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Abstract
Distributed dynamic gossip is a generalization of the classic telephone problem

in which agents communicate to share secrets, with the additional twist that also
telephone numbers are exchanged to determine who can call whom. Recent work
focused on the success conditions of simple protocols such as “Learn New Secrets”
(LNS) wherein an agent a may only call another agent b if a does not know b’s secret.
A protocol execution is successful if all agents get to know all secrets. On partial
networks these protocols sometimes fail because they ignore information available
to the agents that would allow for better coordination. We study how epistemic
protocols for dynamic gossip can be strengthened, using epistemic logic as a simple
protocol language with a new operator for protocol-dependent knowledge. We provide
definitions of different strengthenings and show that they perform better than LNS ,
but we also prove that there is no strengthening of LNS that always terminates
successfully. Together, this gives us a better picture of when and how epistemic
coordination can help in the dynamic gossip problem in particular and distributed
systems in general.

1 Introduction
The so-called gossip problem is a problem about peer-to-peer information sharing: a number
of agents each start with some private information, and the goal is to share this information
among all agents, using only peer-to-peer communication channels [38]. For example, the
agents could be autonomous sensors that need to pool their individual measurements in
order to obtain a joint observation. Or the agents could be distributed copies of a database
that can each be edited separately, and that need to synchronize with each other [18, 21, 28].
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The example that is typically used in the literature, however, is a bit more frivolous:
as the name suggests, the gossip problem is usually represented as a number of people
gossiping [24, 16, 15]. This term goes back to the oldest sources on the topic, such as [6].
The gossip scenario gives us not only the name of the gossip problem, but also the names
of some of the other concepts that are used: the private information that an agent starts
out with is called that agent’s secret, the communication between two agents is called
a telephone call and an agent a is capable of contacting another agent b if a knows b’s
telephone number.

These terms should not be taken too literally. Results on the gossip problem can, in
theory, be used by people that literally just want to exchange gossip by telephone. But we
model information exchange in general and ignore all other social and fun aspects of gossip
among humans — although these aspects can also be modeled in epistemic logic [30].

For our framework, applications where artificial agents need to synchronize their informa-
tion are much more likely. For example, recent ideas to improve cryptocurrencies like bitcoin
and other blockchain applications focus on the peer-to-peer exchange (gossip) happening
in such networks [36] or even aim to replace blockchains with directed graphs storing the
history of communication [5]. Epistemic logic can shed new light on the knowledge of agents
participating in blockchain protocols [22, 10].

There are many different sets of rules for the gossip problem [24]. For example, calls
may be one-on-one, or may be conference calls. Multiple calls may take place in parallel, or
must happen sequentially. Agents may only be allowed to exchange one secret per call, or
exchange everything they know. Information may go both ways during a call, or only in one
direction. We consider only the most commonly studied set of rules: calls are one-on-one,
calls are sequential, and the callers exchange all the secrets they know. So if a call between
a and b is followed by a call between b and c, then in the second call agent b will also tell
agent c the secret of agent a.

The goal of gossip is that every agent knows every secret. An agent who knows all
secrets is called an expert, so the goal is to turn all agents into experts.

The classical gossip problem, studied in the 1970s, assumed a total communication
network (anyone could call anyone else from the start), and focused on optimal call sequences,
i.e. schedules of calls which spread all the secrets with a minimum number of calls, which
happens to be 2n − 4 for n ≥ 4 agents [38, 27]. Later, this strong assumption on the
network of the gossiping agents was dropped, giving rise to studies on different network
topologies (see [24] for a survey), with 2n− 3 calls sufficing for most networks.

Unfortunately, these results about optimal call sequences only show that such call
sequences exist. They do not provide any guidance to the agents about how to achieve an
optimal call sequence. Effectively, these solutions assume a central scheduler with knowledge
of the entire network, who will come up with an optimal schedule of calls, to be sent to
the agents, who will eventually execute it in the correct order. Most results also rely upon
synchrony so that agents can execute their calls at the appropriate time (i.e. after some
calls have been made, and before some other calls are made).

The requirement that there be a central scheduler that tells the agents exactly what
to do, is against the spirit of the peer-to-peer communication that we want to achieve.
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Computer science has shifted towards the study of distributed algorithms for the gossip
problem [23, 29]. Indeed, the gossip problem becomes more natural without a central
scheduler; the gossiping agents try to do their best with the information they have when
deciding whom to call. Unfortunately, this can lead to sequences of calls that are redundant
because they contain many calls that are uninformative in the sense that neither agent
learns a new secret. Additionally, the algorithm may fail, i.e., it may deadlock, get stuck in
a loop or terminate before all information has been exchanged.

For many applications it is not realistic to assume that every agent is capable of
contacting every other agent. So we assume that every agent has a set of agents of which
they “know the telephone number”, their neighbors, so to say, and that they are therefore
able to contact. We represent this as a directed graph, with an edge from agent a to agent
b if a is capable of calling b.

In classical studies, this graph is typically considered to be unchanging. In more recent
work on dynamic gossip the agents exchange both the secrets and the numbers of their
contacts, therefore increasing the connectivity of the network [16]. We focus on dynamic
gossip. In distributed protocols for dynamic gossip each agent decides on their own whom
to call, depending on its current information [16], or also depending on the expectation for
knowledge growth resulting from the call [15]. The latter requires agents to represent each
other’s knowledge, and thus epistemic logic.

Different protocols for dynamic gossip are successful in different classes of gossip networks.
The main challenge in designing such a protocol is to find a good level of redundancy: we
do not want superfluous calls, but the less redundant a gossip protocol, the easier it fails in
particular networks. Another challenge is to keep the protocol simple. After all, a protocol
that requires the agents to solve a computationally hard problem every time they have
to decide whom to call next, would not be practical. There is also a trade-off between
the content of the message of which a call consists, and the expected duration of gossip
protocols. A nice example of that is [25], wherein the minimum number of calls to achieve
the epistemic goal is reduced from quadratic to linear order, however at the price of more
‘expensive’ messages, not only exchanging secrets but also knowledge about secrets.

A well-studied protocol is “Learn New Secrets” (LNS), in which agents are allowed to
call someone if and only if they do not know the other’s secret. This protocol excludes
redundant calls in which neither participant learns any new secrets. As a result of this
property, all LNS call sequences are finite. For small numbers of agents, it therefore has
a shorter expected execution length than the “Any Call” (ANY ) protocol that allows
arbitrary calls at all times and thus allows infinite call sequences [14]. Additionally, it is
easy for agents to check whom they are allowed to call when following LNS . However,
LNS is not always successful. On some graphs it can terminate unsuccessfully, i.e. when
some agents do not yet know all secrets. In particular there are graphs where the outcome
depends on how the agents choose among allowed calls [16].

Fortunately, it turns out that failure of LNS can often be avoided with some forethought
by the calling agents. That is, if some of the choices available to the agents lead to success
and other choices to failure, it is often possible for the agents to determine in advance
which choices are the successful ones. This leads to the idea of strengthening a protocol.
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Suppose that P is a protocol that, depending on the choices of the agents, is sometimes
successful and sometimes unsuccessful. A strengthening of P is an addition to P that gives
the agents guidance on how to choose among the options that P gives them.

The idea is that such a strengthening can leave good properties of a protocol intact,
while reducing the chance of failure. For example, any strengthening of LNS will inherit
the property that there are no redundant calls: It will still be the case that agents only call
other agents if they do not know their secrets.

Let us illustrate this with a small example, also featuring as a running example in the
technical sections (see Figure 1 on page 11). There are three agents a, b, c. Agent a knows
the number of b, and b and c know each other’s number. Calling agents exchange secrets
and numbers, which may expand the network, and they apply the LNS protocol, wherein
you may only call other agents if you do not know their secret. If a calls b, it learns the
secret of b and the number of c. All different ways to make further calls now result in all
three agents knowing all secrets. If the first call is between b and c (and there are no other
first calls than ab, bc, and cb), they learn each other’s secret but no new number. The only
possible next call now is ab, after which a and b know all secrets but not c. But although a
now knows c’s number, she is not permitted to call c, as she already learned c’s secret by
calling b. We are stuck. So, some executions of LNS on this graph are successful and others
are unsuccessful. Suppose we now strengthen the LNS protocol into LNS ′ such that b and
c have to wait before making a call until they are called by another agent. This means
that b will first receive a call from a. Then all executions of LNS ′ are successful on this
graph. In fact, there is only one remaining execution: ab; bc; ac. The protocol LNS ′ is a
strengthening of the protocol LNS .

The main contributions of this paper are as follows. We define what it means that a
gossip protocol is common knowledge between all agents. To that end we propose a logical
semantics with an individual knowledge modality for protocol-dependent knowledge. We
then define various strengthenings of gossip protocols, both in the logical syntax and in
the semantics. This includes a strengthening called uniform backward induction, a form of
backward induction applied to (imperfect information) gossip protocol execution trees. We
give some general results for strengthenings, but mainly apply our strengthenings to the
protocol LNS : we investigate some basic gossip graphs (networks) on which we gradually
strengthen LNS until all its executions are successful on that graph. However, no such
strengthening will work for all gossip graphs. This is proved by a counterexample consisting
of a six-agent gossip graph, that requires fairly detailed analysis. Some of our results
involve the calculation and checking of large numbers of call sequences. For this we use an
implementation in Haskell.

Our paper is structured as follows. In Section 2 we introduce the basic definitions
to describe gossip graphs and a variant of epistemic logic to be interpreted on them. In
particular, Subsection 2.3 introduces a new operator for protocol-dependent knowledge. In
Section 3 we define semantic and — using the new operator — syntactic ways to strengthen
gossip protocols. We investigate how successful those strengthenings are and study their
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behavior under iteration. Section 4 contains our main result, that strengthening LNS to
a strongly successful protocol is impossible. In Section 5 we wrap up and conclude. An
appendix describes the Haskell code used to support our results.

2 Epistemic Logic for Dynamic Gossip Protocols

2.1 Gossip Graphs and Calls
Gossip graphs are used to keep track of who knows which secrets and which telephone
numbers.

Definition 1 (Gossip Graph). Given a finite set of agents A, a gossip graph G is a triple
(A,N, S) where N and S are binary relations on A such that I ⊆ S ⊆ N where I is the
identity relation on A. An initial gossip graph is a gossip graph where S = I. We write
Nab for (a, b) ∈ N and Na for {b ∈ A | Nab}, and similarly for the relation S. The set of
all initial gossip graphs is denoted by G.

The relations model the basic knowledge of the agents. Agent a knows the number of b
iff Nab and a knows the secret of b iff Sab. If we have Nab and not Sab we also say that a
knows the pure number of b.

Definition 2 (Possible Call; Call Execution). A call is an ordered pair of agents (a, b) ∈
(A × A). We usually write ab instead of (a, b). Given a gossip graph G, a call ab is
possible iff Nab. Given a possible call ab, Gab is the graph (A′, N ′, S ′) such that A′ := A,
N ′a := N ′b := Na ∪ Nb, S ′a := S ′b := Sa ∪ Sb, and N ′c := Nc, S ′c := Sc for c 6= a, b. For a
sequence of calls ab; cd; . . . we write σ or τ . The empty sequence is ε. A sequence of possible
calls is a possible call sequence. We extend the notation Gab to possible call sequences by
Gε := G and Gσ;ab := (Gσ)ab. Gossip graph Gσ is the result of executing σ in G.

