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Highlights 

 New implementation method of interface conditions for flow over 

porous media 

 Single layer of interface particle without smoothing of any 

parameters. 

 Validated by analytical solutions and experimental data for solitary 

waves 

 Validated by propagating waves with wave breaking on the structure. 
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Abstract  
A new formulation of interface boundary conditions for simulating water waves over submerged 

porous media using particle method is presented. The fluid flow over and through a porous media is 

modelled by the standard NS equations for the free flow and volume averaged NS equation based on 

the Forcheimmer‟s type resistant force for the flow in the porous media, respectively. As the porosity 

and resistant forces exist only within the porous media, the continuity of Darcy velocity and flow 

stresses need to be enforced at the interface boundary between the free flow and the flow in the 

porous media. These boundary conditions are implemented simultaneously at the stage of solving the 

Poisson pressure equation (PPE) by transforming the velocity condition to an expression of pressure 

gradient and then applying the pressure expression at the sharp interface incorporating the stress 

conditions. Implementing the new formulation within the framework of an existing particle-based 

code (MLPG_R), a set of numerical „experiments‟ is performed to demonstrate the method's 

effectiveness as compared with analytical solutions and experimental data including solitary wave and 

regular propagating wave with wave breaking. 

Key words: porous media, interface treatment, particle method, coastal breakwater 

1. Introduction 
Man-made structures such as submerged breakwaters or revetments built of porous materials are 

widely used to protect natural coastline or coastal infrastructures from erosion or flooding damages. 

The porous materials exert skeleton resistant forces on the flow and thus can result in flow energy 

dissipation. The accurate prediction of the flow processes within and around the porous structure is 

therefore crucial in predicting the wave transmission, reflection and damping as well as assessing the 

functional performance and stability of the porous structures. In the past two decades, a range of 

numerical models for investigations of flow over porous structures  have been developed based on 

linear wave theory [1, 2], nonlinear shallow water equations (e.g. [3] ) and more recently full Navier-

Stokes (NS) equations  [4, 5] which are capable of dealing with complex flow processes such as wave 

breaking and removing many of the simplifying assumptions in potential flow models. 

For solving the NS equations, there are two standard approaches: microscopic and macroscopic 

approaches. The microscopic approach resolves flow interaction with each solid element in the porous 

media and the flow resolution is at the pore scale. Due to the high demand on computational resources 

to achieve such detailed solution this approach is generally taken when considering small scale 

domains such as pore-scale multiphase simulation in oil and gas industry [6]. On the other hand, the 

macroscopic approach considers only volume-averaged flow behaviour without resolving the real 

pore geometries. The mean flow in porous media is governed by volume-averaged NS equations in 

which linear and nonlinear resistant terms are added to represent laminar and turbulence-induced 

frictional forces, respectively [2]. These two terms may adopt different types of parameterisations [7, 

8] experimentally tested for various solid-phase types and flow regimes. In coastal engineering the 

main interest is usually on the large scale behaviour of the flow when moving over or through the 

porous structures rather than on the flow details within the pores, which makes the second approach 

more attractive. 
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Once the porous flow equations are determined, the matching conditions (or coupling schemes) at the 

interface of the free flow and flow in the porous structure are required to complete the model. For 

both mesh-based or particle-based methods, two main types of interface treatments can be found in 

the literatures, one is to adopt an unified flow equation by smearing porous properties and 

corresponding resistant terms across the interface [9-11] and the other is to enforce stress and velocity 

conditions explicitly at the interface boundary [5,12]. In the unified equation approach the resistant 

force is transferred smoothly over a small transitional region from a physical value within the porous 

media to zero outside the media and the interface conditions are thus inherently satisfied. This method 

has been incorporated into mesh-based method by solving an extra transport equation for determining 

porosity weighting in the transitional region [13,14]. When the concept was introduced to particle-

based SPH method, the porosity carried by transitional particle is interpolated from a set of 

background particles [9] with all variables updated by one set of equations. Ren et al. [15] improved 

this scheme by reducing the thickness of the transitional layer to solve pressure but updating velocity 

by equations based on unsmoothed porosities. A compensation for velocity continuity was introduced 

in Ren et al. [10] by smoothing out the velocity for particles within the transition layer. Based also on 

the unified equations similar smoothing technique was applied by Gui et al. [16] to the pressure as an 

alternative interface condition. To ensure the stability and accuracy of predicted flows in the 

transitional layer this unified equation approach requires extra efforts on porosity smoothing and 

transitional thickness control. In the second approach, the interface conditions are enforced explicitly 

at mesh edges or a layer of particles that are generated to match the geometry of the porous structure. 

