
Table 4, at t=12, loading starts but with a small rate from the yard only. 

(ii) Towards the last working period, the flow rate Y
lu decreases, while B

lu increases up to 

the full size of prestaging, with the changes dependent on T
lx . To fully load T

lQ and 

clear prestaging buffer, the maximum number of prestaged containers are loaded to the 
train , with the rest being loaded from the yard. In Table 4, towards the end of working 
window, B

lu increases to be the full size of the prestaged number of containers, i.e., 15 

and 10 respectively in the two prestaging scenarios q=15 and 10. 
(iii) Loading from yard is prioritised in the stochastic case, and loading is not made from 

prestaging until the last one or two working periods. 
 

Table 4. Optimal loading flow rate policies with varying prestaged containers ( Y
lf =0.6) 

 

t = 15  
  q=15 

T
lx  B

lu   t = 15  
q=10 

T
lx  B

lu  t = 15  
q=0 

T
lx  B

lu  

[0, 22] 15 [0, 27] 10 [0, 37] 0 
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[23, 37] 37– 
T

lx  
[28, 37] 37 – T

lx    

T
lx  Y

lu   T
lx  Y

lu  T
lx  Y

lu  

[0, 37] 0 [0, 22] 5 [0, 22] 15 
  [23, 26] 27 – T

lx  [23, 37] 37- T
lx  

  [27, 37] 0   

t = 14 
q=15 

T
lx  B

lu  

t = 14 
q=10 

T
lx  B

lu  

t = 14 
q=0 

T
lx  B

lu  

[0, 10] 0 (1, 6) (10, 5) [0, 37] 0 
[11,18] 18- T

lx  others 0   

[19, 37] 0     
T

lx  Y
lu  T

lx  Y
lu  T

lx  Y
lu  

 [0, 10] 15 [0,2-5,7-
15] 

15 [0, 22] 15 

[11, 16] 10 (1, 6) (5, 10) [23, 37] 37- T
lx  

[17, 21] 5 [16-26] 28- T
lx  [22, 37] 0 

[22, 37] 0 [27, 37] 0   

t = 13 
q=15 

T
lx  B

lu  

t = 13 
q=10 

T
lx  B

lu  

t = 13 
q=0 

T
lx  B

lu  

[0, 37] 0 [0, 37] 0 [0, 37] 0 
T

lx  Y
lu  T

lx  Y
lu  T

lx  Y
lu  

[0, 8] 15 [0, 5] 15 [0, 13] 15 
[9, 12] 10 [6-8] 10  [14-17] 10 
(13, 15, 
17, 20) 

(5, 7, 
5,2) 

(9-11, 
12, 16, 
17, 20) 

(5, 2, 5, 
10, 2) 

[18-27] 5 

others 0 others 0 [28, 37] 35-xl
T 

t = 12 
 q =15 

T
lx  B

lu  

t = 12 
 q =10 

T
lx  B

lu  

t = 12 
 q =0 

T
lx  B

lu  

[0, 37] 0 [0, 37] 0 [0, 37] 0 
xl

T Y
lu  T

lx  Y
lu  T

lx  Y
lu  

0 5 (0, 1) (5, 2) 0 15 
[1, 37] 0 others 0 [1, 4] 10 
    [5, 8] 5 
      [9, 37] 0 

 
It can be seen that if the system is deterministic, the containers will be loaded onto the train in 
the final three periods in the working window (note that  dlC t   15). However, when there 

exists uncertainty, the optimal policy tends to allocate more flow rates at early working periods. 
This would ensure that the train could be fully loaded under the uncertainty of container flow 
processes.  
 

 Example 3 A comparison of stochastic cases with varying uncertainties 
The findings above can be further illustrated in Figure 3. Setting the prestaging q =15, the flow 

rate policy varies with the level of uncertainty Y
lf which ranges from 0.2 to 1.0, following the 

trend below: 
(i) As the level of uncertainty increases, the flow rate policy becomes more conservative, 

as reflected by a) earlier loading and b) more loading.  
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(ii) As the level of uncertainty increases, more loading is made from the yard to the train.  
 