To visualize gossip graphs we draw N with dashed and S with solid arrows. When
making calls, the property S ⊆ N is preserved, so we omit the dashed N arrow if there
already is a solid S arrow.

Example 3. Consider the following initial gossip graph G in which a knows the number of
b, and b and c know each other’s number and no other numbers are known:

a b c

Suppose that a calls b. We obtain the gossip graph Gab in which a and b know each other’s
secret and a now also knows the number of c:

a b c
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2.2 Logical Language and Protocols
We now introduce a logical language which we will interpret on gossip graphs. Propositional
variables Nab and Sab stand for “agent a knows the number of agent b” and “agent a knows
the secret of agent b”, and > is the ‘always true’ proposition. Definitions 4 and 5 are by
simultaneous induction, as language construct KP

a ϕ refers to a protocol P .

Definition 4 (Language). We consider the language L defined by

ϕ ::= > | Nab | Sab | ¬ϕ | (ϕ ∧ ϕ) | KP
a ϕ | [π]ϕ

π ::= ?ϕ | ab | (π ; π) | (π ∪ π) | π∗

where a, b ∈ A. Members of L of type ϕ are formulas and those of type π are programs.

Definition 5 (Syntactic protocol). A syntactic protocol P is a program defined by

P :=
 ⋃
a6=b∈A

(?(Nab ∧ Pab); ab)
∗; ?

∧
a6=b∈A

¬ (Nab ∧ Pab)

where for all a 6= b ∈ A, Pab ∈ L is a formula. This formula is called the protocol condition
for call ab of protocol P . The notation Pab means that a and b are designated variables in
that formula.

Other logical connectives and program constructs are defined by abbreviation.
Moreover, Nabcd stands for Nab∧Nac∧Nad, and NaB for ∧b∈B Nab. We use analogous

abbreviations for the relation S. We write Exa for SaA. We then say that agent a is an
expert. Similarly, we write ExB for ∧b∈B Exb, and Ex for ExA: all agents are experts.

Construct [π]ϕ reads as “after every execution of program π, ϕ (is true).” For program
modalities, we use the standard definition for diamonds: 〈π〉ϕ := ¬[π]¬ϕ, and further:
π0 := ?> and for all n ∈ N, πn := πn−1; π.

Our protocols are gossip protocols, but as we define no other, we omit the word ‘gossip’.
The word ‘syntactic’ in syntactic protocol is to distinguish it from the semantic protocol
that will be defined later. It is also often omitted.

Our new operatorKP
a ϕ reads as “given the protocol P , agent a knows that ϕ”. Informally,

this means that agent a knows that ϕ on the assumption that it is common knowledge
among the agents that they all use the gossip protocol P . The epistemic dual is defined as
K̂P
a ϕ := ¬KP

a ¬ϕ and can be read as “given the protocol P , agent a considers it possible
that ϕ.”

We note that the language is well-defined, in particular KP
a . The only variable parts of

a protocol P are the protocol conditions Pab. Hence, given |A| agents, and the requirement
that a 6= b, a protocol is determined by its |A| · (|A| − 1) many protocol conditions. We can
therefore see the construct KP

a ϕ as an operator with input (|A| · (|A| − 1)) + 1 objects of
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type formula (namely all these protocol condition formulas plus the formula ϕ in KP
a ϕ),

and as output a more complex object of type formula (namely KP
a ϕ).1

Note that this means that all knowledge operators in a call condition Pab of a protocol
P must be relative to protocols strictly simpler than P . In particular, the call condition
Pab cannot contain the operator KP

a , although it may contain KP ′
a where P ′ is less complex

than P . So the language is incapable of describing the “protocol” X given by “a is allowed
to call b if and only if a knows, assuming that X is common knowledge, that b does not
know a’s secret.” This is intentional; the “protocol” X is viciously circular so we do not
want our language to be able to represent it.

Example 6. The “Learn New Secrets” protocol (LNS) is the protocol with protocol condi-
tions ¬Sab for all a 6= b ∈ A. This prescribes that you are allowed to call any agent whose
secret you do not yet know (and whose number you already know). The “Any Call” protocol
(ANY) is the protocol with protocol conditions > for all a 6= b ∈ A. You are allowed to call
any agent whose number you know.

The standard epistemic modality is defined by abbreviation as Kaϕ := KANY
a ϕ.

2.3 Semantics of Protocol-Dependent Knowledge
We now define how to interpret the language L on gossip graphs. A gossip state is a pair
(G, σ) such that G is an initial gossip graph and σ a call sequence possible on G (see Def. 2).
We recall that G and σ induce the gossip graph Gσ = (A,Nσ, Sσ). This is called the gossip
graph associated with gossip state (G, σ). The semantics of L is with respect to a given
initial gossip graph G, and defined on the set of gossip states (G, σ) for all σ possible on G.
Definitions 7 and 8 are simultaneously defined.

Definition 7 (Epistemic Relation). Let an initial gossip graph G = (A,N, S) and a protocol
P be given. We inductively define the epistemic relation ∼Pa for agent a over gossip states
(G, σ), where Gσ = (A,Nσ, Sσ) are the associated gossip graphs.

1. (G, ε) ∼Pa (G, ε);

2. if (G, σ) ∼Pa (G, τ), Nσ
b = N τ

b , Sσb = Sτb , and ab is P -permitted at (G, σ) and at
(G, τ), then (G, σ; ab) ∼Pa (G, τ ; ab);
if (G, σ) ∼Pa (G, τ), Nσ

b = N τ
b , Sσb = Sτb , and ba is P -permitted at (G, σ) and at

(G, τ), then (G, σ; ba) ∼Pa (G, τ ; ba);

3. if (G, σ) ∼Pa (G, τ) and c, d, e, f 6= a such that cd is P -permitted at (G, σ) and ef is
P -permitted at (G, τ), then (G, σ; cd) ∼Pa (G, τ ; ef).

1Alternatively one could define a protocol condition function f : A2 → L and proceed as follows. In
the language BNF replace KP

a ϕ by Ka( ~ϕab, ϕ) where a 6= b and ~ϕab is a vector representing |A| · (|A| − 1)
arguments, and in the definition of protocol replace Pab by f(a, b). That way, Definition 4 precedes
Definition 5 and is no longer simultaneously defined. Then, when later defining the semantics of Ka( ~ϕab, ϕ),
replace all ϕab by f(a, b).

7



Definition 8 (Semantics). Let initial gossip graph G = (A,N, S) be given. We inductively
define the interpretation of a formula ϕ ∈ L on a gossip state (G, σ), where Gσ = (A,Nσ, Sσ)
is the associated gossip graph.

G, σ |= > always
G, σ |= Nab iff Nσ

a b
G, σ |= Sab iff Sσa b
G, σ |= ¬ϕ iff G, σ 6|= ϕ
G, σ |= ϕ ∧ ψ iff G, σ |= ϕ and G, σ |= ψ
G, σ |= KP

a ϕ iff G, σ′ |= ϕ for all (G, σ′) ∼Pa (G, σ)
G, σ |= [π]ϕ iff G, σ′ |= ϕ for all (G, σ′) ∈ JπK(G, σ)

where J·K is the following interpretation of programs as relations between gossip states. Note
that we write JπK(G, σ) for the set {(G, σ′) | ((G, σ), (G, σ′)) ∈ JπK}.

J?ϕK(G, σ) := {(G, σ) | G, σ |= ϕ}
JabK(G, σ) := {(G, (σ; ab)) | G, σ |= Nab}

Jπ; π′K(G, σ) := ⋃{Jπ′K(G, σ′) | (G, σ′) ∈ JπK(G, σ)}
Jπ ∪ π′K(G, σ) := JπK(G, σ) ∪ Jπ′K(G, σ)

Jπ∗K(G, σ) := ⋃{JπnK(G, σ) | n ∈ N}

If G, σ |= Pab we say that ab is P -permitted at (G, σ). A P -permitted call sequence consists
of P -permitted calls.

Let us first explain why the interpretation of protocol-dependent knowledge is well-
defined. The interpretation of KP

a ϕ in state (G, σ) is a function of the truth of ϕ in all
(G, τ) accessible via ∼Pa . This is standard. Non-standard is, that the relation ∼Pa is a
function of the truth of protocol conditions Pab in gossip states including (G, σ). This may
seem a slippery slope. However, note that KP

a ϕ cannot be a subformula of any such Pab, as
the language L is well-defined: knowledge cannot be self-referential. These checks of Pab
can therefore be performed without vicious circularity.

Let us now explain an important property of ∼Pa , namely that it only relates two
gossip states if both are reachable by the protocol P . So if (G, σ) ∼Pa (G, σ′) and σ is a
P -permitted call sequence, then σ′ is P -permitted as well. In other words, a assumes that
no one will make any calls that are not P -permitted. The set {∼Pa | a ∈ A} of relations
therefore represents the information state of the agents under the assumption that it is
common knowledge that the protocol P will be followed.

Given the logical semantics, a convenient primitive is the following gossip model.

Definition 9 (Gossip Model; Execution Tree). Given an initial gossip graph G, the gossip
model for G consists of all gossip states (G, σ) (where, by definition of gossip states, σ is
possible on G), with epistemic relations ∼Pa between gossip states. The execution tree of a
protocol P given G is the submodel of the gossip model restricted to the set of those (G, σ)
where σ is P -permitted.
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The relation ∼Pa is an equivalence relation on the restriction of a gossip model to the
set of gossip states (G, σ) where σ is P -permitted. This is why we use the symbol ∼ for
the relation. However, ∼Pa is typically not an equivalence relation on the entire domain of
the gossip model, as ∼Pa is not reflexive on the unreachable (G, σ).

In our semantics, the modality [ab] can always be evaluated. There are three cases
to distinguish. (i) If the call ab is not possible (if a does not know the number of b),
then JabK(G, σ) = ∅, so that [ab]ϕ is trivially true for all ϕ. (ii) If the call ab is possible
but not P -permitted, then JabK(G, σ) = {(G, σ; ab)} but ∼Pa (G, σ; ab) = ∅, so that in
such states KP

a ⊥ is true: the agent believes everything including contradictions. In other
words, we have that ¬Pab → [ab]KP

c ⊥. (iii) If the call ab is possible and P -permitted, then
JabK(G, σ) = {(G, σ; ab)} and ∼Pa (G, σ; ab) 6= ∅ consists of the equivalence class of gossip
states that are indistinguishable for agent a after call ab.

In view of the above, one might want to have a modality or program strictly standing for
‘call ab is possible and P -permitted’. We can enforce protocol P for call ab by [?Pab; ab]ϕ,
for “after the P -permitted call ab, ϕ is true.”

Let us now be exact in what sense the gossip model is a Kripke model. Clear enough,
the set of gossip states (G, σ) constitute a domain, and we can identify the valuation of
atomic propositions Nab (resp. Sab) with the subset of the domain such that (G, σ) |= Nab
(resp. (G, σ) |= Sab). The relation to the usual accessibility relations of a Kripke model is
less clear. For each agent a, we do not have a unique relation ∼a, but parametrized relations
∼Pa ; therefore, in a way, there are as many relations for agent a as there are protocols
P . These relations ∼Pa are only implicitly given. Given P , they can be made explicit if a
semantic check of KP

a ϕ so requires.
Gossip models are reminiscent of the history-based models of [34] and of the protocol-

generated forest of [9]. A gossip model is a protocol-generated forest (and similarly, the
execution trees contained in the gossip model are protocol-generated forests), although a
rather small forest, namely consisting of a single tree. An important consequence of this is
the agents initially have common knowledge of the gossip graph. For example, in the initial
gossip graph of the introduction, depicted in Figure 1, agent a knows that agent c only
knows the number of b. Other works consider uncertainty about the initial gossip graph
(for example, to represent that agent a is uncertain whether c knows a’s number), such that
each gossip graph initially considered possible generates its own tree [15].