In mesh-based method, pressure and velocity conditions are iteratively matched within each time step 

which is computationally expensive [12] while for particle-based method in this group, Shao [5] 

matched pressure and velocity on the interface particles by obtaining boundary values for porous 

domain from the free flow domain through SPH interpolation scheme and vice versa. Other 

approximate interface treatments are also proposed such as modified log-wall function method by [4] 

that incorporates characteristics of the porous media to represent the turbulent flow near the porous 

bed [17] and surface integrals over the interface to obtain interfacial momentum transfer in which 

interface conditions are not incorporated [18].  

In this work, a method is developed and tested that implements the interface conditions on a single 

layer of particles representing a sharp boundary of the porous media domain thus removing the need 

for transitional interfaces zones and associated artificial treatments. An explicit pressure expression is 

derived as a Dirichlet condition for solving pressure Poisson‟s equations for both domains. By 

converting the interface conditions of stress and Darcy velocity continuities to that relate to pressure 

and pressure gradient terms between two domains, the pressure for the interface particle is derived 

based on Taylor expansion of pressure near the interface with two interface conditions implemented. 

The implementation procedure is similar to that in the two-phase flow model of Zhou [19] but is 

further developed to deal with Darcy velocity continuity which results in a situation that the intrinsic 

velocities are not continuous at the interface but with a ratio of the porosity. Such implementation 

scheme is applied for the first time to simulate flow over porous media. As the porous media is rigid, 

interface particles are fixed in space on which the boundary conditions coupling the two domains are 

applied while particles within each domain are allowed to move freely in a Lagrangian manner taking 

on the local properties when they move across the interface. This treatment is similar to that for slip 

rigid boundary conditions in particle-based method [20] in which the pressure and velocity are 

updated for wall particles while the positions are fixed. 

The paper is organised as follows: after the Introduction, the governing equations for flows inside and 

outside the porous media are provided in Section 2 followed by interface and boundary conditions. 

Numerical schemes including solving two sets of equations separately, the numerical implementation 

procedures of the interface conditions and treatments of particles on rigid wall, free surface and wave 

absorption zone are presented in Section 3. Model validations are carried out in Section 4 against both 

analytical solutions and experimental data including solitary and propagating waves and porous media 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4 

 

in the types of porous bed, rectangular and trapezoid breakwaters. Finally a conclusion is drawn in 

Section 5.    

 

2. Governing equations 
The simulated fluid domain is spilt into two regions which are inside and outside the porous media, 

respectively. The pure fluid flow outside the porous media is governed by the usual NS equations 

while the flow inside the porous media is governed by the volume averaged NS equation containing 

additional source terms to account for the effects of solid skeleton on the flow. The continuity of flow 

and stresses across the boundary between the two regions is enforced by implementing the proposed 

interface conditions to be discussed in Section 3.2.  

2.1 Equations for flow outside porous media 
The standard incompressible Navier-Stokes equations are applied for the flow. The continuity 

equation can be written as  

       
( 1 ) 

where    is the velocity of the fluid outside the porous media. In some previous models based on 

particle methods, turbulence has been considered by adding the Sub-Particle- Scale (SPS) turbulence 

stress [10,21] in the momentum equations, which is equivalent to sub-grid-scale stress in mesh based 

methods. However, as indicated in [10], wave surface elevation around porous coastal structures 

calculated with or without the turbulence effects differ only slightly, even near the breaking point. 

Thus, to demonstrate the effectiveness of the new interface treatment method with an efficient model, 

the flow is treated in this work as laminar and the momentum equation in Lagrangian form is 

   
  

  
 

 
        

    
( 2 ) 

where    is the pressure of the fluid outside the porous structure,   is the kinematic viscosity of the 

fluid and    is gravitational acceleration.  