Here are some examples for trend (i): as shown in Figure 3, when Y
lf =0.4 and 0.6, loading 

starts at t=12, with the flow rates being [0,10] and [0,5], respectively, but when uncertainty 
increases to be Y

lf =0.2, loading starts at t=11, and the flow rate increases to be [0, 15]. The 

flow rate increases when uncertainty increases. With the decreasing uncertainty, for example, 
in the cases of Y

lf =0.8 and 1.0, loading does not start until t=13. Comparing the two cases 

when 0.8Y
lf   and 1.0, a higher flow rate [0,12] is executed in more uncertain situation when 

0.8Y
lf  , while a lower flow rate [0,7] is made in deterministic case when 1.0Y

lf  .  

 
The flow rate above is the combined flow rate from both the yard and the RT buffer to the train. 
The dynamic programming model can also provide guidance on the specific flow rates from 
the yard and the buffer, as shown in Figure 4.  The impacts of the uncertainty level on the flow 
rate policy can be explained as: an increment in the level of uncertainty Y

lf results in a 

decrement of average actual loading rate, i.e.,  [ ]Y
lE t  and  [ ]B

lE t , as such the optimal 

planned flow rates  B
lu t and  Y

lu t  would naturally increase to accomplish loading and 

discharging the planned number of containers.  
 
Trend (ii) is observed when the degree of uncertainty increases. This is due to the facts that 
advanced loading is conducted from the yard when sufficient time is allowed, and that the 
prestaged containers are reserved for more certain loading when the time window is going to 
end. Loading from RT buffer to train is deterministic, whereas loading from yard to train is 
uncertain. The dynamic model reserves the deterministic loading until the last few periods, to 
minimise the likelihood of paying penalty fines for any missed loading.  
 

 
Figure 3 Combined flow rate (loading) with varying uncertainty degrees 
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Figure 4 Loading flow rates from yard or buffer with varying uncertainty degrees 
 

6.1.2 Comparison of different solution strategies for single train loading problem  
In this section, we compare the performance of different solution strategies applied to solve the 
single train loading problem. Note that as there are no discharging operations, the decoupled 
strategy become the same as the optimal strategy and is, therefore, omitted. Table 5 presents 
the cost and computational time (computer CPU time in seconds) of the four strategies (the 
Optimal strategy, the Buffer-first strategy, the Yard-first strategy, and the Bang-bang 
strategy), when they are applied to the Reference Case. The percentage above (noted 
as %above) is introduced to measure the percentage by which costs derived under alternative 
strategies are above the baseline cost (optimal strategy).  
 
It is clear that Bang-bang significantly outperforms Buffer-first and Yard-first strategies in 
terms of total logistics cost only with slightly more computation time. Comparing with the 
optimal strategy, the Bang-bang strategy achieves 0%~3.96% above the optimal strategy with 
substantially less computation time. While the results obtained under Buffer-first resemble the 
results obtained from Yard-first, it outperforms Yard-first when there is a high level of 
uncertainty, for example when ( ,B Y

l lf f )=(1.0, 0.2) and ( ,B Y
l lf f )=(0.5, 0.2). These findings are 

in line with the rationale of using buffer to mitigate the risks imposed by uncertainties.   
 