The gossip states (G, σ) that are the domain elements of the gossip model carry along a
history of prior calls. This can, in principle, be used in a protocol language to be interpreted
on such models, although we do not do this in this work. An example of such a protocol is
the “Call Once” protocol described in [16]: call ab is permitted in gossip state (G, σ), if ab
and ba do not occur in σ.

With respect to the protocol ANY the gossip model is not restricted. If we only were
to consider the protocol ANY , to each agent we can associate a unique epistemic relation
∼ANY
a in the gossip model, for which we might as well write ∼a. We now have a standard

Kripke model. This justifies Kaϕ as a suitable abbreviation of KANY
a ϕ.

Definition 10 (Extension of a protocol). For any initial gossip graph G and any syntactic
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protocol P we define the extension of P on G by

P0(G) := {ε}
Pi+1(G) := {σ; ab | σ ∈ Pi(G), a, b ∈ A, G, σ |= Pab}
P (G) := ⋃

i<ω Pk(G)

The extension of P is {(G,P (G)) | G ∈ G}.

Recall that G is the set of all initial gossip graphs. We often identify a protocol with
its extension. To compare protocols we will write P ⊆ P ′ iff for all G ∈ G we have
P (G) ⊆ P ′(G).

Definition 11 (Success). Given an initial gossip graph G and protocol P , a P -permitted
call sequence σ is terminal iff for all calls ab, G, σ 6|= Pab. We then also say that the gossip
state (G, σ) is terminal. A terminal call sequence is successful iff after its execution all
agents are experts. Otherwise it is unsuccessful.

• A protocol P is strongly successful on G iff all terminal P -permitted call sequences
are successful: G, ε |= [P ]Ex.

• A protocol is weakly successful on G iff some terminal P -permitted call sequences are
successful: G, ε |= 〈P 〉Ex.

• A protocol is unsuccessful on G iff no terminal P -permitted call sequences are suc-
cessful: G, ε |= [P ]¬Ex.

A protocol is strongly successful iff it is strongly successful on all initial gossip graphs G,
and similarly for weakly successful and unsuccessful.

Instead of ‘is successful’ we also say ‘succeeds’, and instead of ‘terminal sequence’ we
also say that it is terminating. Given a gossip graph G and a P -permitted sequence σ we
say that the associated gossip graph Gσ is P -reachable (from G). A terminal P -permitted
sequence is also called an execution of P .

Given any set X of call sequences, X is the subset of the terminal sequences of X.
All our protocols can always be executed. If this is without making any calls, the

protocol extension is empty. Being empty does not mean that [P ]⊥, which never holds.
Strong success implies weak success, but not vice versa. Formally, we have that

[P ]ϕ→ 〈P 〉ϕ is valid for all protocols P , but 〈P 〉ϕ→ [P ]ϕ is not valid in general, because
our protocols are typically non-deterministic.

We can distinguish unsuccessful termination (not all agents know all secrets) from
successful termination. In other works [16, 2] this distinction cannot be made. In those
works termination implies success.

Example 12. We continue with Example 3. The execution tree of LNS on this graph is
shown in Figure 1. We denote calls with gray arrows and the epistemic relation with dotted
lines. For example, agent a cannot distinguish whether call bc or cb happened. At the end of
each branch the termination of LNS is denoted with X if successful, and × if unsuccessful.

To illustrate our semantics, for this graph G we have:
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a b c

a b c a b c a b c

a b c a b c a b c a b c a b c

a b c a b c a b c

ab bc cb

ac bc cb ab ab

bc ac ac
a

a

a

a

X X X

× ×

Figure 1: Example of an execution tree for LNS .

• G, ε |= Nab ∧ ¬Sab — the call ab is LNS-permitted at the start.

• G, ε |= [ab](Sab ∧ Sba) — after the call ab the agents a and b know each other’s secret

• G, ε |= [ab]〈ac〉> — after the call ab the call ac is possible.

• G, ε |= [ab][LNS]Ex — after the call ab the LNS protocol will always terminate
successfully.

• G, ε |= [bc ∪ cb][LNS]¬Ex — after the calls bc or cb the LNS protocol will always
terminate unsuccessfully.

• G, ε |= [bc ∪ cb]KLNS
a (Sbc ∧ Scb) — after the calls bc or cb, agent a knows that b and

c know each others secret.

• G, ab; bc; ac |= ∧
i∈{a,b,c}K

LNS
i Ex — after the call sequence ab; bc; ac everyone knows

that everyone is an expert.

We only have epistemic edges for agent a, and those are between gossip graphs that are
isomorphic. If there are three agents, then if you are not involved in a call, you know that
the other two agents must have called. You may only be uncertain about the direction of
that call. But the direction of the call does not matter for the numbers and secrets being
exchanged. Hence all agents always know what the current gossip graph is. For a more
interesting epistemic relation, see Figure 2 in the appendix.

2.4 Symmetric and epistemic protocols, and semantic protocols
Given a protocol P , for any a 6= b and c 6= d, the protocol conditions Pab and Pcd can
be different formulas. So a protocol may require different agents to obey different rules.
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Although there are settings wherein this is interesting to investigate, we want to restrict
our investigation to those protocols where there is one protocol condition to rule them all.
This is enforced by the requirement of symmetry. Another requirement is that the calling
agent should know that the protocol condition is satisfied before making a call. That is the
requirement that the protocol be epistemic. It is indispensable in order to see our protocols
as distributed gossip protocols.

Definition 13 (Symmetric and epistemic syntactic protocol). Let a syntactic protocol
P be given. Protocol P is symmetric iff, for every permutation J of agents, we have
ϕJ(a)J(b) = J(ϕab), where J(ϕab) is the natural extension of J to formulas.2 Protocol P is
epistemic iff, for every a, b ∈ A, the protocol condition Pab → KP

a Pab is valid. We henceforth
require all our protocols to be symmetric and epistemic.

Intuitively, a protocol is epistemic if callers always know when to make a call, without
being given instructions by a central scheduler. This means that whenever Pab is true, so
agent a is allowed to call agent b, it must be the case that a knows that Pab is true. In other
words, in an epistemic protocol Pab implies KP

a Pab. Furthermore, by Definition 8 knowledge
is truthful on the execution tree for protocol P in gossip model. So except in the gossip
states that cannot be reached using the protocol P , we also have that KP

a Pab implies Pab.
If a protocol is symmetric the names of the agents are irrelevant and therefore inter-

changeable. So a symmetric protocol is not allowed to “hard-code” agents to perform
certain roles. This means that, for example, we cannot tell agent a to call b, as opposed to
c, just because b comes before c in the alphabet. But we can tell a to call b, as opposed to
c, on the basis that, say, a knows that b knows five secrets while c only knows two secrets.
If a protocol P is symmetric, we can think of the protocol condition as the unique protocol
condition for P , modulo permutation.

Epistemic and symmetric protocols capture the distributed peer-to-peer nature of the
gossip problem.

Example 14. The protocols ANY and LNS are symmetric and epistemic. For ANY this
is trivial. For LNS, observe that agents always know which numbers and secrets they know.
A direct consequence of clause (2.) of Definition 7 of the epistemic relation is that for any
protocol P , if (G, σ) ∼Pa (G, σ′), then Nσ

a = Nσ′
a and Sσa = Sσ

′
a . Thus, applying the clause

for knowledge KP
a ϕ of Definition 8, we immediately get that the following formulas are all

valid: Nab→ KP
a Nab, ¬Nab→ KP

a ¬Nab, Sab→ KP
a Sab, and ¬Sab→ KP

a ¬Sab. Therefore,
in particular this holds for P = LNS.

Although the numbers and secrets known by an agent before and after a call may vary,
the agent always knows whether she knows a given number or secret. Knowledge about
other agents having a certain number or a secret is preserved after calls. But, of course,

2Formally: J(>) := >, J(Nab) := Nab, J(Sab) := Sab, J(¬ϕ) := ¬J(ϕ), J(ϕ ∧ ψ) := J(ϕ) ∧ J(ψ),
J(KP

a ψ) := K
J(P )
J(a) J(ψ), J(?ϕ) := ?J(ϕ), J(ab) := J(a)J(b), J(π;π′) := J(π); J(π′), J(π ∪ π′) :=

J(π) ∪ J(π′), J(π∗) := J(π)∗.

12



knowledge about other agents not having a certain number or secret is not preserved after
calls.

Not all protocols we discuss in this work are definable in the logical language. We
therefore need the additional notion of a semantic protocol, defined by its extension.

Definition 15 (Semantic protocol). A semantic protocol is a function P : G → P((A× A)∗)
mapping initial gossip graphs to sets of call sequences. We assume semantic protocols to be
closed under subsequences, i.e. for all G we want that σ; ab ∈ P (G) implies σ ∈ P (G). For
a semantic protocol P we say that a call ab is P -permitted at (G, σ) iff (σ; ab) ∈ P (G).

Given any syntactic protocol we can view its extension as a semantic protocol. Using
this definition of permitted calls for semantic protocols we can apply Definition 7 to get the
epistemic relation with respect to a semantic protocol P . Because the relation ∼Pa depends
only on which calls are allowed, the epistemic relation with respect to a (syntactic) protocol
P is identical to the epistemic relation with respect to the extension of P .

We also require that semantic protocols are symmetric and epistemic, adapting the
definitions of these two properties as follows.

Definition 16 (Symmetric and epistemic semantic protocol). A semantic protocol P is
symmetric iff for all initial gossip graphs G and for all permutations J of agents we have
P (J(G)) = J(P (G)) (where J(P (G)) := {J(σ) | σ ∈ P (G)}). A semantic protocol P is
epistemic iff for all initial gossip graphs G and for all σ ∈ P (G) we have: (σ; ab) ∈ P (G)
iff for all τ ∼Pa σ we have (τ ; ab) ∈ P (G).

It is easy to verify that the syntactic definition of an epistemic protocol agrees with the
semantic definition.

Proposition 17. A syntactic protocol P is epistemic if and only if its extension is epistemic.

Proof. Let Q be the extension of P and note that, as remarked above, the epistemic relations
induced by P and Q are identical. Now we have the following chain of equivalences:

P is not epistemic
⇔ ∃a, b,G, σ : G, σ 6|= Pab → KP

a Pab
⇔ ∃a, b,G, σ, τ : G, σ |= Pab, G, τ 6|= Pab and (G, σ) ∼Pa (G, τ)
⇔ ∃a, b,G, σ, τ : (σ; ab) ∈ Q(G), (τ ; ab) 6∈ Q(G) and (G, σ) ∼Pa (G, τ)
⇔ ∃a, b,G, σ, τ : (σ; ab) ∈ Q(G), (τ ; ab) 6∈ Q(G) and (G, σ) ∼Qa (G, τ)
⇔ Q is not epistemic

Note that Proposition 17 does not imply that every epistemic semantic protocol is
the extension of a syntactic epistemic protocol, since some semantic protocols are not the
extension of any syntactic protocol.

For symmetry, the situation is slightly more complex than for being epistemic.