2.2 Equations for flow inside porous media 
Within the porous media, the flow is governed by the spatial averaged Navier-Stokes type equations 

based on the classical Forcheimmer‟s type resistant force formulation, which read as  

       ( 3 ) 

  

(   )
   

  
  

 

 
        

    
   
  

   
    

 

√  
  |  | 

( 4 ) 

where    is porosity,    is the seepage velocity which can be converted to the Darcy velocity    by  

       ,    is the fluid pressure within the porous media. The last two terms in Eq. ( 4 ), one 

linear and one nonlinear, represent the resistance exerted on the fluid by the solid skeleton of the 

porous media.    (  ) is intrinsic permeability and according to Furukawa and McDougal [22] can 

be determined as 

           
  (

   
  
)
      

 

(    )
 
             

( 5 ) 

where     is the mean stone size of the porous structure. The coefficient    can be approximate by  
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]

    

 
( 6 ) 

The inertial coefficient,  , accounts for the added mass effect and is widely taken as unity as this 

effect is usually negligible in comparison with other resistance terms [3,12,23]. It should be noted that 

although Eq. ( 4 ) has been widely adopted and validated by coastal engineering researchers [15,24], 

many other practical models of resistance forces are available and a thorough review on the subject 

can be found in Losada et al.[24] and Ren et al. [15]. 

2.3 Interface conditions 
Since the domains inside and outside the porous media are governed by two separate sets of equations, 

it is necessary to provide appropriate interface conditions. For the kinematic condition, the continuity 

of Darcy velocity is adopted [4,7] to form 

              ( 7 ) 

Strictly the free flow just outside the porous media is not equivalent to the spatially averaged flow just 

inside the porous media because the flow contains numerous jets and wakes. The adoption of this 

simple condition is justified on the ground that the practical concern of wave over the porous structure 

is mainly on wave transmission, reflection and energy dissipation caused by porous media, which are 

not significantly affected by this assumption of mean velocity equivalence at the interface [4].   

As for the dynamic conditions, they include the continuity of normal stress 

                 ( 8 ) 

and tangential stress 

           ( 9 ) 

where      and      are normal viscous stresses on either side of the interface,      and      are 

tangential viscous stresses, which can be expressed by 

         (
   

  
) 

      *  (
   

  
)    (

   

  
)+          

with   (     )  and   (     )  are the unit normal and tangent vectors respectively to the 

interface. This work proposes a new numerical scheme imposing both types of conditions on a sharp 

interface and maintaining flow characteristics within each region. 

2.4 Boundary conditions 
Two types of boundaries are considered in this work, one of which is free surface condition by 

assigning zero pressure as 

           ( 10 ) 

which is applied on the surface of the free flow only as the porous media is submerged.  

On solid boundaries, walls either covered by porous structure or pure water, the slip condition is 

imposed as 
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                        ( 11 ) 

where    is the flow velocity either in porous media or outside it,   is the moving velocity of the 

boundary which can be zero representing a fixed wall or non-zeros as a wave generator. By applying 

Eq. ( 11) to the momentum equation, the pressure on solid boundary is governed by 

  
   

 
   (   ̇          )           ( 12 ) 

where  ̇ the acceleration of the solid boundary that can be specified according to the wave generator 

used for each test case and    is the resistant force from porous structure which vanishes in the free 

flow domain, i.e.     .  

3. Numerical method 
As shown in Figure 1, the entire simulation domain is split into two regions including a free flow 

region    filled by hollow dots whose trajectories are governed by Eq. ( 2 ) and a porous flow region 

   filled by solid dots governed by Eq. ( 4 ). Particles in region    and   , except the boundary 

particles, are known as inner particles. Their equation discretisation and particle moving update are 

based on MLPG_R method which is presented in Section 3.1. The interface    is represented by a 

single layer of particles of shaded dots on which interface conditions are implemented by a new 

scheme as described in Section 3.2. The flow equations are solved separately in each region with 

physical characteristics (e.g. porosity and resistant forces) carried by individual particle and 

maintained within the region. It should be noted that most inner particles possess a complete support 

domain for particle approximation while for inner particles close to the interface (e.g.    in Figure 1), 

the support domain might be truncated with neighbouring particles only from its own region or the 

interface. For simultaneous coupling of two regions, interface particles in the new scheme have 

complete support domains including neighbouring particles from both regions. 

 

 

Figure 1: Computational domains consisting of three types of particles: particles in free flow domain 

of    (hollow dots), in porous flow domain of    (solid dots) and on the interface of    (shaded dots). 

Particle       has a support domain bounded by the dash circle which is the same case for particles 

in the porous region. The interface particle       has a support domain bounded by the solid circle. 