 Table 5. Comparison of different strategies for single train loading problem 
 Optimal Buffer-first Yard-first Bang-bang 

fl
B, flY J0(q*,0) CPU %above CPU %above CPU %above CPU 

1.0, 1.0 236.50 0.50 26.85% 0.05 26.85% 0.05 2.37% 0.08 
1.0, 0.8 279.21 1.08 15.36% 0.03 15.36% 0.06 0.04% 0.06 
1.0, 0.6 298.90 1.45 15.39% 0.05 15.39% 0.05 0.93% 0.08 
1.0, 0.4 308.58 1.84 20.90% 0.05 21.91% 0.06 2.44% 0.08 
1.0, 0.2 318.97 2.23 21.35% 0.05 31.78% 0.06 3.96% 0.13 
0.5, 1.0 236.50 1.27 26.85% 0.06 26.85% 0.03 3.38% 0.09 
0.5, 0.8 279.81 3.16 15.12% 0.06 15.12% 0.03 0.00% 0.11 
0.5, 0.6 315.45 4.55 9.34% 0.09 9.34% 0.05 0.05% 0.13 
0.5, 0.4 353.92 5.94 6.29% 0.11 6.29% 0.05 0.18% 0.16 
0.5, 0.2 369.13 7.30 9.37% 0.14 13.87% 0.06 1.29% 0.19 

 
6.1.3 Discussions of solutions for single train loading problem  
The loading plans discussed in Examples 1-3 show that dynamic programming model allows 
us to decide the prestaging number and flow rates ( ,Y B

l lu u ) to minimise the total cost. In the 

deterministic case, this is realised by retaining containers in the yard, loading from the RT 
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buffer, and postponing loading to the last a few working periods. This yields two insights. In 
certain circumstances, containers should be kept in the yard and buffer for as long as possible, 
to minimise storage cost in the train. Loading is not executed until the late working periods, to 
avoid storage cost at train (and increase flexibility to customers) and free up resources such as 
RMG, IMVs and workforce for other duties. The flow rates identified by the dynamic model 
can facilitate creating the rail loading plan, planning and deploying required resources. For 
example, the flow rate from the buffer ul

B decides the number of IMVs and RMGs required to 
perform the loading.  
 
When compared to the deterministic case, the flow rates in the stochastic case are less 
predictable. We note from Table 4 and Figure 4 that loading starts earlier than the deterministic 
case, but only from the yard. Loading from the buffer is pushed back to the last one or two 
working periods.  In these cases, exploiting buffer holding to retain containers until late 
working periods may be more economically desirable. The prestaged containers can be used to 
address urgent needs arising from uncertain events, such as late arrival trains, or IMV 
breakdown, etc. This would ensure that the train could be fully loaded under the uncertainty of 
container flow processes. So this guidance is perfectly reasonable recommendations.  
 
Whilst in the stochastic case prestaging is useful in reducing the total cost incurred (see Table 
2), the number of prestaged containers has little influence on the loading plan. We note from 
Table 4 that the loading window remains as 4 periods (t=12-15) despite of the prestaging 
number, and that loading does not start from the buffer until the last one or two periods. This 
phenomenon is owing to the facts that the unit storage cost on the train is higher than the unit 
storage cost in the buffer, and that the objective is to minimise the total cost. In addition to 
minimising the overall cost of loading, it would be interesting to set multiple objectives for the 
dynamic programming model, such as maximising customer service level, minimising total 
operation time or minimising total carbon emissions. It is therefore worth analysing the 
compromised solutions for these conflicting objectives and revisiting the resulting loading plan. 
 
We have shown how the loading plan could be created in response to different prestaging 
situations and uncertain scenarios.   Clearly a properly defined loading plan can help a seaport 
rail terminal to handle uncertain events more effectively, so as to minimise missed containers 
and ensure customer satisfaction while minimising the total cost. However, in practice, 
uncertain circumstances may be complex and hard to model, so we do not think a loading plan 
can be created by the dynamic programming model alone without investigation into 
uncertainties and resource availability, and with subjective judgement.  