Proposition 18. If a syntactic protocol P is symmetric, then its extension is symmetric.
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Proof. Let Q be the extension of P . Fix any permutation J and any initial gossip graph G.
To show is that Q(J(G)) = J(Q(G)) (where J is extended to gossip graphs in the natural
way). We show by induction that for every call sequence σ, we have σ ∈ Q(J(G))⇔ σ ∈
J(Q(G)).

As base case, note that ε ∈ Q(J(G)) and ε ∈ J(Q(G)). Now, as induction hypothesis,
assume that for every call sequence τ that is shorter than σ, we have τ ∈ Q(J(G))⇔ τ ∈
J(Q(G)). Let ab be the final call in σ, so σ = (τ ; ab). Then we have the following sequence
of equivalences:

(τ ; ab) ∈ Q(J(G))⇔ J(G), τ |= Pab

⇔ G, J−1(τ) |= J−1(Pab)
⇔ G, J−1(τ) |= PJ−1(ab)

⇔ (J−1(τ); J−1(ab)) ∈ Q(G)
⇔ (τ ; ab) ∈ J(Q(G)),

where the equivalence on the third line is due to P being symmetric. This completes the
induction step and thereby the proof.

The converse of Proposition 18 does not hold: if P is not symmetric, it is still possible
for its extension to be symmetric. The reason for this discrepancy is that symmetry for
syntactic protocols has the very strong condition that J(Pab) = PJ(ab). So if P is symmetric
and P ′ is given by (i) P ′cd = Pcd ∧ > and (ii) P ′ab = Pab for a, b 6= c, d, then P ′ is not
symmetric even though P and P ′ have the same extension. We do, however, have the
following slightly weaker statement. Recall that a gossip state is P -reachable in G iff there
is a call sequence σ that is P -permitted at G.

Proposition 19. Let P be a syntactic protocol such that, for some P -reachable gossip
state (G, σ), some permutation J and some a, b we have G, σ 6|= PJ(ab) ↔ J(Pab). Then the
extension of P is not symmetric.

Proof. LetQ be the extension of P , and suppose towards a contradiction thatQ is symmetric.
Then we have the following sequence of equivalences:

G, σ |= PJ(ab) ⇔ (σ; J(ab)) ∈ Q(G)
⇔ (J−1(σ); ab) ∈ J−1(Q(G))
⇔ (J−1(σ); ab) ∈ Q(J−1(G))
⇔ J−1(G), J−1(σ) |= Pab

⇔ G, σ |= J(Pab),

where the equivalence on the third line is due to Q being symmetric. This contradicts
G, σ 6|= PJ(ab) ↔ J(Pab), from which it follows that Q is not symmetric.

So while P may be non-symmetric and still have a symmetric extension, this can only
happen if J(Pab) is equivalent to PJ(ab) in all reachable gossip states. We conclude that our
syntactic and semantic definitions of symmetry agree up to logical equivalence.
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3 Strengthening of Protocols

3.1 How can we strengthen a protocol?
In our semantics it is common knowledge among the agents that they follow a certain
protocol, for example LNS . Can they use this information to prevent making “bad” calls
that lead to an unsuccessful sequence? If we look at the execution graph given in Figure 1,
then it seems easy to fix the protocol. Agents b and c should wait and not make the first
call. Agent b should not make a call before he has received a call from a. We cannot say
this in our logic as we have no converse modalities to reason over past calls. In this case
however, there is a different way to ensure the same result. We can ensure that b and c
wait before calling by a strengthening of LNS that only allows a first call from i to j if
j does not know the number of i. To determine that a call is not the first call, we need
another property: after at least one call happened, there is an agent who knows another
agent’s secret.

We can define this new protocol by protocol condition Pij := LNS ij ∧ (¬Nji∨
∨
k 6=l Skl).

Observe that this new protocol is again symmetric and epistemic: agents always know
whether (¬Nji ∨

∨
k 6=l Skl). Because of synchronicity, not only the callers but also all other

agents know that there are agents k and l such that k knows the secret of l. This is an
ad-hoc solution specific to this initial gossip graph. Could we also give a general definition
to improve LNS which works on more or even all initial graphs? The answer to that is:
more, yes, but all, no.

We will now discuss different ways to improve protocols by making them more restrictive.
Our goal is to rule out unsuccessful sequences while keeping at least some successful ones.
Doing this can be difficult because we still require the strengthened protocols to be epistemic
and symmetric. Hence we are not allowed to arbitrarily rule out specific calls using the
names of agents, for example. Whenever a call is removed from the protocol, we also have
to remove all calls to other agents that the caller cannot distinguish: it has to be done
uniformly. But before we discuss specific ideas for strengthening, let us define it.

Definition 20 (Strengthening). A protocol P ′ is a syntactic strengthening of a protocol P
iff P ′ab → Pab is valid for all agents a 6= b. A protocol P ′ is a semantic strengthening of a
protocol P iff P ′ ⊆ P .

A syntactic strengthening procedure is a function ♥ that for any syntactic protocol P
returns a syntactic strengthening P♥ of P . Analogously, we define semantic strengthening
procedure.

We stress that strengthening is a relation between two protocols P and P ′ whereas
strengthening procedures define a restricting transformation that given any P tells us how
to obtain P ′. In the case of a syntactic strengthening, P and P ′ are implicitly required to be
syntactic protocols. Vice versa however, syntactic protocols can be semantic strengthenings.
In fact, we have the following.

Proposition 21. Every syntactic strengthening is a semantic strengthening.
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Proof. Let P ′ be a syntactic strengthening of a protocol P . Let a gossip graph G be given.
We show by induction on the length of σ that σ ∈ P ′(G) implies σ ∈ P (G). The base case
where σ = ε is trivial.

For the induction step, consider any σ = τ ; ab. As τ ; ab ∈ P ′(G), we also have τ ∈ P ′(G)
and G, τ |= P ′ab. From τ ∈ P ′(G) and the inductive hypothesis, it follows that τ ∈ P (G).
From G, τ |= P ′ab and the validity of P ′ab → Pab follows G, τ |= Pab. Finally, by Definition 10,
τ ∈ P (G) and G, τ |= Pab imply τ ; ab ∈ P (G).

Lemma 22. Suppose P is a strengthening of Q. Then KQ
a ϕ → KP

a ϕ and K̂P
a ϕ → K̂Q

a ϕ
are both valid, for any agent a.

Proof. This follows immediately from the semantics of knowledge (Definition 8).

3.2 Syntactic Strengthening: Look-Ahead and One-Step
We will now present concrete examples of syntactic strengthening procedures.

Definition 23 (Look-Ahead and One-Step Strengthenings). We define four syntactic
strengthening procedures as follows. Let P be a protocol.

hard look-ahead strengthening : P�ab := Pab ∧KP
a [ab]〈P 〉Ex

soft look-ahead strengthening : P �ab := Pab ∧ K̂P
a [ab]〈P 〉Ex

hard one-step strengthening : P�ab := Pab ∧KP
a [ab](Ex ∨ ∨i,j(Nij ∧ Pij))

soft one-step strengthening : P ♦ab := Pab ∧ K̂P
a [ab](Ex ∨ ∨i,j(Nij ∧ Pij))

The hard look-ahead strengthening allows agents to make a call iff the call is allowed
by the original protocol and moreover they know that making this call yields a situation
where the original protocol can still succeed.

For example, consider LNS�. Informally, its condition is that a is permitted to call b
iff a does not have the secret of b and a knows that after making the call to b, it is still
possible to follow LNS in such a way that all agents become experts.

The soft look-ahead strengthening allows more calls than the hard look-ahead strength-
ening because it only demands that a considers it possible that the protocol can succeed
after the call. This can be interpreted as a good faith or lucky draw assumption that the
previous calls between other agents have been made “in a good way”. Soft look-ahead
strengthening allows agents to take a risk.

The soft and the hard look-ahead strengthening include a diamond 〈P 〉 labeled with the
protocol P, where that protocol P by definition contains arbitrary iteration: the Kleene star
∗. To evaluate this, we need to compute the execution tree of P for the initial gossip graph
G. In practice this can make it hard to check the protocol condition of the new protocol.

The one-step strengthenings, in contrast, only use the protocol condition Pij in their
formalization and not the entire protocol P . This means that they provide an easier to
compute, but less reliable alternative to full look-ahead, namely by looking only one step
ahead. We only demand that agent a knows (or, in the soft version, considers it possible)
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that after the call, everyone is an expert or the protocol can still go on for at least one more
step — though it might be that all continuation sequences will eventually be unsuccessful
and thus this next call would already have been excluded by both look-ahead strengthenings.

An obvious question now is, can these or other strengthenings get us from weak to strong
success? Do these strengthenings only remove unsuccessful sequences, or will they also
remove successful branches, and maybe even return an empty and unsuccessful protocol?
In our next example everything still works fine.

Example 24. Consider Example 12 again. It is easy to see that the soft and the hard
look-ahead strengthening rule out the two unsuccessful branches in this execution tree and
keep the successful ones. Protocol LNS� only preserves alternatives that are all successful
and LNS� only eliminates alternatives if they are all unsuccessful. In the execution tree
in Figure 1, the effect is the same for LNS� and LNS�, because at any state the agents
always know which calls lead to successful branches. This is typical for gossip scenarios with
three agents: if a call happened, the agent not involved in the call might be unsure about the
direction of the call, but it knows who the callers are.

The one-step strengthenings are not enough to rule out the unsuccessful sequences. This
is because the unsuccessful sequences are of length 2 but the one-step strengthenings can
only remove the last call in a sequence. In this case, the protocols LNS� and LNS♦ rule
out the call ab after bc or cb happened.

3.3 Semantic Strengthening: Uniform Backward Defoliation
We now present two semantic strengthening procedures. They are inspired by the notion of
backward induction, a well-known solution concept in decision theory and game theory [32].
We will discuss this at greater length when defining the arbitrary iteration of these semantic
strengthenings and in Section 5.

In backward induction, given a game tree or search tree, a parent node is called bad
if all its children are loosing or bad nodes. Similarly, in trees with information sets of
indistinguishable nodes, a parent node can be called bad if all its children are bad and
if also all children from indistinguishable nodes are bad. Similar notions were considered
in [7, 35]. Again, we have a soft and a hard version. We define uniform backward defoliation
on the execution trees of dynamic gossip as follows to obtain two semantic strengthenings.
We choose the name “defoliation” here because a single application of this strengthening
procedure only removes leaves and not whole branches of the execution tree. The iterated
versions we present later are then called uniform backward induction.

Definition 25 (Uniform Backward Defoliation). Suppose we have a protocol P and an
initial gossip graph G. We define the Hard Uniform Backward Defoliation (HUBD) and
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Soft Uniform Backward Defoliation (SUBD) of P as follows.

PHUBD(G) := {σ ∈ P (G) | σ = ε, or σ = τ ; ab and ∀(G, τ ′) ∼Pa (G, τ)
such that τ ′ ∈ P (G) implies (G, τ ′; ab) |= Ex}

P SUBD(G) := {σ ∈ P (G) | σ = ε, or σ = τ ; ab and ∃(G, τ ′) ∼Pa (G, τ)
such that τ ′ ∈ P (G) implies (G, τ ′; ab) |= Ex}

In this definition, ∀(G, τ ′) ∼Pa (G, τ) implicitly stands for “for all τ ′ ∈ P (G) such that
(G, τ ′) ∼Pa (G, τ)”, because for (G, τ ′) to be in ∼Pa relation to another gossip state, τ ′ must
be P -permitted; similarly for the existential quantification.