The governing equations are discretised and solved by the particle-based method in which the flow 

characteristics (e.g.  ,   etc.) will be stored on moving particles. When moving across the interface 

the particles will then be controlled by the corresponding governing equations and take up local 

properties including porosity and support domain. Since the model is for rigid porous structure, the 

𝑄𝑝 

𝑄𝑙 

𝑄𝐼 

𝐽𝑙 

𝐽𝐼 
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domain of porous region as well as the profile of the interface are prescribed and maintain throughout 

the simulation which are used for identifying to which domain particles belong. Within each flow 

domain and at each time step, pressure and velocity fields are solved using the prediction-correction 

scheme [25] with intermediate velocity predicted explicitly considering all the terms at RHS of the 

momentum equation except the pressure term as 

  
    

                                    ( 13 ) 

where   indicates the number of time step at which all the quantities are known to march to the next 

step. In Eq. ( 13), the subscript of   represents simulation domains, i.e.     indicates the domain 

outside the porous media where extra resistant force      and     is for the domain inside the 

porous media where     
   

  
   

    
 

√  
  |  | as in Eq. ( 4). Then the pressure is updated in 

correction step by solving Pressure Poisson‟s Equation (PPE) expressed as 

    
    

 

  
    

        ( 14 ) 

The particle velocity and position at      are then updated by  

  
      

  
 

 
   

            ( 15 ) 

  

  
      

    
       ( 16 ) 

 

3.1 Inner particles 
For inner particles, the PPE, i.e. Eq. ( 14 ), is solved by MLPG_R method where the discretisation is 

based on a weak form. The PPE is multiplied by a specific test function as proposed in [25] and then 

integrated over a local sub-domain to achieve the final formulation of Eq. ( 17 ) 

(∫
  (    )

  
   

  
     

)  ∫
  
    

  
  

  

            ( 17 ) 

where   is the unit vector normal to integration sub-domain    and pointing outside,   
 

  
   (    ) 

is the test function employing the solution of the Rankine source in an unbounded 2D domain with 

  being the distance away from the centre of the sub-domain. To discretize Eq. ( 17 ) moving least 

square (MLS) method is adopted for unknown pressure interpolation and a semi-analytical technique 

[25] is applied for numerical integration of the RHS of Eq. ( 17 ). The readers are referred to [25] for 

more derivation details. Other than directly discretizing the Eq. ( 17 ) by approximating second order 

derivatives of the unknown pressure in MPS [26] and ISPH [27] methods, this weak formulation only 

involves the approximation of pressure function itself. This feature potentially improves the accuracy 

in solving pressure equation and detailed comparisons and discussions are presented in [28]. 

 

3.2 Interface particles 
In the following derivations, interface conditions, i.e. Eqs. ( 7 ) - ( 9 ) will be explicitly implemented 

on interface particles without introducing smoothing of any kind. 

To implement stress and velocity conditions on the interface, the momentum equation for flow inside 

the porous media, i.e. Eq. ( 4), is first multiplied by the porosity    and then rearranged together with 

the momentum equation for the flow outside the media to obtain the expressions for pressure 

gradients as 
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           ( 18 ) 

  

  
   

 
    

   

  
         

           ( 19 ) 

Taking the first order Taylor series expansion of the pressure near the interface within each domain 

yields 

 

 
[  (  )   (  )]  

 

 
(   )  

      ( 20 ) 

  
  
 
*  (  )   (  )+  

  
 
(   )  

      ( 21 ) 

where          ,   (  )  and   (  )  are pressures outside and inside the porous media 

respectively at arbitrary point of   while   (  )  and   (  )  are the pressures obtained when   

approaching points     from either sides of the interface, respectively with     being the position of  

the interface vector. 

By discretising Eqs. ( 18) and ( 19) within the support domain outside and inside the porous media 

and   replacing the pressure gradient term by Eqs. ( 20) and ( 21) respectively, it yields 

 

 
∑ [  (  )   (  )] (   )
 
     

                       ∑ ( 
   
  
        )

  
     (|   |)

 
     

( 22 ) 

  
  
 
∑ *  (  )   (  )+ (   )
 
     

                       ∑ (   
   

  
         

        )
  
     (|   |)

 
     

 ( 23 ) 

where the shape function  (| |) is obtained by the moving least square (MLS) algorithm [20] with 

the weight function having no singularity and the support domain across the interface;    and    are 

position vectors of neighbouring particles outside and inside the porous media;   and   are total 

numbers of neighbouring particles in the two domains. 

Adding up Eqs. ( 22 ) and ( 23) gives 

 

 
[∑   (  ) (|   |)
 

   

   ∑   (  ) (|   |)
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[  (  )∑ (   )
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 ∑(   
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 ∑(       )
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( 24 ) 
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From the velocity condition of Eq. ( 7), it can be deduced that 
   

  
   

   

  
 and the first two terms 

on the right hand side of Eq. ( 24 ) can be cancelled out by assuming that there exist sufficient 

neighbour particles surrounding the interface particle. However, to consider general particle 

distributions, two terms will be retained and is abbreviated as    with the particle acceleration from the last 

time step. 