 
6.2. Single train discharging and loading problem 

We choose the second train in Figure 1. as the Reference Case to optimise its discharging and 
loading processes. The input data of the Reference Case is as follows:  

  8; 13;  10; 15;b e b e
d d l lt t t t      

 containers to be discharged are  43T
dQ  , and containers to be loaded are  37T

lQ  ;  

 the RMG cranes’ discharging and loading capacities are   30dlC t   containers per 

period;  
   15dU t  ;     15Y

lU t  ;     15B
lU t  ; 

 uncertainty parameters are Y
df = 0.8; B

lf = 0.9 and Y
lf = 0.6; 

 cost parameters are Pc = 4; Yc = 5; Bc = 2; Dc = Lc =1; Sc = 0.1; Tc = 0.5; Mc = 20. 
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As working time windows and the degree of uncertainties are important factors that affect the 
planning of the flow rates and the prestaging decision, we will vary these two sets of parameters 
in the Reference Case. In addition, the penalty cost coefficient Mc  is selected to examine its 
impact on the decisions and the performance. Fifteen cases are examined and presented in 
Table 6, in which Case 1 is the Reference Case. 
 

Table 6. Single train cases with varying time windows, uncertainty and penalty cost 
 

Case ; ; ;b e b e
d d l lt t t t   ; ;Y B Y

d l lf f f   Mc   

1 10;13;12;15 0.90;0.90;0.90 20 
2 8;13;10;15 0.90;0.90;0.90 20 
3 8;15;10;17 0.90;0.90;0.90 20 
4 10;13;12;15 0.80;0.90;0.60 20 
5 8;13;10;15 0.80;0.90;0.60 20 
6 8;15;10;17 0.80;0.90;0.60 20 
7 10;13;12;15 0.40;0.90;0.20 20 
8 8;13;10;15 0.40;0.90;0.20 20 
9 8;15;10;17 0.40;0.90;0.20 20 
10 10;13;12;15 0.80;0.90;0.60 40 
11 8;13;10;15 0.80;0.90;0.60 40 
12 8;15;10;17 0.80;0.90;0.60 40 
13 10;13;12;15 0.80;0.90;0.60 10 
14 8;13;10;15 0.80;0.90;0.60 10 
15 8;15;10;17 0.80;0.90;0.60 10 

 
6.2.1 Results without prestaging 
Firstly, let us exclude the prestaging decision by setting B

lQ = 0. The results of fifteen cases 

achieved under five strategies, i.e., the optimal strategy, the Decoupled strategy, two greedy 
strategies, and Bang-bang strategy, are shown in Table 7. Using the cost achieved under the 
optimal strategy as a baseline, the percentage above (noted as %above) is introduced to measure 
the percentage by which costs derived under alternative strategies are above the baseline cost, 
as shown in the “%above” columns. The CPU running times (in seconds) required by the three 
strategies are also compared, as shown “CPU” columns.   
 

Table 7. Comparison of five strategies without prestaging decision 
  

Optimal Decoupled Buffer-first Yard-first Bang-bang 
Case Cost CPU %above CPU %above CPU %above CPU %above CPU 

1 566.4 0.55 13.95% 0.08 2.76% 0.05 2.76% 0.02 0.04% 0.06 

2 564.1 0.98 3.50% 0.09 8.98% 0.03 8.98% 0.06 0.04% 0.06 

3 563.5 1.44 0.88% 0.13 15.47% 0.08 15.47% 0.05 0.04% 0.09 

4 629.3 1.02 18.10% 0.11 0.03% 0.03 0.03% 0.03 0.03% 0.08 

5 626.2 1.92 5.02% 0.14 4.70% 0.08 4.70% 0.08 0.03% 0.13 

6 625.5 2.88 1.26% 0.17 10.46% 0.11 10.46% 0.08 0.03% 0.14 

7 863.9 2.89 14.03% 0.17 0.00% 0.08 0.00% 0.08 0.00% 0.09 

8 810.5 5.59 12.61% 0.19 0.80% 0.13 0.80% 0.14 0.01% 0.20 
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9 806.5 8.64 5.33% 0.25 4.44% 0.19 4.44% 0.20 0.04% 0.25 