The HUBD strengthening keeps the calls which must lead to a non-terminal state or a
state where everyone is an expert and SUBD keeps the calls which might do so. Equivalently,
we can say that HUBD removes calls which may go wrong and SUBD removes those calls
which will go wrong — where going wrong means leading to a terminal node where not
everyone is an expert.

We can now prove that for any gossip protocol Hard Uniform Backward Defoliation
is the same as Hard One-Step Strengthening, in the sense that their extensions are the
same on any gossip graph, and that Soft Uniform Backward Defoliation is the same as Soft
One-Step Strengthening.

Theorem 26. P� = PHUBD and P ♦ = P SUBD

Proof. Note that ε is an element of both sides of both equations. For any non-empty
sequence we have the following chain of equivalences for the hard versions of UBD and
one-step strengthening:

(σ; ab) ∈ P�(G) by Def.
⇐⇒ G, σ |= P�ab 10
⇐⇒ G, σ |= Pab ∧KP

a [ab]
(∨

i,j(Nij ∧ Pij) ∨ Ex
)

23
⇐⇒ (σ; ab) ∈ P (G) and (G, σ) � KP

a [ab]
(∨

i,j(Nij ∧ Pij) ∨ Ex
)

8
⇐⇒ (σ; ab) ∈ P (G) and ∀(G, σ′) ∼Pa (G, σ) : (G, σ′; ab) |= ∨

i,j(Nij ∧ Pij) ∨ Ex 8
⇐⇒ (σ; ab) ∈ P (G) and ∀(G, σ′) ∼Pa (G, σ) : σ′; ab /∈ P (G) or (G, σ′; ab) |= Ex 11
⇐⇒ (σ; ab) ∈ PHUBD(G) 25
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And we have a similar chain of equivalences for the soft versions:

(σ; ab) ∈ P ♦(G) by Def.
⇐⇒ G, σ |= P ♦ab 10
⇐⇒ G, σ |= Pab ∧ K̂P

a [ab]
(∨

i,j(Nij ∧ Pij) ∨ Ex
)

23
⇐⇒ (σ; ab) ∈ P (G) and (G, σ) |= K̂P

a [ab]
(∨

i,j(Nij ∧ Pij) ∨ Ex
)

8
⇐⇒ (σ; ab) ∈ P (G) and ∃(G, σ′) ∼Pa (G, σ) : (G, σ′; ab) |= ∨

i,j(Nij ∧ Pij) ∨ Ex 8
⇐⇒ (σ; ab) ∈ P (G) and ∃(G, σ′) ∼Pa (G, σ) : σ′; ab /∈ P (G) or (G, σ′; ab) |= Ex 11
⇐⇒ (σ; ab) ∈ P SUBD(G) 25

Similarly to backward induction in perfect information games [4], uniform backward
defoliation is rational, in the sense that it forces an agent to avoid calls leading to unsuccessful
sequences. The strengthening SUBD avoids a call if it always leads to an unsuccessful
sequence. The strengthening HUBD avoids a call if it sometimes leads to a unsuccessful
sequence.

3.4 Iterated Strengthenings
The syntactic strengthenings we looked at are all defined in terms of the original protocol.
In P�ab := Pab ∧KP

a [ab]〈P 〉Ex the given P occurs in three places. Firstly, in the protocol
condition Pab requiring that the call is permitted according to the old protocol P — this
ensures that the new protocol is a strengthening of the original P . Secondly, as a parameter
to the knowledge operator, in KP

a , which means that agent a knows that everyone followed
P (and that this is common knowledge). Thirdly, in the part 〈P 〉 assuming that after the
considered call everyone will continue to follow protocol P in the future.

Hence we have strengthened the protocol that the agents use and thereby changed their
behavior, but not their assumptions about what protocol other agents follow. For example,
when P = LNS , all agents now act according to LNS�, on the assumption that all other
agents act according to LNS . This does not mean that agents cannot determine what
they know if LNS� were common knowledge: each agent a can check that knowledge using
KLNS�

a ϕ. But this KLNS�

a modality is not part of the protocol LNS�. The agents do not
use this knowledge to determine whether to make calls.

But why should our agents stop their reasoning here? It is natural to iterate strengthening
procedures and determine whether we can further improve our protocols by also updating
the knowledge of the agents.

For example, consider repeated hard one-step strengthening:

(P�)�ab = P�ab ∧ K̂P�

a [ab](Ex ∨
∨
i,j

(Nij ∧ P�ij ))
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In this section we investigate iterations and combinations of strengthening procedures.
In particular we investigate various combinations of hard and soft one-step and look-ahead
strengthening, in order to determine how they relate to each other.

Definition 27 (Strengthening Iteration). Let P be a syntactic protocol. For any of the four
syntactic strengthening procedures ♥ ∈ {�,�,�,♦}, we define its iteration by adjusting the
protocol condition as follows, which implies P♥1 = P♥:

P♥0
ab := Pab
P
♥(k+1)
ab := (P♥k)♥ab

Let now P be a semantic protocol, and let ♥ ∈ {HUBD, SUBD}. We define their iteration,
for all gossip graphs G, by:

P♥0(G) := P (G)
P♥(k+1)(G) := (P♥k)♥(G)

It is easy to check that Theorem 26 generalizes to the iterated strengthenings as follows.

Corollary 28. For any k ∈ N, we have:

P�k = PHUBDk and P ♦k = P SUBDk

Proof. By induction using Theorem 26.

Example 29. We reconsider Examples 12 and 24, and we recall that LNS� and LNS♦ rule
out the call ab after bc or cb happened. To eliminate bc and cb as the first call, we have
to iterate one-step strengthening: (LNS�)� is strongly successful on this graph, as well as
(LNS♦)♦, (LNS�)♦ and (LNS♦)�.

Example 30. We consider the “N”-shaped gossip graph shown below. There are 21 LNS
sequences for this graph, of which 4 are successful (X) and 17 are unsuccessful (×).

1 0

3 2 20; 30; 01; 31 ×
20; 30; 31; 01 ×
20; 31; 10; 30 ×
20; 31; 30; 10 ×
30; 01; 20; 31 ×
30; 01; 31; 20 ×
30; 20; 01; 21; 31 X

30; 20; 01; 31; 21 X
30; 20; 21; 01; 31 X
30; 20; 21; 31; 01 X
30; 20; 31; 01; 21 ×
30; 20; 31; 21; 01 ×
30; 31; 01; 20 ×
30; 31; 20; 01; 21 ×

30; 31; 20; 21; 01 ×
31; 10; 20; 30 ×
31; 10; 30; 20 ×
31; 20; 10; 30 ×
31; 20; 30; 10 ×
31; 30; 10; 20 ×
31; 30; 20; 10 ×

We can show the call sequences in a more compact way if we only distinguish call sequences
up to the moment when it is decided whether LNS will succeed. Formally, consider the
set of minimal σ ∈ LNS(G) such that for all two terminal LNS-sequences τ, τ ′ ∈ LNS(G)
extending σ, we have G, τ |= Ex iff G, τ ′ |= Ex. We will use this shortening convention
throughout the paper.
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20 ×
30; 01 ×
30; 20; 01 X
30; 20; 21 X
30; 20; 31 ×
30; 31 ×
31 ×

It is pretty obvious what the agents should do here: Agent 2 should not make the first
call but let 3 call 0 first. The soft look-ahead strengthening works well on this graph: It
disallows all unsuccessful sequences and keeps all successful ones. For example, after call
30, agent 2 considers it possible that call 30 happened and in this case the call 20 can lead
to success. Hence the protocol condition of LNS� is fulfilled. The strengthening LNS� is
strongly successful on this graph.

But note that 2 does not know that 20 can lead to success, because the first call could
have been 31 as well and for agent 2 this would be indistinguishable from 30. Therefore the
hard look-ahead strengthening is too restrictive here. In fact, the only call which LNS� still
allows is 30 at the beginning. After that no more calls are allowed by the hard look-ahead
strengthening.

A full list showing which call sequences are allowed by which strengthenings of LNS for
this example is provided in Table 2. “Full” means that we continue iterating the strengthening
until P♥k(G) = P♥(k+1)(G) for the given graph G. Such fixpoints of protocol strengthening
will be formally introduced in the next section.

The hard look-ahead strengthening restricts the set of allowed calls based on a full
analysis of the whole execution tree. One might thus expect, that applying hard look-ahead
more than once would not make a difference. However, we have the following negative
results on iterating hard look-ahead strengthening and the combination of hard look-ahead
and hard one-step strengthening.

Fact 31. Hard look-ahead strengthening is not idempotent and does not always yield a
fixpoint of hard one-step strengthening:

(i) There exist a graph G and a protocol P for which P�(G) 6= (P�)�(G).

(ii) There exist a graph G and a protocol P for which (P�)�(G) 6= P�(G).

Proof.

(i) Let G be the “N” graph from Example 30 and consider the protocol P = LNS .
Applying hard look-ahead strengthening once only allows the first call 30 and nothing
after that call. If we now apply hard look-ahead strengthening again we get the empty
set: P�(G) 6= (P�)�(G) = ∅. See also Table 2.
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(ii) The “diamond” graph that we will present in Section 3.6 can serve as an example here.
We can show that the inequality holds for this graph by exhaustive search, using our
Haskell implementation described in the appendix. Plain LNS has 48 successful and
44 unsuccessful sequences on this graph. Of these, LNS� still includes 8 successful
and 8 unsuccessful sequences. If we now apply hard one-step strengthening, we get
(LNS�)� where 4 of the unsuccessful sequences are removed. See also Table 3 in the
appendix. We note that for P = LNS there is no smaller graph to show the inequality.
This can be checked by manual reasoning or with our implementation.

Similarly, we can ask whether the soft strengthenings are related to each other, analogous
to Fact 31. We do not know whether there is a protocol P for which (P �)♦ 6= P � and leave
this as an open question.

Another interesting property that strengthenings can have is monotonicity. Intuitively,
a strengthening is monotone iff it preserves the inclusion relation between extensions of
protocols. This property is useful to study the fixpoint behavior of strengthenings. We will
now define monotonicity formally and then obtain some results for it.

Definition 32. A strengthening ♥ is called monotone iff for all protocols Q and P such
that Q ⊆ P , we also have Q♥ ⊆ P♥.

Proposition 33 (Soft one-step strengthening is monotone). Let P be a protocol and Q be
an arbitrary strengthening of P , i.e. Q ⊆ P . Then we also have Q♦ ⊆ P ♦.

Proof. As Q is a strengthening of P , the formula Qab → Pab is valid. We want to show that
Q♦ab → P ♦ab. Suppose that G, σ |= Q♦ab, i.e.:

G, σ |= Qab and G, σ |= K̂Q
a [ab](Ex ∨

∨
i,j

(Nij ∧Qij))

From the first part and the validity of Qab → Pab, we get G, σ |= Pab. The second part
and the validity of Qij → Pij give us G, σ |= K̂Q

a [ab](Ex ∨ ∨i,j(Nij ∧ Pij)). From that and
Lemma 22 it follows that G, σ |= K̂P

a [ab](Ex ∨ ∨i,j(Nij ∧ Pij)). Combining these, it follows
by definition of soft one-step strengthening that we have G, σ |= P ♦ab.

Proposition 34 (Both hard strengthenings are not monotone). Let P and Q be protocols.
If Q ⊆ P , then (i) Q� ⊆ P� may not hold, and also (ii) Q� ⊆ P� may not hold.