The normal stress condition of Eq. ( 8) is then substituted into Eq. ( 24 ) with the shear stress in 

normal direction calculated explicitly. Finally, two explicit expressions of pressures with a difference 

of           for a single interface particle can be derived and the one on the porous side is 

  (  )  
 

∑  (|   |)
 
      ∑  (|   |)

 
   

[∑  (  ) (|   |)

 

   

   ∑  (  ) (|   |)

 

   

  ∑(       )      (|   |)

 

   

  ∑(        
        )      (|   |)

 

   

   

 (         )∑ (|   |)

 

   

] 

 

( 25 ) 

where parameters at right hand side terms are from last time step. The pressure continuity condition 

which is a simplification of stress continuity is widely used in water wave simulations [4,15] based on 

the assumption that the shear stress difference in normal direction is negligible. This assumption can 

be applied to Eq. ( 25) by removing the last term at the right hand side resulting in a single pressure 

value at the interface particle. In the following tests, Eq. ( 25) is maintained with the other pressure 

value stored in the same particle for velocity update in two domains.  

By enforcing velocity and normal stress conditions, the pressure is explicitly provided for interface 

particles as Dirichlet boundary for both domains. Meanwhile, following Shao [5] the tangential shear 

stress condition is implemented in velocity prediction step for intermediate velocity update. The 

present work is the first attempt to implement both dynamic and kinematic conditions in solving PPE 

stage through merging the two types of conditions to provide explicit pressure boundary value 

coupling the flow inside and outside the porous media. In this way, an efficient and physically sound 

model for flow over porous media is constructed by waiving extra numerical treatments. Since the 

interface consists of a single layer of fixed particles which can be regarded as having zero thickness, 

moving particles can be identified in either the pure fluid domain or porous domain and governed by 

the corresponding equations. When moving particles get very close to the interface or move across the 

interface from one domain to the other, their pressures are determined by the interface pressure 

expressed by Eq. ( 25).  Although [11] adopted the same scheme, MLPG_R, to discretise the Poison‟s 

equation, the treatment of the interface follows [9, 10] involving the distribution of porosity smoothly 

over a layer of particles with the velocity near the interface being smoothed cross the layer to satisfy 

the velocity condition. Such treatment avoided the explicit condition implementation while extra 

computational cost was required for porosity and velocity interpolations. Since the thickness of the 

transitional layer is about twice the support domain, potential risk would also arise when the porous 

media becomes narrower. 
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3.3 Downstream wave absorbing boundary  
To damp out unwanted wave reflection at the end of numerical tank, a damping zone is set up [29] by 

adding an artificial damping term in velocity updates as   
    [   ( )]     where    is 

damped velocity and the damping coefficient   is defined as 

 ( )  
 

 
  *     (

 (    )

 
)+            

 

  is the length of damping zone taken as three times of wave length,    is the starting point of the 

damping zone and    is the magnitude of the maximum damping coefficient which is taken as 0.1. 

3.4 Boundary particles 
The zero-pressure boundary condition, i.e. Eq. ( 10), is applied on free surface particles which are 

identified at each time step based on particle number density and number of surrounding particles [20]. 

Other identification techniques such as divergence of a particle position [27] may also be used 

alternatively to track free surface especially in violent situations. The velocity and position update of 

free surface particle are based on Eqs. ( 15 ) and ( 16 ). 

Implementing wall pressure condition of Eq. ( 12) effectively prevents particle penetration into rigid 

walls but requires discretisation of first order derivative of unknown pressure. In this work the 

gradient operator in MLPG_R method [30] with finite difference interpolation is adopted rather than 

MLS for the efficiency reason.  

4. Model validation and application 
In this section, the new interface boundary implementation method will be validated by analytical 

solutions of velocity and pressure along the interface and against experimental data of wave profiles 

and velocities at specific time instants and locations involving both solitary and propagating waves. 

Adaptive time step will be used following Courant condition as 

        | |   ⁄    

where     is initial particle distance, | |    is maximum velocity magnitude in the whole flow 

domain and    is Courant number taken as 0.1 [31] considering the probable reduced particle distance 

during simulations. 