10 655.2 1.00 51.74% 0.11 0.00% 0.03 0.00% 0.03 0.00% 0.05 

11 644.4 1.92 15.34% 0.13 2.55% 0.08 2.55% 0.08 0.07% 0.09 

12 641.9 2.86 3.85% 0.17 7.83% 0.08 7.83% 0.08 0.07% 0.16 

13 604.4 1.05 2.17% 0.09 2.01% 0.03 2.01% 0.08 0.03% 0.08 

14 604.9 1.95 0.58% 0.13 7.97% 0.06 7.97% 0.06 0.03% 0.09 

15 605.3 2.88 0.15% 0.14 14.05% 0.08 14.05% 0.08 0.03% 0.13 
 
Based on the results in Table 7, the impacts of time window size, the degree of uncertainties, 
and the penalty cost can be summarised as below: 
(i) As the length of the working time window increases (e.g. from Case 1 to Case 3), the 

expected cost is decreasing, while the computational time is increasing;  
(ii) As the degree of uncertainty increases (e.g. from Case  1 to Case 4 to Case 7), the 

expected cost is increasing, and the computational time is also going up; 
(iii) As the penalty cost coefficient CM increases (e.g. from Cases 13 to Case 4 to Case 10), 

the expected cost increases while the computational times are quite similar;  
(iv) These observations are generally in agreement with intuition;  
(v) The expected cost under the decoupled strategy is 0.15% ~ 51.74% above that under 

the optimal strategy; the expected costs under both Buffer-first and Yard-first strategies 
range within 0.00% ~ 15.74%; and the expected cost under the Bang-bang strategy is 
0.00% ~ 0.07% above the optimal cost. It is obvious that the Bang-bang strategy 
outperforms all other alternative strategies in both solution quality and computation 
time. In particular, the Bang-bang strategy can achieve a performance extremely close 
to the optimal strategy. 

 
6.2.2 Results with prestaging 
Secondly, let us include the prestaging decision by setting the maximum allowed prestaged 
containers B

lQ = 10. The results of fifteen cases under five strategies are shown in Table 8. 

Similar patterns as those in Table 7 can be observed in Table 8. But the computation time under 
the optimal strategy increases substantially, which is a result of the increased curse of 
dimensionality. Particularly, the computation time increases from less than ten seconds to be 
over ten minutes in Case 9. This can be explained by the fact that high degree of uncertainty 
significantly increases the action space and the output space which imposes computational 
burden substantially. Tables 7 demonstrate that the decoupled strategy’s cost is 0% ~ 12.40% 
above the optimal cost; the Buffer-first strategy’s cost is 0.82%~15.47% above the optimal cost, 
the Yard-first strategy’s cost is 0.51% ~ 15.74% above the optimal cost; and the Bang-bang 
strategy’s cost is 0.00% ~ 0.19% above the optimal cost. In terms of computational complexity, 
all four simplified strategies require substantially less CPU time (over 90% less) than the 
optimal strategy, with the Yard-first being the most computation efficient, followed by Buffer-
first strategy, Bang-bang strategy and Decoupled strategy. Overall, the Bang-bang strategy is 
the best choice due to its high solution quality and efficiency in computation effort. 
 

Table 8. Comparison of five strategies with prestaging decision 
  

Optimal Decoupled Buffer-first Yard-first Bang-bang 
Case Cost CPU %above CPU %above CPU %above CPU %above CPU 

1 566.4 38.8 1.85% 2.63 2.76% 0.48 2.76% 0.47 0.04% 0.89 

2 564.1 75.7 1.92% 2.80 8.98% 0.48 8.98% 0.45 0.04% 1.17 
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3 563.5 111.3 0.88% 3.11 15.47% 0.70 15.47% 0.61 0.04% 1.58 