Proof. (i) Hard one-step strengthening is not monotone:
Consider the “spaceship” graph below with four agents 0, 1, 2 and 3 where 0 and 3

know 1’s number, 1 knows 2’s number, and 2 knows no numbers.

0

1

3

2
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On this graph the LNS sequences up to decision point are:

01; 02 ×
01; 12 ×
01; 31; 02 ×

01; 31; 12 X
01; 31; 32 X
12 ×

31; 01; 02 X
31; 01; 12 X
31; 01; 32 ×

31; 12 ×
31; 32 ×

Note that

LNS�(G) =
{

(01; 31; 12; 02; 32), (01; 31; 12; 32; 02), (01; 31; 32; 02; 12), (01; 31; 32; 12; 02),
(31; 01; 02; 12; 32), (31; 01; 02; 32; 12), (31; 01; 12; 02; 32), (31; 01; 12; 32; 02)

}

is strongly successful and therefore hard one-step strengthening does not change it — we
have (LNS�)�(G) = LNS�(G). On the other hand, consider

LNS�(G) =


(01; 02; 12), (01; 12; 02), (01; 31; 02; 12), (01; 31; 02; 32), (01; 31; 12; 32; 02),
(01; 31; 32; 12; 02), (12; 01), (12; 31), (31; 01; 02; 12; 32), (31; 01; 12; 02; 32),
(31; 01; 32; 02), (31; 01; 32; 12), (31; 12; 32), (31; 32; 12)


and note that this is not a superset of (LNS�)�(G) = LNS�(G), because we have
(01; 31; 12; 02; 32) ∈ (LNS�)�(G) = LNS�(G) but (01; 31; 12; 02; 32) /∈ LNS�(G).

Together, we have LNS�(G) ⊆ LNS(G) but (LNS�)�(G) 6⊆ LNS�(G).
Hence Q = LNS� ⊆ LNS = P is a counterexample and � is not monotone.

(ii) Hard look-ahead strengthening is not monotone:
For hard look-ahead strengthening we can use the same example. Because LNS� is

strongly successful, hard look-ahead strengthening does not change it: (LNS�)�(G) =
LNS�(G).

Moreover, LNS�(G) = {(01), (31)} is not a superset of (LNS�)�(G) = LNS�(G).
Together we have LNS�(G) ⊆ LNS(G) but (LNS�)�(G) 6⊆ LNS�(G), hence hard

look-ahead strengthening is not monotone either.

This result is relevant for our pursuit to pin down how rational agents can employ
common knowledge of a protocol to improve upon it. It shows that hard look-ahead
strengthening is not rational, as follows.

We consider again the “spaceship” graph in the proof of Proposition 34. Let us define a
bad call as a call after which no successful continuation is possible. Correspondingly, a good
call is one after which success is still possible. The initial call could be 12, but that is a
bad call. All successful LNS sequences on this graph start with 01; 31 or 31; 01.

Let us place ourselves in the position of agent 3 after the call 01 has been made. As far
as 3 can tell (if the only background common knowledge is that everyone follows LNS),
the first call may have been 12, at which point no agent can make a good call because no
continuation is successful. In particular, the second call 31 is then bad. So 3 will not call 1,
because it is possible that the call 31 is bad, and we are following hard look-ahead.
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Symmetrically, the same reasoning is made by agent 0: even if the first call is 31, it
could also have been 12, after which any continuation is unsuccessful, and therefore 0 will
not call 1, which again seems irrational.

So nobody will make a call. The extension of LNS� on this graph is empty.
But as all agents know that 12 is bad, agent 1 knows this in particular, and as agent 1

is rational herself, she would therefore not have made that call. And agents 3 and 0 can
draw that conclusion too. It therefore seems after all irrational for 3 not to call 1, or for 0
not to call 1.

This shows that hard look-ahead strengthening is not rational. In particular, it ignores
the rationality of other agents.

3.5 Limits and Fixpoints of Strengthenings
Given the iteration of strengthenings we discussed in the previous section, it is natural to
consider limits and fixpoints of strengthening procedures. In this subsection we discuss
them and give some small results. A detailed investigation is deferred to future research.

Note that the protocol conditions of all four basic syntactic strengthenings are con-
junctions with the original protocol condition as a conjunct. Therefore, all these four
strengthenings are non-increasing: For all ♥ ∈ {�,�,�,♦} and all protocols P , we have
P♥ ⊆ P . The same holds, by definition, for semantic strengthenings. This implies that if,
on any gossip graph, we start with a protocol that only allows finite call sequences, such
as LNS , then applying strengthening repeatedly will eventually lead to a fixpoint. This
fixpoint might be the empty set, or a non-empty set and thereby provide a new protocol.

For other protocols that allow infinite call sequences, such as ANY , we do not know if
this procedure leads to a unique fixpoint and whether fixpoints are always reached. We
therefore distinguish fixpoints from limits.

Definition 35 (Strengthening Limit; Fixpoint). Consider any strengthening ♥. The ♥-
limit of a given protocol P is the semantic protocol P♥∗ defined as ⋂k∈N P♥k. A given
protocol P is a fixpoint of a strengthening ♥ iff P = P♥.

Note that limit protocols P♥∗ are not in the logical language, unlike their constituents
P♥k. We now define P�∗ as Hard Uniform Backward Induction, and P ♦∗ as Soft Uniform
Backward Induction. Again using induction on Theorem 26, it follows that Uniform
Backward Induction is the same as arbitrarily often iterated Uniform Backward Defoliation.

Corollary 36.
P�∗ = PHUBD∗ and P ♦∗ = P SUBD∗.

Example 37. Consider P = LNS. The number of LNS calls between n agents is bounded
by
(
n
2

)
= n(n−1)/2. The limit LNS♥∗ is therefore reached after a finite number of iterations,

and expressible in the gossip protocol language: LNS♥n(n−1)/2 = LNS♥∗.

As a further observation, the look-ahead strengthenings are not always the limits of
one-step strengthenings. In other words, we do not have for all G that P�∗(G) = P�(G)
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or that P ♦∗(G) = P �(G). Counterexamples are the “N” graph from Example 30 and the
extension of various strengthenings relating to the example in the upcoming Section 3.6, as
shown in Table 3 in the appendix.

However, we know by the Knaster-Tarski theorem [37] that on any gossip graph soft
one-step strengthening ♦ has a unique greatest fixpoint, because ♦ is monotone and the
lattice we are working in is the powerset of the set of all call sequences and thereby complete.

3.6 Detailed Example: the Diamond Gossip Graph
Consider the initial “diamond” gossip graph below. There are 92 different terminating
sequences of LNS calls for this initial graph of which 48 are successful and 44 are unsuccessful.
Also below we give an overview of all sequences. For brevity we only list them in the
compact way, up to the call after which success has been decided.

0

1

2 3

20; 01 ×
20; 21 ×
20; 30; 01 X
20; 30; 21 ×
20; 30; 31 X
20; 31 X

21; 10 ×
21; 20 ×
21; 30 X
21; 31; 10 X
21; 31; 20 ×
21; 31; 30 X

30; 01 ×
30; 20; 01 X
30; 20; 21 X
30; 20; 31 ×
30; 21 X
30; 31 ×

31; 10 ×
31; 20 X
31; 21; 10 X
31; 21; 20 X
31; 21; 30 ×
31; 30 ×

Table 1 shows how many sequences are permitted by the different strengthenings.
Both soft strengthenings rule out no successful sequences and rule out some unsuccessful
sequences. The hard look-ahead strengthening removes some successful sequences and rules
out the same number of unsuccessful sequences as the soft lookahead strengthening, but
interestingly enough this is a different set.

This demonstrates that Table 1 may be misleading: the same number of sequences
does not imply the same set of sequences. Table 3 in the Appendix is more detailed and
lists sequences. If a further iteration of a strengthening does not change the number and
also not the set of sequences, it has the same extension, and is therefore a fixpoint. For
example, Table 3 shows that LNS♦2 and LNS♦3 both have 48 successful and 32 unsuccessful
sequences on the diamond graph. They also have the same extension, hence LNS♦2 is a
fixpoint of ♦ on this graph.
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Protocol # successful # unsuccessful
LNS 48 44
LNS� 8 8
LNS�2 0 4
LNS�3 0 0
LNS� 48 8
LNS�2 48 8
LNS�3 48 8
LNS� 24 36
LNS�2 8 16
LNS�3 8 4
LNS�4 0 4
LNS�5 0 0
LNS♦ 48 36
LNS♦2 48 32
LNS♦3 48 32
(LNS♦)�3 16 0
((LNS♦)�)

�
16 0

Table 1: Statistics for the diamond example.

Recall that one-step strengthening is uniform backward defoliation (Theorem 26) and that
the limit of one-step strengthening is uniform backward induction (Corollary 36). Table 1
shows the difference between the look-ahead strengthenings and the one-step/defoliation
strengthenings. Although on this “diamond” graph, the hard strengthenings LNS�k
and LNS�k have the same fixpoint, namely the empty extension for all k ≥ 4, the soft
strengthenings LNS�k and LNS♦k have different fixpoints. Both are reached when k = 2.

We now present two strengthenings that are strongly successful on this graph (only
successfully terminating call sequences remain).

Firstly, consider the protocol (LNS♦)�3. Its extension is as follows, see also Tables 1
and 3.

20; 30; 01; 31; 21
20; 30; 31; 01; 21
20; 31; 10; 30; 21
20; 31; 30; 10; 21

21; 30; 01; 31; 20
21; 30; 31; 01; 20
21; 31; 10; 30; 20
21; 31; 30; 10; 20

30; 20; 01; 21; 31
30; 20; 21; 01; 31
30; 21; 10; 20; 31
30; 21; 20; 10; 31

31; 20; 01; 21; 30
31; 20; 21; 01; 30
31; 21; 10; 20; 30
31; 21; 20; 10; 30

Its extension has no sequences with only four calls. There are sequences with redundant
second-to-last calls, for example 10 in 20; 31; 30; 10; 21.

Secondly, we present a protocol that is strongly successful on this graph and that has
no redundant calls. Its description is far more involved than the previous protocol, but
the effort seems worthwhile as is shows that: (i) for some initial gossip graphs we can
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strengthen LNS up to finding strongly successful as well as optimal extensions; (ii) the
hard and soft strengthening procedures described so far merely touch the surface and are
not all that goes around, because one can easily show that the following protocol does not
correspond to any of those or their iterations.

We first describe it as a semantic protocol, liberally referring to call histories in our
description (which cannot be done in our logical language) and only then give a formalization
using the syntax of our protocol logic. Consider the following semantic protocol:

(1) agent 2 or agent 3 makes a call to either 0 or 1.
(2) the agent among 2 and 3 that did not make a call in step (1) calls either 0
or 1.
(3) the agent x that made the call in step (2) now makes a second call; if x
called agent 1 before then x now calls 0 and vice versa.
(4) the agent y that made the call in step (1) now makes a second call; if y
called agent 1 before then y now calls 0 and vice versa.
(5) if the agent z that was called in step (2) is not yet an expert, then z calls
the last remaining agent whose secret z does not know.

Now let us explain why this protocol is strongly successful on the “diamond” graph, and
why it is a strengthening of LNS . There are four possibilities for the first call: 2 may call
0, 2 may call 1, 3 may call 0 or 3 may call 1. These four cases are symmetrical, so let us
assume that the first call is 20. The next call will then be made by agent 3, and there are
two possibilities: either 3 also calls agent 0, or 3 calls agent 1. The call sequences, and the
secrets known by the agents after each call has been made, are shown in the following two
tables.