4.1 Solitary wave over porous bed 
Amplitude attenuation of a solitary wave propagating over a porous bed has been a benchmark for 

numerical simulation as the rate of attenuation, wave profile and velocity at the interface are 

analytically available [32] for small-amplitude waves. The proposed model will be examined in all 

those aspects in the tests that the wave is initially generated by a piston type generator as shown in 

Figure 2. The depths of porous bed and pure fluid are         and        , respectively, 

      is the length of tank filled by porous bed while         is the length of wave generation 

zone on an impermeable bed aiming to provide a desired incident wave free from the influence of the 

porous bed. A small incident solitary wave with initial amplitude of          is generated. The 

porous bed consists of granular material with mean diameter of           and porosity of 

       . According to Eqs. ( 5 ) and ( 6 ), the intrinsic permeability and turbulent coefficient are 

determined to be            
     and        . 
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Figure 2: Numerical tank setup with coordinate system and notations. 

The particle distance convergent tests are carried out first by using 15, 20 and 25 particles along the 

water depth corresponding to                   and        respectively. Comparisons 

between numerical and analytical solutions [32] are shown in Figure 3 demonstrating that     

      is capable of giving a convergent result close to that of an even smaller distance of     

       and that the numerical results agree well with the analytical solution with an overall error of 

0.53%. The analytical solution of the decay rate against the wave propagating distance is obtained 

from  

 

  
 

 

    (     )(    )
  ( 26 ) 

where       (    )(     ) ,    is wave speed expressed by     √   (  
  

   
) ,   is 

hydraulic conductivity can be linked to intrinsic permeability as         and   is the travelling 

distance on the porous bed. 

 

Figure 3: Comparison of amplitude attenuations calculated with particle distances of 0.027m (dash line), 0.02m 

(solid circle), 0.016m (diamond) and the analytical solution [32]. 

The wave surface profiles at three time instants, i.e.    6.06s, 9.09s and 12.12s, simulated with 

          are also examined against analytical solution with decayed amplitude and the profile 

expressed by 

𝐿   𝐿𝑠   

Piston wave 

generator  

 𝑝    Porous bed  

      Pure fluid  

𝐻  

𝑦     

𝑥     
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   ( )      (     ),    √  ( )    
 
 ( 27 ) 

  

 

 

Figure 4: Comparison of analytical (black solid line) and simulated (red dash line) wave surfaces at three time 

instants of 6.06s, 9.09s and 12.12s. 

As shown in Figure 4, the wave profile as well as the wave propagating speed are well captured by the 

model. To further test the accuracy of the interface conditions, comparisons are carried out for 

velocities at the interface. The analytical solutions of the velocities are 

 ( )

 
  √         (     )     (     )  ( 28 ) 

  

 ( )

 
 
    

 

   
      (     )[       

  (     )]  ( 29 ) 

where    ( )   ⁄ . The velocities given by Eqs. ( 28) and ( 29) and plotted in Figure 5 are Darcy 

velocities in the porous media which also match the velocity in the free flow domain. Figure 5 

presents the horizontal and vertical velocities at         when the wave crest reaches        . It 

should be noted that although the properties of the wave and porous bed in the simulation are set 

identical to that  of the analytical solutions, some differences are expected  as the analytical solutions 

are derived from the Darcy‟s law and the tangential velocity condition is neglected [32] while the 

numerical results are obtained from the full NS equations satisfying the continuity of both normal and 

tangential velocities.  This difference is responsible for the slight discrepancies in velocity comparison, 

especially in the horizontal velocity.  
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                                        (a)                                                                              (b) 

Figure 5: Comparison of horizontal (a) and vertical (b) velocities on the interface between analytically solution 

(black lines) and numerical simulation with           (red dots) at        . 

4.2 Solitary wave interaction with porous breakwater 
For validation of the model against experimental data, laboratory tests of solitary waves propagating 

over a porous breakwater [33] are selected. In this experiment, not only surface evolutions but also 

spatial velocity distributions are measured and can be used to verify the proposed interface treatment 

method. 

Following the experimental setup, a numerical wave tank with length       filled up with water to 

    0.106m is initially generated as shown in Figure 6. At the left end of the tank a piston-type wave 

maker is equipped to generate the desired solitary wave and at the far opposite end there is a 5m long 

wave damper. A porous breakwater with depth of          and width of        is located on 

the bottom of the tank and its intersection with the weather side of the breakwater is set to be the 

origin of the coordinate. The breakwater consists of uniform spheres with dimeter of     1.5cm 

yielding a porosity of    0.52. The wave amplitude examined at         is taken as initial 

amplitude   0.0477m at which point time also starts counting from    . 

 

Figure 6: Numerical setup for solitary wave interacting with porous breakwater. 