4 624.3 78.5 3.60% 4.00 0.82% 0.48 0.82% 0.42 0.00% 1.05 

5 623.3 154.0 0.92% 4.47 5.20% 0.77 5.20% 0.64 0.00% 1.67 

6 624.5 229.5 0.23% 4.67 10.63% 1.03 10.63% 0.89 0.00% 2.36 

7 820.8 228.4 6.84% 5.98 1.79% 1.03 3.76% 0.89 0.19% 2.02 

8 779.9 446.6 5.29% 6.69 2.92% 1.80 4.75% 1.52 0.16% 3.63 

9 777.9 684.8 2.03% 7.41 6.73% 2.55 8.27% 2.17 0.19% 5.34 

10 649.8 77.7 12.40% 3.81 0.84% 0.47 0.51% 0.44 0.03% 1.00 

11 641.3 153.0 3.40% 4.25 3.03% 0.73 3.03% 0.66 0.03% 1.66 

12 640.9 227.8 0.85% 4.72 8.00% 1.02 8.00% 0.86 0.02% 2.33 

13 602.2 78.4 0.00% 3.80 2.39% 0.47 2.39% 0.42 0.01% 1.00 

14 604.6 152.3 0.00% 4.23 8.02% 0.78 8.02% 0.64 0.02% 1.63 

15 605.3 228.2 0.15% 4.69 14.05% 1.03 14.05% 0.89 0.03% 2.31 
 
6.2.3 Discussions of solutions for single train discharging and loading problem 
Comparing the single train results achieved with and without prestaging, we found that the total 
costs incurred under the prestaging scenario are smaller than the total costs derived without 
prestaging, regardless of the choice of solution strategy. This shows that the seaport can use 
prestaging to reduce the cost involved.  
 
Analysing the single train results under varying factors, such as window sizes, uncertainties 
and penalty cost, we observed the same pattern of relationship from scenarios without and with 
prestaging, i.e., the expected cost and computation time increase along with the length of the 
working time window, the degree of uncertainty and the penalty cost.  A lower degree of 
uncertainty will reduce the total cost significantly, with a higher degree of uncertainty having 
the opposite impact. This urges seaports to handle uncertainties effectively and minimise 
disturbance imposed by uncertainties. In contrast, window sizes have less impacts on the total 
cost. Train arrival and departure times are usually considered fixed, but subject to periodic 
change. Our results show that a more open working window would not bring significant 
economic gains, although it might release pressure on the workforce or equipment. The penalty 
cost must be addressed in reality by minimising the missed containers and avoiding late 
departures.   
 

6.3. Multiple trains with discharging and loading 
The above sections showed that the simplified strategies are computationally efficient and more 
readily applicable in practice. In particular, the Bang-bang strategy is able to achieve near-
optimal solutions. Therefore, we focus on these four simplified strategies in the multiple train 
situations. Note that Figure 1 displays seven trains handled within a day where the first train 
and the last train are only partially handled (either partially discharged or partially loaded). We 
select the middle five trains by excluding the first and the last trains in our experiments, which 
specifies , , , ,; ; ; ;b e b e

d n d n l n l nt t t t ,
T

d nQ and ,
T

l nQ for train n=1,2, …,5. 

 
6.3.1 Results under two optimal strategies  
Let the maximum number of allowed prestaged containers ( ,

B
l nQ ) take three values: 0, 5 and 

10; let the degree of uncertainties ( ; ;Y B Y
d l lf f f ) take four levels as shown in Table 5. Other 

system parameters are the same as the Reference Case described in Section 6.2. The results 
achieved under the decoupled strategy and the Bang-bang strategy are shown in Table 9. The 
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percentage above (%above) is calculated as the percentage by which the expected cost achieved 
under other alternative strategies is above the cost achieved under the Bang-bang strategy.  
 
Observations made from Table 9 can be summarised as: 
(i) Compared with the other alternative strategies, the Bang-bang strategy presents 

superior results in terms of both solution quality and computational time; 
(ii) As the degree of uncertainty increases, the extent by which the Bang-bang strategy 

outperforms the decoupled strategy also increases, denoted by the percentage above 
(%above); however,  results produced by Buffer-first and Yard-first strategies get closer 
to results achieved under Bang-bang strategy; This reflects the intuition that greedy 
strategies tend to work well as the degree of uncertainty increases. 