First case: 2 and 3 call the same agent
Stage Call 0 1 2 3
(1) 20 {0, 2} {1} {0, 2} {3}
(2) 30 {0, 2, 3} {1} {0, 2} {0, 2, 3}
(3) 31 {0, 2, 3} {0, 1, 2, 3} {0, 2} {0, 1, 2, 3}
(4) 21 {0, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3}
(5) 01 {0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3}

Second case: 2 and 3 call different agents
Stage Call 0 1 2 3
(1) 20 {0, 2} {1} {0, 2} {3}
(2) 31 {0, 2} {1, 3} {0, 2} {1, 3}
(3) 30 {0, 1, 2, 3} {1, 3} {0, 2} {0, 1, 2, 3}
(4) 21 {0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3} {0, 1, 2, 3}

Note that all of these calls are possible, in the sense that all callers know the number of the
agent they are calling. Agents 2 and 3 start out knowing the numbers of 0 and 1, so the
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calls 20, 30, 21 and 31 are possible from the start. Furthermore, agent 0 learns the number
of agent 1 from agent 2 in the first call, so after the call 20 the call 01 is also possible.

In the second case there is no fifth call, since the agent that received the call in step
(2) is already an expert after step (4). As a result, there are no redundant calls in either
possible call sequence. Furthermore, in either case, all agents become experts. Finally,
every call is to an agent whose secret is unknown to the caller before the call. So, the
described protocol is a strongly successful strengthening of LNS .

The two call sequences shown above are possible if the first call is 20. There are six
other call sequences corresponding to the other three options for the first call. Overall, the
protocol allows the following 8 sequences.

20; 30; 31; 21; 01
20; 31; 30; 21

21; 31; 30; 20; 10
21; 30; 31; 20

30; 20; 21; 31; 01
30; 21; 20; 31

31; 21; 20; 30; 10
31; 20; 21; 30

We can also define a syntactic protocol that has the above semantic protocol as its extension.
This syntactic protocol is not particularly elegant, but it illustrates how the logical language
can be used to express more complex conditions. The call condition Pij of this syntactic
protocol is of the form Pij = Kiψij (where Ki abbreviates KANY

i , as defined in Section 2.2).
This guarantees that the protocol is epistemic, because Lemma 22 implies that Kiψij →
KP
i Kiψij is valid. The formula ψij is a disjunction with the following five disjuncts, one for

each of the clauses (1) – (5) of the protocol as described above.
The formula ϕ0 := ∧

k

∧
l 6=k ¬Skl holds if and only if no calls have taken place yet. Since

agents 2 and 3 are the only ones that know the number of another agent, if ϕ0 is true then
any agent who can make a call is allowed to make that call. So ϕ0 is the first disjunct of
ψij, enabling the call in stage (1).

Defining “exactly one call has been made” is a bit harder, but we can do it: after the
first call, there will be two agents that know two secrets, while everyone else only knows
one secret. So ϕ1 := ∨

k 6=l(Skl ∧ Slk ∧
∧
m 6∈{k,l}

∧
n 6=m ¬Smn) holds if and only if exactly one

call has been made. In that case, any agent that is capable of making calls and only knows
their own secret is allowed to make a call, so ϕ1 ∧

∧
k 6=i ¬Sik is the second disjunct of ψij,

enabling the call in stage (2).
In stage (3), the second caller is supposed to make another call. We make a case

distinction based on whether the first two calls were to the same agent or to different agents.
If they were to the same agent, then the second caller now knows three different secrets:∨
k 6=i

∨
l 6∈{i,k} Sikl. But that holds not only for the agent who made the second call, but also

for the agent that received the second call. The difference between them is that the secret
of the receiver of this call is now known by three agents, while the secret of the caller is
known by only two: ∧k 6=i(Ski→ ∧

l 6∈{i,k} ¬Sli).
If the first two calls were to different agents, the second caller knows that every agent

now knows exactly two secrets: Ki
∧
k

∨
l 6=k(Skl∧

∧
m6∈{k,l} ¬Skm). This holds for the receiver

of the second call as well, but the difference between them is that the number of the receiver
is known to an agent who does not know their secret, while the number of the caller is not:∧
k(Nki→ Ski).
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In either case, the target of the call should be the unique agent whose number the caller
knows but whose secret the caller does not know. Since calls are always to an agent whose
number is known, we only have to stipulate that the target’s secret is not known. So the
third disjunct of ψij is

¬Sij ∧ ((
∨
k 6=i

∨
l 6∈{i,k}

Sikl ∧
∧
k 6=i

(Ski→
∧

l 6∈{i,k}
¬Sli))∨

(Ki

∧
k

∨
l 6=k

(Skl ∧
∧

m 6∈{k,l}
¬Skm) ∧

∧
k

(Nki→ Ski))),

enabling the call in stage (3).
It is relatively easy to express when the call in stage (4) should happen: before the

third call, all agents know that there is no expert yet, while after the third call all agents
consider it possible that there is at least one expert. This can be expressed as K̂i

∨
k Exk.

It is slightly more difficult to identify the agent who should make the call. The agent who
should make the call, the one who made the call in stage (1), is the only agent who only
knows two secrets, and whose number is only known by agents that also know their secret.
So ¬∨k 6=i∨l 6∈{i,j} Sikl ∧ ∧k(Nki → Ski). Finally, the person who should be called in this
stage is the unique agent of whom the caller knows the number but not the secret. The
fourth disjunct is therefore ¬Sij ∧ K̂i

∨
k Exk ∧ ¬

∨
k 6=i

∨
l 6∈{i,j} Sikl ∧

∧
k(Nki→ Ski).

Finally, the call in stage (5) should only happen if there remains a non-expert agent.
This non-expert considers it possible that all other agents are experts, so the final disjunct
of ψij is ¬Sij ∧ K̂i

∧
k 6=i Exk.

On the “diamond” graph the extension of the syntactic protocol with call condition Pij
is the semantic protocol defined above. Clearly, this protocol is symmetric. We already
showed that the protocol is epistemic as well.

All in all, this gives us the protocol that we were looking for. Manually verifying the
extension of the protocol is somewhat tedious, so we have also checked the extension using
the model checking tool described in the appendix.

4 An Impossibility Result on Strengthening LNS

4.1 An Impossibility Result
In this section we will show that there are graphs where (i) LNS is weakly successful and (ii)
no epistemic symmetric strengthening of LNS is strongly successful. Recall that we assume
that the system is synchronous and that the initial gossip graph is common knowledge.
Without such assumptions it is even easier to obtain such an impossibility result, a matter
that we will address in the final section.

Theorem 38. There is no epistemic symmetric protocol that is a strongly successful
strengthening of LNS on all graphs.

Proof. Consider the following “candy” graph G:
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0

1 2 3 4

5

LNS is weakly successful on G, but there is no epistemic symmetric protocol P that is a
strengthening of LNS and that is strongly successful on G.

In [16], it was shown that LNS is weakly successful on any graph that is neither a “bush”
nor a “double bush”. Since this graph G is neither a bush nor a double bush, LNS is weakly
successful on it. For example, the sequence

02; 12; 53; 43; 13; 03; 23; 52; 42

is a successful LNS sequence which makes everyone an expert. LNS is not strongly successful
on this graph, however. For example,

02; 12; 53; 43; 13; 03; 52; 42

is an unsuccessful LNS sequence, because 5 learns neither the number nor the secret of 4
and no further calls are allowed.

Now, suppose towards a contradiction that P is an epistemic symmetric strengthening
of LNS , and that P is strongly successful on G.

Before we look at specific calls made by P , we consider a general fact. Recall that
knowing a pure number means knowing the number of an agent without knowing their
secret. For any gossip graph and any agent a, if no one has a’s pure number, then no call
sequence will result in anyone learning a’s pure number. After all, in order to learn a’s
number, one would have to call or be called by someone who already knows that number,
but in such a call one would also learn a’s secret.

In LNS , you are only allowed to call an agent if you have the number but not the secret
of that agent, i.e., if you have their pure number. It follows that if, in a given gossip graph,
no one has a’s pure number, then no LNS sequence on that graph will contain any calls
where a is the receiver.

In the gossip graph G under consideration, agents 0, 1, 4 and 5 are in the situation that
no one else knows their number. So in particular, no one knows the pure number of any
of these agents. It follows that 2 and 3 are the only possible targets for LNS calls in this
graph.

Now, let us consider the first call according to P . This call must target 2 or 3. The
calls 12 and 43 are bad calls, since they would result in 1 (resp. 4) being unable to make
calls or be called, while still not being an expert.
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This means that either 0 or 5 must make the first call. By symmetry, we can assume
without loss of generality that the first call is 02. This yields the following situation.

0

1 2 3 4

5

Now, let us look at the next call.

• The sequence 02; 43 is bad, because that would make it impossible for 4 to ever
become an expert.

• Because of the symmetry of P , the initial call could have been 03 instead of 02. The
sequence 03; 12 is bad, since 1 cannot become an expert, so 03; 12 is not allowed by
the strongly successful protocol P .
But agent 1 cannot tell the difference between 03 and 02, so from the fact that 03; 12
is disallowed and that P is epistemic it follows that 02; 12 is also disallowed.

• The sequence 02; 03 is bad, since 0 will not be able to make any call afterwards.
Because 0 can also never be called, this implies that 0 will never become an expert.

• Consider then the sequence 02; 23. This results in the following diagram.

0

1 2 3 4

5

This graph has the following property: it is impossible (in any LNS sequence) for any
agent to get to learn a new pure number. That is, nobody can learn a new number
without also getting to know the secret of that agent: agents 1, 0, and 4 each know
only one pure number, so they cannot teach anyone a new number, and agent 5 knows
two pure numbers (2 and 3), but those agents already know each other’s secrets.
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As a result, any call that will become allowed by LNS in the future is already allowed
now. There are 5 such calls that are currently allowed, namely 12, 52, 53, 03 and 43.
Furthermore, of those calls 52 and 53 are mutually exclusive, since calling 2 will teach
5 the secret of 3, and calling 3 will teach 5 the secret of 2.
So any continuation of 02; 23 allowed by LNS can only contain (in any order) 12, 03,
43 and either 52 or 53. Since P is a strengthening of LNS , the same holds for P . But
using only those calls, there is no way to teach 3 the secret of 1: secret 1 can reach
agent 2 using the call 12, but in order for the secret to travel any further we need the
call 52. After that call only 03 and 43 are still allowed (in particular, 53 is ruled out),
so the knowledge of secret 1 remains limited to agents 1, 2 and 5.
Since 02;13 cannot be extended to a successful LNS sequence, 02;13 must be disallowed.

• Consider the call sequence 02; 52. This gives the following diagram.

0

1 2 3 4

5

Note that in this situation, it is impossible for agents 3 and 4 to learn any new number
without also learning the secrets corresponding to those numbers: there is no agent
that knows the number of agent 3 and that also knows another pure number, and
this will remain the case whatever other calls happen.
This means that agent 3 cannot make any calls, and that agent 4 can make exactly
one call, to agent 3.
Suppose now that 02; 52 is extended to a successful LNS sequence. This sequence
has to contain the call 43 at some point. This will be the only call by agent 4, so in
order for the sequence to be successful, agent 3 already has to know secret 1 by the
time 43 takes place.
In particular, this means that the call 12 has already happened, and that either
agent 1 or agent 2 has then called agent 3 to transmit this secret. Whichever agent
among 1 and 2 makes this call, afterwards they are unable to make any more calls.
Furthermore, this takes place before the call 43, so whatever agent x ∈ {1, 2} informs
3 of secret 1 does not learn secret 4. Since this agent x can neither make another call
nor be called, it follows that x does not become an expert.
So 02; 52 is not allowed by P which we assumed to be strongly successful.
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• Finally, consider the call sequence 02; 53. By symmetry, 03 could have been the first
call as opposed to 02. Furthermore, the same reasoning that showed 02;52 to be
unsuccessful above can, with an appropriate permutation of agents, be used to show
that 03;53 is unsuccessful.
Agent 5 cannot distinguish between the first call 02 and 03 before making the call 53,
so if 03; 53 is disallowed then so is 02; 53 because P is epistemic.