To verify the numerical convergence against particle distance, simulations with 30, 40 and 50 

particles along the water depth corresponding to             and 2.1mm are carried out. Three sets 

of results are largely similar and agreed well with the experimental data. The velocity at x=0.16m 

along the water depth at t=1.65s is shown in Figure 7 indicating the convergence of the simulation. 

Results from [16] using ISPH method with smeared interface are also demonstrated in Figure 7 which 

show lower capability in capturing velocity variation along the depth comparing to the current model. 

The section examined is at the lee side of the breakwater where a vortex is formed when the wave 

passed over and velocities are sensitive to water depth. An overview of special and temporal flow 
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fields will be demonstrated in the following sections. As shown in Figure 7, results are well agreed 

with minor deviations from the experimental data which may be caused by numerical diffusion. Since 

          is capable of obtaining almost the same result as that with even smaller distance, this 

particle distance will be adopted for the subsequent simulations of this case unless otherwise stated.  

    
(a) (b) 

Figure 7: Horizontal (a) and vertical (b) velocities through water depth at x=0.16 and t=1.65s, simulation results 

with initial particle distances of 3.5mm (blue), 2.7mm (red) and 2.1mm (green), experimental data (hollow 

circles) and results from ISPH method [16] (stars). 

In Figure 8 to Figure 10, flow characteristics at three time instants, t=1.45s, 1.65s and 1.85s, including 

dynamic pressure field, velocity field and free surface in red dots are shown together with the 

measured free surface indicated by hollow circles. Comparison for seven sectional horizontal and 

vertical velocities from x=-0.04m to x=0.2m are also shown. To clearly present velocity fields with 

original particle locations, only one sixth particles are depicted for demonstration purpose in (b) of 

figures from 8 to 10. Particles are not as uniform as initial setup due to their movement with the wave. 

Fair agreements of free surface elevations at three snapshots showing the wave approaching, across 

and leaving the breakwater can be observed in (a) of each figure. In general, the dynamic pressure 

reaches maximum at the wave crest and gradually reduces towards two sides of the crest, which 

corresponds to high particle velocity under the wave crest. However due to the presence of the 

breakwater, flow separation starts at t=1.45s at the top of the weather side (Figure 8(b)) where low 

pressure arises (Figure 8(a)). Similar phenomena can also be observed in Figure 9 and Figure 10 when 

the wave goes over and leaves the breakwater, in which low pressure zone corresponding to a vortex 

develops at the top of the lee side and moves forward with the size expanded.  

 
(a)                                                                                       (b) 
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(c) 

 
(d) 

Figure 8: Simulated dynamic pressure and velocity fields at t=1.45s are shown in (a) and (b) with calculated free 

surface (red dot) compared with experimental data (black circle). Corresponding simulated (red dot) horizontal 

(c) and vertical (d) sectional velocities across the breakwater from -0.04m to 0.2m are compared with 

experimental data (black circle). 

 

 
(a)                                                                                    (b) 
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(c) 

 
(d) 

Figure 9: Simulated dynamic pressure and velocity fields at t=1.65s are shown in (a) and (b) with calculated free 

surface (red dot) compared with experimental data (black circle). Corresponding simulated (red dot) horizontal 

(c) and vertical (d) sectional velocities across the breakwater from -0.04m to 0.2m are compared with 

experimental data (black circle). 

 
(a)                                                                                  (b) 
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(c) 

 
(d) 

Figure 10: Simulated dynamic pressure and velocity fields at t=1.85s are shown in (a) and (b) with calculated 

free surface (red dot) compared with experimental data (black circle). Corresponding simulated (red dot) 

horizontal (c) and vertical (d) sectional velocities across the breakwater from -0.04m to 0.2m are compared with 

experimental data (black circle). 

It can be seen from Figure 8 to Figure 10 that the sectional velocities for each time instant largely 

agree also with experimental data outside the porous zone. The discrepancies, generally 

underestimations, of velocities at the lee side of the breakwater when the wave passed are mainly 

caused by numerical diffusion introduced in estimating viscous term due to the large local velocity 

gradients. 

4.3 Propagating wave over porous breakwater 
To further test the performance of the new model on propagating wave interaction with porous media, 

the experiments of sinusoidal regular wave breaking on the porous breakwater [34] are simulated. 

Spatial variations of wave heights, surface elevation time histories for typical locations near the 

breakwater and field snapshots of pressure and velocity are examined in this case. 
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Figure 11: Numerical setup of the wave tank and the porous breakwater. 