(iii) As the maximum allowed prestaged containers increases, the total cost decreases;  
(iv) The computation time increases significantly as the degree of uncertainty increases, or 

as the maximum number of allowed prestaged containers increases. 
The above observations are in line with the results in Section 6.2. 

 
Table 9. Application of Decoupled, Bang-bang and Greedy strategies to multi-train cases 

   
Decoupled Buffer-first Yard-first Bang-bang 

,
B

l nQ   ; ;Y B Y
d l lf f f   %above CPU %above CPU %above CPU Cost CPU 

0 0.9; 0.9; 0.9 0.86% 0.47 12.36% 0.16 12.36% 0.28 2615.9 0.31 
0 0.8; 0.9; 0.6 1.54% 0.66 7.37% 0.31 7.37% 0.30 2921.5 0.42 
0 0.6; 0.9; 0.4 3.10% 0.89 4.51% 0.42 4.51% 0.44 3294.6 0.55 
0 0.4; 0.9; 0.2 5.24% 0.95 2.19% 0.59 2.19% 0.55 3787.6 0.75 
0 0.2; 0.9; 0.0 6.17% 1.08 0.95% 0.80 0.95% 0.78 4308.8 0.92 
5 0.9; 0.9; 0.9 0.65% 5.72 12.36% 1.36 12.36% 1.13 2615.9 2.78 
5 0.8; 0.9; 0.6 0.90% 8.92 7.41% 1.92 7.41% 1.58 2920.4 3.91 
5 0.6; 0.9; 0.4 1.82% 11.33 5.37% 2.98 5.38% 2.36 3267.5 5.64 
5 0.4; 0.9; 0.2 3.23% 13.92 3.35% 4.44 3.85% 3.59 3726.7 7.94 
5 0.2; 0.9; 0.0 4.10% 15.50 1.80% 5.92 3.13% 4.69 4217.7 10.45 
10 0.9; 0.9; 0.9 0.52% 14.72 12.36% 2.25 12.36% 2.03 2615.9 4.86 
10 0.8; 0.9; 0.6 0.22% 23.30 7.73% 3.33 7.73% 2.80 2911.9 6.92 
10 0.6; 0.9; 0.4 0.67% 30.48 6.48% 5.08 6.62% 4.34 3229.3 10.19 
10 0.4; 0.9; 0.2 1.73% 36.95 4.76% 7.28 6.17% 6.39 3645.4 14.06 
10 0.2; 0.9; 0.0 2.20% 40.47 3.05% 9.41 5.77% 8.16 4112.3 18.02 

 
The percentage above (% above) and the computation time have an opposite trend in relation 
to the degree of uncertainties and the maximum number of allowed prestaged number.  When 
the degree of uncertainties increases, the percentage above and computation time increase, as 
reported in Table 9. This means that, when many uncertain factors are imposed, which can be 
weather condition, train timetable, or machine breakdown, a greater total cost is necessary, 
while it takes longer to produce effective loading or discharging plans. 
 
6.3.2 Discussions of solutions for multiple train loading and discharging problem 
Whilst the observations in the single train context provide insights as to how total cost is 
affected by different factors, in practice it is possible that two or more trains are handled at the 
same time. We note from Table 9 that total costs in the multiple train scenario change with the 
degree of uncertainty in the same pattern as the single train scenario. A higher total cost is 
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necessary to address higher uncertainty. Of interest is the conclusion that the cost saving made 
by the Bang-bang strategy is significant when measured against other three simplified 
strategies, and the level of saving increases when the degree of uncertainty increases. While 
results produced by Buffer-first and Yard-first greedy strategies more resemble the results 
obtained from Bang-bang strategy as level of uncertainty increases.  
 