Remember that 02 is, without loss of generality, the only initial call that can lead to
success. We have shown that all of the LNS -permitted calls following the initial call 02
(namely, the calls 43, 12, 03, 23, 52 and 53) are disallowed by P . This contradicts P being
a strongly successful strengthening of LNS .

4.2 Backward Induction and Look-Ahead applied to Candy
Given this impossibility result, it is natural to wonder what would happen if we use the
syntactic strengthenings from Definition 23, or their iterations, on the “candy” graph G.

All second calls are eliminated by LNS�, because for any two agents a and b we have
G, 02 |= ¬KLNS

a [ab]〈LNS〉Ex . By symmetry this also holds for the three other possible first
calls, hence LNS� is unsuccessful on G. However, the first calls are still allowed according
to LNS�.

There are 9468 LNS -sequences on this graph of which 840 are successful. Using the
implementation discussed in the appendix we found out that LNS�, the soft look-ahead
strengthening of LNS , is weakly successful on this graph and allows 840 successful and 112
unsuccessful sequences.

5 Conclusions, Comparison, and Further Research
Conclusions We modeled common knowledge of protocols in the setting of distributed
dynamic gossip. A crucial role is played by the novel notion of protocol-dependent knowledge.
This knowledge is interpreted using an epistemic relation over states in the execution tree
of a gossip protocol in a given gossip graph. As the execution tree consists of gossip
states resulting from calls permitted by the protocol, this requires a careful semantic
framework. We described various syntactically or semantically definable strengthenings of
gossip protocols, and investigated the combination and iteration of such strengthenings,
in view of strengthening a weakly successful protocol into one that is strongly successful
on all graphs. In the setting of gossip, a novel notion we used in such strengthenings is
that of uniform backward induction, as a variation on backward induction in search trees
and game trees. Finally, we proved that for the LNS protocol, in which agents are only
allowed to call other agents if they do not know their secrets, it is impossible to define a
strengthening that is strongly successful on all graphs.
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Comparison As already described at length in the introductory section, our work builds
upon prior work on dynamic distributed gossip [16, 15], which itself has a prior history in
the networks community [23, 29, 20] and in the logic community [3, 1]. Many aspects of
gossip may or may not be common knowledge among agents: how many agents there are,
the time of a global clock, the gossip graph, etc. The point of our result is that even under
the strongest such assumptions, one can still not guarantee that a gossip protocol always
terminates successfully. How common knowledge of agents is affected by gossip protocol
execution is investigated in [2]: for example, the authors demonstrate how sender-receiver
subgroup common knowledge is obtained (and lost) during calls. However, they do not
study common knowledge of gossip protocols. We do not know of other work on that topic.
Outside the area of gossip, protocol knowledge has been well investigated in the epistemic
logic community [26, 39, 12].

While the concept of backward induction is well-known in game theory (see for example
[4]), it is only used in perfect-information settings, where all agents know what the real world
or the actual state is. Our definition of uniform backward induction is a generalization
of backward induction to the dynamic gossip setting, where only partial observability
is assumed. A concept akin to uniform backward induction has been proposed in [35]
(rooted in [8]), under the name of common belief in future rationality, with an accompanying
recursive elimination procedure called backward dominance.3 As in our approach, this models
a decision rule faced with uncertainty over indistinguishable moves. In [35], the players
are utility maximizers with probabilistic beliefs, which in our setting would correspond to
randomizing over all indistinguishable moves/calls. As a decision rule this is also known
as the insufficient reason (or Laplace) criterion: all outcomes are considered equiprobable.
Seeing uniform backward induction as the combination of backward induction and a decision
rule immediately clarifies the picture. Soft uniform backward induction applies the minimax
regret criterion for the decision whom to call, minimizing the maximum utility loss. In
contrast, hard uniform backward induction applies the maximin utility criterion, maximizing
the minimum utility (also known as risk-averse, pessimistic, or Wald criterion). In the
gossip scenario, the unique minimum value is unsuccessful termination, and the unique
maximum value is successful termination. Minimax prescribes that as long as the agent
considers it possible that a call leads to successful termination, the agent is allowed to
make the call (as long as the minimum of the maximum is success, go for it): the soft
version. Maximin prescribes that, as long as the agent considers it possible that a call lead
to unsuccessful termination, the agent should not make the call (as long as the maximum of
the minimum is failure, avoid it): the hard version. Such decision criteria over uncertainty
also crop up in areas overlapping with social software and social choice, e.g. [7, 11, 33, 31].
In [7] a somewhat similar concept has been called “common knowledge of stable belief in
rationality”. However, there it applies to a weaker epistemic notion, namely belief.

Further Research The impossibility result for LNS is for dynamic gossip wherein agents
exchange both secrets and numbers, and where the network expands. Also in the non-

3We kindly thank Andrés Perea for his interactions.
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dynamic setting we can quite easily find a graph where static LNS is weakly successful but
cannot be (epistemically and symmetrically) strengthened to a strongly successful protocol.
Consider again the “diamond” graph of Section 3.6, for which we described various strongly
successful strengthenings. Also in “static” gossip LNS is weakly successful on this graph,
since 01; 30; 20; 31 is successful. All four possible first calls are symmetric. After 21, the
remaining possible calls are 20, 31 and 30. But 20 is bad, since 2 will never learn secret 3
that way. Also 31 is bad, since agent 1 will never learn the secret of 0. The call 30 is safe
and in fact guarantees success, but by epistemic symmetry it cannot be allowed while 31 is
disallowed. Therefore, in the static setting it is impossible to strengthen LNS on “diamond”
such that it becomes strongly successful. We can thus expect a completely different picture
for strengthening “static” gossip protocols in similar fashion as we did here, for dynamic
gossip.

We assumed synchronicity (a global clock) and common knowledge of the initial gossip
graph. These strong assumptions were made on purpose, because without them agents will
have even less information available and will therefore not be able to coordinate any better.
Such and other parameters for gossip problems are discussed in [13]. It is unclear what
results still can be obtained under fully distributed conditions, where agents only know
their own history of calls and who their neighbors are.

We wish to determine the logic of protocol-dependent knowledge KP
a , and also on fully

distributed gossip protocols, without a global clock, and to further generalize this beyond
the setting of gossip.

Acknowledgements This article is based on chapter 6 entitled “Dynamic Gossip” of the
second author’s PhD thesis [19].
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Appendix: A Model Checker for Dynamic Gossip
Analyzing examples of gossip graphs and their execution trees by hand is tedious. To help
us find and check the examples in this paper we wrote a Haskell program which is available
at https://github.com/m4lvin/gossip. Our program can show and randomly generate
gossip graphs, execute the protocols we discussed and draw the resulting execution trees
with epistemic edges. The program also includes an epistemic model checker for the formal
language we introduced, similar to DEMO [17], but tailor-made for dynamic gossip.

Figure 2 is an example output of the implementation, showing the execution tree for
Example 30 up to two calls, together with the epistemic relations for agent 2, here called
c. Note that we use a more compact way to denote gossip graphs: lower case stands for a
pure number and capital letters for knowing the number and secret.

AbCD.B.AC.AbCD

AC.aBD.AC.aBD

c

AC.B.AC.abD

da

db ABD.ABD.aC.AbD

AbD.ABD.aC.ABD

c

ABD.ABD.aC.aBD

c

ABD.aBD.aC.ABD

cc

c

c

AbCD.B.AbCD.AbD

AbD.B.aC.AbD

ab

db

ca

A.aBD.aC.aBD
c

ba

da

AC.aBD.AC.aBD

ca

A.B.aC.abD

ca da db

Figure 2: Two levels of the execution tree for Example 30, with epistemic edges for c.

Our implementation can run different protocols on a given graph and output a LATEX
table showing and comparing the extension of those protocols. Tables 2 and 3 have been
generated in this way. They provide details how various strengthenings behave on the
gossip graphs from Example 30 and Section 3.6.
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LNS ·� ·� ·� ·�2 ·�3 ·�4 ·♦ ·♦2 ·♦3 ·♦4 ·♦5

ε ×
20 × ×
20;30 × ×
20;30;01 × ×
20;30;01;31 ×
20;30;31 × ×
20;30;31;01 ×
20;31 × ×
20;31;10 × ×
20;31;10;30 ×
20;31;30 × ×
20;31;30;10 ×
30 × ×
30;01 ×
30;01;20 ×
30;01;20;31 × × × × × ×
30;01;31 × × × × × ×
30;01;31;20 ×
30;20;01 ×
30;20;01;21;31 X X X X X X X X
30;20;01;31;21 X X X X X X X
30;20;21 ×
30;20;21;01;31 X X X X X X X X
30;20;21;31;01 X X X X X X X
30;20;31;01 ×
30;20;31;01;21 × × × × × ×
30;20;31;21 ×
30;20;31;21;01 × × × × × ×
30;31 ×
30;31;01 × ×
30;31;01;20 ×
30;31;20 × × × ×
30;31;20;01 × ×
30;31;20;01;21 ×
30;31;20;21 × ×
30;31;20;21;01 ×
31 ×
31;10 ×
31;10;20 × × × × × ×
31;10;20;30 ×
31;10;30 × ×
31;10;30;20 ×
31;20 × × × × ×
31;20;10 × ×
31;20;10;30 ×
31;20;30 × ×
31;20;30;10 ×
31;30 ×
31;30;10 × ×
31;30;10;20 ×
31;30;20 × × × × × ×
31;30;20;10 ×

Table 2: N Example 30: Extensions of strengthenings.
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LNS ·� (·�)� ·� ·� ·�2 ·�3 ·�4 ·♦ ·♦2 ·♦3 (·♦)�3

ε ×
01 ×
01;21 × × × ×
01;21;30 ×
01;21;31 ×
01;30 ×
01;30;21 × × × ×
01;31 ×
01;31;21 × × × ×
21 ×
21;01 × × × ×
21;01;30 ×
21;01;31 ×
21;30 × ×
21;30;01 × ×
21;30;01;31 ×
21;30;31 × ×
21;30;31;01 ×
21;31 ×
21;31;01 × × × ×
30 × ×
30;01 × ×
30;01;21;31 X X X X X
30;01;31;21 X X X X X X X
30;21;01 ×
30;21;01;31 × × × × ×
30;21;31 ×
30;21;31;01 × × × × ×
30;31 × ×
30;31;01;21 X X X X X X X
30;31;21;01 X X X X X
31;01;21;30 X X X X X
31;01;30;21 X X X X X X
31;10;21;30 X X X X X
31;10;30;21 X X X X X X X X X X X
31;21;01;30 X X X X X
31;21;30 X X X X X X
31;30;10;21 X X X X X X X X X X X
31;30;21 X X X X X

Table 3: Diamond Example of Section 3.6: Extensions of strengthenings, after 20.
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