Following the experimental setup, a piston type wave generator and a wave damper 1.5L long where L 

is the wave length are located at two ends of the tank. A trapezoid breakwater with dimensions shown 

in Figure 11 is submerged in a water depth of          . It is constructed by stones with mean 

diameter of          resulting in a porosity of 0.45. A sinusoidal wave is generated by the 

paddle movement of  

 ( )  
  

 
(       )   

where the initial wave height is           and the frequency      ⁄  with the period set to be 

      . Since wave breaking on the breakwater is observed, the wave height distribution is 

monitored in the simulations using initial particle distances of 19mm, 13mm and 9mm by allocating 

20, 30 and 40 particles along the water depth respectively. In Figure 12 it demonstrates that the 

convergence of the simulation almost achieves at          as the results obtained are fairly close 

to that of using smaller particle distance, i.e.        . It can be seen that good agreement is 

achieved showing clear oscillations at the weather side due to wave reflection and wave breaking on 

the breakwater with the relative maximum height of 1.4. At the lee side, the height is reduced to a 

largely constant level around 0.8, damped by combined effects of porous resistance and wave 

breaking. Figure 13 illustrates the surface elevation variations against time at locations on the weather 

side (Figure 13 (a), (b) and (c)) and lee side (Figure 13 (d) and (e)). The weather side elevation 

variations are well captured by the model at both wave crest and trough while minor discrepancies can 

be observed at the lee side typically in the secondary wave formation although main variations have 

been largely captured. This may be caused by particle clustering at the water jet. Particle 

redistribution might be an effective way to address this issue which will be considered in the future 

work. Wave crest and trough on the breakwater are demonstrated in Figure 14 and Figure 15 together 

with dynamic pressure and velocity vectors. Smooth dynamic pressure variation can be observed 

across the domain including continuity at the interface even at the breaking point. The velocity 

reaches the maximum at the surface for both instants while the wave crest generates higher velocity 

than the trough. In this case, the porous breakwater is about to emerge from the water when wave 

trough interacts with it as shown in Figure 15. The model still works as there are a number of particles 

that can be identified as the free flow particles to determine the interface pressure in Eq. ( 25). As for 

the case that the breakwater is above the water surface, additional treatments for the free surface flow 

within the breakwater and for tracking the interface need to be carried out which is out of the scope of 

this work. 
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Figure 12: Wave height distributions, experimental data (hollow circle) and simulations with initial particle 

distances of 19mm (cross), 13mm (diamond) and 9mm (square). 

    

 
           (a) 

 

 
        (b) 
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           (c)       

 
           (d) 

 
           (e) 

Figure 13: Comparisons of wave elevation time series at different locations between numerical results and 

experimental data.  
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                                                                            (a) 

 
   (b) 

Figure 14: Snapshots of dynamic pressure (a) and velocity (b) under the wave crest on the breakwater. The free 

surface is plotted in purple. 

 

 
                                                                            (a) 
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   (b) 

Figure 15: Snapshots of dynamic pressure (a) and velocity (b) of the wave trough on the breakwater. The free 

surface is plotted in purple. 

5. Conclusion  
The wave propagation in a porous/fluid domain is simulated using a particle method-based model by 

matching solutions of the Forchheimer equation in the porous region to the solution of NS equations 

at the interface between porous and fluid regions. The novel aspect of the work lies in the 

development of a new procedure to implement explicitly the interface boundary conditions on a single 

layer of fixed interface particles, thus dispensing the need for background nodes and artificial 

smoothing of porosity or other physical quantities. Resistant forces induced by granular materials are 

present only within the porous structure and drop abruptly to zero beyond the interface. The usual 

Darcy velocity and stress boundary conditions are recast in the form of explicit pressure expression so 

as to provide an effective Direchlet boundary for each flow domain.  The interface conditions are 

implemented at PPE solving stage ensuring the accuracy of pressure field which is crucial in 

prediction-correction time marching procedure. The model is firstly validated by the analytical 

solutions of solitary wave over a porous bed with attenuation of wave height, wave profiles and 

velocities along the interface being well predicted. Further validations are carried out against 

experimental data involving propagating wave interaction with a porous breakwater. Good 

agreements are again achieved on wave surface elevations near the breakwater. Sectional velocities 

with the fields of dynamic pressure and velocity show a smooth transition across the interface as well 

as a clear flow separation at a low-pressure zone. The model is finally applied to the problem of wave 

breaking on a trapezoidal breakwater in which wave heights along the tank are examined and found to 

agree generally well with experimental data. 
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