The maximum number of allowed prestaged containers ,

B
l nQ  can reduce total cost, although it 

takes longer to produce a loading/discharging plan. Our results show that the higher cost 
incurred by the higher degree of uncertainty can be alleviated (offseting some cost) by a bigger 
prestaging buffer. We have shown how a seaport can “tune” a prestaging buffer size to address 
a variety of uncertainty levels. The buffer size that will be the best in a given situation will 
depend on the real situation. For example, a seaport that encounters very uncertain train arrival 
time may increase the prestaging buffer size to offset disturbances related to the arrival time 
and working window.  
 
The quantitative results prove that the Bang-bang strategy can achieve a performance 
extremely close to the optimal strategy, making the Bang-bang strategy a more applicable 
strategy in practice.  
 
In the case company, train loading/discharging plan is created manually and relies heavily on 
user’s expertise and judgement.  There is little consideration of uncertainties or operational 
disturbances, such as equipment breakdown, variations in workload or in customer demands; 
as such the plan is very static. Our industrial partners have carefully examined and evaluated 
the results presented by the dynamic programming model in terms of the loading/discharging 
plan, associated cost, customer service and flexibility in cost adjustment in their business. They 
feel that the proposed model can be used in conjunction with the already present train planning 
tool to reduce the reliance on subjective judgement, therefore creating a more dynamic plan 
that is updated by responding to operational changes and uncertainties. 
 
The optimal strategies have different features and implications for practice; it is an intention of 
this research that comparison of the results may be useful for the company’s experts under 
different circumstances. Results achieved under different strategies may offer meaningful 
managerial insights for the decision analysts. In comparison, the optimal strategy provides the 
most optimal results in terms of total cost, but at the expense of long computation time, so a 
win lose situation. While the Decoupled, Buffer-first, Yard-first and Bang-bang strategies are 
able to reduce the computation time substantially, the solutions are characterised by higher 
costs than the solutions provided by the optimal strategy. However, a slight increment in cost 
can be endured and compensated by a much-reduced computation time, making the overall 
solution presented by the Bang-bang strategy better, to be a win-win situation.  
 
7. Conclusions  
This paper presents an integrated model for optimising the decisions of container prestaging 
and the decisions of container discharging and loading rates at seaport rail terminals, in the 
presence of uncertainties. We formulate the problem into a stochastic dynamic programming 
model to minimise the expected cost incurred during the logistics processes of transporting and 
storing containers between the storage yards and the trains. Five solution strategies, i.e., the 
optimal strategy, the two greedy strategies (i.e., Buffer-first and Yard-first strategies), the 
decoupled strategy and the Bang-bang strategy, are presented. Numerical experiments based 
on a real case study are conducted to compare these strategies and illustrate their effectiveness 
and sensitivity to the key system parameters. 
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It should be noted that the four simplified strategies are obtained via the value iteration 
algorithms rather than heuristically. This implies that the simplified strategies are optimal 
within the specified type of control policies (or action space). The value iteration algorithms 
also help to identify the optimal static prestaging decisions under each proposed strategy. This 
work has the potential to be integrated with the existing train loading and discharging 
operations, at least complementing the current manual operation and producing closer to 
optimal results.  
 
However, there are limitations on the proposed model. In this research, we pursue a 
macroscopic approach to derive the aggregated container flow rate, without considering 
detailed container attributes (such as size, weight, commercial value etc.), train attributes 
(wagon types, shunting time, etc.), resource management (RMG allocation, labour availability 
and allocation, etc.), or yard management. The schedules of individual containers and resources 
are not modelled, mainly due to the existence of uncertain factors. The proposed model is tested 
using the calibration dataset through total cost indicators, but other operational performance 
indicators such as turnaround time, service time, or financial indicators are not considered.   
 
Further research could be done in the following directions: (i) considering the dual-cycle IMV 
movements by appropriately linking the discharging and loading processes; (ii) considering the 
headcount and flexible resource management at seaport rail terminals; (iii) considering more 
detailed operations such as individual IMV movements on the real-time basis; (iv) considering 
more container attributes, train attributes and the differences in problem setting in different 
countries; (v) assigning buffer capacity to multiple trains dynamically; and (vi) including 
multiple rail terminals in the analysis.  
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